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Abstract. We deposit a prescribed amount of liquid on an umbilical hypersurface � of
the hyperbolic space H

n+1. Under the presence of a uniform gravity vector field directed
towards �, we seek the shape of such a liquid drop in a state of equilibrium of the
mechanical system. The liquid-air interface is then modeled by a hypersurface under the
condition that its mean curvature is a function of the distance from �, together with
the fact that the angle that makes with � along its boundary is constant. We show that
the hypersurface is rotational symmetric with respect to a geodesic orthogonal to �. We
extend this result to other configurations, for example, liquid bridges trapped between two
umbilical hypersurfaces. Finally, we obtain a result which says that, under some assump-
tions on the mean curvature, an embedded hypersurface inherits a certain symmetry from
its boundary.

Mathematics Subject Classifications. 53A10, 35Q35, 76B45, 35J65.
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1. Introduction and Statement of Results

In the (n + 1)-dimensional hyperbolic space H
n+1, we consider the following

mechanical system. We deposit a liquid drop of a prescribed volume into a solid
hypersurface �. We assume that no chemical reactions occur between the liquid
and the solid substrate and that the materials are homogeneous. We assume the
existence of a potential Y depending on �, such as, a uniform gravity field directed
towards �. The energy of the physical system involves the area of the drop (the
liquid-air interface) and the area of the region of contact of the drop with �

(the liquid-solid interface). Our interest are those configurations of such drops in
a state of equilibrium, that is, when the energy of the physical system is critical
under any perturbation of the system that do not change the amount of liquid of
the drop.

From the mathematical viewpoint, the interior of the liquid drop is a bounded
domain X of H

n+1 whose boundary ∂ X decomposes into ∂ X =S ∪�, where S is
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the liquid-air interface and �= X ∩� is the region in � occupied by the part of
the drop that wets on �. The hypersurface � is called the support hypersurface and
we shall assume that � divides the ambient space H

n+1 into two components. The
fact that the liquid drop rests on � means that S lies in one side of �, that is,
in one of the two components of H

n+1\�. This has the significance that the liq-
uid drop do not across � beyond the liquid-solid interface; on the contrary case,
the situation would be physically unrealizable. In equilibrium, we shall say then
that S is a stationary hypersurface. According to the principle of virtual work, and
when the equilibrium of the system is achieved, the possible shapes of a station-
ary hypersurface are given by two conditions, namely, the mean curvature of S is
a function of its position in space, and S meets the support hypersurface in a pre-
scribed angle. The angle β with which S and � intersect along ∂S =S ∩� is deter-
mined as a physical constant depending only on the materials. Section 2 is devoted
to the formulation of the variational problem of the physical system. We refer to
the book of Finn [2] as an approximation to the interfacial phenomena.

In the present work the hypersurfaces to be considered as possible supports of
our stationary hypersurfaces are given in the following definition:

DEFINITION 1.1. In hyperbolic space H
n+1, we call a support hypersurface �

an umbilical non-bounded hypersurface. This means that � is a totally geodesic
hyperplane, an equidistant hypersurface or a horosphere.

Our proof uses the so-called Alexandrov reflection method. Such a technique
was firstly used by Alexandrov to prove that a closed embedding of a constant
mean curvature surface in Euclidean 3-dimensional space must be a round sphere
[1]. The proof idea is to use the very hypersurface as a comparison hypersurface
with itself and to apply the Hopf maximum principle for elliptic equations. In a
more general setting, we show in Section 3:

THEOREM 1.2. Let M be an embedded compact hypersurface in hyperbolic space
H

n+1. Assume that M rests on a support hypersurface � and such that the following
assumptions hold:

(1) M lies in one side of �.

(2) The mean curvature of M is a function that depends only on the distance with
respect to �.

(3) The angle that makes M with � along the boundary ∂ M of M is constant.

Then there exists a geodesic γ orthogonal to � about which M is rotational sym-
metric.
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In conclusion, and for stationary hypersurfaces, we obtain

Consider a liquid drop in H
n+1 resting on a support hypersurface �. Let

us assume the existence of a uniform gravity field directed towards to �.
In a state of mechanical equilibrium, the shape of the liquid drop is axially
symmetric with respect to a geodesic orthogonal to �.

In Section 4, we consider liquid bridges between two supporting hypersurfaces,
obtaining characterizations of the shapes of the possible stationary hypersurfaces.
Finally, in Section 5, we give sufficient conditions so that a hypersurface inherits
the symmetries of its boundary. In conclusion,

Let S
n−1 be a round (n −1)-dimensional sphere in a support hypersurface �. If

M is an embedded compact hypersurface with ∂ M =S
n−1 that lies in one side

of � and whose mean curvature depends on the distance to �, then M must
be axially symmetric with respect to a geodesic orthogonal to �.

Theorem 1.2 extends a previous result due to Wente in Euclidean space [10].
Recently, the present author has studied the shape of an axial symmetric liquid
drop in H

3 supported in a horosphere [8].

2. Formulation of the Variational Problem

In this section we present the variational problem that we consider in hyperbolic
space. Many of the results appear in the literature and we refer to them for more
details [2]. Let H

n+1 denote the (n + 1)-dimensional hyperbolic space. We shall
work in the upper halfspace model of H

n+1, that is,

R
n+1+ ={x = (x1, . . . , xn+1)∈R

n+1; xn+1 >0}
equipped with the metric

〈, 〉= dx2
1 +· · ·+dx2

n+1

x2
n+1

.

The hyperbolic space H
n+1 has a natural compactification H

n+1 =H
n+1 ∪∂∞H

n+1,
where ∂∞H

n+1 can be identified with asymptotic classes of geodesics rays in H
n+1.

In the halfspace model of H
n+1, ∂∞H

n+1 = P∞ ∪{∞} is the one-point compactifi-
cation of the hyperplane P∞ :={xn+1 =0}.

On the other hand, and refered to as the support hypersurfaces, in hyperbolic
space H

n+1 we have three cases of non-bounded umbilical hypersurfaces. The
description in our model of H

n+1 is the following:

(1) Totally geodesic hyperplanes. They are vertical Euclidean hyperplanes of R
n+1+

and Euclidean hemispheres of R
n+1+ that intersect P∞ orthogonally.

(2) Equidistant hypersurfaces. They are tilted Euclidean planes transverse to P∞
and Euclidean spherical caps, not hemispheres, tangent to P∞.
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(3) Horospheres. They are horizontal hyperplanes and Euclidean spheres of R
n+1+

tangent to P∞.

Among the isometries of H
n+1, we emphasize two of them. The first are the hyper-

bolic translations. In our model of H
n+1, a hyperbolic translation is a Euclidean

homothety centred at a point p0 ∈ P∞ and a horizontal translation (parallel to P∞).
Another type of isometries are the hyperbolic reflections with respect to a geodesic
hyperplane P . If P ⊂R

n+1+ is a hemisphere centred at p0 ∈ P∞, then it is an inver-
sions with respect to p0 that fix P and if P is a vertical hyperplane, the corresponding
hyperbolic reflection is a Euclidean reflection with respect to P .

We now present the notion of a stationary hypersurface in H
n+1. Consider a

support hypersurface �, which divides the space H
n+1 into two non-bounded con-

nected components. Let us orient � by a unit vector field N� and consider H
n+1+

the component of H
n+1\� towards which N� is pointing. Let x : M →H

n+1 be a
connected compact hypersurface with boundary ∂ M , smooth even at ∂ M such that
x(int(M))⊂H

n+1+ and x(∂ M)⊂∂H
n+1 =�. A variation of x is a differentiable map

X : (−ε, ε) × M → H
n+1 such that Xt : M → H

n+1, t ∈ (−ε, ε), defined by Xt (p) =
X (t, p), p ∈ M , is an immersion and X0 = x . The functionals A, S : (−ε, ε) → R

defined by

A(t)=
∫

M
dAt , S(t)=

∫
�t

d�,

measure, respectively, the area of M with the metric induced by Xt and the area
of �t ⊂ �, the region in � bounded by Xt (∂ M). Finally, the volume function V :
(−ε, ε)→R is defined by

V (t)=
∫

[0,t]×M
X∗ dV,

where dV is the canonical volume element of H
n+1. The variation X is said to

be volume-preserving if V (t) = V (0) for all t . The variational vector field of X is
defined on M by

ξ(p)= ∂ X

∂t
(p)

∣∣∣∣
t=0

, p ∈ M.

If we assume in the ambient space the existence of a potential energy Y = Y (p),
p ∈H

n+1, then resultant variation energy is

Y (t)=
∫

M
Y dAt .

The energy function E : (−ε, ε)→R of the mechanical system is defined by

E(t)= A(t)+ cos(β) S(t)+Y (t),
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where β ∈ R is an arbitrary real constant. The variation is called admissible if
Xt (int(M))⊂ H

n+1+ and Xt (∂ M)⊂� for all t . The immersion x is said to be sta-
tionary if E ′(0)=0 for any volume preserving admissible variation of x . A standard
variational argument shows that the first variation formula for the energy is

E ′(0)=
∫

M
(−nH +Y +λ) 〈N , ξ 〉 dM +

∫
∂ M

〈ξ, ν〉 (〈N , N�〉− cosβ) ds.

Here N is a unit normal vector field along x , ds the volume element of ∂ M
induced by x , ν is the unit inward normal along ∂ M , H is the mean curvature
of x and λ is a Lagrange multiplier arising from the volume constraint. It follows
that

PROPOSITION 2.1. Let � be a support hypersurface of H
n+1 and let M be a

compact hypersurface. Let us consider x : M → H
n+1 a smooth immersion such that

x(int (M))⊂H
n+1+ and x(∂ M)⊂�. Then x is stationary if and only if

(1) The mean curvature H satisfies the relation

nH(p)=Y (p)+λ, p ∈ M.

(2) The hypersurface S = x(M) meets the support hypersurface � in a constant angle
β, that is, cosβ =〈N , N�〉 along ∂ M .

On the other hand, when we talk of contact angle, it is implicitly assumed that
the boundary regularity of M is enough to ensure that the idea of a normal to
M at every boundary point makes sense. For this we will require M to be a suffi-
ciently smooth hypersurface up to the boundary ∂ M . When Y = 0 on M , then x
is an immersion of constant mean curvature. In this paper, our interest will center
on the case for which the vector field Y (p) depends on the distance to �, as for
example, a uniform gravitational potential directed towards �, namely,

Y (p)=κ dist(p,�)+λ,

for constants κ and λ.
The key ingredient in our proofs is the Tangency Principle for the mean curva-

ture equation. This is a consequence of the maximum principle of linear elliptic
equations. Briefly, we recall in the hyperbolic context. In our model of the hyper-
bolic space H

n+1, we must distinguish the case that M is a graph on a horizontal
or vertical (Euclidean) hyperplane. Consider the first situation. Locally, M writes
as xn+1 = u(x1, . . . , xn), where u is a smooth function in some domain � of R

n .
Considering this coordinate system and with respect to the unit upper normal vec-
tor, the mean curvature H = H(x,u(x)) of M satisfies

div

(
∇u√

1+|∇u|2

)
= n

u

(
H − 1√

1+|∇u|2

)
x = (x1, . . . , xn) (1)
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on �. Assume that we have two smooth functions u1 and u2 defined on � whose
mean curvature functions Hi of their graphs satisfy the inequality H1(x,u1(x)) �
H2(x,u2(x)). A standard argument using the chain rule shows that the difference
function w=u1 −u2 satisfies an inequality of type Lw�0, where L is a locally uni-
formly elliptic operator. Then we are in position to apply Hopf’s maximum princi-
ple to w, whether in its classical formulation [6] or its boundary point version [7]:
see also [4, Ch. 3]. Consequently, we have the following result:

THEOREM 2.2 (Maximum Principle). Let u1 and u2 be two smooth functions on
a domain �⊂R

n such that H1 � H2. Suppose that u1 �u2 on � and u1(x0)=u2(x0),
x0 ∈�. Then u1(x)=u2(x) on �. The same holds if x0 ∈∂� with the extra hypothesis
that ∂u/∂ν = ∂v/∂ν at x0, where ν is the outward unit normal to ∂�.

In the case that M is a graph on a vertical Euclidean hyperplane, for instance,
x1 = u(x2, . . . , xn+1), the mean curvature H(x,u(x)) in this coordinate system sat-
isfies

div

(
∇u√

1+|∇u|2

)
= n

xn+1

(
H + ∂u/∂xn+1√

1+|∇u|2

)
.

A similar reasoning leads to the corresponding Maximum Principle throughout the
x1-direction. We translate geometrically the maximum principle in terms of hyper-
surfaces. Let M1 and M2 be two orientable hypersurfaces in H

n+1 which are tan-
gent at a point p and whose unit normal vectors at p agree. Locally around p, let
us write Mi , i =1,2 as graphs of smooth functions ui (either in the horizontal or
vertical coordinate system). If u1 � u2 in a neighbourhood of p, then we say that
M1 lies above M2 in a neighbourhood of p. Then the Maximum Principle implies:

THEOREM 2.3 (Tangency Principle). Let M1 and M2 be two orientable hypersur-
faces in H

n+1 with mean curvature H1 and H2 respectively. Suppose that H1 � H2. If
M1 and M2 have a common tangent (interior or boundary) point p and M1 lies above
M2 in a neighbourhood of p, then M1 and M2 agree in an open set that involves p
in its interior.

3. Proof of Theorem 1.2

The method of proof used in this work is the Alexandrov reflection method. Such
a technique has been used in a variety of situations in differential geometry. See
also the called “method of moving planes” in the context of the theory of partial
differential equations, beginning with the classical works [3, 9]. In our situation,
we first show
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Claim. For each tangent vector v to �, there exists a totally geodesic hyper-
plane (briefly hyperplane) Pv orthogonal to v and �, such that M is invariant
by the hyperbolic reflection through to Pv.

Once showed the Claim, the proof of Theorem 1.2 continues as follows. Let us con-
sider p0 ∈� and tangent vectors v1, . . . , vn to � at p0 and orthogonal themselves.
Let Pv1 , . . . , Pvn be the totally geodesic hyperplanes given by the Claim. Since M is
a bounded set, one concludes that these hyperplanes define an orthogonal geodesic
γ = Pv1 ∩ · · · ∩ Pvn to �, p0 ∈γ , such that the hyperbolic reflection of M across Pvi

keeps invariant M . As a consequence, M is axially symmetric with respect to the
axis γ . Moreover, the proof will show that Pvi divides M into two sets, namely, M+

i ,
M−

i , such that each one of them is a graph over the domain M ∩ Pvi , 1� i �n.
We proceed to show the Claim. We distinguish each one of the types of support

hypersurfaces. We do the details of proof in the first case, and briefly, the corre-
sponding modifications in the other ones.

Case 1: � is a totally geodesic hyperplane. After an ambient isometry, we can
assume that � is a hemisphere in R

n+1+ whose boundary lies in P∞. The boundary
∂ M intersects � in a finite number of disjoint, connected, compact embedded sub-
manifolds �i of �. Then it is possible to attach to M a finite number of bounded
domains D j ⊂ � such that D := ∪ j D j = ∂ M and G = D ∪ M is an n-dimensional
compact connected topological submanifold without boundary of R

n+1+ . Hence G
is orientable and Alexander duality [5] implies that G separates R

n+1+ into two
closed components with common boundary G. Let W be the bounded component,
called the “inside” of G. By hypothesis, G is included in the domain H

n+1+ .
Let p0 ∈ D and let v be a unit tangent vector to � at p0. Let us denote γ =γ (t)

the unit speed geodesic included in � with γ (0) = p0 and velocity v. In particu-
lar, γ intersects ∂ M for positive and negative values of t . This geodesic γ deter-
mines a one-parameter family of hyperplanes P(t), t ∈R, such that P(t) intersects
γ orthogonally at γ (t). See Figure 3. Moreover, the set of all P(t) is a foliation of
H

n+1. For each t , we say the right side of P(t) the component of H
n+1\P(t) that

contains γ (s), for s > t . Since M is compact, for t near ∞, P(t) does not inter-
sect M . Letting t ↘−∞, one gets a first hyperplane P(t1) that reaches M , that is,
P(t1)∩ M = ∅ but P(t)∩ M =∅ if t > t1 . Now, when we decrease t and for values
close to t1, the (closed) part of M on the right of P(t), which we denote by M(t)+,
is a graph over a domain of P(t).

Let M(t)∗ be the hyperbolic reflection of M(t)+ through P(t), which is con-
tained in W . Since each P(t) is orthogonal to �, the hyperbolic reflection about
P(t) leaves � and H

n+1+ invariant. Because the hyperbolic reflection is an isome-
try of H

n+1, the mean curvature remains invariant by the reflection. Further, the
mean curvature vector of M(t)∗ is the reflection of the mean curvature vector of
M(t)+. By the fact that the mean curvature of M depends only on the distance
to �, the value of the mean curvature agrees in those points at the same height.
We now continue t ↘−∞, and reflecting M(t)+ about P(t), successively until one
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Figure 1. Case (a-1): p∗ is an interior point; Case (a-2): p∗ is a boundary point.

again reaches the first point of contact between M(t)∗ with the left side of M
in respect to P(t), which will be denoted by M(t)−. This occurs because M is
bounded, P(0)∩ M =∅ and for t near −∞, P(t)∩ M =∅. Consider the first hyper-
plane P(τ ) where one of the following conditions fails to hold:

(a) int(M(τ )∗)⊂ W .
(b) M(τ )+ is a graph over a part of P(τ ) and no point of M(τ )+ has a tangent

hyperplane orthogonal to �.

If (a) fails first, we have that M and M(τ )∗ touch at some interior point p∗: see Figure
1 (a-1), or at a boundary point p∗, with p∗ ∈ ∂ M ∩ ∂ M(τ )∗: see Figure 1(a-2). Here p∗
is the reflection of a point p of M(τ )+. Either if p∗ is an interior or boundary point,
the tangent hyperplanes of M(τ )− and M(τ )∗ agree at p. In the second possibility, this
fact is due to that the angle β of contact is constant along ∂ M , condition (2) of Proposi-
tion 2.1. Because P(τ ) keeps invariant �, we have dist (p,�)=dist(p∗,�) and, by the
hypothesis on the mean curvature of M , H(p)= H(p∗). Moreover, the Gauss maps of
both M(τ )∗ and M(τ )− at such point p∗ are the same. Then one applies the Tangency
Principle to M(τ )− and M(τ )∗ at the point where they touch to conclude that P(τ ) is a
hyperplane of symmetry of M .

If (b) fails first, then we have that there exists a point p ∈ ∂ M(τ )+ ⊂ P(τ )

where: either the tangent hyperplane of M(τ )+ becomes orthogonal to P(τ ), Fig-
ure 2(b-1); or p ∈∂ M ∩ P(τ ), Figure 2 (b-2). In both cases, the reflection p∗ agrees
with the point p. In the former possibility, one can apply the Boundary Tangency
Principle to M(τ )∗ and M(τ )− to conclude that P(τ ) is a hyperplane of the sym-
metry of M ; in the second one, the corresponding tangent hyperplanes of M(τ )−
and M(τ )∗ are identical because the angle of contact between M and � is constant
along ∂ M . Then one applies the Tangency Principle at a corner point (see details
in [9]) obtaining that P(τ ) is a hyperplane of the symmetry of M .

The hyperplane P(τ ) is the hyperplane Pv that we are looking for in the Claim.
This completes the proof of the Claim. In the rest of the cases, we only present
the necessary modifications to do.

Case 2: � is an equidistant hypersurface. We change γ by an equidistant curve
σ =σ(t) included in � through p0 at velocity v. Consider the 1-parameter family
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Figure 2. Case (b-1): p∗ = p ∈ ∂ M(τ )+ is an interior point; Case (b-2): p∗ = p ∈ ∂ M ∩ P(τ ).

Figure 3. The Alexandrov reflection method in the cases that � is: (1) a geodesic hyperplane;
(2) an equidistant hypersurface and; (3) a horosphere.

of totally geodesic hyperplanes with p0 ∈ P(0) and P(t) cutting � orthogonally at
σ(t). See Figure 3.

Case 3: � is a horosphere. Without loss of generality, we assume that � is
a horizontal hyperplane. We choose the horocycle ϕ = ϕ(t) contained in � with
ϕ(0)= p0 and ϕ′(0)=v. See Figure 3.

In both cases, the key of the proof is that the hyperbolic reflections across the
hyperplanes P(t) keep � and H

n+1+ invariant. Thus, in the Alexandrov method, the
reflection of M(t)+, M(t)∗, remains in the very component H

n+1+ , as it occurs with
M(t)−. In this way, one can do reflections until to reach M again at the first con-
tact point.

This completes the proof of Theorem 1.2

4. Liquid Bridges between two Parallel Supports

The same reflection technique can be used in other configurations. For exam-
ple, liquid bridges interconnecting a set of support hypersurfaces. The physical
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Figure 4. Liquid bridges trapped between: (a) two parallel horospheres; (b) two parallel equidis-
tant hypersurfaces.

situation that we will consider is an amount of liquid drop trapped between two
homogeneous ‘parallel’ support hypersurfaces �1 and �2. By two parallel support
hypersurfaces we mean that �1 and �2 are two umbilical hypersurfaces with mean
curvatures |H1| = |H2| and the same, non-empty boundary at infinity, ∂∞�1 =
∂∞�2 =∅. The cases that appear are (see Figure 4):

(1) Two horospheres with the same point at the infinity. In such a case, and after
an isometry of the ambient, �1 and �2 are two horizontal hyperplanes of
R

n+1+ .
(2) Two equidistant hypersurfaces. In the upper halfspace model, and up an isome-

try of H
n+1, �1 and �2 are two (different) spherical caps in R

n+1+ , with the same
Euclidean radius and such that ∂∞�1 = ∂∞�2 is a (n −1)-sphere of P∞.

Given two parallel support hypersurfaces, we call the slab determined by �1 and
�2 the component of H

n+1\(�1 ∪�2) whose boundary is �1 ∪�2. In this setting,
we consider embedded compact hypersurfaces M included in the slab defined by
�1 and �2 and whose boundary satisfies ∂ M ∩�i =∅, i =1,2. We say then that M
is a liquid bridge interconnecting �1 and �2. In such case, the term S in the energy
functional E is the area of the domains that the bridge wets in each one of the
support hypersurfaces. Again, in a state of equilibrium, the angle between the nor-
mal to the liquid bridge and the normal to �i along their contact is constant (and
possibly different in each support �i ). The Alexandrov reflection method again
yields the following

THEOREM 4.1 Let �1 and �2 be two parallel support hypersurfaces in hyperbolic
space H

n+1. Consider M an embedded compact hypersurface in H
n+1 included in

the slab determined by �1 and �2. Assume that the mean curvature of M depends
only on the distance to �i and that the angle of contact between M and �i is con-
stant along ∂ M in each one of the two support hypersurfaces. Then M is rotationally
symmetric with respect to a geodesic orthogonal to �i .
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Proof. The argument is similar as in Theorem 1.2. Only it suffices to point
out some remarks. Assume, for instance, that �i is two parallel horospheres. After
an isometry of the ambient, we see �i as two horizontal hyperplanes. First, we
can attach to M a finite number of bounded domains D j ⊂ �1 ∪ �2 such that
the boundary of D :=∪ j D j satisfies ∂ D = ∂ M and G = D ∪ M is a n-dimensional
compact connected topological submanifold without boundary of R

n+1+ . Again G
divides R

n+1+ into two components defining an “inside” W (necessarily included in
the slab determined by �1 and �2).

On the other hand, we fix a point p0 ∈ D with p0 ∈�1. For each tangent vector
v to D at p0, we consider the horocycle ϕ that through p0 at t = 0 with veloc-
ity v. The one-parameter family of geodesic hyperplanes P(t) orthogonal to ϕ at
t are vertical parallel hyperplanes. The fact that �1 and �2 are parallel supports
implies that each P(t) is also orthogonal to �2. Moreover, the hyperbolic reflec-
tions across P(t) leaves invariant both �i as well as the slab. Here, and in the
upper halfspace model for H

n+1, a hyperbolic reflection is a Euclidean reflection
across P(t). Now the proof follows the same steps as in Theorem 1.2.

When �1 and �2 are two parallel equidistant hypersurfaces, we take an equi-
distant curve σ ⊂ �1 instead of ϕ. Again, if P(t) is a totally geodesic hyper-
plane orthogonal to �1, then it is also orthogonal to �2. Moreover, the hyperbolic
reflection through P(t) leaves �i and the slab invariant.

As the conclusion of Theorem 4.1,

Consider a liquid bridge in H
n+1 trapped between two parallel support hyper-

surfaces. Assume the existence of a uniform gravity field directed towards the
supports. If the liquid bridge reaches a state of mechanical equilibrium, then it
is rotationally symmetric with respect to a geodesic orthogonal to both support
hypersurfaces.

5. Other Configurations of Stationary Hypersurfaces

The Alexandrow technique allows us to obtain other results of symmetry. The next
theorem says that, under certain conditions, an embedded compact hypersurface of
H

n+1 inherits the symmetry of its boundary.

THEOREM 5.1. Let � be a support hypersurface in H
n+1 and let us consider � an

(n − 1)-dimensional submanifold of H
n+1 included in �. Assume the following two

conditions:

(1) There exists a totally geodesic hyperplane P orthogonal to � such that � decomposes
into � =�+ ∪�− where �+ ⊂ P+, �− ⊂ P−, being P+ and P− the two components
of H

n+1\P and such that �− is the hyperbolic reflection of �+ about P .

(2) There exists a bounded domain � in P ∩� and a nonnegative smooth function
f defined on � such that f is positive in �, identically zero on ∂� and �+ is
the graph of f .
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Let M be an embedded compact hypersurface in H
n+1+ whose boundary is �. If the

mean curvature of M depends only on the distance to �, then M is invariant by the
hyperbolic reflection through P .

Proof. The proof follows the same steps as in Theorem 1.2. We use the same
notation. Denote again D the bounded domain of � enclosed by �, and let W the
bounded domain in H

n+1 defined by M ∪ D. For simplicity, we only consider the
case that � is a geodesic hyperplane. Let us take γ a geodesic in � that across
orthogonally the hyperplane P . Let P(t) be the one-parameter family of geodesic
hyperplanes orthogonal to γ at t and parametrized so that P(0)= P .

Again and for large t , P(s)∩ M =∅ for s > t . Now decrease t , t↘0, and we arrive
at the first time t1 such that P(t1) touches M . From here, we continue decreasing
t and doing the reflection through P(t) of M(t)+. The embeddness property of M
implies the existence of ε >0 such that for t ∈ (t1 −ε, t1), the hyperbolic reflection of
M(t)+ lies in W . We continue with t↘0 until the value τ so that M(τ )∗ reaches
again with the very hypersurface M , that is, with M(τ )−. Recall that the hyper-
bolic reflection keeps � invariant. As in Theorem 1.2, either (a) or (b) holds. By
hypothesis and because P(0)= P is a hyperplane of symmetry of �, the number τ

satisfies τ �0.

Claim. τ =0.

By contradiction, we suppose that τ >0. When (a) fails, the case (a-2) that p∗ is a bound-
ary point cannot occur since �− ⊂� is the reflection of �+ through P(0). Thus p∗ must
be an interior point. Then the Tangency Principle says that P(τ ) is a hyperplane of sym-
metry, which is false by our assumptions about � and the fact that τ > 0. If (b) holds,
the case (b-2) p ∈ ∂ M ∩ P(τ ) is impossible again. Then p ∈ ∂ M(τ )+ ⊂ P(τ ) where the
tangent hyperplane of M(τ )+ at p becomes orthogonal to P(τ ). The Tangency Prin-
ciple, in its boundary version, implies that P(τ ) is a hyperplane of symmetry of M , in
particular, of �. Since τ >0, this gives a contradiction. Hence, τ cannot be positive and
must be zero. This shows the Claim.

Therefore the hyperbolic reflection M(0)∗ of M(0)+ through P(0)= P lies in the
left side of P(0) and is included in the domain W . Now, we make a similar rea-
soning but with hyperplanes coming from −∞. The same argument says that the
reflection of M(0)− with respect to the hyperplane P lies in W . This proves that
P is a hyperplane of the symmetry of M .

As a consequence of Theorem 5.1, we consider the case that the boundary of M
is a round sphere.

COROLLARY 5.2. Let S
n−1 be a round sphere in a support hypersurface �. Let M

be an embedded compact hypersurface with M ⊂H
n+1+ and whose boundary is S

n−1.
If the mean curvature of M depends only on the distance to �, then M is axially
symmetric with respect to a geodesic orthogonal to �.
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For liquid bridges, we have a similar results as in Theorem 4.1. Without proof,
we state

THEOREM 5.3. Consider �1 and �2 two parallel support hypersurfaces and let
� = �1 ∪ �2 be an (n − 1)-dimensional submanifold of H

n+1, with �i ⊂ �i , i = 1,2.
Suppose that

(1) There exists a totally geodesic hyperplane P orthogonal to �i such that �

decomposes into � =�+ ∪�− where �+ ⊂ P+, �− ⊂ P−, being P+ and P− the
two components of H

n+1\P and such that �− is the reflection of �+ about P .

(2) There exists two bounded domains �i ⊂ P ∩ �i and two nonnegative smooth
function fi defined on �i such that fi is positive in �i , identically zero on ∂�i

and �+
i is the graph of fi .

Let M be an embedded compact hypersurface in the slab determined by �1 and �2

whose boundary is �. If the mean curvature depends only on the distance to �, then
M is symmetric with respect to P . In the particular case that � is the union of two
coaxial (n −1)-spheres, the hypersurface M is rotationally symmetric with respect to
the geodesic acrossing the centers of �i .

References

1. Alexandrov, A. D.: Uniqueness theorems for surfaces in the large, V. Vestnik Leningrad
University 11 (1956), 5–17; English translation in Amer. Math. Soc. Transl. Ser. 2, 21
(1962), 431–354.

2. Finn, R.: Equilibrium Capillary Surfaces, Springer-Verlag, Berlin, 1986.
3. Gidas, B. Ni, W. and Nirenberg, L.: Symmetry and related properties via the maximum

principle, Comm. Math. Phys. 68 (1979), 209–243.
4. Gilbarg, D. and Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order,

Berlin, 1983.
5. Greenberg, M. and Harper, J.: Algebraic Topology: a First Course, Benjamin-Cummings,

Reading, MA, 1981.
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