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Abstract

We prove that for constant contact angle γ = 0, a capillary surface over a convex domain has no umbilical points unless that the
surface is a hemisphere. The method involves the comparison of a lower hemisphere with the given surface at a second-ordered
contact point and it is based on an argument of Alexandrov.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction and statement of the result

We consider the family F of compact surfaces immersed in Euclidean 3-space R
3, with constant mean curvature

H . In the minimal case, that is, H = 0, the maximum principle assures that the surface must be contained in the
convex hull of its boundary. In what follow, we suppose H �= 0. In the family F , the hemispheres have radius 1

|H | and
their boundary is a circle of radius 1/|H |. In the class F , hemispheres have been characterized in several ways:

(1) They are the only embedded surfaces of F whose boundary is a convex curve and the surface is perpendicular to
the plane along its boundary. This is a consequence of the reflection method of Alexandrov [1,4,17].

(2) Hemispheres are the only surfaces of F bounded by a circle of radius 1/|H | [3].
(3) In 1969, E. Heinz [13] showed that if Γ is a Jordan planar curve with length L bounding a domain of area A,

any surface with constant mean curvature H having Γ as its boundary satisfies |H | � L/(2A). In this context,
hemispheres are the only surfaces of F of disc type and where the equality |H | = L/2A occurs [16].

(4) Hemispheres are the only stable surfaces of F with free boundary in a plane [15].

In this note we consider capillary surfaces in the family F . The physical interpretation of a capillary surface is
the following: we put a liquid into a vertical cylindrical container with arbitrary cross section Ω and transport it to

E-mail address: rcamino@ugr.es (R. López).
1 Partially supported by MEC-FEDER grant no. MTM2004-00109.
0926-2245/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.difgeo.2005.12.009

http://www.elsevier.com/locate/difgeo
mailto:rcamino@ugr.es
http://dx.doi.org/10.1016/j.difgeo.2005.12.009


R. López / Differential Geometry and its Applications 24 (2006) 398–402 399
the space in absence of gravity. We consider smooth the shape of the surface S of the liquid and expressed non-
parametrically as the graph of a function u defined over the cross section Ω . In an equilibrium state of the liquid, as
a consequence of the least action principle of physics, the shape of the surface S is obtained when u minimizes the
energy functional

E(u) = σ

∫
Ω

√
1 + |∇u|2 dx1 dx2 − σλ

∫
∂Ω

uds,

under the volume constraint∫
Ω

udx1 dx2 = constant,

where ds is the arc length measure on ∂Ω and ∇u is the gradient of u. The constant σ is the surface tension and λ

is a constant to be determined by the liquid and the (homogeneous) material of the wall. The equilibrium condition
δE(u) = 0 under the volume constraint is given by the Euler condition

(1)div Tu = 2H in Ω,

where

Tu = ∇u√
1 + |∇u|2 ,

H is a constant that coincides with the mean curvature of the capillary free surface u = u(x1, x2) and together the
physical boundary condition

(2)Tu · ν = cosγ on ∂Ω,

which consists in prescribing the contact angle γ with which S meets the walls of the tube. Here ν is the exterior
directed unit normal to ∂Ω and the angle γ is measured inside the fluid. For further physical and geometrical back-
ground information, see [9]. We may normalize so that H is positive and 0 � γ � π/2: we suppose that done along
this paper.

It should be noted here that the constant H cannot be prescribed; it is implicitly determined by the size of Ω , as it
follows by applying the divergence theorem to (1)–(2):

H = |∂Ω|
2|Ω| cosγ,

where |Ω|, |∂Ω| denote the measure of Ω and ∂Ω respectively. It is well known that Eq. (1) is an elliptic equation of
quasilinear type satisfying a maximum principle.

It was observed by Bernstein [2] that Ω cannot strictly contain a disc of radius 1/H . In fact, an integration of (1)
over a closed disc Dr of radius r and included in Ω yields r < 1/H . Even more, Finn [8] found a new characterization
of hemispheres as follows

Theorem 1. If Ω contains the open disc D1/H and u = u(x1, x2) is a solution of (1), then Ω coincides with this disc
and u(x1, x2) describes a hemisphere of radius 1/H .

A point p in a surface is called an umbilical point if the two principal curvatures at p are equal. Using isothermic
parameters and the Codazzi equations, one can show that the umbilical points of a surface are the set of zeroes of a
differential 2-form known as Hopf differential. But in a surface with constant mean curvature in Euclidean space, this
differential form is holomorphic [14, p. 137]. Thus, umbilical points are isolated unless that the surface is a subset
of a totally umbilical immersion. Our aim is to prove that the number of umbilical points of a capillary surface with
contact angle γ = 0 in a convex cylinder is zero, unless the surface is a hemisphere. More precisely, we have:

Theorem 2. Let u = u(x1, x2) be a solution of div Tu = 2H in Ω with the boundary condition

(3)Tu · ν = 1 on ∂Ω,
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where Ω is a bounded convex domain of the plane, ν denotes the unit outer normal vector on the boundary ∂Ω .
Then the solution surface u = u(x1, x2) cannot have umbilical points unless that u describes a lower hemisphere

u(x) = u0 −
√

1
H 2 − |x|2, x = (x1, x2).

The proof of Theorem 2 follows from the comparison of a hemisphere with the given surface at a second-ordered
contact point. This procedure is an argument due to Alexandrov [1] and that it has been used in various contexts by
a number of authors. We cite three of them: a priori gradient bounds for the solutions of the constant mean curvature
equation are obtained by Finn and Giusti comparing with moon surfaces [12]; by using half-cylinders, Chen and
Huang proved that for γ = 0, capillary surfaces in absence of gravity over convex domains are necessarily convex
[5]; Finn used nodoids to obtain an estimate for the Gaussian curvature of a nonparametric surface of constant mean
curvature [10].

2. The proof of the result

Our proof is inspired by [5]. As we noticed in the Introduction, Chen and Huang use half-cylinders as comparison
surfaces, while we use half-spheres. Without loss of generality, we may identify the (x1, x2)-coordinates with the
plane Π = {(x1, x2, x3);x3 = 0} in Euclidean 3-space R

3. Denote

S = {(
x1, x2, u(x1, x2)

); (x1, x2) ∈ Ω
}

the graph of a solution u = u(x1, x2) of (1)–(3). With our assumptions, the mean curvature H is computed with respect
to the upwards unit normal vector N = (−∇u,1)/

√
1 + |∇u|2.

Assume that the surface S has umbilical points and let p0 = (x0, u(x0)) be an umbilical point of the graph S . We
assume without loss of generality that x0 = (0,0). We construct the comparison surface

v = v(x1, x2) = −
√

1

H 2
− x2

1 − x2
2 , x2

1 + x2
2 <

1

H 2
,

that is, a lower hemisphere H of the same mean curvature H as S . Thus, it is possible to move H by horizontal and
vertical displacements until to put it in such a way that H and S are tangent at the point p0. In particular, both surfaces
S and H have at the point p0 equal mean and Gaussian curvature. Thus the two surfaces have a contact of (at least)
second order at p0.

Denote Ω ′ the disc of radius 1/H obtained by the orthogonal projection of H onto Π . Theorem 1 stated in Section 1
says us that if Ω contains the open disc Ω ′, then Ω = Ω ′ and u = v. In this case, Theorem 2 is proved. Assume now
∂Ω ′ ∩ (Π \ Ω) �= ∅. Let D be the component of Ω ∩ Ω ′ that contains the origin. In particular, the convexity of Ω

implies that the boundary of D contains at most two pieces of circular arcs of ∂Ω ′.
In the domain D we define the difference function w = u− v. The function w satisfies a quasilinear elliptic second

order partial differential equation without zero-order term and that it has a specified type of contact at a given point
where w vanishes. For this, let Z be the zero set of w. We need to control the local behavior of Z around the origin
(0,0). The special properties of w were used by Alexandrov [1] to prove that the spheres are the only embedded
closed surfaces with constant mean curvature (see also, [14, Chapter VII]). In our context, since S and H have second
order contact at p0, the set Z is a union of piecewise smooth arcs intersecting at x0 and it divides a neighborhood U of
x0 into at least six components sharing x0 as common boundary point, in which the signs of w alternate. For a proof,
see e.g. [5,7,10].

A component of D \ Z that contains a component of U ∩ (D \ Z) must intersect ∂D because, in otherwise we
have two functions, namely w and 0, defined in some domain, both satisfy the Dirichlet problem (1)–(3), violating
the uniqueness of such problem. In the same way, two distinct components of U ∩ (D \Z) cannot be included in the
same component of D \Z .

Thus there are at least six arcs of ∂D where w alternates sign. See Fig. 1. If Γ ′ ⊂ ∂D is an open circular arc of
∂Ω ′, then

(4)1 = Tv · ν � Tu · ν.



R. López / Differential Geometry and its Applications 24 (2006) 398–402 401
Fig. 1. Proof of Theorem 2; the function w alternates the sign in at least six domains emanating from the contact point x0.

Claim 1. Let K be a component of D \Z where w > 0. Then we have that K must intersect ∂D ∩ ∂Ω .

For the proof of the claim, we assume, by contradiction that K meets ∂D only in ∂Ω ′. We decompose ∂K = Γ ∪Γ ′,
where Γ ′ ⊂ ∂Ω ′ and Γ ⊂ D. Then the divergence theorem yields

0 =
∫
K

(div Tu − div Tv) =
∮

∂K

(Tu − Tv) · ν

(5)=
∫
Γ

(Tu − Tv) · ν +
∫
Γ ′

(Tu − Tv) · ν,

where ν is the outer normal on the boundary ∂K. By (4), the second summand in (5) is nonpositive. Moreover using
the Schwarz inequality, we always have

(6)(∇u − ∇v) · (Tu − Tv) � 0

and equality holds if and only if ∇u = ∇v. As u > v on K, we infer (∇u − ∇v) · ν � 0 along Γ . Thus, from (6) we
obtain (Tu − Tv) · ν � 0 along Γ . In virtue of (5), this implies (Tu − Tv) · ν = 0 on ∂K, and so, ∇u = ∇v in K. The
uniqueness of the Neumann problem of (1) in K asserts u = v in K: a contradiction. Then, the claim is proved.

In Claim 1 we have used that Tv · ν = 1 on ∂Ω ′. In the same way, the boundary condition (3) for the solution u in
arcs of ∂Ω allows one to show that

Claim 2. Any component K of D \Z where w < 0 must meet ∂D ∩ ∂Ω ′.

We are now in position to end with the proof of Theorem 2. As conclusion of the above reasonings, we have at least
six arcs of ∂D where w alternates sign. Moreover, they must alternatively distribute along the (at most) four arcs of
∂D. Hence, there are at least two consecutive arcs of ∂(D \Z)∩∂D lying only in ∂Ω or in ∂Ω ′. This is a contradiction
with the statements of the two claims (for example, in Fig. 1, one of the (−) regions leads to a contradiction). Hence
there is no umbilical point on the surface.

Remark 1. One can also argue using the maximum principle proved by Concus and Finn [6]: we have u and v two
functions in C2(Ω) such that div Tu = div Tv in Ω and Tu · ν � Tv · ν on ∂Ω . Then u = v + constant in Ω .

Remark 2. There are capillary surfaces for γ �= 0 in the boundary data (3) and without umbilical points, provided the
domain is not convex. In the class of Delaunay surfaces i.e. rotational, constant mean curvature surfaces, we consider
the nodoids: there exist embedded pieces of nodoids that are graphs on non-convex domains, such that the value of
Tu · ν is ±1 along the boundary of the domain (see [10,11]). The Gaussian curvature of such pieces of nodoids is
negative and so, there are no umbilical points. See Fig. 2.
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Fig. 2. Piece of a nodoid N that is a graph on a non-convex domain Ω with Tu · ν = ±1 along ∂Ω .
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