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Abstract

We study compact spacelike surfaces with constant mean curvature in the three-dimensional
Lorentz—Minkowski spacé.®. When the boundary of the surface is a planar curve, we obtain
an estimate for the height of the surface measured from the prathat contains the boundary.

We show that this height cannot extend more thptl|/(27) abovell, whereA and H denote,
respectively, the area of the surface that lies év@nd the mean curvature of the surface. Moreover,
this estimate is attained if and only if the surface is a planar domain {#ith 0) or a hyperbolic
cap (withH ## 0).
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1. Introduction and statement of results

In differential geometry, monotonicity formulae refer to control the variation of some
of kind of energy (e.g. area, volume, etc.) in terms of the local geometry of the manifold.
This can easily see in the theory of minimal and constant mean curvature sy8da&ds
In general relativity, the measure of matter is in a given region of a spacetime leads to the
study of the monotonicity of the Hawking quasi-local mass of a connected surface under
inverse mean curvature flow. For further information on this physical interpretation, see the
review article of Bray5].
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Recall that the Lorentz—Minkowski spaté is the spac&?® endowed with the metric
(,) = (dx1)? + (dx2)? — (dx3)2, wherex = (x1, x2, x3) are the canonical coordinates in
R3. An immersionx : ¥ — L3 of a smooth surfac& is called spacelike if the induced
metric on the surface is positive definite. In this setting, the notions of the first and second
fundamental form, and the mean curvature are defined in the same way as on a surface in
Euclidean space. This article deals with spacelike immersed sutfaces — L3 with
constant mean curvaturd. It is well known that such surfaces are critical points of the
area functional for variations which preserve a suitable volume function. On the other hand,
in relativity there is interest of finding real-valued functions on a given spacetime, all of
whose level sets have constant mean curvature. The mean curvature function may then be
used as a global time coordinate and provide a time gauge which is important in the study
of singularities, the positivity of mass and gravitational radiations (se¢&1g)).

In this paper, we shall obtain an area monotonicity formula that gives a dependence of
the area of a compact spacelike surface with constant mean curvalutith respect to
the height of the surface. Exactly, we show the following theorem.

Theorem 1. Letx : ¥ — L3 be a spacelike immersion of a compact surface with boundary
included in a pland1. Assume the mean curvatuke of the immersion is constant. Af
denotes the height & with respect ta’7, we have

|H|A
= 7, 1)

whereA is the area of the region of above the planél. The equality holds if and only if
X is a planar domair(H = 0) or a hyperbolic cap H # 0).

h

On the other hand, hyperbolic caps show that if we fix the mean curvAtuiteere exist
spacelike graphs with constant mean curvatdrand witharbitrary height. This do not
occurs in Euclidean setting.

However, as far as | know, the only similar estimat€svas obtained by Bartnik and
Simon for graphs (sep!, Eg. (2.15)]. The monotonicity that they obtain measures the
variation of the area of the surface that lies in the donsaip) defined by

Sr(p) ={x e L3; x—p,x—p)< r2}.
They prove that if the boundary & satisfiesd X N S, (p) = @, the following limit holds

ared LN s, (p) _

lim
2

r—0
Our approach is based in the Federer co-area formula for the height function, a formula
that measures the flux of the surface across the boundary, jointly the classical isoperimetric
inequality in the plane.

This paper consists of four sectior®ection 2is a preparatory section, where we will
give some definitions and notations, and we will mention basic properties of the compact
spacelike surfaces with constant mean curvatsieetion 3will be devoted to the tangency
principle. In this section, we will derive an estimate of the height of a graph with constant
mean curvature in terms of the diameter of the domain. Odstprem will be proved in
Section 4
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2. Notationsand preliminaries

Throughout this section as well as the following one, we shall consider arbitrary di-
mension. First we will mention basic fact about the compact spacelike hypersurfaces with
constant mean curvature and we will state a flux formula for this kind of hypersurfaces,
which we need for the proof of our main result. llét"! denote thgn + 1)-dimensional
Lorentz—Minkowski space, that is, the real vector spte! endowed with the Lorentzian
metric:

(,) = (dx)? + -+ (dxy)? — (dx2y),

where(xy, ... , x,+1) are the canonical coordinates®¥ 1. In what follows, a smooth
immersionx : ¥ — L"*1 of ann-dimensional connected manifol is said to be a
spacelike hypersurfadgéthe induced metric via is a Riemannian metric o&, which, as
usual, isalso denoted By ). If ,11 = (0, ... , 0, 1) and since any unit vector field of

is timelike, the productn, e,+1) cannot vanish anywhere. We shall choose the orientation
of our hypersurfaces so thaV, e,1) < 0, that is,N will point upwards. We say then that

N is future-directed.

Let us assume thaX¥' is a compact spacelike hypersurface. Siaceannot be closed
in L"*1, the hypersurfac& has non-empty boundag. If I" is an(n — 1)-dimensional
closed submanifold ifi.”+1, we say that : ¥ — L"t1is a hypersurface with boundary
I if the restrictionx : X — I is a diffeomorphism.

Let now V° (resp.V) denote the Levi—Civita connection bft1 (resp.X). The Gauss
and Weingarten formulas fof in "1 are, respectively

VoY = VxY — (AX, Y)N
and
A(X) = —VIN

for any tangent vectors field$, Y € X(X) andA stands for the shape operator associated
to N. Then the second fundamental fosnand the mean curvatuié of X are defined by

o(X,Y) = —(V2Y, N), (2)

1 1 1<
H = “traceoc = —~tracqA) = —— Z(U(Vi’ Vi), N), (3)
n n n i1

whereX, Y € X(X) and{v;; 1 <i < n}is a smooth tangent frame alog We call X a
hypersurface with constant mean curvature if the funchois constant in¥.

Locally a spacelike hypersurfageis given as the graph of afunctien= u(xq, ... , x) :
2 — R, 2 a domain ofR", with the condition|Duj? < 1 that means precisely that the
graph defined byt is spacelike. The future-directed orientation is

v PuD (N, €,41) <O. (4)

V1—1Du)z’
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The first and second fundamental forms3ofire then given, respectively, by
Mij
J/1—Dui?’

whereu; = D;u = du/dx; anduj = D;D;u. For graphs, the mean curvatuteof the
graph ofu is expressed by

gij = 8ij — uiuj, Ajj =

n n
(L= 1Du) Y wii + Y wjujuij = nH(L — DU, (5)
i=1 i,j=1

This equation can alternatively be written in divergence form:

. Du
div <W) = nH. (6)

In the study of spacelike hypersurfaces with constant mean curvature we state a result which
will be needed in the proof of the main result (§&]).

Lemma 2 (Flux formula). Letx : ¥ — L"*! be a spacelike immersion of a compact
hypersurface with boundar§X'. Denote byv the inward pointing unit conormal vector
alongdX. If the mean curvaturé? is constantthen for any fixed vectar € L+ we have

H detlx, t1, ..., Th_1,a) ds + / (v,a)ds =0, @)
X X
where{, ..., 1,—1} IS a unit tangent frame toX. If x(3X) is included in a hyperplane

IT = a*, with (a, a) = —1, then we obtain the flux formula
/ (v, a)ds = —nHvoI(0X), (8)
X
wherevol(3Y) is the algebraic volume @fX.

Remark 3. The so-called flux formula can be viewed as the physical equilibrium between
the forces of the surface tension bfthat act along its boundary with the pressure forces
that act on the bounded domain&¥. More generally, if we cuf’ in a collection of opens,
then the surface tension along the cuts and pressure through the caps must balance.

The rest of the section will be devoted to study the hyperbolic hyperplanes and their
role in the Lorentzian setting. We now review the construction of such hypersurfaces. After
an isometry ofL”*1, hyperbolic hyperplanes are defined as follows: for each 0 and
p el let

Hp(p) = (x e L' (x = p,x = p) = —p7).
Each one of such hypersurfaces has exactly two components,

Hp(p) =My (p) UH, (p)
={x e Hy(p): (x — p,&y1) <OU {x € Hy(p); {(x — p, €y1) > O}
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With the future-directed orientation, the mean curvaturé[ﬁf(p) and#, (p) is 1/p and
—1/p, respectively.

We callhyperbolic capshe compact pieces of hyperbolic hyperplanes whose boundary
is a(n — 1)-sphere, that is, the compact hypersurfaces that stem from the intersection of
H(p) andH;, (p) with horizontal hyperplanes. Exactly, for eaphe L"** andr > 0,
consider the dis®, (p) = {(x1, ... , xp, 0) € L' (x4 — p1)2+ -+ (xn — pn)? < 12},
Define the upper hyperbolic c&p;(p, r) (resp. the lower hyperbolic ca#,, (p, r)) as the
piece of’H,;f(p) (resp.’H; (p)) that lies in the cylindef(xy, ... , x4, Xp+1) € R*L (xq —
pO?+ -+ (xn — pn)? < r%, x,41 € R}. Hyperbolic cap${: (p. r) are the graphs of the
functionsu defined inD,(p) given by

n
Wyt ... X)) = papat | P2+ Y (xi— p)?
i=1

with the boundary condition:

+ /
Woap,(py = Pl £ /T2 + 2.

Both functions, and the corresponding graphs, are useful as barrier hypersurfaces in estab-
lishing boundary height and gradient estimates. In fact, the steepness of such hyperbolic
caps at a given height is an upper bound for the steepness of any of a comparison constant
mean curvature graph, at corresponding heights. Thé€sand C*-estimates have as im-
mediate application, the solvability of the Dirichlet problem whiis a convex domain.

More general, Bartnik and Simd#] proved existence and regularity for hypersurfaces with
prescribed mean curvature and boundary valu@sovided the functiory bounds some
spacelike surface. The reader can see the techniqy@d #].

3. Thetangency principle and conseguences

In this section, we will state the tangency principle for spacelike hypersurfaces with
constant mean curvature and we will derive some results that might be interesting by theirself
(Theorems 5 and)7

Let u andv be two functions that are local expressions of two spacelike hypersurfaces
¥, and ¥, of L"*1 If ¥, and X, have a common poinp = (p1, ..., pp+1) Where
they are tangent, we will say thaf, lies aboveX, nearp whenu > v on a certain
neighborhood of the pointps, ... , p,). Let us assume that, and X, have the same
constant mean curvatut®. SinceEq. (6)is of quasi-linear elliptic type, the difference
functionu — v satisfies dinear elliptic equation on a neighborhood 6f4, ... , p,) and
the Hopf maximum principle for linear elliptic equations can be applied tov (seg[10,

Th. 9.2] or[11]). Consequently, we have proved the following result.

Theorem 4 (Tangency principle)Let £1 and X, be two spacelike hypersurfacesidft!
with the same constant mean curvat@nath respect to the future-directed unit norrpal
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Suppose that they are tangent at a common interior peamd thatX'; lies aboveX'; near
p. Then they coincide in a neighborhoodofThe same holds jf is a common boundary
point with the extra hypothesis thak'; andd X, are tangent ap.

This result is a stronger that tl@omparison Principlevhich states that iy and X,
are two spacelike hypersurfaces with (non-necessarily constant) mean curvéilaed
H> and if andX’1 is locally aboveX» near some poinp, thenH1(p) > Ha(p).

The tangency principle allows to understand the structure of the family of compact space-
like hypersurfaces whose mean curvature function is constant. For this, let us recall that
for eachH € R, the spacd.”*! can be foliated by spacelike hypersurfaces with constant
mean curvaturéd; namely, if H = 0, a family of parallel spacelike hyperplanesHfis
positive, the hyperbolic hyperplan({a’ﬁi‘f/H(te,,H);t € R} and if H is negative, by the
family {H:l/H(te,,+1); t € R}

As a consequence of the tangency principle, we establish two results on compact space-
like hypersurfaces. First we will consider conditions for a compact spacelike hypersurface
with constant mean curvature to be contained in a halfspace determined by an umbilical
hypersurface.

Theorem 5. Let X be a compact spacelike hypersurface with constant mean curvAture
If the boundaryd X’ of X' is included either in a hyperplane or in a hyperbolic hyperplane
I1, then X' lies completely included in one of the two halfspaces determindd. by

Proof. Let us assume the contrary, that i5,has (interior) points in both sides @f.
First we will prove the result under the assumption thatlies in a hyperplandi. This
hyperplane must be spacelike and we may assume, without loss of generalify that

{x € L"*; (x, ,11) = 0}. Consider a familyl1(r) = {x € L"*1; x,.1 = 1} of parallel
horizontal hyperplanes. BecauSeis a compact hypersurface and has interior points over
I1, there existgy > 0 such that

nHnnx=¢ forallt> 1
and
)N X # 0

at some common interior point. Then the comparison principle impliesHhat0. Recall

that all our hypersurfaces are future-directed oriented. But the tangency principle discards
the cased = 0 because in that casE, would be in the hyperplan&(zp) in contradiction

with thato X' c 7(0). A similar argument by using hyperplan&gr) with negative values

for ¢ yields H > 0, which is a contradiction.

We now consider thatX’ lies in a hyperbolic hyperplane. After a homothety followed of
an isometry of.”*1, we can assume tha is included in the upper hyperbolic hyperplane
Hf (0). Again and by contradiction, we assume tlahave interior points in both sides
of ’HI(O). Consider now the famil?{f(tenﬂ) of upper hyperbolic hyperplanes, that is,
vertical translations o‘Hj(O). Since X is a compact hypersurface, for a large value,of
sayt1, H (t1€,41) N X = . Now, move downwards({ (t1€,+1) makingt decrease from
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t1 to 0. Because there are points Bfthat lie oveer(O), then for someg > 0 we will
haveX N Hf(toe,,ﬂ) # {§ at some interior point and' N Hj(tenﬂ) =@ fort > 9. The
comparison principle implies that < 1. But if H = 1, the tangency principle implies
that X C Hf(toenﬂ), which is impossible since the points @ are not ian(toenH).

As conclusion H < 1. Doing the same reasoning w'ﬂthler (te,41) with ¢ < 0, there exists

t2 < 0 such that¥ lies above?-q(tze,,ﬂ) and both surfaces are tangent at some common
interior point. Now the comparison principle implies tifat> 1. This is a contradiction,
which completes the proof dtheorem 5 O

Remark 6. The same argument leads to the following conclusions. First, if the mean
curvature function o does not vanish, and if its boundary is included in a hyperplane
then X lies in one of the two closed hyperspaces determineff bgecond, and assuming
that the mean curvatuig is constant and the boundary lies in a hyperbolic hyperplane with
the same mean curvatufg, thenX is included in this hyperbolic hyperplane.

We conclude this section by establishing, as an application of the tangency principle, a
CO-estimate of a solution dEq. (6) As we mentioned in the Introduction, it is not possible
to obtainC%-estimates depending only @h In the following theorem, we derive estimates
of the height in terms off and the diameter of the domash.

Theorem 7. Let 2 be a compact domain @&" with diameters > 0 and letu € C2(2)n
C(£2) be a function whose graph h&son-necessarily constgmnean curvatured. Let us
assume that there exists> 0 such thatf H| < ¢. Then

. 1 1 1 1
minu+=(1—=v4+82c?) <u<maxu+ = -1+ =vV4+52?). 9)

R c 2 082 c 2

In the particular case thatl = 0,thenmingo u < u < maXyg u.

Proof. We may assume, without loss of generality, thats included in the disd, (0)
wherer = §/2 and we sebf be the functions whose graphs are the hyperbolic caps

’Hff (0, r) by settingo = 1/c (see notation in above section). Denat¢he graph of:. The
vertical translations dﬂj(o, r) are the hyperbolic cap}d;r (t€,41, 1). TranslateH;“(O, r)

vertically downward until it is disjoint fron¥'. Then reascenﬂj(o, r) until the first time
fo thatH;;(toenH, r) touchesX at some poinp. Then

+ .
; <
Volap, ) = I it

that is,

to+,/p2+r2§ryd1}2n u. (10)

We have two possibilities about the poipt First, it is a tangent point between and
H;—(Z‘Qen_i_]_, r) (whetherp is an interior or boundary point). Because the mean curvature

of Hj(roe,,ﬂ, r)is c and|H| < ¢, the tangency principle says us th&t| = ¢, ¥ C
’Hj (to€,+1, r) and we have equality i(L0) and consequently i(B).
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The other possibility is that the poiptis a boundary point where both surfaceésand
H;(Z()en_;,_]_, r) are not tangent. Then we have equality(1®), that is,zo + /02 +r2 =
minye u and for anyx € £2:

u() = v @) = vf O =10+ p=minu+p—\/r2+ p2

So (remembering that= §/2 andp = 1/c) we have the estimate of the left-hand sidéX)f

In order to prove the other inequality (8), we use hyperbolic caps of tyge, (16,41, r).
For the casé? = 0, the proof can be achieved by letting> 0. This finishes the proof

of Theorem 7 a

As a corollary, it may be interesting to remark the case that the mean curvature is constant
and that the boundary is included in a hyperplane.

Corollary 8. Let£2 C R" be a smooth domain with diamet&rLet / be a real number
and letu € C2(£2) N C(£2) be a solution of6) with the boundary condition = «, o € R.
Then

1 1
lu —af < — (—1+ E\/4+ H282>

|H|
and the equality holds if and only if the graphuofs a hyperbolic cap

4. Proof of Theorem 1

We proceed to prov&heorem 1In what follows, we return to the cage= 2. We begin
proving that if the surface is a hyperbolic cap, we have equaliftjnconsider# (0, r)

with p = 1/|H|. Then#, (0,r) C {x € L3 x3 > —(1/|H|)¥/1+ H?r?} and boundary

M, 0.r) C {x € L3 x3 = —(1/|H))V1+ H?r?}. It follows thath = (v1+ H?2 —
1)/|H| and

area#; (0. 1) = = (Vi+H2?-1).
H
Let us prove inequalityl). ConsiderX a surface in the hypothesis theorem 1Leta be
the unit future-directed timelike vector Ic® such thatlT = a. We realize an isometry of
the ambient space and we assume thates = (0,0, 1) and/T = {x € L3; (x, e3) = O}.
Denotel” = x(0X). If the mean curvature i = 0, thenx(X) is the very planar domain
determined by". In this case, its height is = 0 and we have equality i@). Let us assume
thenH # 0. Consider the functiorf : ¥ — R given by f = —(x, e3) which measures the
height of X with respect to the plan&. We need to estimate the heighof de surface,
that is, the numbek = max,cs f(p) > 0. As in[3], we will use the co-area formula for
the functionf (se€[9, Th. 3.2.12]. The scheme is as follows. Denote

() ={peX; fp) =1}, I'g={peX f(p)=1}
We setA(r) andL(¢) the area and the length &f(r) and I'(¢), respectively.
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We compute the critical points of the functigh BecauseV (x, e3) = e3 — (N, e3)N,
p € X is a critical point off if |Vf|2(p) = -1+ (N(p), e3) = 0, that is, if N(p) = es.
Define onX the functionsg; = (N, &),i = 1, 2, wheree; = (1, 0, 0) ande; = (0, 1, 0).
Therefore, the set of critical points of f is contained inVy N N2, where

Ni={pe Z:(N(p).e) =0}, N2 ={pe X:(N(p)., &) =0}

are the nodal lines qf; andg», respectively.
On the other hand, given a fixed vectoe 1.3, the constancy of the mean curvatufe
of the immersion gives the following formula:

A(N, a) = (4H? + 2K)(N, a) = tracgA?)(N, a), (11)

whereA is the Laplacian in the induced metric byand K the Gaussian curvature &f. It
follows from this equation that the functiogs andg, satisfy

Agi —tracgA®)g; =0, i=1,2. (12)

If the functionsg; are identically zero, theN = e3 on X and the surface would be a planar
domain. This yielddd = 0, on the contrary to the assumption. Thus, eitheor g, is not
trivial. SinceEq. (12)are of Schrodinger type, Cheng’s theorem on nodal lines assures that
the nodal line ofg; is a finite number of immersed circl§g]. In particular, its measure is
zero and s@ as well. It follows thatA(r) is a continuous function and the co-area formula
assures

1
A = —/ —ds;, teR,
ray IV fl

where d; is the line element on the levélr). By Holder's inequality there holds

2
L(t)2=( / ds,) < / IV £1ds, f L= —a0 [ 1vAds. (@13
Ia0) o ra IV fl a0

Recall thaiV f| along the curvd(¢) is
IVfI? = =1+ (N, &3)* = (v, €)%,

wherey; is the unit inner conormal af'(¢) along () = X (¢). As X(¢) is above the plane
I1(1) = {x € L3; —(x, e3) = 1}, we know(v;, e3) < 0. Hence

IV flirg = — (v, €3).

It follows from (13) that

LO>< A1) | (v,e3)ds;, teR. (14)
I

We know thatX(¢) is a compact surface with smooth boundaiy) for almostr € R. If
t > 0, I(t) C I1(¢) and by the flux formul&8), we have

—f (vr, €3) ds; = 2|Hlag (1],
a3(1)
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wherea,(?) is the algebraic area of the planar closed curig. Thus(14) can be written
as

L)% < —2|H|A' (1)|ag(1)). (15)

If t <0, thendX C X(r) and sol(¢) has a component in the plafgand possibly others
in I1(z).

Denote by$21(2), ... , £2,,(¢) the bounded domains determined Byr) N X(r) and let
a;(t) be the Lebesgue area of the corresponda@). Then

ag(t) = €1a1(t) + - - - + €p,an, (1),
whereg; € Z is the order number corresponding to the cunv@s?; (r)). Then

lag(D] < lerlas(®) + - - - |€n,|an, (1) (16)
If L;(¢) denotes the length of2;(r) we have

L(t) = |ex|La(0) + - - - + e, | Ly, (1),
which implies that

EL1(D%+ -+ €2 L, (0% < L0 17)
By virtue of inequalitieg15)—(17) we have

ESL1N? + -+ €2 Ly, (07 < —2|H|A (0)(Je1lar(t) + -+ + |en,|an, (1)).

We use the isoperimetric inequality in the plafi&). We note that(z) is isometric to the
Euclidean plan@®?, and then, such inequality holds for such planes. Therefoug(d <
L;(H? and if we take into account thag;| < eiz, we have

2r < —|H|A'(f) foreveryr > 0. (18)
Integrating this inequality from O to the heightwe obtain
2rh < |H|(A(0) — A(h)) = |H|A,

which yields the desired estimat).

To finish the proof we analyze the equality(it). In such case, we have also equality in
(13) and in the isoperimetric inequality. Thii® f| is constant function in each(r) and
I'(r) is a circle, for each > 0. However, the only compact spacelike surfacebbfvith
non-zero constant mean curvature and bounded by a circle are hyperbolic cipls, Bae
proves that(X) is a hyperbolic cap and we conclude the prooThéorem 1

An immediate consequence Bfieorem lis the following corollary.

Corollary 9. Letx : ¥ — L3 be an immersion as iftheorem lexcept that the boundary
of the surface is not planar. Denate the height function oX’ given byxz(p) = —(p, €3).
Then

_ areax)|H|

ared X)|H|
o .

min x3
E)) 2

=x3= fggxxs +
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Remark 10. We give the following interpretation ofheorem 1 any compact spacelike
surfaceX of L2 with constant mean curvature and with planar boundary has area bigger
than the area of a hyperbolic cap with the same height and mean curvatutg.than

Remark 11. It remains as an open problem the extension of the height estifhgter
arbitrary dimension. We conjecture that for compact spacelike hypersurfacéd.”+1
with constant mean curvaturd and whose boundary lies in a hyperplane, it holds the
following estimate of the height? of X

h < voI(2)|H|’

Wp—1

wherew,_1 is the volume of thén — 1)-dimensional unit sphere.
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