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Abstract: In this paper we consider a variational problem for spacelike hypersurfaces
in the (n + 1)-dimensional Lorentz-Minkowski space L

n+1, whose critical points are
hypersurfaces supported in a spacelike hyperplane � determined by two facts: the mean
curvature is a linear function of the distance to � and the hypersurface makes a constant
angle with � along its boundary. We prove that the hypersurface is rotational symmetric
with respect to a straight-line orthogonal to � and that each (non-empty) intersection
with a parallel hyperplane to � is a round (n − 1)-sphere. A similar result is proved for
hypersurfaces trapped between two parallel hyperplanes.

1. Introduction and Statement of Results

Consider the following variational problem: let � be a spacelike hyperplane in the
(n + 1)-dimensional Lorentz-Minkowski space L

n+1 and denote by �+ one of the two
halfspaces at which � divides L

n+1. Let M be a compact spacelike hypersurface whose
boundary ∂ M lies on � and its interior, int(M), is included in �+. The hyperplane �

is called the support hypersurface. Let us denote � the bounded domain by ∂ M on �.
In this setting, we consider all perturbations in such way that M is adhered to �, that is,
∂ M ⊂ �, and int(M) remains in �+. We consider the following energy functional:

E = |M | − cosh β|�| +
∫

M
Y d M,

where |M | and |�| denote the n-areas of M and � respectively. Here Y is a potential
that, up constants, measures at each point the distance to �. We say that Y is a timelike
potential associated to � (we shall drop the reference to � if it is well understood in the
context). We seek those configurations in a state of equilibrium, that is, when the energy
is critical under any perturbation that does not change the volume enclosed by M ∪ �.
According to the principle of virtual work, the equilibrium of the system is achieved if
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1. the mean curvature of M is a linear function on the distance to � and
2. the hyperbolic angle β with which M and � intersect along ∂ M is constant.

See Fig. 1. In such a situation, we shall say that M is a stationary hypersurface. In
absence of a timelike potential Y , M is a hypersurface with constant mean curvature.
Constant mean curvature hypersurfaces have interest in different problems in general
relativity. We refer [14, 17, 20] and references therein. Alías and Pastor have proved the
following result:

Theorem [4]. Consider a compact spacelike surface M in L
3 with constant mean cur-

vature and supported in a plane �. If the hyperbolic angle of contact between M and
� is constant along ∂ M, then M must be an umbilical surface, that is, a planar disc or
a hyperbolic cap.

See also [18] for other results in Lorentzian space forms. The main argument used
there is the holomorphicity of the Hopf differential in a surface with constant mean cur-
vature. However, and just as they pointed out there, this method fails when the dimension
ambient space is bigger than 3. In the present article, we extend the result of Alías and
Pastor in two directions. First, we consider arbitrary dimension for the ambient space
L

n+1; and second, we assume the presence of a timelike potential corresponding to the
support hyperplane �. Our proof uses the Alexandrov reflection method. Such technique
was firstly used by Alexandrov to prove that a closed embedded constant mean curvature
surface in Euclidean 3-dimensional space must be a round sphere [1]. The proof uses the
very hypersurface as barrier of comparison with itself and the Hopf maximum principle
for elliptic equations.

Here, we prove a more general result:

Theorem 1. Let M ⊂ L
n+1 be a compact embedded spacelike hypersurface supported

in a spacelike hyperplane �. Assume that

1. M lies in one side of �.
2. The mean curvature of M is a function that depends only on the distance to �.
3. The hyperbolic angle that makes M with � along ∂ M is constant.

Then there is a vertical straight-line L orthogonal to � about which M is rotational
symmetric. Moreover, M is topologically a n-ball and the intersection of M with a hyper-
plane orthogonal to L is a (n − 1)-sphere whose center lies on the axis L. In the case
that the mean curvature is constant, M is a piece of a hyperbolic hyperplane bounded
by a round (n − 1)-sphere or M is a domain of �.

Let us relate Theorem 1 with that of Alías and Pastor. First, we point out that a com-
pact spacelike hypersurface in L

n+1 is a graph on some domain of the support plane,

Fig. 1. A stationary hypersurface over a plane �. The hyperbolic angle β is constant along ∂ M
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and so, it is embedded [4]. On the other hand, the fact that the mean curvature of M is
constant corresponds with no assumption of a timelike potential in L

3, as we will see
in Sect. 2, Eq. (4). Moreover, an easy application of the maximum principle applied to
the constant mean curvature equation implies that the hypersurface has no points in both
sides of �. Hence that M lies in one side of �, unless that M is included in � and in
which case, M is a planar domain.

As conclusion of Theorem 1, we describe the shape of the critical points of the initial
variational problem.

Corollary 1. Let � be a spacelike hyperplane in L
n+1. Then any stationary embed-

ded hypersurface M supported in � is a hypersurface of revolution with respect to
a straight-line orthogonal to �. Moreover, each non-empty intersection of M with a
parallel hyperplane to � is a round (n − 1)-sphere.

A similar result was proved by Wente in Euclidean space [21]. Recently, the present
author has detailed the size and shape of a stationary surface in L

3 supported in a
spacelike plane [16].

This paper is organized as follows. Section 2 is a preparatory introduction where we
will formulate the variational problem. Next we present the background analysis of the
maximum principle and in Sect. 4 we prove our main result, Theorem 1. In Sect. 5 we
extend our result for stationary hypersurfaces trapped between two parallel hyperplanes
and, finally, we summarize the results and the conclusions in Sect. 6.

2. Preliminaries

In this section we present the variational problem introduced in the above section. Much
of these results appear in the literature and we refer to them for more details. See [4–
8]. Let L

n+1 denote the (n + 1)-dimensional Lorentz-Minkowski space, that is, the real
vector space R

n+1 endowed with the Lorentzian metric 〈, 〉 = dx2
1 + · · · + dx2

n − dx2
n+1,

where x = (x1, . . . , xn+1) are the canonical coordinates in L
n+1. An immersion x :

Mn → L
n+1 of a smooth n-manifold M is called spacelike if the induced metric on M

is positive definite. Observe that a = (0, . . . , 0, 1) is a unit timelike vector field globally
defined on L

n+1, which determines a time-orientation on the space L
n+1. This allows us

the choice of a unit normal vector field N on M which is in the same time-orientation
as a, and hence that M is oriented by N . We will refer to N as the future-directed Gauss
map of M .

The spacelike condition imposes topological restrictions to the immersion x . For
example, there are not closed spacelike hypersurfaces and then, any compact space-
like hypersurface has non-empty boundary. If � is a (n − 1)-submanifold in L

n+1 and
x : M → L

n+1 is a spacelike immersion of a compact hypersurface, we say that the
boundary of M is � if the restriction x : ∂ M → � is a diffeomorphism. For spacelike
hypersurfaces, the projection π : L

n+1 → {xn+1 = 0}, π(x) = (x1, . . . , xn), is a local
diffeomorphism between int(M) and π(int(M)). Thus, π is an open map and π(int(M))

is a domain in �. If M is compact, then π : M → � is a covering map. Thus, any
compact spacelike hypersurface whose boundary � is a graph over the boundary of an
open region � ⊂ {xn+1 = 0} is a graph over �. From now, we shall identify a point
p ∈ M with its image by x , namely x(p).

Consider a compact spacelike hypersurface M ⊂ L
n+1 whose boundary ∂ M is on

a spacelike hyperplane �, which must be of spacelike-type. Without loss of generality
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and after an isometry of the ambient, we assume that � = {xn+1 = 0} and that M is
the graph of a function u on a domain of �. Although the boundary ∂ M is possibly
non-connected, the causal character on M implies the existence of a component of ∂ M ,
named �0, such that π(int(M)) is contained in the bounded domain determined by �0
in �. Therefore, M defines an “interior” domain, that is, there exists a bounded region
� ⊂ � such that M ∪ � determines in R

n+1 a bounded domain B, called the “interior”
of M .

For spacelike hypersurfaces of L
n+1, the notions of the first and the second funda-

mental form are defined in the same way as in the Euclidean space. In a classical notation,
they are given by

I =
n∑

i, j

gi j dxi dx j , II =
n∑

i, j

hi j dxi dx j ,

where gi j = 〈∂i x, ∂ j x〉 is the induced metric on M by x and hi j = 〈∂i N , ∂ j x〉. Then
the mean curvature H of x is

H = 1

n
trace [(gi j )

−1(hi j )].
Assume that M is the graph of a smooth function u = u(x1, . . . , xn) defined over a
domain � ⊂ �. The spacelike condition implies |∇u| < 1, where ∇ is the gradient
operator in R

n and the Gauss map is

N = (∇u, 1)√
1 − |∇u|2 .

According to this orientation, the mean curvature H at the point (x, u(x)), x ∈ �,
satisfies the equation

(1 − |∇u|2)�u −
n∑

i, j

ui u j ui j = nH(1 − |∇u|2)3/2. (1)

This equation can alternatively be written in divergence form

div(T u) = nH, T u = ∇u√
1 − |∇u|2 . (2)

We present now the notion of stationary hypersurface in L
n+1. Consider a spacelike

hyperplane �, that divides L
n+1 into two halfspaces. Let us orient � by the future-

directed unit timelike vector field N� and consider L
n+1
+ the component of L

n+1 \ �

towards where N� points to. Let x : M → L
n+1 be a connected compact hypersurface

with boundary ∂ M , smooth even at ∂ M such that x(int(M)) ⊂ L
n+1
+ and x(∂ M) ⊂ �.

A variation of M is a differentiable map X : (−ε, ε)× M → L
n+1 such that Xt : M →

L
n+1 defined by Xt (p) = X (t, p), p ∈ M , is an immersion and X0 = x . The variation

is called admissible if Xt (int(M)) ⊂ L
n+1
+ and Xt (∂ M) ⊂ � for all t . The functionals

A, S : (−ε, ε) → R defined by

A(t) =
∫

M
d At , S(t) =

∫
�t

d�,
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measure, respectively, the n-area of M with the metric induced by Xt and the n-area
of �t ⊂ �, the region in � bounded by Xt (∂ M). Finally, the volume function V :
(−ε, ε) → R is defined by

V (t) =
∫

[0,t]×M
X∗ dV,

where dV is the canonical volume element of L
n+1. The variation X is said to be

volume-preserving if V (t) = V (0) for all t . The variational vector field of X is

ξ(p) = ∂ X

∂t
(p)

∣∣∣∣
t=0

.

If we assume the existence of a potential Y , then resultant variation energy is

Y (t) =
∫

M
Y d At .

The energy function E : (−ε, ε) → R of the mechanical system is defined by

E(t) = A(t) − cosh β S(t) + Y (t), (3)

where β ∈ R is a constant. We say that the immersion x is stationary if E ′(0) = 0 for
any volume preserving admissible variation of x . One can show that the first variation
formula for the energy is:

E ′(0) =
∫

M
(−nH + Y + λ) 〈N , ξ 〉 d M +

∫
∂ M

〈ξ, ν�〉 (cosh β + 〈N , N�〉) ds,

where ν� is the inner unitary conormal to � along ∂ M . Thus, we have

Proposition 1. Let � be a spacelike hyperplane in L
n+1 and let M be a compact hyper-

surface. Let us consider x : M → L
n+1 a smooth spacelike immersion such that

x(int (M)) ⊂ L
n+1
+ and x(∂ M) ⊂ �. Then x is stationary if and only if

1. The mean curvature H of x satisfies the relation

nH(p) = Y (p) + λ, p ∈ M, (4)

where Y is a potential and λ is a Lagrange parameter determined by an eventual
volume constraint;

2. The hypersurface M = x(M) meets the support hyperplane � with a constant hyper-
bolic angle β, and cosh β = −〈N , N�〉 along ∂ M.

Our interest in this article lies in the case for which Y is a timelike potential associated
to �. As we have supposed that � = {xn+1 = 0},

Y (p) = κxn+1(p), (5)

for a constant κ . When κ = 0, Y = 0 and the mean curvature H of the hypersurface M
is constant, with H = λ/n.

On the other hand, when we talk of contact angle, it is implicitly assumed that the
boundary regularity of M is enough to ensure that the idea of a normal vector to M
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at every boundary point makes sense. For this, we will require M to be a sufficiently
smooth hypersurface up to the boundary ∂ M . The contact angle β is given by

cosh β = −〈N , N�〉 = 1√
1 − |∇u|2 (6)

along ∂ M . The constancy of the angle β implies that |∇u| is constant along ∂ M , and
consequently, the Euclidean angle between M and � along ∂ M is also constant.

The constant λ is a Lagrange multiplier arising from the volume constraint: since M
is a graph on �, the volume V enclosed by M ∪ � is

V =
∫

�

u d�.

By combining (4), (5), (6) and the divergence theorem in (2), we obtain κV + λ|�| =
cosh β|∂�| or

λ = cosh β|∂�| − κV

|�| .

3. The Maximum Principle

We consider M1 and M2 two spacelike graphs in L
n+1 defined respectively by two

functions ui , i = 1, 2. We suppose that both functions are defined in the same domain
� ⊂ R

n = {xn+1 = 0}. We know that the mean curvature Hi of Mi satisfies

div(T ui ) = nHi (x), |∇ui | < 1

in �. Assume that for each x ∈ �, we have the inequality H1(x) ≤ H2(x). The operator
div(T u) may be written in the form

div(T u) = 1

W

n∑
i

uii +
1

W 3

n∑
i, j

ui u j ui j , W =
√

1 − |∇u|2,

where the subscript i indicates the differentiation with respect to the variable xi . We can
write div(T u) = ∑n

i, j ai j (x, u, p)ui j with p ∈ R
n , pi = ui , and where

n∑
i, j

ai j (x, u, p)ξiξ j = (1 − |p|2)|ξ |2 + 〈ξ, p〉2

W 3 , ξ ∈ R
n
.

As a consequence

0 < λ(x, u, p)|ξ |2 ≤
n∑

i, j

ai j (x, u, p)ξiξ j ≤ �(x, u, p)|ξ |2,

where

λ(x, u, p) = 1

W
�(x, u, p) = 1

W 3 .
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Then the operator is elliptic for |p| < 1 and uniformly elliptic for compact domains.
Let

φ(x, p, r) = div(T u) = nH(x), (7)

where r = (ri j ), ri j = ui j . Then φ is a smooth function defined in � × D × R
n2

given
explicitly by

φ(x, p, r) = 1√
1 − |p|2

n∑
i, j

(
δi j +

pi p j

1 − |p|2
)

ri j ,

where D is the unit open disc of R
n . For each u = ui , i = 1, 2, we will use the notation

pi , r i and Hi for each i . Since H1 ≤ H2, a standard argument by using the chain rule
shows then

0 ≤ φ(x, p2, r2) − φ(x, p1, r1)

=
n∑

i, j

∫ 1

0

∂φ

∂ri j
(θ(t)) dt wi j +

n∑
j

∫ 1

0

∂φ

∂p j
(θ(t)) dt w j := Lw,

where w = u1 − u2, wi = ∂w/∂xi , wi j = ∂2w/∂xi∂x j and θ = θ(t) = (x, tp2 +
(1 − t)p1, tr2 + (1 − t)r1). The right hand side of the above equation defines an elliptic
operator L because

|ξ |2 ≤
∫ 1

0

1

W (θ(t))
dt |ξ |2 ≤ Lw ≤ max

{
1

W 3
1

,
1

W 3
2

}
|ξ |2,

and Wi = √
1 − |∇ui |2. Since the coefficients ai j are locally bounded, L is locally

uniformly elliptic and we are in position to apply the Hopf maximum principle to the
difference function w, whether in its classical formulation ([11]) or its boundary point
version ([12]): see also [10, Ch. 3]. Consequently, we have proved the following result:

Theorem 2 (The touching principle). Let u, v be two smooth solutions to the same
prescribed mean curvature equation (7) on a domain � ⊂ R

n. Suppose that u ≤ v on
� and u(x0) = v(r0), x0 ∈ �. Then u(x) = v(x) on �. The same holds if p ∈ ∂� with
the extra hypothesis that ∂u/∂ν = ∂v/∂ν at x0, where ν is the outward unit normal to
∂�.

4. Proof of Theorem 1

The method of proof used in this work is the Alexandrov reflection method and it may be
adapted to the present situation. For expository reasons, we will describe it briefly. Such
techniques have been used in a variety of situations in differential geometry. See also the
so-called “method of moving plane” in the context of the theory of partial differential
equations (for example [9, 19]).

The proof consists in showing that for each hyperplane P orthogonal to �, there
exists some hyperplane P∗ parallel to P such that M is invariant by the symmetry with
respect to P∗. In showing this fact for such hyperplane, then M is a hypersurface of
revolution whose axis L is the intersection of all hyperplanes P∗. In addition, the proof
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shows that M is a graph over some domain of P∗ in each side. Consequently, each
intersection of M with a hyperplane parallel to � is a round (n − 1)-sphere.

For this, we work as follows. Fix a hyperplane P orthogonal to � and consider the
foliation of all translated copies of P along a straight-line orthogonal to P . Then coming
from the infinity towards M doing such translations, one makes successive symmetries
about these hyperplanes and looks to the possible first point of tangent touching contact
with M again. Then we use the very hypersurface M as comparison hypersurface with
itself and the touching principle concludes that in that new position P∗, the hypersurface
M is invariant by the symmetry with respect to P∗.

After an ambient isometry, we can suppose that the support hyperplane � is � =
{x ∈ R

n+1; xn+1 = 0} and that the mean curvature H of M depends only on the xn+1-
coordinate, that is, H(x) = H(xn+1(x)) for any x ∈ M . Without loss of generality, we
assume that M lies over the hyperplane �. Let � be the bounded region in � bounded by
∂ M such that M ∪ � is a closed embedded hypersurface. Therefore, M ∪ � determines
two domains in R

n+1, namely A and B, where we denote, respectively, the non-bounded
and the interior domain determined by M in R

n+1. Recall that in our situation, both
hyperbolic and Euclidean angles between M and � are constant along ∂ M .

Let P be a fixed vertical hyperplane far away from M so P ⊂ A. Let P(t) be the
1-parameter family of translated copy of P , where we choose the parameter t such that
P(t), t > 0, is included in the connected component determined by P which contains
M . Here t = dist(P(t), P), hence P(0) = P . Translating P towards M parallel to itself
(say, to the right) one gets a first plane P(t1) that reaches M , that is, P(t1) ∩ M = ∅ but
if t < t1 then P(t) ∩ M = ∅. Furthermore, the spacelike character of M implies that
P(t1) touches M only at boundary points. Now, when we move P a little more to the
right from t = t1, until a hyperplane P(t), the (closed) part of M on the left of P(t),
which we denote by M(t)−, is a graph (with respect to the horizontal) over a domain in
P(t) and no point of M(t)− has a horizontal tangent hyperplane. We denote M(t)+ the
part of on the right of P(t).

Let M(t)∗ be the symmetry of M(t)− through P(t). We know then that for ε > 0
sufficiently small, M(t)∗ ⊂ B, t ∈ (t1, t1 +ε). Recall that the symmetry with respect to a
vertical hyperplane is an isometry of L

n+1, and so, the mean curvature remains invariant
by the symmetry. Because the mean curvature of M depends only on the height with
respect to �, the mean curvature is the same for all points of M(t)+ and M(t)∗ at the
same height. We continue now moving P(t) to the right, and reflecting M(t)− about
P(t), successively until one reaches a first point of contact of the reflection of M with
M(t)+.

Consider the first parallel hyperplane P(τ ) where one of the following conditions
fails to hold (see Fig. 2 and 3):

1. int (M(τ )∗) ⊂ int (B).
2. M(τ )− is a graph over a part of P(τ ) and no point of M(τ )− has a horizontal tangent

hyperplane.

If 1) fails first, M(τ )+ and M(τ )∗ touch at some interior point p (Fig. 2, (a)), or at
a boundary point p, with p ∈ ∂ M ∩ ∂ M(τ )∗ (Fig. 2 (b)). The fact that M lies over �

prohibits the possibility that p ∈ ∂ M and p is a reflection of an interior point of M(τ )−.
Thus the tangent hyperplanes of M(τ )+ and M(τ )∗ agree at p (in the latter case, we
use that the hyperbolic angle between M and � along ∂ M is constant). In addition, the
reflections invert normal vectors and the Gauss maps N of M(τ )∗ and M(τ )+ at such
point p are the same. Then one applies the touching principle to M(τ )+ and M(τ )∗ at
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Fig. 2. The Alexandrov reflection method: (Case 1)

Fig. 3. The Alexandrov reflection method: (Case 2)

the point where they touch to conclude that M(τ )+ = M(τ )∗. This means that P(τ ) is
a hyperplane of symmetry of M .

If 2) fails first, then there exists a point p where the tangent hyperplane of M(τ )−
becomes horizontal is on ∂(M(τ )−) ⊂ P(τ ) (Fig. 3 (a)) or p ∈ ∂ M ∩ P(τ ) (Fig. 3
(b)). In the former possibility one can apply the boundary touching principle to M(τ )∗
and M(τ )+ to conclude that P(τ ) is a hyperplane of symmetry of M ; in the second
one, the corresponding tangent hyperplanes of M and M(τ )∗ are identical because the
hyperbolic angle with the a direction is the same at p. Then one applies the maximum
principle at a corner point (see details in [19]).

Thus, for each vertical hyperplane P , some parallel translate of P , namely P∗ =
P(τ ), is a hyperplane of symmetry of M and this proves that M is a hypersurface of
revolution.

To finish with the proof, we consider the situation of absence of the timelike potential.
We know that a stationary hypersurface M with free boundary supported in a spacelike
hyperplane � must be a hypersurface of revolution. Set |x | = r , x ∈ R

n . After an
isometry of the ambient, we assume that the rotation axis is the xn+1-line. Then M is
obtained by the rotation of the profile of a function u : [0, R] → R with boundary
conditions

u(0) = u0, u′(0) = 0.

Equation (2) becomes an ordinary differential equation and it converts into

1

rn−1

d

dr

(
rn−1u′(r)√
1 − u′(r)2

)
= κ u(r) + λ, 0 ≤ r < R. (8)



340 R. López

In the case that we are treating, κ = 0, the solution corresponds with a constant
mean curvature hypersurface, with H = λ/n. A direct integration of (8) leads to (up to
constants)

u(r) =
√

n2

λ2 + r2 if λ = 0

u(r) = 0, if λ = 0.

In the first case, u describes a hyperbolic hyperplane of mean curvature λ/n; in the
second one, we obtain that M is a domain of �. This completes the proof of Theorem 1.

The Alexandrov reflection method applies in a similar situation as in Theorem 1,
where the condition on the angle is replaced by certain symmetry of the boundary. The
next result generalizes those obtained in [2, 3] and its proof is omitted.

Corollary 2. Let � ⊂ L
n+1 be a closed (n − 1)-submanifold included in a spacelike

plane � and symmetric with respect to a straight-line L ⊂ �. Let M be a spacelike
embedded hypersurface spanning �. Assume

1. Each component of � \ (� ∩ L) is a graph on L.
2. M lies in one side of �.
3. The mean curvature of M is a function that depends only on the distance with respect

to �.

Then the plane P orthogonal to � with L ⊂ P is a hyperplane of symmetry of M.
Moreover, each component of M \ (M ∩ P) is a graph on P. In the particular case that
� is a round (n − 1)-sphere, M is a hypersurface of revolution and the intersection of
M with a hyperplane parallel to � is a round (n − 1)-sphere.

5. Bridges Between Two Parallel Hyperplanes

The Alexandrov reflection technique can be used in other possible configurations. For
example, hypersurfaces interconnecting a set of spacelike hyperplanes. The setting that
we will consider is that a stationary hypersurface is trapped between two parallel space-
like hyperplanes �1 and �2. Usually the hypersurface is called a bridge. In such case,
the term S in (3) is the n-area of the domains that ∂ M bounds in each one of the hy-
perplanes. Again, in a state of equilibrium, the angle between the normal vector to the
bridge and �i along their lines of contact is constant (and possibly with different values
in each hyperplane �i ). The Alexandrov reflection method yields again the following

Theorem 3. Let �1 and �2 be two parallel spacelike hyperplanes in L
n+1. Consider M

a spacelike embedded compact hypersurface included in the slab determined by �1∪�2
and whose boundary ∂ M intersects both �1 and �2. Assume that the mean curvature
of M depends only on the distance to �i and the hyperbolic contact angle between M
and �i is constant along ∂ M in each one of the two hyperplanes. Then M is rotational
symmetric with respect to a straight-line orthogonal to �i . Moreover, each (non-empty)
intersection of M with a parallel hyperplane to �i is a round (n − 1)-sphere.

Corollary 3. Let M be a stationary embedded hypersurface in L
n+1 trapped between

two parallel hyperplanes �1 ∪�2. Then M is a hypersurface of revolution with respect
to a straight-line orthogonal to the support hyperplanes �i . Moreover, each (non-empty)
intersection of M with a parallel hyperplane to �i is a round (n − 1)-sphere.
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Remark 1. In the case that M has constant mean curvature, M is not necessarily a piece of
a hyperbolic hyperplane. The family of constant mean curvature spacelike hypersurfaces
bounded by two axial (n − 1)-spheres in parallel hyperplanes is richer and according to
Eq. (8), the function u is determined by elliptic integrals. See [15].

6. Final Discussions and Conclusions

In the Lorentz-Minkowski space L
n+1, we have considered the variational problem of an

embedded compact spacelike hypersurface M resting on a spacelike hyperplane �. The
forces involved in the system are to the n-areas of the hypersurface and the domain that
M bounds in �. Furthermore, we assume the existence of a timelike potential determined
by �. Our interest was the possible shapes of the hypersurface when it reaches an equi-
librium: the energy of the system is critical under any perturbation of the hypersurface
such that we maintain its adherence to the plate � and the enclosed volume.

The so-called Alexandrov reflection method allows to prove that the hypersurface is
rotational symmetric with respect to a line orthogonal to the support hyperplane. More-
over the intersection with a parallel hyperplane to � is a round (n − 1)-sphere. This
extends the result proved in [4] both for arbitrary dimension and for a more general mean
curvature function of the hypersurface. A similar result has been obtained for bridges
between parallel hyperplanes.

Another interesting support hypersurface occurs when � is a hyperbolic hyperplane.
One can believe that the only stationary hypersurface resting on a hyperbolic hyper-
plane are pieces of hyperbolic hyperplanes. This is true in L

3 under the assumption of
the constancy of the mean curvature [4]. However, we do not know if the same remains
true under the effect of a timelike potential. We remark that a hyperbolic plane is also a
hypersurface of revolution, which it makes one think that our conclusions can extend to
this situation.
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