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Abstract

We study compact spacelike surfaces with constant mean curvature in the three-dimensional
Lorentz–Minkowski spaceL3. When the boundary of the surface is a planar curve, we obtain
an estimate for the height of the surface measured from the planeΠ that contains the boundary.
We show that this height cannot extend more thatA|H |/(2π) aboveΠ, whereA andH denote,
respectively, the area of the surface that lies overΠ and the mean curvature of the surface. Moreover,
this estimate is attained if and only if the surface is a planar domain (withH = 0) or a hyperbolic
cap (withH �= 0).
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1. Introduction and statement of results

In differential geometry, monotonicity formulae refer to control the variation of some
of kind of energy (e.g. area, volume, etc.) in terms of the local geometry of the manifold.
This can easily see in the theory of minimal and constant mean curvature surfaces[8,13].
In general relativity, the measure of matter is in a given region of a spacetime leads to the
study of the monotonicity of the Hawking quasi-local mass of a connected surface under
inverse mean curvature flow. For further information on this physical interpretation, see the
review article of Bray[5].
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Recall that the Lorentz–Minkowski spaceL
3 is the spaceR3 endowed with the metric

〈 , 〉 = (dx1)
2 + (dx2)

2 − (dx3)
2, wherex = (x1, x2, x3) are the canonical coordinates in

R
3. An immersionx : Σ → L

3 of a smooth surfaceΣ is called spacelike if the induced
metric on the surface is positive definite. In this setting, the notions of the first and second
fundamental form, and the mean curvature are defined in the same way as on a surface in
Euclidean space. This article deals with spacelike immersed surfacesx : Σ → L

3 with
constant mean curvatureH . It is well known that such surfaces are critical points of the
area functional for variations which preserve a suitable volume function. On the other hand,
in relativity there is interest of finding real-valued functions on a given spacetime, all of
whose level sets have constant mean curvature. The mean curvature function may then be
used as a global time coordinate and provide a time gauge which is important in the study
of singularities, the positivity of mass and gravitational radiations (see e.g.[7,12]).

In this paper, we shall obtain an area monotonicity formula that gives a dependence of
the area of a compact spacelike surface with constant mean curvature inL

3 with respect to
the height of the surface. Exactly, we show the following theorem.

Theorem 1. Letx : Σ → L
3 be a spacelike immersion of a compact surface with boundary

included in a planeΠ. Assume the mean curvatureH of the immersion is constant. Ifh
denotes the height ofΣ with respect toΠ, we have

h ≤ |H |A
2π

, (1)

whereA is the area of the region ofΣ above the planeΠ. The equality holds if and only if
Σ is a planar domain(H = 0) or a hyperbolic cap(H �= 0).

On the other hand, hyperbolic caps show that if we fix the mean curvatureH , there exist
spacelike graphs with constant mean curvatureH and witharbitrary height. This do not
occurs in Euclidean setting.

However, as far as I know, the only similar estimate as(1) was obtained by Bartnik and
Simon for graphs (see[4, Eq. (2.15)]). The monotonicity that they obtain measures the
variation of the area of the surface that lies in the domainSr(p) defined by

Sr(p) = {x ∈ L
3; 〈x − p, x − p〉 < r2}.

They prove that if the boundary ofΣ satisfies∂Σ ∩ Sr(p) = ∅, the following limit holds

lim
r→0

area(Σ ∩ Sr(p))

r2
= π.

Our approach is based in the Federer co-area formula for the height function, a formula
that measures the flux of the surface across the boundary, jointly the classical isoperimetric
inequality in the plane.

This paper consists of four sections.Section 2is a preparatory section, where we will
give some definitions and notations, and we will mention basic properties of the compact
spacelike surfaces with constant mean curvature.Section 3will be devoted to the tangency
principle. In this section, we will derive an estimate of the height of a graph with constant
mean curvature in terms of the diameter of the domain. Last,Theorem 1will be proved in
Section 4.
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2. Notations and preliminaries

Throughout this section as well as the following one, we shall consider arbitrary di-
mension. First we will mention basic fact about the compact spacelike hypersurfaces with
constant mean curvature and we will state a flux formula for this kind of hypersurfaces,
which we need for the proof of our main result. LetL

n+1 denote the(n + 1)-dimensional
Lorentz–Minkowski space, that is, the real vector spaceR

n+1 endowed with the Lorentzian
metric:

〈 , 〉 = (dx1)
2 + · · · + (dxn)

2 − (dx2
n+1),

where(x1, . . . , xn+1) are the canonical coordinates inR
n+1. In what follows, a smooth

immersionx : Σ → L
n+1 of an n-dimensional connected manifoldΣ is said to be a

spacelike hypersurfaceif the induced metric viax is a Riemannian metric onΣ, which, as
usual, is also denoted by〈 , 〉. If en+1 = (0, . . . ,0,1) and since any unit vector fieldN ofΣ
is timelike, the product〈N, en+1〉 cannot vanish anywhere. We shall choose the orientation
of our hypersurfaces so that〈N, en+1〉 < 0, that is,N will point upwards. We say then that
N is future-directed.

Let us assume thatΣ is a compact spacelike hypersurface. SinceΣ cannot be closed
in L

n+1, the hypersurfaceΣ has non-empty boundary∂Σ. If Γ is an(n − 1)-dimensional
closed submanifold inLn+1, we say thatx : Σ → L

n+1 is a hypersurface with boundary
Γ if the restrictionx : ∂Σ → Γ is a diffeomorphism.

Let now∇0 (resp.∇) denote the Levi–Civita connection ofL
n+1 (resp.Σ). The Gauss

and Weingarten formulas forΣ in L
n+1 are, respectively

∇0
XY = ∇XY − 〈AX, Y〉N

and

A(X) = −∇0
XN

for any tangent vectors fieldsX, Y ∈ X(Σ) andA stands for the shape operator associated
toN. Then the second fundamental formσ and the mean curvatureH of Σ are defined by

σ(X, Y) = −〈∇0
XY,N〉, (2)

H = 1

n
traceσ = −1

n
trace(A) = −1

n

n∑
i=1

〈σ(vi, vi), N〉, (3)

whereX, Y ∈ X(Σ) and{vi; 1 ≤ i ≤ n} is a smooth tangent frame alongΣ. We callΣ a
hypersurface with constant mean curvature if the functionH is constant inΣ.

Locally a spacelike hypersurfaceΣ is given as the graph of a functionu = u(x1, . . . , xn) :
Ω → R, Ω a domain ofRn, with the condition|Du|2 < 1 that means precisely that the
graph defined byu is spacelike. The future-directed orientation is

N = (Du,1)√
1 − |Du|2

, 〈N, en+1〉 < 0. (4)
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The first and second fundamental forms ofΣ are then given, respectively, by

gij = δij − uiuj, Aij = uij√
1 − |Du|2

,

whereui = Diu ≡ ∂u/∂xi anduij = DiDju. For graphs, the mean curvatureH of the
graph ofu is expressed by

(1 − |Du|2)
n∑

i=1

uii +
n∑

i,j=1

uiujuij = nH(1 − |Du|2)3/2. (5)

This equation can alternatively be written in divergence form:

div

(
Du√

1 − |Du|2

)
= nH. (6)

In the study of spacelike hypersurfaces with constant mean curvature we state a result which
will be needed in the proof of the main result (see[1,2]).

Lemma 2 (Flux formula). Let x : Σ → L
n+1 be a spacelike immersion of a compact

hypersurface with boundary∂Σ. Denote byν the inward pointing unit conormal vector
along∂Σ. If the mean curvatureH is constant, then for any fixed vectora ∈ L

n+1 we have

H

∫
∂Σ

det(x, τ1, . . . , τn−1, a)ds +
∫
∂Σ

〈ν, a〉 ds = 0, (7)

where{τ1, . . . , τn−1} is a unit tangent frame to∂Σ. If x(∂Σ) is included in a hyperplane
Π = a⊥, with 〈a, a〉 = −1, then we obtain the flux formula:∫

∂Σ

〈ν, a〉 ds = −nHvol(∂Σ), (8)

wherevol(∂Σ) is the algebraic volume of∂Σ.

Remark 3. The so-called flux formula can be viewed as the physical equilibrium between
the forces of the surface tension ofΣ that act along its boundary with the pressure forces
that act on the bounded domain by∂Σ. More generally, if we cutΣ in a collection of opens,
then the surface tension along the cuts and pressure through the caps must balance.

The rest of the section will be devoted to study the hyperbolic hyperplanes and their
role in the Lorentzian setting. We now review the construction of such hypersurfaces. After
an isometry ofLn+1, hyperbolic hyperplanes are defined as follows: for eachρ > 0 and
p ∈ L

n+1, let

Hρ(p) = {x ∈ L
n+1; 〈x − p, x − p〉 = −ρ2}.

Each one of such hypersurfaces has exactly two components,

Hρ(p)=H+
ρ (p) ∪H−

ρ (p)

= {x ∈ Hρ(p); 〈x − p, en+1〉 < 0} ∪ {x ∈ Hρ(p); 〈x − p, en+1〉 > 0}.
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With the future-directed orientation, the mean curvature ofH+
ρ (p) andH−

ρ (p) is 1/ρ and
−1/ρ, respectively.

We callhyperbolic capsthe compact pieces of hyperbolic hyperplanes whose boundary
is a (n − 1)-sphere, that is, the compact hypersurfaces that stem from the intersection of
H+

ρ (p) andH−
ρ (p) with horizontal hyperplanes. Exactly, for eachp ∈ L

n+1 andr > 0,
consider the discDr(p) = {(x1, . . . , xn,0) ∈ L

n+1; (x1 −p1)
2 + · · · + (xn −pn)

2 < r2}.
Define the upper hyperbolic capH+

ρ (p, r) (resp. the lower hyperbolic capH−
ρ (p, r)) as the

piece ofH+
ρ (p) (resp.H−

ρ (p)) that lies in the cylinder{(x1, . . . , xn, xn+1) ∈ R
n+1; (x1 −

p1)
2 + · · · + (xn − pn)

2 < r2, xn+1 ∈ R}. Hyperbolic capsH±
ρ (p, r) are the graphs of the

functionsu±
ρ defined inDr(p) given by

u±
ρ (x1, . . . , xn) = pn+1 ±

√√√√ρ2 +
n∑

i=1

(xi − pi)2,

with the boundary condition:

u±
ρ|∂Dr(p)

= pn+1 ±
√
r2 + ρ2.

Both functions, and the corresponding graphs, are useful as barrier hypersurfaces in estab-
lishing boundary height and gradient estimates. In fact, the steepness of such hyperbolic
caps at a given height is an upper bound for the steepness of any of a comparison constant
mean curvature graph, at corresponding heights. TheseC0- andC1-estimates have as im-
mediate application, the solvability of the Dirichlet problem whenΩ is a convex domain.
More general, Bartnik and Simon[4] proved existence and regularity for hypersurfaces with
prescribed mean curvature and boundary valuesϕ provided the functionϕ bounds some
spacelike surface. The reader can see the techniques in[3,14].

3. The tangency principle and consequences

In this section, we will state the tangency principle for spacelike hypersurfaces with
constant mean curvature and we will derive some results that might be interesting by theirself
(Theorems 5 and 7).

Let u andv be two functions that are local expressions of two spacelike hypersurfaces
Σu andΣv of L

n+1. If Σu andΣv have a common pointp = (p1, . . . , pn+1) where
they are tangent, we will say thatΣu lies aboveΣv nearp whenu ≥ v on a certain
neighborhood of the point(p1, . . . , pn). Let us assume thatΣu andΣv have the same
constant mean curvatureH . SinceEq. (6) is of quasi-linear elliptic type, the difference
functionu − v satisfies alinear elliptic equation on a neighborhood of(p1, . . . , pn) and
the Hopf maximum principle for linear elliptic equations can be applied tou − v (see[10,
Th. 9.2], or [11]). Consequently, we have proved the following result.

Theorem 4 (Tangency principle).LetΣ1 andΣ2 be two spacelike hypersurfaces ofL
n+1

with the same constant mean curvature(with respect to the future-directed unit normal).
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Suppose that they are tangent at a common interior pointp and thatΣ1 lies aboveΣ2 near
p. Then they coincide in a neighborhood ofp. The same holds ifp is a common boundary
point with the extra hypothesis that∂Σ1 and∂Σ2 are tangent atp.

This result is a stronger that theComparison Principlewhich states that ifΣ1 andΣ2
are two spacelike hypersurfaces with (non-necessarily constant) mean curvaturesH1 and
H2 and if andΣ1 is locally aboveΣ2 near some pointp, thenH1(p) ≥ H2(p).

The tangency principle allows to understand the structure of the family of compact space-
like hypersurfaces whose mean curvature function is constant. For this, let us recall that
for eachH ∈ R, the spaceLn+1 can be foliated by spacelike hypersurfaces with constant
mean curvatureH ; namely, ifH = 0, a family of parallel spacelike hyperplanes, ifH is
positive, the hyperbolic hyperplanes{H+

1/H(ten+1); t ∈ R} and if H is negative, by the

family {H−
−1/H(ten+1); t ∈ R}.

As a consequence of the tangency principle, we establish two results on compact space-
like hypersurfaces. First we will consider conditions for a compact spacelike hypersurface
with constant mean curvature to be contained in a halfspace determined by an umbilical
hypersurface.

Theorem 5. LetΣ be a compact spacelike hypersurface with constant mean curvatureH .
If the boundary∂Σ of Σ is included either in a hyperplane or in a hyperbolic hyperplane
Π, thenΣ lies completely included in one of the two halfspaces determined byΠ.

Proof. Let us assume the contrary, that is,Σ has (interior) points in both sides ofΠ.
First we will prove the result under the assumption that∂Σ lies in a hyperplaneΠ. This
hyperplane must be spacelike and we may assume, without loss of generality thatΠ =
{x ∈ L

n+1; 〈x, en+1〉 = 0}. Consider a familyΠ(t) = {x ∈ L
n+1; xn+1 = t} of parallel

horizontal hyperplanes. BecauseΣ is a compact hypersurface and has interior points over
Π, there existst0 > 0 such that

Π(t) ∩ Σ = ∅ for all t > t0

and

Π(t0) ∩ Σ �= ∅
at some common interior point. Then the comparison principle implies thatH ≤ 0. Recall
that all our hypersurfaces are future-directed oriented. But the tangency principle discards
the caseH = 0 because in that case,Σ would be in the hyperplaneΠ(t0) in contradiction
with that∂Σ ⊂ Π(0). A similar argument by using hyperplanesΠ(t) with negative values
for t yieldsH > 0, which is a contradiction.

We now consider that∂Σ lies in a hyperbolic hyperplane. After a homothety followed of
an isometry ofLn+1, we can assume that∂Σ is included in the upper hyperbolic hyperplane
H+

1 (0). Again and by contradiction, we assume thatΣ have interior points in both sides
of H+

1 (0). Consider now the familyH+
1 (ten+1) of upper hyperbolic hyperplanes, that is,

vertical translations ofH+
1 (0). SinceΣ is a compact hypersurface, for a large value oft,

sayt1,H+
1 (t1en+1) ∩Σ = ∅. Now, move downwardsH+

1 (t1en+1) makingt decrease from
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t1 to 0. Because there are points ofΣ that lie overH+
1 (0), then for somet0 > 0 we will

haveΣ ∩H+
1 (t0en+1) �= ∅ at some interior point andΣ ∩H+

1 (ten+1) = ∅ for t > t0. The
comparison principle implies thatH ≤ 1. But if H = 1, the tangency principle implies
thatΣ ⊂ H+

1 (t0en+1), which is impossible since the points of∂Σ are not inH+
1 (t0en+1).

As conclusion,H < 1. Doing the same reasoning withH+
1 (ten+1) with t < 0, there exists

t2 < 0 such thatΣ lies aboveH+
1 (t2en+1) and both surfaces are tangent at some common

interior point. Now the comparison principle implies thatH ≥ 1. This is a contradiction,
which completes the proof ofTheorem 5. �

Remark 6. The same argument leads to the following conclusions. First, if the mean
curvature function ofΣ does not vanish, and if its boundary is included in a hyperplaneΠ,
thenΣ lies in one of the two closed hyperspaces determined byΠ. Second, and assuming
that the mean curvatureH is constant and the boundary lies in a hyperbolic hyperplane with
the same mean curvatureH , thenΣ is included in this hyperbolic hyperplane.

We conclude this section by establishing, as an application of the tangency principle, a
C0-estimate of a solution ofEq. (6). As we mentioned in the Introduction, it is not possible
to obtainC0-estimates depending only onH . In the following theorem, we derive estimates
of the height in terms ofH and the diameter of the domainΩ.

Theorem 7. LetΩ be a compact domain ofRn with diameterδ > 0 and letu ∈ C2(Ω) ∩
C(Ω̄) be a function whose graph has(non-necessarily constant) mean curvatureH . Let us
assume that there existsc > 0 such that|H | ≤ c. Then

min
∂Ω

u + 1

c

(
1 − 1

2

√
4 + δ2c2

)
≤ u ≤ max

∂Ω
u + 1

c

(
−1 + 1

2

√
4 + δ2c2

)
. (9)

In the particular case thatH ≡ 0, thenmin∂Ω u ≤ u ≤ max∂Ω u.

Proof. We may assume, without loss of generality, thatΩ is included in the discDr(0)
wherer = δ/2 and we setv±

ρ be the functions whose graphs are the hyperbolic caps
H±

ρ (0, r) by settingρ = 1/c (see notation in above section). DenoteΣ the graph ofu. The
vertical translations ofH+

ρ (0, r) are the hyperbolic capsH+
ρ (ten+1, r). TranslateH+

ρ (0, r)
vertically downward until it is disjoint fromΣ. Then reascendH+

ρ (0, r) until the first time
t0 thatH+

ρ (t0en+1, r) touchesΣ at some pointp. Then

v+
ρ|∂Dr(0)

≤ min
∂Ω

u,

that is,

t0 +
√
ρ2 + r2 ≤ min

∂Ω
u. (10)

We have two possibilities about the pointp. First, it is a tangent point betweenΣ and
H+

ρ (t0en+1, r) (whetherp is an interior or boundary point). Because the mean curvature
of H+

ρ (t0en+1, r) is c and |H | ≤ c, the tangency principle says us that|H | ≡ c, Σ ⊂
H+

ρ (t0en+1, r) and we have equality in(10)and consequently in(9).
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The other possibility is that the pointp is a boundary point where both surfacesΣ and
H+

ρ (t0en+1, r) are not tangent. Then we have equality in(10), that is,t0 +
√
ρ2 + r2 =

min∂Ω u and for anyx ∈ Ω:

u(x) ≥ v+
ρ (x) ≥ v+

ρ (0) = t0 + ρ = min
∂Ω

u + ρ −
√
r2 + ρ2.

So (remembering thatr = δ/2 andρ = 1/c) we have the estimate of the left-hand side of(9).
In order to prove the other inequality of(9), we use hyperbolic caps of typeH−

ρ (ten+1, r).
For the caseH ≡ 0, the proof can be achieved by lettingc → 0. This finishes the proof

of Theorem 7. �

As a corollary, it may be interesting to remark the case that the mean curvature is constant
and that the boundary is included in a hyperplane.

Corollary 8. LetΩ ⊂ R
n be a smooth domain with diameterδ. LetH be a real number

and letu ∈ C2(Ω)∩C(Ω̄) be a solution of(6) with the boundary conditionu = α, α ∈ R.
Then

|u − α| ≤ 1

|H |
(

−1 + 1

2

√
4 + H2δ2

)

and the equality holds if and only if the graph ofu is a hyperbolic cap.

4. Proof of Theorem 1

We proceed to proveTheorem 1. In what follows, we return to the casen = 2. We begin
proving that if the surface is a hyperbolic cap, we have equality in(1): considerH−

ρ (0, r)

with ρ = 1/|H |. ThenH−
ρ (0, r) ⊂ {x ∈ L

3; x3 ≥ −(1/|H |)√1 + H2r2} and boundary

∂H−
ρ (0, r) ⊂ {x ∈ L

3; x3 = −(1/|H |)√1 + H2r2}. It follows thath = (
√

1 + H2r2 −
1)/|H | and

area(H−
ρ (0, r)) = 2π

H2

(√
1 + H2r2 − 1

)
.

Let us prove inequality(1). ConsiderΣ a surface in the hypothesis ofTheorem 1. Let a be
the unit future-directed timelike vector inL3 such thatΠ = a⊥. We realize an isometry of
the ambient space and we assume thata = e3 = (0,0,1) andΠ = {x ∈ L

3; 〈x, e3〉 = 0}.
DenoteΓ = x(∂Σ). If the mean curvature isH = 0, thenx(Σ) is the very planar domain
determined byΓ . In this case, its height ish = 0 and we have equality in(4). Let us assume
thenH �= 0. Consider the functionf : Σ → R given byf = −〈x, e3〉 which measures the
height ofΣ with respect to the planeΠ. We need to estimate the heighth of de surface,
that is, the numberh = maxp∈Σf(p) ≥ 0. As in [3], we will use the co-area formula for
the functionf (see[9, Th. 3.2.12]). The scheme is as follows. Denote

Σ(t) = {p ∈ Σ; f(p) ≥ t}, Γ(t) = {p ∈ Σ; f(p) = t}.
We setA(t) andL(t) the area and the length ofΣ(t) andΓ(t), respectively.
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We compute the critical points of the functionf . Because∇〈x, e3〉 = e3 − 〈N, e3〉N,
p ∈ Σ is a critical point off if |∇f |2(p) = −1 + 〈N(p), e3〉 = 0, that is, ifN(p) = e3.
Define onΣ the functionsgi = 〈N, ei〉, i = 1,2, wheree1 = (1,0,0) ande2 = (0,1,0).
Therefore, the setC of critical points off is contained inN1 ∩N2, where

N1 = {p ∈ Σ; 〈N(p), e1〉 = 0}, N2 = {p ∈ Σ; 〈N(p), e2〉 = 0}
are the nodal lines ofg1 andg2, respectively.

On the other hand, given a fixed vectora ∈ L
3, the constancy of the mean curvatureH

of the immersionx gives the following formula:

-〈N, a〉 = (4H2 + 2K)〈N, a〉 = trace(A2)〈N, a〉, (11)

where- is the Laplacian in the induced metric byx andK the Gaussian curvature ofΣ. It
follows from this equation that the functionsg1 andg2 satisfy

-gi − trace(A2)gi = 0, i = 1,2. (12)

If the functionsgi are identically zero, thenN = e3 onΣ and the surface would be a planar
domain. This yieldsH = 0, on the contrary to the assumption. Thus, eitherg1 or g2 is not
trivial. SinceEq. (12)are of Schrödinger type, Cheng’s theorem on nodal lines assures that
the nodal line ofgi is a finite number of immersed circles[6]. In particular, its measure is
zero and soC as well. It follows thatA(t) is a continuous function and the co-area formula
assures

A′(t) = −
∫
Γ(t)

1

|∇f | dst, t ∈ R,

where dst is the line element on the levelΓ(t). By Hölder’s inequality there holds

L(t)2 =
(∫

Γ(t)

dst

)2

≤
∫
Γ(t)

|∇f | dst

∫
Γ(t)

1

|∇f | dst = −A′(t)
∫
Γ(t)

|∇f | dst. (13)

Recall that|∇f | along the curveΓ(t) is

|∇f |2 = −1 + 〈N, e3〉2 = 〈νt, e3〉2,

whereνt is the unit inner conormal ofΣ(t) alongΓ(t) = ∂Σ(t). AsΣ(t) is above the plane
Π(t) = {x ∈ L

3; −〈x, e3〉 = t}, we know〈νt, e3〉 ≤ 0. Hence

|∇f ||Γ(t) = −〈νt, e3〉.
It follows from (13) that

L(t)2 ≤ A′(t)
∫
Γ(t)

〈νt, e3〉 dst, t ∈ R. (14)

We know thatΣ(t) is a compact surface with smooth boundaryΓ(t) for almostt ∈ R. If
t ≥ 0,Γ(t) ⊂ Π(t) and by the flux formula(8), we have

−
∫
∂Σ(t)

〈νt, e3〉 dst = 2|H ||ag(t)|,
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whereag(t) is the algebraic area of the planar closed curveΓ(t). Thus(14) can be written
as

L(t)2 ≤ −2|H |A′(t)|ag(t)|. (15)

If t < 0, then∂Σ ⊂ Σ(t) and soΓ(t) has a component in the planeΠ and possibly others
in Π(t).

Denote byΩ1(t), . . . ,Ωnt (t) the bounded domains determined byΠ(t) ∩ Σ(t) and let
ai(t) be the Lebesgue area of the correspondingΩi(t). Then

ag(t) = ε1a1(t) + · · · + εnt ant (t),

whereεi ∈ Z is the order number corresponding to the curvesx(∂Ωi(t)). Then

|ag(t)| ≤ |ε1|a1(t) + · · · |εnt |ant (t). (16)

If Li(t) denotes the length of∂Ωi(t) we have

L(t) = |ε1|L1(t) + · · · + |εnt |Lnt (t),

which implies that

ε2
1L1(t)

2 + · · · + ε2
nt
Lnt (t)

2 ≤ L(t)2. (17)

By virtue of inequalities(15)–(17), we have

ε2
1L1(t)

2 + · · · + ε2
nt
Lnt (t)

2 ≤ −2|H |A′(t)(|ε1|a1(t) + · · · + |εnt |ant (t)).
We use the isoperimetric inequality in the planeΠ(t). We note thatΠ(t) is isometric to the
Euclidean planeR2, and then, such inequality holds for such planes. Therefore 4πai(t) ≤
Li(t)

2 and if we take into account that|εi| ≤ ε2
i , we have

2π ≤ −|H |A′(t) for everyt ≥ 0. (18)

Integrating this inequality from 0 to the heighth, we obtain

2πh ≤ |H |(A(0) − A(h)) = |H |A,

which yields the desired estimate(1).
To finish the proof we analyze the equality in(1). In such case, we have also equality in

(13) and in the isoperimetric inequality. Thus|∇f | is constant function in eachΓ(t) and
Γ(t) is a circle, for eacht > 0. However, the only compact spacelike surfaces ofL

3 with
non-zero constant mean curvature and bounded by a circle are hyperbolic caps, see[1]. This
proves thatx(Σ) is a hyperbolic cap and we conclude the proof ofTheorem 1.

An immediate consequence ofTheorem 1is the following corollary.

Corollary 9. Letx : Σ → L
3 be an immersion as inTheorem 1except that the boundary

of the surface is not planar. Denotex3 the height function onΣ given byx3(p) = −〈p, e3〉.
Then

min
∂Σ

x3 − area(Σ)|H |
2π

≤ x3 ≤ max
∂Σ

x3 + area(Σ)|H |
2π

.
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Remark 10. We give the following interpretation ofTheorem 1: any compact spacelike
surfaceΣ of L

3 with constant mean curvature and with planar boundary has area bigger
than the area of a hyperbolic cap with the same height and mean curvature thanΣ.

Remark 11. It remains as an open problem the extension of the height estimate(1) for
arbitrary dimension. We conjecture that for compact spacelike hypersurfacesΣ of L

n+1

with constant mean curvatureH and whose boundary lies in a hyperplane, it holds the
following estimate of the heightH of Σ:

h ≤ vol(Σ)|H |
ωn−1

,

whereωn−1 is the volume of the(n − 1)-dimensional unit sphere.
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