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Abstract
We investigate the shape of the liquid–air free interface in the next two settings.
First, we insert two parallel vertical plates sufficiently close in an infinite
reservoir of liquid. Due to capillary and gravity forces and when the equilibrium
is achieved, the liquid rises to a certain height. Then the liquid–air interface
meets the vertical walls at prescribed angles and its mean curvature is a linear
function of the height, that is, of the coordinate function that defines the gravity
field. We study the shapes of these interfaces and their qualitative properties
assuming natural hypothesis on symmetry. One matter of interest is to obtain
estimates of the size of the capillary meniscus, such as its height, in terms of the
boundary data. In the second setting, we consider a horizontal hydrophilic strip
surrounded by a solid region of hydrophobic character. We spread the liquid
over the strip driven by wettability in such a way that the liquid remains confined
up to the boundary of the strip. In a state of equilibrium and assuming that the
liquid is invariant in the direction of the non-bounded coordinate of the strip, we
prove results on the existence and the uniqueness and we analyse the behaviour
of the interface, specially related to the estimates of volume enclosed by the
surface. Both settings are particular situations of the one-dimensional case of
the capillarity problem, which has been studied in the literature to describe the
shape of a liquid that faces a vertical plate.

Mathematics Subject Classification: 35Q35, 76B45, 35J65, 53A10

1. Introduction

Consider an infinite horizontal reservoir of fluid and let us introduce two parallel vertical plates.
The action of capillarity causes the liquid to rise between both plates until a state of mechanical
equilibrium. Denote by S the liquid–air interface formed by the fluid between the two plates
and whose shape we would like to determine. See figure 1(a). The shape of the interface is
determined by the equilibrium between the capillary and the gravity forces. The fluid surface
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Figure 1. (a) A capillary surface between two parallel vertical planes, (b) adhesion of a liquid
channel on a long striped domain and (c) meniscus of a liquid facing a vertical plate.

level at a large distance from the plates provides a reference level � for atmospheric pressure
that does not change with perturbations of the fluid surface between the plates. According to
the principle of virtual work, the configurations that the capillary meniscus adopts between the
two plates are characterized by two facts [7].

(i) The mean curvature of S is proportional to the height function with respect to� (Laplace
equation).

(ii) The angles γi with which S intersects the plates are constant (Young condition). These
constants depend only on the physical properties of the liquid and the plates.

We also study the following wetting phenomenon. We consider a long, straight and completely
wetting strip embedded in a hydrophobic solid substrate, i.e. of non-wetting type. The liquid
that covers the strip wants to wet the hydrophilic strip, but wants to dewet the hydrophobic
support. As a result, the liquid is confined to the strip by wettability up to its boundary, namely,
two parallel straight lines, and does not contact the exterior. See figure 1(b). Then the liquid–
air interface satisfies Laplace and Young equations again and we then want to know the shape
of such an interface, specially when it ceases to be a graph and the contact angle γ with the
horizontal substrate lies in the range π/2 � γ � π .

Consider (x, y, z) the usual coordinates in Euclidean space R
3. Let P1 = {x = −a} and

P2 = {x = a} be two vertical planes which represent the vertical plates and let � = {z = 0}
be the horizontal plane. Set Li = � ∩ Pi . Denote � = {(x, y) ∈ R

2; |x| < a} the strip
in � determined by the two planes, identifying R

2 with � as usual. Let the height of this
capillary free surface S with respect to �, assumed nonparametric over �, be given by the
scalar function u = u(x, y), (x, y) ∈ �. When the capillary and the gravity forces are in
equilibrium, u satisfies the partial differential equation

div T u = κu, T u = Du√
1 + |Du|2

(1)

in �. Here κ = ρg/σ is the capillarity constant with ρ the difference in densities across the
interface S, g the gravitational acceleration, with a positive and a negative sign in the sessile
and the pendant case, respectively, and σ the surface tension. We assume that the gravity field
acts in the direction of the z-coordinate of R

3. Equation (1) can be interpreted as that the mean
curvature H of the surface z = u(x, y) is κu/2. From a mathematical point of view, there
exists a considerable body of literature on the subject of capillarity (for an extensive list of
references, see [7]).

The Young condition is written as

νi · T u = cos γi along Li, (2)
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where νi is the unit exterior normal on Li . Here γi are the contact angles with which S meets
Pi , i = 1, 2. The orientation on S points in the z-positive direction. If the two plates are made
of the same materials, γ = γ1 = γ2. We may normalize so that 0 � γ � π . The range
0 � γ � π/2 indicates a capillary rise; π/2 < γ � π yields a capillary fall.

When the effect of gravity is ignored, the liquid–air interface describes a surface with
constant mean curvature. A first example of a graph with constant mean curvature on a band
is any section of an infinite round cylinder positioned with its axis parallel to Pi . In our
both settings, it is natural to assume that the interface is homogeneous in the direction of the
y-coordinate. This motivates us to consider that the surface S is invariant by the reflection
with respect to any vertical plane {y = t} and S will be determined by its intersection curve
with any such plane. This means that S is a cylindrical ruled surface. As a consequence, the
Young condition (2) on the contact angle is replaced by a Dirichlet condition on the boundary
∂� of the strip of �.

Classically, the capillarity and the wetting problems were studied when the liquid rises in
a tube with a circular section or when one deposits liquid on a circular domain, respectively.
Thus, our settings then reduce to consider one of the curvature radii is infinite. For this reason,
our context is within the so-called one-dimensional case of the capillarity problem. In the
literature, and within this framework, the study of the shape of a liquid in contact with a
vertical plate as is shown in figure 1(c) has been considered. As we will see in section 2, a
first integration of (1) is obtained in such a way that the solutions can be expressed in terms
of elliptic integrals and some estimates of the height of the meniscus have been obtained from
these integrals or as a limit case of the two-dimensional case [1, 2, 9, 10, 14–16, 18].

The aim of this paper is to give a qualitative and a quantitative description of solutions
of (1) when the function u is defined in a strip � and assuming the invariance of the shape of
the interface with respect to the y-coordinate. In this sense, our point of view will be twofold:
first, we intend to analyse the symmetries of the surface and the shapes adopted depending on
the sign of κ . Second, we are interesting in obtaining, if possible, successive estimates of the
height of the meniscus, as well as of the volume per unit of length enclosed by the surface. In
this sense, we follow the same spirit as in [3–6].

This paper is organized as follows. In section 2, we consider the capillarity equation in
the one-dimensional problem, doing a first integral of this equation and describing each one
of the above settings, including the case that appears in figure 1(c). In section 3 we make a
study of the symmetries of the solutions of such an equation. In section 4, we obtain estimates
of the height of the meniscus in the capillary problem. In sections 5 and 6, we consider the
setting of the spreading of liquid confined in a strip by wettability. In section 5 we consider
sessile liquid channels with results on the existence with respect to the volume enclosed by the
channel. Finally, in section 6 we study pendant liquid channels.

2. The capillarity equation in the one-dimensional problem

In the three settings described in the introduction, the shape of the liquid–air interface is
invariant in one horizontal coordinate. Then the interface S is a cylindrical ruled surface in
Euclidean space R

3 and parametrized as

x(s, t) = α(s) + t �w, s ∈ I, t ∈ R,

where α is a regular planar curve of R
3 and �w ∈ R

3, | �w| = 1 with 〈α′(s), �w〉 = 0. The curve α
is called the directrix of S and �w gives the directions of the rulings t �−→ α(s)+ t �w. A simple
computation of the mean curvature H of S at each point x(s, t) gives H(x(s, t)) = Cα(s)/2,
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where Cα is the curvature of α. Thus, S satisfies the capillary equation (1) if and only if

Cα(s) = κ(z ◦ α)(s) (3)

for all s ∈ I .

Definition 2.1. Let κ 
= 0. A κ-cylindrical surface is a cylindrical ruled surface that locally
satisfies the capillary equation (3).

Let us consider that the curve α(s) lies in the xz-plane and that it is a graph of a function u.
Then S is parametrized by x(r, t) = (r, t, u(r)), r ∈ I , t ∈ R. By computing Cα , the capillary
equation (3) in its one-dimensional form gives

u′′(r)
(1 + u′(r)2)3/2

= κu(r). (4)

Equation (4) is a second-order differential equation for the profile u(r) of the meniscus subject
to the appropriate boundary conditions. The next calculations are classical and we refer to the
encyclopedic article [15, pp 1130–40] (see also [1, pp 71–87]). We have included them here
for the sake of completeness. Multiplying by u′ in equation (4), we have a first integration:

κ

2
u(r)2 = m− 1√

1 + u′(r)2
, (5)

for some constantm ∈ R. We now consider the settings that appear in figure 1. In section 2.1,
we analyse the cases that we will study in this work, that is, the capillarity between two parallel
vertical plates and the liquid covering an infinite strip, figures 1(a) and (b), respectively. In
order to complete with the analysis of (5), we briefly treat the case described in figure 1(c)
in section 2.2 as a further example of the one-dimensional case. In both cases, we assume
that κ > 0.

2.1. Capillarity between two parallel vertical plates; adhesion on a long strip

We consider the settings of figures 1(a) and (b). Here we assume that at r = 0, u′(0) = 0 a
certain height u(0) = u0. Under these boundary conditions, the calculation of the constant m
in (5) gives m = 1 + κu2

0/2, that is,

1√
1 + u′(r)2

= −κ
2
(u2(r)− u2

0) + 1

or,

u(r)2 = u2
0 +

2

κ
(1 − cosψ(r)) = u2

0 +
4

κ
− 4

κ
cos2

(
ψ(r)

2

)
.

By doing the change of variables v = cos(ψ(r)/2) and putting into (4), it allows integration
to obtain the formula
√
κ

λ
r =

(
2

λ2
− 1

)(
K(λ)− F

(
π − ψ

2
, λ

))
− 2

λ2

(
E(λ)− E

(
π − ψ

2
, λ

))
,

where, as usual, here we denote by K(λ) and E(λ) the complete elliptic integrals K(λ) =
F(π/2, λ) and E(λ) = E(π/2, λ) .
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2.2. Capillarity of a liquid surface in contact with a vertical plate

We study the setting of figure 1(c), that is, the meniscus of a liquid facing a vertical plate.
The function u is physically the height of a capillary surface on one side of an infinite vertical
plate. Assume that u(0) > 0 and denote γ as the angle of contact of the liquid with the plate,
0 � γ < π/2. In this case, the boundary conditions are different from the case of the parallel
vertical plates. We consider the natural requirement that the directrix is asymptotic to the
x-axis at infinity. Then u satisfies (4) together with the boundary conditions

nu′(0) = − cot γ lim
r→∞ u

′(r) = 0.

Thus, u′(r) → 0 as u(r) → 0. This mean that the constantm in (5) ism = 1 and equation (4)
written as

u′(r) = ±u(r)
√

4κ − κ2u(r)2

2 − κu(r)2
.

Then it is possible to obtain an integration as follows:

−
√

4 − κu(r)2√
κ

+
1√
κ

log

(
2 +

√
4 − κu(r)2

u(r)

)
= r + c,

where c is chosen so that u′(0) = − cot γ . We can change the logarithm by a hyperbolic
function:

−
√

4 − κu(r)2√
κ

+
1√
κ

arc cosh

(
2√
κu(r)

)
= r + C,

with C = c − (log
√
κ)/

√
κ .

3. Symmetries of capillary strips

Our main objective in this section is the study of the shapes of κ-cylindrical surfaces focusing
on their symmetries and distinguishing the cases in which κ is a positive or a negative constant.
We note that each vertical plane orthogonal to the rulings is a plane of symmetry of S. Without
loss of generality, we assume α(s) = (x(s), 0, z(s)) is parametrized by an arc length:

x ′(s)2 + z′(s)2 = 1, s ∈ I. (6)

Let θ(s) be the angle between the vectors ∂/∂x and α′(s). It is well known that the curvature
Cα of the curve α at the point s is exactly θ ′(s), the derivative of θ(s). Using (6), equation (3)
converts into the following three-dimensional autonomous differential equation P:

P :



x ′(s) = cos θ(s),

z′(s) = sin θ(s),

θ ′(s) = κz(s).

(7)

Theorem 3.1. The system of ordinary differential equations P has a unique solution for each
initial condition. Moreover, the maximal interval of the solution is R.

Proof. Classical theory yields the existence of solutions for each initial datum x(0) = x0,
z(0) = z0, θ(0) = θ0. If z0 = 0, then the solution of P is (x(s), z(s), θ(s)) = (s, 0, 0).
Assume now that z0 
= 0. From (7),

x ′′(s) = −θ ′(s)z′(s) = −κz(s)z′(s) = −κ
2
(z(s)2)′.
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Then there exists a constant m ∈ R such that

cos θ(s) = x ′(s) = −κ
2
z(s)2 +m.

At s = 0, we have m = cos θ0 + κz2
0/2. Then

z(s)2 = z2
0 +

2

κ
(cos θ0 − cos θ(s)). (8)

Therefore z(s) is a bounded function. As a consequence of (8), the first derivatives of x, z and
θ in (7) are bounded functions and this yields that the solutions can be continued indefinitely.
This proves the result. q.e.d.

We recall that in the problems which we are interested in, figures 1(a) and (b), the initial
conditions are

x(0) = 0, z(0) = z0, θ(0) = 0. (9)

In view of our notation, this means that the starting point of α is α(0) = (0, 0, z0) and the
initial velocity is the horizontal vector α′(s) = (1, 0, 0). When we consider the directrix α of
a κ-cylindrical surface, we assume that α satisfies P under the initial conditions (9). We prove
that our κ-cylindrical surfaces have a rich symmetry.

Theorem 3.2 (Symmetry I). Let α(s) = (x(s), 0, z(s)) be the directrix of a κ-cylindrical
surface. If sin θ(s0) = 0, then α is symmetric with respect to the vertical line x = x(s0).

Proof. Let m ∈ Z be such that θ(s0) = mπ . The theorem is proved if for s ∈ R,

x(s + s0)− x(s0) = x(s0)− x(s0 − s),

z(s + s0) = z(s0 − s),

θ(s + s0) = 2mπ − θ(s0 − s).

However, these two sets of functions satisfy P with the same initial conditions at s = 0. The
uniqueness of solutions of an O.D.E. concludes the proof. q.e.d.

In a similar way, one can show the following theorem.

Theorem 3.3 (Symmetry II). Let α(s) = (x(s), 0, z(s)) be the directrix of a κ-cylindrical
surface. Assume that z(s0) = 0. Then α is symmetric with respect to the point α(s0).

We end this section by studying the symmetries of our surfaces depending on the sign of
κ . We point out that if (x, z, θ) is a solution of P and (9), then (x,−z,−θ) is a solution of P
but with the initial condition z(0) = −z0. This allows us to suppose that the signs of κ and z0

agree.

Theorem 3.4 (Sessile case). Let S be a κ-cylindrical surface with κ > 0 and let α(s) be its
directrix curve. Then there exists a horizontal vector �v orthogonal to the rulings such that S
is invariant by the group of translations generated by �v. Moreover, the function z = z(s) is
periodic.

Proof. From equation (8), z � z0. On the other hand, equations (7) imply that θ is strictly
increasing and its limit is ∞. Set T > 0 the first number such that θ(T ) = 2π . Again, the
uniqueness of solutions in a ODE gives α(s + T ) = α(s) + (x(T ), 0, 0). See figure 2. This
means that the surface is invariant by the group of translationsG, where the translation vector
is �v = (x(T ), 0, 0), and that z(s + T ) = z(s) for any s. q.e.d.
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Figure 2. Directrix of a κ-cylindrical surface. Here κ = 1 and z0 = 2.

Remark 3.1. As a consequence of theorem 3.4, and since θ(s) increases to infinity, the velocity
vector rotates infinite times around the origin.

From (8) and because cos θ(s) takes all the values into the interval [−1, 1], we estimate the
function z in terms of the lowest height z0.

Corollary 3.1. Let S be a κ-cylindrical surface with κ > 0 and denote z the height with
respect to the plane �. Then z satisfies

z0 � z(p) �
√

4

κ
+ z2

0, p ∈ S,
where the upper and lower bounds are achieved on S.

Theorem 3.5 (Pendant case). Let S be a κ-cylindrical surface with κ < 0 and let α be its
directrix curve. Assume z0 < 0.

(i) If z0 < −2/
√−κ , there exists a horizontal vector �v orthogonal to the rulings such that

S is invariant by the group of translations generated by �v. Moreover z(s) is a periodic
function and

z0 � z(s) � −
√
z2

0 +
4

κ
. (10)

(ii) If z0 = −2/
√−κ , then z0 � z < 0, z is strictly increasing and lims→∞ z(s) = 0.

(iii) If −2/
√−κ < z0 < 0, then there exists a horizontal vector �v orthogonal to the rulings

such that S is invariant by the group of translations generated by �v. Moreover, z(s) is a
periodic function that vanishes in a discrete set of points, z0 � z(s) � −z0, where both
extrema are achieved.

Proof.

(i) The hypothesis on z0 together with (8) implies that z does not vanish and the inequalities
(10). From (7), θ is a function strictly increasing with

θ ′ � −κ
√
z2

0 +
4

κ
.

This means that θ increases until infinity. Again, let T > 0 be the first number where
θ(T ) = 2π . The same reasoning as in theorem 3.4 proves statement (i). In particular,
cos θ(s) takes all values in [−1, 1] and the bounds in (10) are achieved. See figure 3.
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Figure 3. Directrix of a κ-cylindrical surface. Here κ = −4 and z0 = −2.
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Figure 4. Directrix of a κ-cylindrical surface. Here κ = −4 and z0 = −1.

(ii) Using (8) again, the only zeros of z occur when cos θ(s) = −1. If z vanishes at some
point, the uniqueness of solutions would imply that z = 0, which is a contradiction. Thus
z < 0 and cos θ > −1. Near s = 0, θ increases and the same occurs for the function z,
with 0 � θ(s) < π . Moreover, z(s) < 0, z′(s) > 0 for s ∈ R and

lim
s→∞ z(s) = z1 lim

s→∞ z
′(s) = 0,

for some number z1 � 0. If z1 < 0, by (7) θ ′ � kz1 
 0, and this implies that θ increases
indefinitely and reaches the value π . This contradiction yields z1 = 0. See figure 4.

(iii) We first prove that z vanishes. Because z0 < 0, the functions z and θ increase near s = 0.
If z(s) � 0, then

lim
s→∞ z(s) = δ lim

s→∞ z
′(s) = 0,

for some number δ � 0. If δ < 0, the third equation in (7) implies that θ increases until ∞
and cos θ(s) takes all possible values. Equation (8) together with −2/

√−κ < z0 implies
that z = 0 at some point. If δ = 0, equations (7) give again that either θ → ∞, which
is a contradiction, or θ(s) → θ0, for some θ0 < ∞. Letting s → ∞ in (7), we conclude
that θ = π , in contradiction to (8) and −2/

√−κ < z0.
Therefore, z(s) vanishes at some point s = s0. As z(s) has a minimum at s = 0
(z′′(0) = κz0 > 0), it follows by the symmetry of α with respect to that zero that



Capillary channels in a gravitational field 1581

1 3 5

0.2

0.4

-0.2

-0.4

Figure 5. Directrix of a κ-cylindrical surface. Here κ = −4 and z0 = −0.5.

z0 � z � −z0 (theorem 3.3). Using the same theorem, we have z(2s0) = −z0. The proof
finishes using the symmetries of α given in theorem 3.2. See figure 5. Exactly, it follows
that T = 4s0 is the period of the function z(s) and

x(s + 4s0) = x(s) + x(4s0), (11)

z(s + 4s0) = z(s), (12)

θ(s + 4s0) = θ(s). (13)

q.e.d.

4. Estimates of capillary strips: case κ > 0

In this section, we consider κ-cylindrical surfaces S that are graphs of a function u over the
strip�, that is, S is the surface z = u(x, y) that projects simply onto�, where u(x) = u(x, y),
−a < x < a. The aim of this section is to derive estimates for the capillary rise, as for example,
the centre height u(0) = u0 and the outer height u(a). See figure 6. For the two-dimensional
problem, that is, the capillary problem when we dip a tube of circular section, we refer to
[5–7]. Although a part of the following results holds independently of the sign of κ , in this
section we restrict to the case that κ is a positive constant.

In analogy with the initial conditions (9), we consider

u(0) = u0 > 0, u′(0) = 0. (14)

Denote u = u(r; u0) the dependence of u with respect to the initial condition u0. It follows
from the uniqueness of solutions of (4)–(14) that

(i) u(r; 0) = 0 and u(−r; u0) = u(r; u0).
(ii) u(r; u0) = −u(r; −u0).

As pointed out in the previous section, the second property allows us to prescribe the sign of
u0 to be the same as the κ one. Thus, we assume that u0 > 0. The boundary condition (2)
is written now as u′(a) = cot γ . By standard theory, we know that the solution u is defined
around r = 0. We write

sinψ(r) = u′(r)√
1 + u′(r)2

, cosψ(r) = 1√
1 + u′(r)2

,

where ψ(r) is the angle that it makes with u(r) in the horizontal direction. Then (4)–(14) take
the form

d

dr
sinψ(r) = κu(r), ψ(0) = 0. (15)
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Figure 6. A section of a κ-cylindrical surface, κ > 0.

For r > 0 and close to 0,

sinψ(r) = κ

∫ r

0
u(t) dt. (16)

As u0 > 0, the integrand is positive near to r = 0. Then sinψ(r) > 0, and so u′(r) > 0. This
means that u increases provided that u is defined in the maximal interval (0, R), 0 < R � ∞.
Multiplying by u′ in (4), we have a first integration

1√
1 + u′(r)2

= −κ
2
(u2(r)− u2

0) + 1. (17)

Therefore

u′(r) =
√

4

(2 + κ(u2
0 − u(r)2))2

− 1 (18)

and

u(r) = u0 +
∫ r

0

√
4

(2 + κ(u2
0 − u(t)2)2

− 1 dt.

From (4)–(14), we have u′′ � κu � κu0 > 0. This implies that u′ increases on r and
u′(R) = ∞. Equation (18) gives

u(R) =
√

2

κ
+ u2

0.

This means thatR < ∞ and that the maximal distance between the centre and the outer heights
of a κ-cylindrical surface is

u(R)− u0 = 2/κ

u0 +
√
(2/κ) + u2

0

. (19)



Capillary channels in a gravitational field 1583

This was to be expected according to remark 3.1 and (8). As a consequence, if we fix κ > 0
and u0 > 0, the angle of contact γ takes all the values in the range 0 � γ � π/2. In addition,
we have from (17) (or (8)) the following corollary.

Corollary 4.1. Let u = u(r; u0) be the profile curve of a κ-cylindrical surface S. If γ is the
contact angle with the vertical walls at r = a, then the difference between the centre and the
outer heights q := u(a)− u(0) satisfies

q = 2/κ(1 − sin γ )

u0 +
√
u2

0 + 2
κ
(1 − sin γ )

<

√
2

κ
(1 − sin γ ). (20)

Fixing γ , the function q = q(u0) depending on u0 satisfies

lim
u0→0

q(u0) =
√

2

κ
(1 − sin γ ), lim

u0→∞ q(u0) = 0.

As u increases on r , we bound the integrand in (15) by u0 < u(t) < u(r), obtaining

κu0 <
sinψ(r)

r
< κu(r). (21)

Moreover,

lim
r→0

sinψ(r)

r
= κu0.

This allows us to give the following result on existence.

Theorem 4.1. Let κ > 0 be a constant of capillarity and let� be a strip. Given 0 � γ � π/2,
there exists a κ-cylindrical surface on� that makes a contact angle γ with the plates P1 ∪P2.

Proof. The problem is reduced to finding u0 > 0 such that u′(a; u0) = cot γ or, in terms
of the function ψ , that sinψ(a) = cos γ , where 0 < cos γ � 1. If u0 = 0, we know that
u(r; 0) = 0. By continuity on the parameter u0 for the solutions of (4)–(14),

lim
u0→0

sinψ(a; u0) = sinψ(a; 0) = 0.

Denote (−R,R) the domain of u(r; u0), with R = R(u0). Since R(0) = ∞, there exists u0

close to 0 such that the following holds:

R(u0) > a sinψ(a; u0) < cos γ.

From (21), u0 � 1/(κa). Again, the left inequality in (21) leads to

lim
u0→1/(κa)

sinψ(a; u0) = 1.

By continuity, there exists u0 ∈ (0, 1/(κa)), such that the solution u(r; u0) satisfies sinψ(a) =
cos γ and the result follows. q.e.d.

We begin with the purpose to control the centre height u0 and the outer height u(a) of a
κ-cylindrical surface S. See figure 6. Consider two lower circular arcs �(1) and �(2) centred
at the u-axis and defined, respectively, by two functions u(1) and u(2) as follows. The function
u(1) satisfies u(1)(0) = u0 and the radius is R1 = 1/(κu0). On the other hand, for u(2) we have
u(2)(0) = u0 and such that

d

dr
u(2)(a) = d

dr
u(a)

so that �(2) meets the vertical plates at the same angle as does the solution surface.
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The explicit functions u(1) and u(2) are

u(1)(r) = u0 + R1 −
√
R2

1 − r2, R1 = 1

κu0
, (22)

u(2)(r) = u0 + R2 −
√
R2

2 − r2, R2 = a

cos γ
. (23)

Claim. The three functions satisfy u(1)(r) < u(r) < u(2)(r) in the interval (0, a].

Proof (Of the claim). By (4), the curvature of u(r) is

Cu(r) = u′′(r)
(1 + u′(r)2)3/2

= κu(r).

Moreover Cu increases on r since C ′
u(r) = κu′(r) and κ and u′(r) are positive. At r = 0,

Cu(0) = κu0 = Cu(1) (0) and �(1) has a constant curvature. Because u(0) = u(1)(0), we
conclude then

d

dr
u(1)(r) <

d

dr
u(r), u(1)(r) < u(r), 0 < r < a.

On the other hand, as u(1) and u(2) are circles and Cu(2) (a) > Cu(1) (a), then Cu(2) (r) > Cu(1) (r)

for any r . At r = 0, Cu(2) (0) > Cu(0) and u(2)(0) = u(0). Thus, there exists δ > 0 such
that u(2)(r) > u(r) for 0 < r < δ. We assume that δ is the least upper bound of such values.
By contradiction, suppose that δ < a. As u(2)(δ) = u(δ) and u(2)′(δ) � u′(δ), we have
ψ(2)(δ) � ψ(δ) and a consequence,∫ δ

0
(Cu(r)− Cu(2) (r)) dr =

∫ δ

0

d

dr
(sinψ(r)− sinψ(2)(r)) dr (24)

= sinψ(δ)− sinψ(2)(δ) := α(δ) � 0. (25)

Then there exists r̄ ∈ (0, δ) such that Cu(r̄) > Cu(2) (r̄). As Cu(r) increases, Cu(r) >
Cu(2) (r) for r ∈ (r̄, a). In particular, and using u′(a) = u(2)

′
(a),

0 <
∫ a

δ

(Cu(r)− Cu(2) (r)) dr =
∫ a

δ

d

dr
(sinψ(r)− sinψ(2)(r)) dr = −α(δ),

in contradiction to (24). q.e.d.

As a conclusion of the claim, the circular arcs �(1), �(2) lie, respectively, below and
above the solution curve. Using the explicit formulae for u(1) and u(2), namely, (22)–(23), the
statement of the claim is written, at the value r = a, as

u0 +
1

κu0
−
√

1

κ2u2
0

− a2 < u(a) < u0 +
a

cos γ
(1 − sin γ ).

Together with the fact that u0 < 1/(aκ) and with corollary 4.1, we conclude the following
theorem.

Theorem 4.2. Let S be a κ-cylindrical surface where γ denotes the contact angle with the
vertical plates Pi and 0 � γ < π/2. Then the difference value q = u(a)− u(0) satisfies

1

κu0

(
1 −

√
1 − a2κ2u2

0

)
< q <

a

cos γ
(1 − sin γ ), (26)

q >
2a(1 − sin γ )

1 +
√

1 + 2κa2(1 − sin γ )
. (27)
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In the case that S is vertical at the walls Pi , and also using (20), we obtain

2a

1 +
√

1 + 2κa2
< q <

{
a,

√
2

κ

}
.

Another consequence of the claim is that it allows us to compare the volume per unit of length
enclosed by the capillary surface S and the horizontal round cylinders determined by�(1) and
�(2) (we refer to section 5 for a further discussion on the volume enclosed by the surface).
Using the claim, we have∫ a

0
u(1)(r) dr <

∫ a

0
u(r) dr <

∫ a

0
u(2)(r) dr. (28)

The integral (28) for u can be computed by (4):∫ a

0
κu(r) dr = cos γ. (29)

For the integrals of u(i), we denote

F(u0;R) = a(R + u0)− a

2

√
R2 − a2 − R2

2
arcsin

( a
R

)
.

Then (28) and (29) imply

F(u0;R1) <
cos γ

κ
< F(u0;R2).

Thus, each one of the two above inequalities gives

a

(
1

κu0
+ u0

)
− a

2

√
1

κ2u2
0

− a2 − arcsin(aκu0)

2κ2u2
0

<
cos γ

κ
, (30)

cos γ

κ
<

a2

cos γ
+ au0 − a2 tan γ

2
− a2

2 cos2 γ

(π
2

− γ
)
. (31)

From (31), we obtain a lower bound for u0. On the other hand, and since ∂F/∂u0 > 0, let
u+

0 > u0 be the unique number such that F(u+
0;R1) = cos γ /κ . As F(x;R)− ax is positive,

F
(cos γ

aκ
;R1

)
>

cos γ

κ
= F(u+

0;R1),

and thus

u+
0 <

cos γ

aκ
.

Theorem 4.3. Let u = u(r; u0) be the directrix of a κ-cylindrical surface S, κ > 0. If
0 � γ < π/2 denotes the contact angle with the vertical plates Pi at r = a, then

cos γ

aκ
− a

cos γ
+
a tan γ

2
+

a

2 cos2 γ

(π
2

− γ
)
< u0 < u+

0 <
cos γ

aκ
. (32)

The left inequality in (32) extends the one obtained by Laplace for the circular capillary
tube [11]. The right inequality u0 < cos γ /(aκ) is also a consequence by comparing the slopes
of u(1) and u at the point r = a: u(1)′(a) < u′(a). On the other hand, the combination of
inequalities (30) and (31) gives an estimate of u0 that is rather cumbersome, even in the case
γ = 0:

a

(
1

κu0
+ u0

)
− a

2

√
1

κ2u2
0

− a2 − arcsin(aκu0)

2κ2u2
0

< a2 + au0 − πa2

4
.
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Now, we bound the outer height u(a). Let us move down the circular arc �(2) until it
meets the solution curve (tangentially) at (a, u(a)).

Claim. At the contact point (a, u(a)), the arc �(2) in its new position lies below the solution
curve u.

Proof (Of the claim). The argument is similar as in the above proof. In the new position, we
compare the curvatures of u and �(2): by (21), we have

Cu(a) = κu(a) >
sinψ(a)

a
= Cu(2) (a).

Thus, around the point r = a, u(r) > u(2)(r). By contradiction, assume that there is δ ∈ (0, a)
such that u(2)(r) < u(r) for r ∈ (δ, a) and u(2)(δ) = u(δ). Since u′(δ) � u(2)′(δ), then
ψ(2)(δ) � ψ(δ). This implies∫ a

δ

(Cu(2) (r)− Cu(r)) dr = sinψ(δ)− sinψ(2)(δ) � 0. (33)

Then there would be r̄ ∈ (δ, a) such that Cu(2) (r̄) − Cu(r̄) > 0. As Cu(r) increases on r ,
Cu(r) < Cu(2) (r) on (0, r̄) and hence also throughout (0, δ) ⊂ (0, r̄). Using (33),

0 <
∫ δ

0
(Cu(2) (r)− Cu(r)) dr = sinψ(δ)− sinψ(2)(δ) � 0.

This contradiction shows the claim. q.e.d.

Let u(3) be the function that defines the displaced arc �(2). Then the claim allows us to
estimate the value u(a) by using∫ a

0
u(3)(r) dr <

∫ a

0
u(r) dr.

Recall that the centre of u(3) is u0 − (u(2)(a)− u(a)). Then

F(u0 + u(a)− u(2)(a);R2) <
cos γ

κ
.

As a consequence theorem 4.4 follows.

Theorem 4.4. With the same notation as in theorem 4.3, for any 0 � γ < π/2, we have

u(a) <
cos γ

κa
− a

2
tan γ +

a

2 cos2 γ

(π
2

− γ
)
. (34)

Using again the circular arc u(3), we obtain corollary 4.2.

Corollary 4.2. For any r ∈ (0, a) and 0 � γ < π/2, we have

r2κu0

1 +
√

1 − r2κ2u2
0

< u(r)− u0 <
a

cos γ
−
√

a2

cos2 γ
− r2 (35)

and

u(a) +
a sin γ

cos γ
−
√

a2

cos2 γ
− r2 < u(r)− u0. (36)
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Proof. Inequalities (35) are a consequence of u(1)(r) < u(r) < u(2)(r) and (22)–(23). The
lower bound (36) is a consequence of u(3)(r) < u(r) in (0, a). q.e.d.

We finish this section obtaining new estimates of the values u0 and q = u(a)−u(0) from
below. As u′(r) > 0 in (0, a), we may introduce the inclination angle ψ = arctan u′(r) as an
independent variable. We have then

dr

dψ
= cosψ

κu

du

dψ
= sinψ

κu
. (37)

Simple quadratures give

u(ψ) =
√
u2

0 +
2

κ
(1 − cosψ) (38)

previously obtained in (8). As a consequence, the difference in squares of the maximum and
the minimum heights satisfies

u2(ψ)− u2
0 = 2

κ
(1 − cosψ), (39)

and thus is independent of the width of the strip �.
As rκu0 < sinψ , we deduce from (38) corollary 4.3.

Corollary 4.3. In the range 0 < ψ � π/2 there holds

u(ψ) <

√(
sinψ

κr

)2

+
2

κ
(1 − cosψ).

Now, the following computations are similar to the case that � is a circular disc [4]. Let

m = cos(ψ/2), p =
√

1 + κ(r/m)2.

The function r/m increases in ψ . As

u <
sinψ

κr
p,

it follows from (37) that p dr > r cotψ dψ , that is√
m2 + κr2

mr
dr > cotψ dψ. (40)

From (21),

lim
ψ→0

r(ψ)

sinψ
= 1

κu0
.

An integration in (40) leads to theorem 4.5.

Theorem 4.5. In the range 0 < ψ � π/2, there holds

u0 >
sinψ

2κr

κ

m
(1 + p)e1−p. (41)

Theorem 4.6. For any 0 � γ < π/2, we have
2(1 − sin γ )

κf (γ )
< u(a)− u0 <

a(1 − sin γ )

cos γ
,

where

f (γ ) = 2 cos γ

κa
− a tan γ

2
+

a

2 cos2 γ

(π
2

− γ
)
.

Proof. The right inequality is a consequence of (26). For the left one, we know from (39) that

u(a)− u0 = 2(1 − sin γ )

κ(u(a) + u0)
.

Then we bound u(a) and u0 using (32) and (34). q.e.d.
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5. Sessile liquid channels

In next two sections we study the setting of figure 1(b), that is, the spreading of a liquid on the
strip � = {(x, y); −a < x < a} of the plane � = {z = 0}, completely wetting the domain
� and confining the liquid up the boundary ∂�. We assume that the liquid–air interface S is
invariant in the y-direction. Firstly, in this section we address the case in which the capillarity
constant κ is positive. This indicates that the gravity field points towards �.

Let u = u(r; u0) be the solution of (4)–(14), with u0 > 0. We write (4) in terms of the
inclination angle ψ with respect to the r-axis:

dr

dψ
= cosψ

κu

du

dψ
= sinψ

κu
. (42)

We point out that this angle ψ agrees at the contact between S and � with the value γ , the
angle at which the surface meets � along the boundary. We know from section 3 that there
exists a finite value R > 0 where u is vertical, that is, r(π/2) = R. Theorem 3.4 asserts that
ψ takes any real number and the solution u(ψ) can be continued as a solution of (4).

Theorem 5.1. The functions r(ψ) and u(ψ) can be continued throughout the range 0 < ψ �
π . Moreover, there exists a value ro = limψ→π r(ψ), being ro > 0. The function u(ψ)
monotonically increases in (0, π) whereas the function r(ψ) increases to the value r = R at
ψ = π/2 and decreases next in the interval (π/2, π) until the value ro.

Proof. From (21), we know that r < 1/(κu0). Denote by (−) and (+) the parts of the meniscus
defined for ψ ∈ (0, π/2) and ψ ∈ (π/2, π), respectively. For values r < R close to R, we
have from an integration of (15) from r to R:

1 − sinψ−(r) = κ

∫ R

r

u−(t) dt, 1 − sinψ+(r) = κ

∫ R

r

u+(t) dt.

Subtracting both expressions, we obtain

sinψ−(r)− sinψ+(r) = κ

∫ R

r

(u+(t)− u−(t)) dt. (43)

In particular, u+(r) > u−(r) and hence sinψ−(r) > sinψ+(r). From (42), u+, u− both
increase in ψ as one can continue the solution until ψ = π . However, it is not possible to
arrive at r = 0 in (43), since it would imply

0 > − sinψ+(0) = κ

∫ R

0
(u+(t)− u−(t)) dt > 0.

Hence, we conclude the existence of the value ro = limr→π r(ψ) > 0. The monotonicity of
the functions u(ψ) and r(ψ) is a consequence of (42). q.e.d.

Corollary 5.1. Given κ, u0 > 0 and 0 < γ � π , there exists exactly one κ-cylindrical surface
given by the profile u(r; u0) which makes a contact angle γ with the support plane.

We now study the behaviour of a sessile liquid channel with respect to the volume that
encloses the support plane. Although our channels have infinite volume, we can consider the
volume per unit of length. For 0 < r � a, let�b = (−r, r)× (−b/2, b/2) ⊂ � be a bounded
rectangle in �. The enclosed volume of S in �b is

2b

(
ru(r)−

∫ r

0
u(t) dt

)
.
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We call the volume of S the volume per unit of length, that is,

V(r) = 2

(
ru(r)−

∫ r

0
u(t) dt

)
.

If we view r = r(ψ), we also write V(ψ) to denote the dependence on the angle ψ . Using
(15), we have

V(ψ) = 2

(
ru(r)− sinψ

κ

)
. (44)

As we have done in this paper, we use γ to denote the value of the angle ψ at which the
interface meets the support plane, and let a = a(γ ). We first establish a result of existence
and uniqueness for a given volume; next, we will do estimates of such a volume as a function
on the initial data.

Theorem 5.2. Let κ > 0. Given V > 0 and 0 < γ � π , there is exactly one κ-cylindrical
surface with boundary angle γ and volume V(γ ) = V .

Proof. The function V = V(u0) is continuously differentiable on the initial condition u0: this
follows from the standard continuous dependence theorem of the ODE theory.

We first prove the existence. Recall the notation R = r(π/2). By (21), R < 1/(κu0).
Thus R → 0 as u0 → ∞. We know from section 4 that the function u(3) defined there lies
below u. Hence a circle of radius R contains the function u(ψ), for 0 < ψ < π/2. As we
have viewed in the proof of theorem 5.1, sinψ+ < sinψ− and thus the same circle u(3) also
contains the upper part of u, that is, u(ψ), for π/2 < ψ � π . Consequently the function
volume V(u0) satisfies V < πR2, which goes to 0 as u0 → ∞.

Now, let u0 → 0. From (41), r(γ ; u0) → ∞ for any fixed 0 � γ � π/2. By (38), we
know that u(γ ; u0) >

√
2/κ(1 − cos γ ). Since the surface is convex, we have V → ∞ as

u0 → 0. In the case γ > π/2, we obtain V(γ ; u0) > V(π/2; u0) and the same conclusion
holds.

Now, let us fix γ and V . By letting u0 be between 0 and ∞, the volume function V takes
all values. The continuity of V with respect to u0 gives the existence of a κ-cylindrical surface
with the prescribed volume V .

The proof of uniqueness is obtained if, fixing the value of the angle ψ , 0 < ψ � π ,
we show

V̇(ψ) = V̇(ψ; u0) := ∂V(ψ; u0)

∂u0
< 0, (45)

for all u0 > 0 and each fixed ψ in 0 < ψ � π . For this purpose, we first prove the inequality

dV̇
dψ

< 0 in (0, π ]. (46)

Once proved, we continue the proof of (45) as follows. The (·) symbol indicates the
differentiation with respect to u0:

ṙ = ṙ(ψ) = ∂r

∂u0
(ψ; u0), u̇ = u̇(ψ) = ∂u

∂u0
(ψ; u0).

Fixing the boundary angle ψ , a differentiation of (44) with respect to u0 yields

V̇ = 2(ṙu + ru̇). (47)

It is known that ṙ(0) = 0 and u̇(0) = 1. Then it follows from (47) that V̇(0; u0) = 0. Then
(46) leads to V̇(u0) < 0 in (0, π) for any u0. This proves (45) and so the uniqueness of the
statement of the theorem. Thus, we focus on proving inequality (46). By using (42),

dV̇
dψ

= 2 sinψ

κu2
(ṙu− ru̇). (48)
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We shall prove that ṙ < 0 and u̇ > 0. Again, (42) yields
dṙ

dψ
= −cosψu̇

κu2
,

du̇

dψ
= − sinψu̇

κu2
. (49)

As u0 > 0 and (dr/dψ)(0) = −1/(κu2
0) < 0, we know that ṙ < 0 in an initial interval

J = (0, δ), with δ � π .
On the other hand, and as u̇(0) = 1, then u̇ > 0 for sufficiently small values of ψ . Then

and from (49) we have
du̇

dψ
> − sinψu̇

κu2
0

.

By integrating this expression between the angles 0 and ψ , we obtain

u̇ > exp

{
cosψ − 1

κu0

}
. (50)

It follows that u̇ > 0 and (50) holds in J . From (48),

dV̇
dψ

< 0 in J. (51)

By contradiction, we suppose there exists a value ψ0, 0 < ψ0 < π , such that ṙ(ψ0) = 0.
Take ψ0 the first ψ with this property. As V̇(0) = 0, inequality (51) implies that V̇(ψ0) < 0.
However, inequality (50) gives u̇(ψ0) > 0 and from the expression of V̇ in (47), we conclude

V̇(ψ0) = 2r(ψ0)u̇(ψ0) > 0.

This contradiction implies then that ṙ is negative in (0, π) and consequently u̇ > 0. This
proves inequality (46). q.e.d.

After this result, and as was announced in the introduction of the paper, we now give a
control of the volume V enclosed by a liquid channel. Let 0 < γ � π be the contact angle
and a = r(γ ). We recall the function u(3) defined in section 4, that is, the circular arc u(3)

is centred on the z-axis and is tangent to u at r = a when 0 < γ � π/2 and u(3)(r) < u(r)

for 0 < r < a, with u(3)(a) = u(a). We claim that the halfcircle determined by u(3) in the
halfplane r > 0 is contained inside the solution curve u, with a single point of contact, namely,
(a, u(a)). For this purpose, we compare the curvatures of the curves u and u(3). By using (15),
(21) and (23),

Cu(a) = κu(a) >
cos γ

a
= 1

R2
= Cu(3) .

Using (15) and (42) again, the function Cu increases on ψ since
dCu
dψ

= κ
du

dψ
= sinψ

u
> 0.

This proves the inclusion property. As a consequence, we can compare the volume V of
the liquid channel with respect to the halfcylinder determined by u(3). Using the notation
R = r(π/2), we have theorem 5.3.

Theorem 5.3. Let κ > 0 and let S be a κ-cylindrical surface resting on a horizontal
plane. Denote by γ the angle of contact and V(γ ) the volume enclosed by S. In the range
0 < γ � π/2, there holds

V(γ ) < a2

sin2 γ
(γ − sin γ cos γ ). (52)

If π/2 � γ � π , we have

V(γ ) < R2(γ − sin γ cos γ ). (53)
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Proof. For the case 0 < γ � π/2, it suffices to point out that∫ a

0
u(3)(r) dr = a2 cot γ + a u(a)− a2

sin2 γ

(
γ

2
+

1

2
sin γ cos γ

)
.

In order to prove (53), we consider the halfcircle u(3) centred at (0, u(R)) of radius R, which
is tangent to u at r = R. It is known that the lower part of this circle lies below u. We
parametrize u(3) by the angle φ with the r-axis in each point. We prove that u(3)(γ ) > u(γ ).
Fixing r < R and π/2 � ψ(r) � π , the function u(3) lies above u at r , u(3)(r) > u(r) and
sinψ+(r) < sin φ+(r). As sin φ+ decreases as φ+ → π , u(3)(γ ) > u(γ ). Then inequality (53)
is a consequence of the explicit computation of the volume of u(3) until φ = γ . q.e.d.

We now see a new bound of the volume.

Theorem 5.4. With the same notation as in theorem 5.3, we have

V(γ ) > γ − sin γ cos γ

κ2u(γ )2
0 < γ � π/2. (54)

Proof. Consider the circle

v(r) = u0 + R −
√
R2 − r2, R = 1

κu(γ )
.

The curve v touches u tangentially at (0, u0). As Cu(0) = κu0 < Cv(0) = κu(γ ), we have
v(r) > u(r), for each r where v is defined. If we prove that v(γ ) < u(γ ), then the arc v until
φ = γ lies above u and this allows us to obtain the lower bound for the volume of u, namely,
the volume enclosed by v gives (54). At the point where v attains the inclination angle φ = γ ,

v(γ ) = u0 +
1 − cos γ

κu(γ )
.

Then u(γ ) > v(γ ) if u(γ )− u0 > v(γ )− u0. By using (38), we have to prove

2(1 − cos γ )/κ

u0 +
√
u2

0 + (2/κ)(1 − cos γ )
>

1 − cos γ

κu(γ )

or equivalently

2u(γ ) > u0 +

√
u2

0 +
2

κ
(1 − cos γ ).

But the second summand on the right side is exactly u(γ ), using (38) again. This proves that
v(γ ) < u(γ ). q.e.d.

Now we prove the following inclusion result.

Theorem 5.5. Let κ > 0. Let 0 < γ � π/2 and let S be a κ-cylindrical surface supported on
a horizontal plane and making a contact angle γ . Let V be its volume. Then every κ-cylindrical
surface S with smaller volume and making the same contact angle can be translated rigidly
so that it lies strictly interior into S.

Proof. Assume that S is given by the solution u(r; u0), u0 > 0. From (46), if the volume is
smaller, then the new surface is given by a solution of (4) for an initial value greater than u0,
namely, u0 + δ, with δ > 0. Consider the solution uδ = u(r; u0 + δ), with δ > 0, and let ψδ(r)

be the corresponding angle function with respect to the r-axis. From (15),

sinψδ(r)− sinψ(r) = κ

∫ r

0
(uδ(t)− u(t)) dt.
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As (uδ−u)(0) = δ > 0, then sinψδ(r) > sinψ(r). By (15) and (21), we have (uδ−u)′(r) > 0.
It follows that uδ(r)− u(r) > δ or uδ(r)− δ > u(r). Then if we move downwards the curve
uδ a distance δ, then it lies above the curve u except at the single point (0, u0). The result is
proved if for any δ > 0, uδ(r)−δ < u(r) at the points where the angle γ is achieved. Given γ ,

(uδ − u− δ)(γ ) =
∫ δ

0
(u̇(γ ; u0)− 1) du0. (55)

Since u̇(0; u0) = 1, an integration from ψ = 0 to ψ = γ leads to

u̇(γ ) = 1 +
∫ γ

0

du̇

dψ
dψ.

As seen in the proof of theorem 5.2, u̇ < 0 and (49) implies that the above integrand is
negative. Thus u̇(γ )−1 < 0, which says that the integrand in (55) is negative. This proves the
result. q.e.d.

We end the section obtaining new estimates of a sessile liquid channel, with special
attention to the fact if the contact angle lies in the range [π/2, π ]. Recall R = r(π/2), that is,
the r-coordinate where u is vertical.

Theorem 5.6. Let S be a κ-cylindrical surface supported on � and κ > 0. Suppose that
u = u(ψ) is the profile of S, where ψ denotes the inclination angle with respect to the r-axis.
Then in the range 0 < γ � π there holds

u(γ )− u0 <

√
2(1 − cos γ )

κ
.

In the range, π/2 � γ � π , we have

R − r(γ ) <
1√
κ

(√
2 + log

(
tan

π

8

))
− 2 cos

ψ

2
− log

(
tan

γ

4

)
,

u(γ )− u(R) <

√
2(1 − cos γ )− √

2√
κ

.

In particular, and setting γ = π ,

R − ro <

√
2

κ
, u(π)− u(R) <

2 − √
2√

κ
.

Proof. By using (38), we estimate u(ψ) from below as

u(ψ) >

√
2

κ
(1 − cosψ).

In combination with (42), we obtain,

du

dψ
<

sinψ√
2κ(1 − cosψ)

,

and for π/2 � ψ � π ,

dr

dψ
>

cosψ√
2κ(1 − cosψ)

.

The proof finishes by integrating the above two inequalities. q.e.d.

The results obtained in theorem 5.6 could be of interest in physics in the context described
in figure 1(b), see introduction. Given a strip � of hydrophilic type, we completely cover
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this domain by liquid but confining the liquid to the strip up to its boundary. For this, we
assume that the exterior of� is made of a solid of hydrophobic character in such a way that the
liquid does not contact the exterior of the strip. When the amount of liquid is small, the shape
adopted by the liquid–air interface is a graph. As more and more liquid is added to the strip,
the interface ceases to be a graph and the contact angle γ with the horizontal substrate lies in
the range π/2 � γ � π . Then there exists a critical volume where the liquid channel has a
contact itself. See [8, 12, 17]. The value 2(R − r(γ )) gives the minimum distance which two
consecutive hydrophilic strips can approach without being in contact. The following theorem
gives new estimates of the above distance.

Theorem 5.7. Let S be a κ-cylindrical surface supported on the plane� and κ > 0. Assume
that the contact angle γ satisfies π/2 � γ � π . Then

1√
κ

1 − sin γ√
2(1 − cos γ ) + κu2

0

< R − r(γ ) <
1√
κ

1 − sin γ√
2 + κu2

0

.

Proof. As cos γ < cosψ < 0, (38) gives√
u2

0 +
2

κ
< u(ψ) <

√
u2

0 +
2

κ
(1 − cos γ ).

Substituting into (42), we obtain

1√
κ

cosψ√
2 + κu2

0

<
dr

dψ
<

1√
κ

cosψ√
2(1 − cos γ ) + κu2

0

,

and the result follows by integrating from ψ = π/2 until ψ = γ . q.e.d.

We do a comparison with the situation of an absence of gravity and pieces of infinite
cylinders, whose boundary is ∂� = L1 ∪ L2. For π/2 � γ � π , the amount R − r(γ ) is
exactly (1 − sin γ )/(2H), where H is the mean curvature of the cylinder.

6. Pendant liquid channels

This section is devoted to the study of κ-cylindrical surfaces when κ < 0. In theorem 3.5, we
have studied its behaviour, see figures 3–5. Let α(s) = (x(s), 0, z(s)) be the directrix of such
a surface S and without loss of generality, we assume z0 = z(0) < 0. We will describe the
shape of these surfaces varying the initial value z0, as done in theorem 3.5. A first matter that
we ask is whether S is a graph on �, that is, if α is a graph on the x-axis. Theorem 3.5 yields
the necessary condition z0 > −2/

√−κ . However, we have theorem 6.1.

Theorem 6.1. Let S be a κ-cylindrical surface, κ < 0. Then S is a graph on � if and only if

−
√

2

−κ < z0 < 0. (56)

In such a case, we set α as α(r) = (r, u(r)), where u = u(r; u0) is a solution of (4) with
u0 = z0 < 0. Moreover the following properties hold (see figure 5).

(i) The function u is periodic and its domain is R.
(ii) The function u vanishes in an infinite discrete set of points.

(iii) The inflections of u are their zeros.
(iv) We have u0 � u(r) � −u0, the values ±u0 are attained and they are the only critical

points of u.
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Proof. As usual, let ψ(s) be the angle that makes α′(s) with the x-axis. From (8),

cosψ(s) = 1 − κ

2
(z2 − z2

0) � 1 +
κ

2
z2

0.

Therefore, α(s) has no vertical points if and only if z2
0 < −2/κ . In such a case, x ′ =

cosψ >> 0 and x increases strictly to infinity. Let the new variable r = x(s), defined in R

and put u(r) = z ◦ x−1(r). In particular, the derivative u′ = tanψ is bounded. We apply
theorem 3.5 and with the notation used there, let rT = x(4s0). Then

u(r + rT ) = u(x(s) + x(4s0)) = u(x(s + 4s0)) = z(s + 4s0) = z(s) = u(r).

This proves that u is a periodic function. From (4), the inflections agree with the zeros of u.
The rest of the properties are a consequence of theorem 3.5. q.e.d.

The behaviour of u is as follows. After r = 0, u increases on r until it vanishes at some
point R. Theorem 3.3 says that u is symmetric with respect to the point (R, 0). Thus, u
increases until the value r = 2R, where u takes the value −u0. Again, the symmetry of uwith
respect to the line r = 2R implies that u decreases until it arrives at r = 4R to the value u0

again. From this position, the curve u repeats the same behaviour as the periodicity of u.
We write (8) as

u(ψ)2 − u2
0 = 2

κ
(1 − cosψ). (57)

In the general case for u0, given a solution u(r; u0) of (4)–(14), we can estimate the initial
interval of u until the first vertical point.

Lemma 6.1. Consider u = u(r; u0) the solution of (4)–(14). Then u can be continued at least
until the value r = 1/(κu0). Furthermore, sinψ(r) < κu0r .

Proof. Since (sinψ)′ = κu, the function sinψ is strictly increasing on r whenever u is
negative. Then for r > 0 and near to r = 0, sinψ = u′/

√
1 + u′2 is positive. As a conclusion,

u increases on r near to 0. Given 0 < t < r , we have u0 < u(t) < u(r). Because κ < 0 and
by using (16) we have

κu(r) <
sinψ(r)

r
< κu0, (58)

and hence sinψ(r) < κu0r = 1. This means that ψ(r) < π/2. q.e.d.

The next result gives an estimate of the first zero R of u, u(R) = 0, in the sense that,
fixing the constant κ , the value R remains bounded in some interval, independent of the initial
condition u0.

Theorem 6.2. Let κ < 0 and u(r; u0) a solution of (4)–(14) such that u0 satisfies (56). Then

1√−2κ
< R <

√
−2e

κ
. (59)

Proof. Since u(R) = 0, equation (57) implies that cosψ(R) = 1 + κu2
0/2. From (58),

R >
sinψ(R)

κu0
= 1

κu0

√
1 − cos2 ψR = −1

2κ

√
−4κ − κ2u2

0.

The left side of (59) is then a consequence of this inequality and (56). Now, we show the
inequality on the right side of (59). In the region where u < 0, sinψ(r) increases on r . Let us
fix a such that 0 < a < R. Then sinψ(r) > sinψ(a). As sinψ < tanψ , we have

u′ = tanψ > sinψ � a

r
sinψ(a).
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An integration between a and R gives

R < a exp

{ −u(a)
sinψ(a)

}
.

Again (58) leads to

R < a exp

{ −1

κa2

}
. (60)

Since this holds for every a < R and the function on a on the right side of (60) attains a
minimum at a = √−2/κ , we obtain the desired estimate. q.e.d.

We follows the study of pendant cylindrical surfaces with the case

z0 = −
√

2

−κ .
This setting can be treated as in theorem 6.1, except that in a discrete set of points, u is vertical.
These points are the zeros of u by using (57). Next, let us assume that z0 < −√−2/κ .

Theorem 6.3. Let α the directrix of a κ-cylindrical surface, κ < 0, such that the initial
condition z(0) = z0 satisfies

− 2√−κ < z0 < −
√

−2

κ
. (61)

Then the function z(s) is periodic. Furthermore,

(i) the directrix α presents exactly four vertical points in each period of z(s),
(ii) each vertical point lies in the segment of α between one extremum and one zero of z(s)

and

(iii) the heights of the vertical points are ±
√
z2

0 + 2/κ .

Proof. By using theorem 3.5, the function z(s) is periodic. By the symmetries of α, it suffices
to prove that between s = 0 and the first time s0 where α intersects the r-axis, there exists
exactly one vertical point. Since θ ′(s) = κz(s), the function θ increases on r in the interval
(0, s0). We know that θ attains the value θ = π/2, the first vertical point, at some point s∗,
with s∗ < s0. By using again (8) and (61), θ does not reach the value θ = π , which shows

that it is the unique vertical point. By (8), the height at s = s∗ is −
√
z2

0 + (2/κ). q.e.d.

Remark 6.1. It is possible to determine the region where this first vertical point occurs. For
this purpose, one can carry as in the case of pendant liquid drops by using a ‘comparison
lemma’ that compares u with circular arcs and the hyperbolae ru < 1/(2κ) and ru < 1/κ
([3] and [7, chapter 4.6]). For example, one can show that the directrix α, in the initial region
z < 0, does not enter the region ru � 1/κ .

We now give a complete discussion of shapes of pendant liquid channels under
hypothesis (61).

Theorem 6.4. Let α(s) be the directrix of a κ-cylindrical surface S. Assume that z0 satisfies
(61). Then there exist numbers z1, z2, with

− 2√−κ < z2 < z1 < −
√

2√−κ
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Figure 7. Directrix of a κ-cylindrical surface, with κ = −4. Case (a) z0 = −0.82;
case (b) z0 ∼ −0.855.
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Figure 8. Directrix of a κ-cylindrical surface, with κ = −4. Case (a) z0 = −0.87,
case (b) z0 ∼ −0.908.
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Figure 9. Directrix of a κ-cylindrical surface, with κ = −4. Here z0 = −0.95.

and such that the following properties hold.

(i) If z1 < z0, then α has no double points and x goes to ∞, figure 7(a).
(ii) If z0 = z1, then α has double points, where α tangentially meets itself. Moreover α lies

in the halfplane {x � 0} and x goes to ∞, figure 7(b).
(iii) If z2 < z0 < z1, α has double points, meeting at these points transversally and x goes to

∞, figure 8(a).
(iv) If z0 = z2, then α is a closed curve with self intersection at the origin, figure 8(b).
(v) If z0 < z2, α has double points, where α meets itself transversally and x goes to −∞,

figure 9.

Proof. Denote r(ψ0) and r(π/2) the x-coordinates of the first point at which α meets the
x-axis and the first vertical point, respectively. We know that r(π/2) > r(ψ0). q.e.d.
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Claim 1. r(π/2) � π/(2
√−2κ), independent of the initial value z0.

Proof (Of the claim 1). For each 0 � ψ � π/2 and by using (57) and (61), we obtain

κu(ψ) > −κ
√

−2 cosψ

κ
.

Since cosψ > 0, we have from (42) that

dr

dψ
<

√
cosψ√−2κ

<
1√−2κ

.

An integration of these inequalities from ψ = 0 to ψ = π/2 proves claim 1. q.e.d.

Let us denote r(ψ0; z0) and r(π/2; z0) to emphasize the dependence on z0.

Claim 2. There exists a continuous function ϕ = ϕ(z0), strictly decreasing on z0, such that
r(ψ0; z0) < ϕ(z0) and

lim
z0→−2/

√−κ
ϕ(z0) = −∞.

Proof (Of the claim 2). Consider ψ ∈ [π/2, ψ0]. Since u(ψ0) = 0, by (57), we have

1 − cosψ0 = −κ
2
z2

0.

This proves that as z0 → −2/
√−κ , the angle ψ0 at which the directrix α meets the r-axis

goes to ψ = π . As z2
0 < −4/κ , again (57) leads to

u(ψ) � −
√

−2(1 + cosψ)

κ
.

Then (42) implies

dr

dψ
<

1√−2κ

cosψ√
1 + cosψ

.

An integration from ψ = π/2 until ψ = ψ0 yields

r(ψ0)− r(π/2) <
2√−κ

(
sin

ψ0

2
− arctanh

(
tan

ψ0

4

)
−

√
2

2
+ arctanh

(
tan

π

8

))
.

From claim 1, r(π/2; z0) is bounded. Then, upto a constant C,

r(ψ0; z0) <
2√−κ

(
sin

ψ0

2
− arctanh

(
tan

ψ0

4

))
+ C := ϕ(z0).

Finally, as z0 → −2/
√−κ , ψ0(z0) → π and then ϕ → −∞. q.e.d.

We know from (57) that for two values of z0, namely, a and b, if a < b, then
cosψ0(a) < cosψ0(b). Moreover, claim 3 follows

Claim 3. The function r(ψ0; z0) is strictly decreasing on z0.

Proof (Of claim 3). Consider a < b and denote αa and αb the corresponding directrix curves,
respectively, for these initial conditions. Reasoning similar that in theorem 5.5 proves that if
δ < 0, u(r; z0 + δ) + δ > u(r; z0) (by lemma 6.1, r(π/2; z0 + δ) < r(π/2; z0)). This shows
that if we move αa upwards until we arrive at the point (0, b), αa lies over αb at least until the
first vertical point of αa . Then αa , in the new position, lies over αb at least until both αa and
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αb meet at the r-axis. If r̄ is the first zero of (the displaced curve) αa , we have

r(ψ0(a)) < r̄ < r(ψ0(b)). q.e.d.

Now, we sketch the proof of the theorem and we omit the details. Take z0 varying from
z0 = −√−2/κ until z0 = −2/

√−κ . With the notation of (11), the period of z(s) is T = 4s0,
with x(s0) = r(ψ0). Let z1 and z2 be the unique numbers, z2 < z1, such that, in the notation
of (11), there hold

x
(
s0 + x−1 ◦ r

(π
2

)
; z1

)
= 0 and r(ψ0; z2) = 0.

This means that z1 is the initial condition where the x-coordinate of the second vertical point
vanishes and z2 is the initial condition in (14) where the x-coordinate of the first zero of z(s) is
0. The existence is given by claim 2 and the uniqueness by claim 3. By (11), the direction, the
left or the right one, that α takes depends on the sign of x(4s0). The critical time occurs when
x(4s0) = x(s0) = 0 = r(ψ0; z2), where α is a closed curve. Moreover, since z increases in the
interval (0, 2s0) (and z goes from z0 to −z0), the curve α does not intersect itself in this range
of values of s. Then the results follow using the symmetries of α according to theorems 3.2
and 3.3. q.e.d.

Here we discuss the behaviour of the directrix depending on the initial value z0, with
−2/

√−κ � z0 < 0. For the rest of the values of z0, that is, when z0 < −2/
√−κ , the solution

α was studied in theorem 3.5.

Remark 6.2. The results obtained here show the contrast of behaviour between pendant liquid
channels and pendant liquid rotational drops. In the latter, the profile curve α is a graph on the
x-axis when z0 < 0 is sufficiently close to 0. Letting z0 → −∞, there comes a time when
they appear as vertical points. The number of vertical points indefinitely increases ( [3]). In
contrast, in our setting, we have proved that the function z(s) is periodic. Moreover, we show
that in each period of z(s), the number of vertical points is at most four. This depends on
what range the value z0 lies in, going from zero to four, one and two points when z0 goes from
z0 = 0 to −∞: see theorems 6.1, 6.3 and 3.5.

7. Summary and conclusions

Motivated by possible applications in the field of microfluidic systems, we have studied
the shapes of solutions of the capillary equation div(T u) = κu, κ 
= 0, on a strip
� = {(x, y), |x| < a}. We search solutions invariant in the y-direction, that is, u(x) = u(x, y).
Such surfaces z = u(x, y) are models of liquid–air interfaces that appear in two settings. The
first one consists of introducing two parallel plates in a reservoir of liquid and vertically
positioned at ∂�. During the course of this work, we have tried to analyse the shapes of the
capillary meniscus depending on the sign of κ . We have proved that the height coordinate
of the surface is a periodic function in the sessile case (κ > 0) and in almost all cases in
the pendant situation (κ < 0). For this analysis, we used a first integration obtained for
the height coordinate of the surface. When κ > 0, the surface is invariant by horizontal
translations orthogonal to the vertical plates and it lies completely on one side of the reference
level � = {z = 0}. Moreover, the velocity vector of its directrix curve indefinitely rotates
around the origin. In the pendant case, the morphologies of the meniscus depend on the range
in which the initial condition u(0) = u0 lies. If u0 is near 0, then the surface is a graph on �
with points to both sides of this plane. But if we let u0 → −∞, the capillary surface ceases
to be a graph, with vertical points appearing until that it comes completely below �. Under
this situation, the surface has similar properties as in the sessile case. We have obtained exact
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control of the number of these vertical points (see remark 6.2). We point out that this contrasts
with the shapes of rotational pendant liquid drops, where the number of vertical points grows
indefinitely as u0 → −∞.

Together with this analysis of the morphologies, we present and develop a set of estimates
of capillary shapes. Our basic tool to calculate these estimates has been the comparison of the
interface with pieces of cylinders horizontally positioned on � and whose axis is parallel to
the y-axis. For example, we estimate the centre height of the meniscus, similar to the classical
formula obtained by Laplace for rotational liquid drops.

The second setting that we have considered has been the study of a liquid channel confined
on a chemical wetting strip� embedded in a solid substrate, which is non-wetting. We assume
that the liquid is homogeneous in the y-direction. A first interest has been the analysis of the
volume for a sessile liquid channel in relation to the boundary data of the capillary surface.
Here, by volume of the liquid channel we mean its volume per unit of length. We have proved
the existence and the uniqueness of a liquid channel for the given values of volume and contact
angle with the support plane�. Using comparisons with halfcylinders again, we have obtained
upper and lower bounds of the volume. In this sense, our work could be applied in the context
of spreading liquid on patterns made by a set of parallel hydrophilic strips sandwiched by a
hydrophobic substrate. The liquid is driven by wettability and guided along the hydrophilic
strips. When the amount of liquid grows, two consecutive strips can touch. The results obtained
show, at least from a theoretical point of view, that it is possible to control the distance between
two consecutive liquid channels on hydrophilic strips without touching, in terms of data such
as the contact angle, the capillary constant or the centre height.
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