A characterization of hemispheres

Rafael López ${ }^{1}$
Departamento de Geometría y Topología, Universidad de Granada, 18071 Granada, Spain

Received 9 March 2004; received in revised form 18 March 2005
Available online 9 January 2006
Communicated by O. Kowalski

Abstract

We prove that for constant contact angle $\gamma=0$, a capillary surface over a convex domain has no umbilical points unless that the surface is a hemisphere. The method involves the comparison of a lower hemisphere with the given surface at a second-ordered contact point and it is based on an argument of Alexandrov.

© 2005 Elsevier B.V. All rights reserved.
MSC: 53A10; 35J65
Keywords: Umbilical point; Capillary surface; Maximum principle

1. Introduction and statement of the result

We consider the family \mathcal{F} of compact surfaces immersed in Euclidean 3 -space \mathbb{R}^{3}, with constant mean curvature H. In the minimal case, that is, $H=0$, the maximum principle assures that the surface must be contained in the convex hull of its boundary. In what follow, we suppose $H \neq 0$. In the family \mathcal{F}, the hemispheres have radius $\frac{1}{|H|}$ and their boundary is a circle of radius $1 /|H|$. In the class \mathcal{F}, hemispheres have been characterized in several ways:
(1) They are the only embedded surfaces of \mathcal{F} whose boundary is a convex curve and the surface is perpendicular to the plane along its boundary. This is a consequence of the reflection method of Alexandrov [1,4,17].
(2) Hemispheres are the only surfaces of \mathcal{F} bounded by a circle of radius $1 /|H|[3]$.
(3) In 1969, E. Heinz [13] showed that if Γ is a Jordan planar curve with length L bounding a domain of area A, any surface with constant mean curvature H having Γ as its boundary satisfies $|H| \leqslant L /(2 A)$. In this context, hemispheres are the only surfaces of \mathcal{F} of disc type and where the equality $|H|=L / 2 A$ occurs [16].
(4) Hemispheres are the only stable surfaces of \mathcal{F} with free boundary in a plane [15].

In this note we consider capillary surfaces in the family \mathcal{F}. The physical interpretation of a capillary surface is the following: we put a liquid into a vertical cylindrical container with arbitrary cross section Ω and transport it to

[^0]the space in absence of gravity. We consider smooth the shape of the surface \mathcal{S} of the liquid and expressed nonparametrically as the graph of a function u defined over the cross section Ω. In an equilibrium state of the liquid, as a consequence of the least action principle of physics, the shape of the surface \mathcal{S} is obtained when u minimizes the energy functional
$$
E(u)=\sigma \int_{\Omega} \sqrt{1+|\nabla u|^{2}} \mathrm{~d} x_{1} \mathrm{~d} x_{2}-\sigma \lambda \int_{\partial \Omega} u \mathrm{~d} s,
$$
under the volume constraint
$$
\int_{\Omega} u \mathrm{~d} x_{1} \mathrm{~d} x_{2}=\text { constant },
$$
where ds is the arc length measure on $\partial \Omega$ and ∇u is the gradient of u. The constant σ is the surface tension and λ is a constant to be determined by the liquid and the (homogeneous) material of the wall. The equilibrium condition $\delta E(u)=0$ under the volume constraint is given by the Euler condition
\[

$$
\begin{equation*}
\operatorname{div} \mathrm{T} u=2 H \quad \text { in } \Omega, \tag{1}
\end{equation*}
$$

\]

where

$$
\mathrm{T} u=\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}},
$$

H is a constant that coincides with the mean curvature of the capillary free surface $u=u\left(x_{1}, x_{2}\right)$ and together the physical boundary condition

$$
\begin{equation*}
\mathrm{T} u \cdot v=\cos \gamma \quad \text { on } \partial \Omega, \tag{2}
\end{equation*}
$$

which consists in prescribing the contact angle γ with which \mathcal{S} meets the walls of the tube. Here v is the exterior directed unit normal to $\partial \Omega$ and the angle γ is measured inside the fluid. For further physical and geometrical background information, see [9]. We may normalize so that H is positive and $0 \leqslant \gamma \leqslant \pi / 2$: we suppose that done along this paper.

It should be noted here that the constant H cannot be prescribed; it is implicitly determined by the size of Ω, as it follows by applying the divergence theorem to (1)-(2):

$$
H=\frac{|\partial \Omega|}{2|\Omega|} \cos \gamma
$$

where $|\Omega|,|\partial \Omega|$ denote the measure of Ω and $\partial \Omega$ respectively. It is well known that Eq. (1) is an elliptic equation of quasilinear type satisfying a maximum principle.

It was observed by Bernstein [2] that Ω cannot strictly contain a disc of radius $1 / H$. In fact, an integration of (1) over a closed disc D_{r} of radius r and included in Ω yields $r<1 / H$. Even more, Finn [8] found a new characterization of hemispheres as follows

Theorem 1. If Ω contains the open disc $D_{1 / H}$ and $u=u\left(x_{1}, x_{2}\right)$ is a solution of (1), then Ω coincides with this disc and $u\left(x_{1}, x_{2}\right)$ describes a hemisphere of radius $1 / H$.

A point p in a surface is called an umbilical point if the two principal curvatures at p are equal. Using isothermic parameters and the Codazzi equations, one can show that the umbilical points of a surface are the set of zeroes of a differential 2 -form known as Hopf differential. But in a surface with constant mean curvature in Euclidean space, this differential form is holomorphic [14, p. 137]. Thus, umbilical points are isolated unless that the surface is a subset of a totally umbilical immersion. Our aim is to prove that the number of umbilical points of a capillary surface with contact angle $\gamma=0$ in a convex cylinder is zero, unless the surface is a hemisphere. More precisely, we have:

Theorem 2. Let $u=u\left(x_{1}, x_{2}\right)$ be a solution of $\operatorname{div} \mathrm{T} u=2 H$ in Ω with the boundary condition

$$
\begin{equation*}
\mathrm{T} u \cdot v=1 \quad \text { on } \partial \Omega, \tag{3}
\end{equation*}
$$

where Ω is a bounded convex domain of the plane, v denotes the unit outer normal vector on the boundary $\partial \Omega$. Then the solution surface $u=u\left(x_{1}, x_{2}\right)$ cannot have umbilical points unless that u describes a lower hemisphere $u(x)=u_{0}-\sqrt{\frac{1}{H^{2}}-|x|^{2}}, x=\left(x_{1}, x_{2}\right)$.

The proof of Theorem 2 follows from the comparison of a hemisphere with the given surface at a second-ordered contact point. This procedure is an argument due to Alexandrov [1] and that it has been used in various contexts by a number of authors. We cite three of them: a priori gradient bounds for the solutions of the constant mean curvature equation are obtained by Finn and Giusti comparing with moon surfaces [12]; by using half-cylinders, Chen and Huang proved that for $\gamma=0$, capillary surfaces in absence of gravity over convex domains are necessarily convex [5]; Finn used nodoids to obtain an estimate for the Gaussian curvature of a nonparametric surface of constant mean curvature [10].

2. The proof of the result

Our proof is inspired by [5]. As we noticed in the Introduction, Chen and Huang use half-cylinders as comparison surfaces, while we use half-spheres. Without loss of generality, we may identify the $\left(x_{1}, x_{2}\right)$-coordinates with the plane $\Pi=\left\{\left(x_{1}, x_{2}, x_{3}\right) ; x_{3}=0\right\}$ in Euclidean 3-space \mathbb{R}^{3}. Denote

$$
\mathcal{S}=\left\{\left(x_{1}, x_{2}, u\left(x_{1}, x_{2}\right)\right) ;\left(x_{1}, x_{2}\right) \in \Omega\right\}
$$

the graph of a solution $u=u\left(x_{1}, x_{2}\right)$ of (1)-(3). With our assumptions, the mean curvature H is computed with respect to the upwards unit normal vector $N=(-\nabla u, 1) / \sqrt{1+|\nabla u|^{2}}$.

Assume that the surface \mathcal{S} has umbilical points and let $p_{0}=\left(x_{0}, u\left(x_{0}\right)\right)$ be an umbilical point of the graph \mathcal{S}. We assume without loss of generality that $x_{0}=(0,0)$. We construct the comparison surface

$$
v=v\left(x_{1}, x_{2}\right)=-\sqrt{\frac{1}{H^{2}}-x_{1}^{2}-x_{2}^{2}}, \quad x_{1}^{2}+x_{2}^{2}<\frac{1}{H^{2}},
$$

that is, a lower hemisphere \mathcal{H} of the same mean curvature H as \mathcal{S}. Thus, it is possible to move \mathcal{H} by horizontal and vertical displacements until to put it in such a way that \mathcal{H} and \mathcal{S} are tangent at the point p_{0}. In particular, both surfaces \mathcal{S} and \mathcal{H} have at the point p_{0} equal mean and Gaussian curvature. Thus the two surfaces have a contact of (at least) second order at p_{0}.

Denote Ω^{\prime} the disc of radius $1 / H$ obtained by the orthogonal projection of \mathcal{H} onto Π. Theorem 1 stated in Section 1 says us that if Ω contains the open disc Ω^{\prime}, then $\Omega=\Omega^{\prime}$ and $u=v$. In this case, Theorem 2 is proved. Assume now $\partial \Omega^{\prime} \cap(\Pi \backslash \bar{\Omega}) \neq \emptyset$. Let D be the component of $\Omega \cap \Omega^{\prime}$ that contains the origin. In particular, the convexity of Ω implies that the boundary of D contains at most two pieces of circular arcs of $\partial \Omega^{\prime}$.

In the domain D we define the difference function $w=u-v$. The function w satisfies a quasilinear elliptic second order partial differential equation without zero-order term and that it has a specified type of contact at a given point where w vanishes. For this, let \mathcal{Z} be the zero set of w. We need to control the local behavior of \mathcal{Z} around the origin $(0,0)$. The special properties of w were used by Alexandrov [1] to prove that the spheres are the only embedded closed surfaces with constant mean curvature (see also, [14, Chapter VII]). In our context, since \mathcal{S} and \mathcal{H} have second order contact at p_{0}, the set \mathcal{Z} is a union of piecewise smooth arcs intersecting at x_{0} and it divides a neighborhood \mathcal{U} of x_{0} into at least six components sharing x_{0} as common boundary point, in which the signs of w alternate. For a proof, see e.g. [5,7,10].

A component of $\bar{D} \backslash \mathcal{Z}$ that contains a component of $\mathcal{U} \cap(D \backslash \mathcal{Z})$ must intersect ∂D because, in otherwise we have two functions, namely w and 0 , defined in some domain, both satisfy the Dirichlet problem (1)-(3), violating the uniqueness of such problem. In the same way, two distinct components of $\mathcal{U} \cap(\bar{D} \backslash \mathcal{Z})$ cannot be included in the same component of $\bar{D} \backslash \mathcal{Z}$.

Thus there are at least six arcs of ∂D where w alternates sign. See Fig. 1. If $\Gamma^{\prime} \subset \partial D$ is an open circular arc of $\partial \Omega^{\prime}$, then

$$
\begin{equation*}
1=\mathrm{T} v \cdot v \geqslant \mathrm{~T} u \cdot v \tag{4}
\end{equation*}
$$

Fig. 1. Proof of Theorem 2; the function w alternates the sign in at least six domains emanating from the contact point x_{0}.
Claim 1. Let \mathcal{K} be a component of $\bar{D} \backslash \mathcal{Z}$ where $w>0$. Then we have that \mathcal{K} must intersect $\partial D \cap \partial \Omega$.
For the proof of the claim, we assume, by contradiction that \mathcal{K} meets ∂D only in $\partial \Omega^{\prime}$. We decompose $\partial \mathcal{K}=\Gamma \cup \Gamma^{\prime}$, where $\Gamma^{\prime} \subset \partial \Omega^{\prime}$ and $\Gamma \subset D$. Then the divergence theorem yields

$$
\begin{align*}
0 & =\int_{\mathcal{K}}(\operatorname{div} \mathrm{T} u-\operatorname{div} \mathrm{T} v)=\oint_{\partial \mathcal{K}}(\mathrm{T} u-\mathrm{T} v) \cdot v \\
& =\int_{\Gamma}(\mathrm{T} u-\mathrm{T} v) \cdot v+\int_{\Gamma^{\prime}}(\mathrm{T} u-\mathrm{T} v) \cdot v \tag{5}
\end{align*}
$$

where v is the outer normal on the boundary $\partial \mathcal{K}$. By (4), the second summand in (5) is nonpositive. Moreover using the Schwarz inequality, we always have

$$
\begin{equation*}
(\nabla u-\nabla v) \cdot(\mathrm{T} u-\mathrm{T} v) \geqslant 0 \tag{6}
\end{equation*}
$$

and equality holds if and only if $\nabla u=\nabla v$. As $u>v$ on \mathcal{K}, we infer $(\nabla u-\nabla v) \cdot v \leqslant 0$ along Γ. Thus, from (6) we obtain ($\mathrm{T} u-\mathrm{T} v) \cdot v \leqslant 0$ along Γ. In virtue of (5), this implies ($\mathrm{T} u-\mathrm{T} v) \cdot v=0$ on $\partial \mathcal{K}$, and so, $\nabla u=\nabla v$ in \mathcal{K}. The uniqueness of the Neumann problem of (1) in \mathcal{K} asserts $u=v$ in \mathcal{K} : a contradiction. Then, the claim is proved.

In Claim 1 we have used that $\mathrm{T} v \cdot v=1$ on $\partial \Omega^{\prime}$. In the same way, the boundary condition (3) for the solution u in arcs of $\partial \Omega$ allows one to show that

Claim 2. Any component \mathcal{K} of $\bar{D} \backslash \mathcal{Z}$ where $w<0$ must meet $\partial D \cap \partial \Omega^{\prime}$.
We are now in position to end with the proof of Theorem 2. As conclusion of the above reasonings, we have at least six arcs of ∂D where w alternates sign. Moreover, they must alternatively distribute along the (at most) four arcs of ∂D. Hence, there are at least two consecutive arcs of $\partial(\bar{D} \backslash \mathcal{Z}) \cap \partial D$ lying only in $\partial \Omega$ or in $\partial \Omega^{\prime}$. This is a contradiction with the statements of the two claims (for example, in Fig. 1, one of the (-) regions leads to a contradiction). Hence there is no umbilical point on the surface.

Remark 1. One can also argue using the maximum principle proved by Concus and Finn [6]: we have u and v two functions in $C^{2}(\Omega)$ such that $\operatorname{div} \mathrm{T} u=\operatorname{div} \mathrm{T} v$ in Ω and $\mathrm{T} u \cdot v \geqslant \mathrm{~T} v \cdot v$ on $\partial \Omega$. Then $u=v+$ constant in Ω.

Remark 2. There are capillary surfaces for $\gamma \neq 0$ in the boundary data (3) and without umbilical points, provided the domain is not convex. In the class of Delaunay surfaces i.e. rotational, constant mean curvature surfaces, we consider the nodoids: there exist embedded pieces of nodoids that are graphs on non-convex domains, such that the value of $\mathrm{T} u \cdot v$ is ± 1 along the boundary of the domain (see [10,11]). The Gaussian curvature of such pieces of nodoids is negative and so, there are no umbilical points. See Fig. 2.

Fig. 2. Piece of a nodoid N that is a graph on a non-convex domain Ω with $\mathrm{T} u \cdot v= \pm 1$ along $\partial \Omega$.

References

[1] A.D. Alexandrov, Uniqueness theorems for surfaces in the large, Vestnik Leningrad Univ. 11 (1956) 5-8; English translation in: Amer. Math. Soc. Transl. Ser. 2 (21) (1962) 354-431.
[2] S. Bernstein, Sur le surfaces définies au moyen de leur courbure moyenne et total, Ann. Sci. Ecole Norm. Sup. 27 (1910) 233-244.
[3] F. Brito, R.S. Earp, Geometric configurations of constant mean curvature surfaces with planar boundary, An. Acad. Bras. Ci. 63 (1991) 5-19.
[4] F. Brito, R. sa Earp, W.H. Meeks III, H. Rosenberg, Structure theorems for constant mean curvature surfaces bounded by a planar curve, Indiana Univ. Math. J. 40 (1991) 333-343.
[5] J.-T. Chen, W.S. Huang, Convexity of capillary surfaces in the outer space, Invent. Math. 67 (1982) 253-259.
[6] P. Concus, R. Finn, On capillary free surfaces in the absence of gravity, Acta Math. 132 (1974) 177-198.
[7] R. Finn, New estimates for equations of minimal surface type, Arch. Rational Mech. Anal. 14 (1963) 337-375.
[8] R. Finn, Remarks relevant to minimal surfaces and to surfaces of prescribed mean curvature, J. D'Anal. Math. 14 (1965) 139-160.
[9] R. Finn, Equilibrium Capillary Surfaces, Springer-Verlag, New York, 1986.
[10] R. Finn, The Gauss curvature of an H-graph, Nach. Akad. Wiss. Gottingen, Math.-Phys. kl.II (2) (1987) 5-14.
[11] R. Finn, Comparison principles in capillarity, in: Calculus of Variations, in: Springer Lecture Notes, vol. 1357, Springer, Berlin, 1988, pp. 156197.
[12] R. Finn, E. Giusti, On nonparametric surfaces of constant mean curvature, Ann. Scuola Norm. Sup. Pisa 4 (1977) 13-31.
[13] E. Heinz, On the nonexistence of a surface of constant mean curvature with finite area and prescribed rectifiable boundary, Arch. Rational Mech. Anal. 35 (1969) 249-252.
[14] H. Hopf, Differential Geometry in the Large, Lecture Notes in Mathematics, vol. 1000, Springer-Verlag, Berlin, 1983.
[15] M. Koiso, The uniqueness for stable surfaces of constant mean curvature with free boundary on a plane, Bull. Kyoto Univ. Ed. Ser. B 97 (2000) 1-12.
[16] R. López, Constant mean curvature surfaces with boundary in Euclidean three-space, Tsukuba J. Math. 23 (1999) 27-36.
[17] H.C. Wente, The symmetry of sessile and pendent drops, Pacific J. Math. 88 (1980) 387-397.

[^0]: E-mail address: rcamino@ugr.es (R. López).
 ${ }^{1}$ Partially supported by MEC-FEDER grant no. MTM2004-00109.

