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Abstract

In this work, we give a priori height and gradient estimates for solutions of the prescribed
constant Gauss curvature equation in Euclidean space. We shall consider convex radial graphs
with positive constant mean curvature. The estimates are established by considering in such a
graph, the Riemannian metric given by the second fundamental form of the immersion.
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1. Introduction and statement of results

Let Q be a smooth domain (i.e. open and connected) on the unit sphere S" < R"*!.
In this note, we consider the Dirichlet problem for the following equation of Monge—
Ampere type:

nt2
2

det(p’gy +2VipVp — pVip) = Kgp™ (0> +|Vp|) Z in Q (1)

with boundary data
p=¢ on 0Q, (2)
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where g; denotes the standard metric of S”, g = det(g;), ¢ C™(92), ¢>0, and K
is a positive constant.

A classical positive solution pe C* (Q) of (1)—(2) realizes a smooth strictly convex
hypersurface X of constant Gauss—Kronecker curvature (briefly Gauss curvature),
which can be represented as

3 ={x(q) = p(9)q; 2},

where x denotes the position vector of ¥ in R"*!, and boundary values x(¢q) = ¢(q)q
on 0Q. See [4] for details. Moreover, the orientation N on 2 is given by

Vo(q) — p(q)q

N —
Jp )+ 196 (@)

(3)

We say that 2 is the radial graph of p, and in what follows, we call a K-hypersurface
provided its Gauss curvature K is constant. The condition that X is a radial graph
can be expressed by requiring that the supporting function {( N,x) has sign on »
and, in the particular case of the Dirichlet problem (1)—(2), this sign is negative.

The general technique employed in the solvability of the Dirichlet problem (1)—(2)
is the method of continuity (see [1] in this context). We need that for the same
boundary values ¢ on 09, there exists p’ e C* (Q) whose graph is a Ky-hypersurface.
For each ¢ in 0<t<1, we wish to find a solution p’e C>*(Q) of the family of
Dirichlet problems:

d £ 2 t t t 1y _ 22 f2 2 nTJrZ
et(p" gy +2Vip'Vip' — p'Vyp") =Ktgp" "(p" +[Vp'[")

+(1=0Kogp™ (0" + VP )T inQ (4

p'=¢ on 0Q.

Let the set 4 of 1€[0, 1] for which one can solve the equation for p’. Because 0€ 4,
namely p’, if one proves that A is open and closed, then 4 = [0, 1]. The function p' is
then our desired solution of (1)—(2).

In recent years, hypersurfaces of prescribed Gauss curvature have been subject to
intensive studies. To mention a few examples, the Neumann boundary conditions is
considered in [9], and for Dirichlet boundary conditions one can see [4-7,10,13],
without claiming that this list of articles is complete.

The first main theorem of existence if due to Caffarelli et al. [1] and Krylov [8].
They proved that if D= R”" is a strictly convex planar domain, there exists a unique
graph over D of constant Gauss curvature K, for K sufficiently small depending on
the boundary data. Later, Guan and Spruck [4] proved that if Q does not contain
any hemisphere and it bounds a radial graph G over Q with Gaussian curvature
K(G)>0, then for each 0<K <inf K(G), there exists a K-hypersurface on Q.
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The difficult part in the method of continuity is the proof that 4 is closed. To see
this, one has to find a priori estimates up to the second derivatives for solutions p’ of
the family of equations given in (4). Here, some kind of existence of a strictly convex
subsolution taking the same boundary value is assumed to Eq. (1) in order to
derive the necessary a priori estimates for the prospective solutions p’. Established
these estimates, the C>* and higher order estimates follow from the classical elliptic
theory [1].

In this paper, we shall obtain C° and C! bounds of solutions of (1)-(2). We first
give optimal a priori C° estimates for such solutions that depend only on K and the
boundary values of ¢. More precisely:

Theorem 1. Let Q be a smooth domain of S" and let ¢ € C*(0Q), ¢ >0. Denote

M = sup ¢(q).
qeoQ

If pe C*(Q) is a positive solution of the Dirichlet problem (1)~(2), then we have

2
1+\ 1+ M2Kn
S — (5)
Kn

It is worthwhile to point out that Rosenberg proved an height estimate of K-
graphs over planar domains of R""!' and K >0 [12]. Exactly, if Z is a K-graph over
DcR" and 9% = 9D, then the maximum height 4 that X can rise above the plane
containing 0% satisfies the inequality

<t (6)

Kn

A second result refers to the C' norm of the solutions of (1). Our motivation
is the following. Let us consider the Dirichlet problem (1)-(2) for the boundary
values ¢ =1, that is, we seek K-hypersurfaces with boundary 09Q. According
to the result given in [4], if Q is included in a hemisphere of S”, for each K, 0<K <1
there exists a K-hypersurface bounded by 0Q. However, it is natural to think
that thanks to the method of continuity, we can obtain solutions for K>1.
To do this, we start with the solution p° =1, what corresponds with the very
domain Q. Then one could blow up from the domain @Q to get K-radial
graphs with fixed boundary 0Q and K>1, provided that we can control the C?
norms for all solutions p’ of the auxiliary problems (4). The next result gives
us C! estimates of solutions of (1) assuming a convexity condition on the boundary
0Q:

Theorem 2. Let Q be a smooth domain of S" whose closure is included in a hemisphere
and denote by A the Gauss curvature of 0Q as submanifold Q with respect to the



188 R. Lopez | J. Differential Equations 194 (2003) 185-197

inward unit normal. Let K be a positive number such that

—1
1<K 7 < inf #(q). (7)
qedQ

Then there exists a positive constant C(K, X" depending only on K and A", such that if
p is a positive solution of (1)—(2) with ¢ = 1, the following inequality holds:

sup |Vp|<C(K, x). (8)
Q

The proofs of Theorems 1 and 2 are inspired by ideas of Calabi [2] and Pogorelov
[11] by considering the Riemannian metric induced by the second fundamental form.
We compute the Laplacian of the modulus and supporting functions defined on the
K-hypersurface. We then apply the same techniques as in [12]. Using the fact that
the Gauss curvature is constant, our results are, essentially, a consequence of the
maximum principle for elliptic equations. Immediately following Theorem 2, we can
ask if hypothesis (7) on this Theorem suffices to assure the solvability of the Dirichlet
problem (1)—(2).

2. Preliminaries

Let X be a smooth hypersurface and x: X —R" a convex immersion with
positive Gauss curvature. This means that the eigenvalues of the second fundamental
form ¢ are positive anywhere. Then X is an orientable hypersurface. This occurs as
follows. Locally, for each pe X, there exists a neighborhood V' of p that lies to one
side of the tangent space 7,2 to X at p. This allows us to orient X by a unit normal
vector field N : 2 —S": the choice of N(p) is that points to ¥ and

op(u,v) = —<{dN,(u),v)y, u,vel,X,

where ¢ -,-> denotes the usual inner product on R*"!. With this orientation N, ¢ is a
Riemannian metric on X. Throughout this work, we shall assume this orientation on
the hypersurfaces.

Denote by 4, ..., 4, the principal curvature of x. The Gauss and mean curvature
K and H curvature of x are defined as

Choose a point pe X and an orthonormal basis ey, ..., e, for the metric ¢ in the
tangent space 7,2 of X at p. Extend this basis to a frame, in a suitable neighborhood
V <X of p, by parallel transporting each e;, i = 1, ..., n with the connection V° along
geodesics issuing from p. This frame and its extensions to a neighborhood of p in
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R™*! will again be denoted by ey, ..., e,. Notice that Veei(p) = 0 and [e;, ¢](p) = 0,
for all i,j =1, ...,n. Denote by V the connection on R"*!.

Lemma 3. Assume that the Gauss curvature K is constant. With the above notation, the
following identities hold.

D> (VNN e (p) =0, for all 1<j<n, 9)
i=1

=

<viviN,N>(P):_”H(P)- (10)

Proof. (See also [3]). Denote by g;; the metric of X, that is, g; = {e;,¢; >, g = det(g;)
and (g”) the inverse of (g;). Then

n
V,N=-— g”‘ek. (11)
k=1

Because {¢;} is an orthonormal frame for the metric o,

1 " n "
K=-, nH =trace(¢y’) = Z g".
9 p

Since {N,e;» =0, we obtain,
(ViN, ey = —{N,Vie;) = —o(e,¢)) = —dy.
Hence
(VNN > + <ViN,Vie;> = 0.

Using [e;, ¢j](p) = 0 and (11), we have

Z <ViViN,ej>(p) = —Z <ViN,Vjei>(p) = Z gik<€k,vj€i>.
i=1 k,i=1

i=1
Since

(e, Vieiy =1 (ejlei ey +eiejeny —endejey),
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<
=

oo ><,,> ze/(logg)(p) =§eﬂog(§) ) =0,

where in the last identity, we use the fact of the constancy of K. This proves (9).
On the other hand, since {N,N> =1, (V;N,N> = 0. Thus, and from (11),

Z< ViN,N>(p) = Z<VNVN><p Zgwmzvxp)

= — Z 4151/(19 Z QU(P —nH(P)-

This completes the proof. [

Proposition 4. Let x: X —R"" be a convex immersion with positive Gauss curvature
K. Let a be a fixed vector in R"™'. Denote by A’ the Laplacian operator in X with the
metric a. Then the function {x,a) satisfies

A’{x,ay =n{N,a). (12)
Moreover, if K is constant, the function { N,a) satisfies
A’°{N,ay +nH{N,a) =0. (13)

Proof. Let pe2 and consider a geodesic moving frame ey, ..., e, in a neighborhood
of p for the metric ¢ as in Lemma 3. Then

A”(x,a>:io(V;’V;’<x,a>,e, Zee,<x ay —Ze,{e,,a}

i=1

= i <O’(€i,€j)N,a> = n<Naa>'
i=1

This proves (12).
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Now, let us assume that K is constant. Using (9) and (10), we obtain

A0<N7a> = i O'(V;TVG-<N,CI>,€,‘) = i e;e,-(N,a}
i=1

i=1

= Z (ViViN,a) = Z (V,ViN,N){N,a)
i1 =1

= _nH<N7a>7

and identity (13) follows. [J

191

Corollary 5. Let X be a smooth hypersurface and let x:X—R"™ be a convex

immersion of positive constant Gauss curvature K. Then modulus function |x|” satisfies

S,

A%|x* =21 (N, x> +22, (14)

where S, = Z]'.':l (A4 AA]A,,) and, as usual, /ij means that J; is missing.

On the other hand, the supporting function {N,x) satisfies

AN, x>=—-n—nH{N,x). (15)
Proof. Let a, ...,a,.; be is an orthonormal basis of R"*!', and denote by x; =
{x,a;y, Nij={N,a;y, 1<i<n+1, the coordinate functions of x and N,
respectively. Consider again ey, ...,e,, a geodesic moving frame around p as in

Lemma 3. We know from (11) that

n

Vox; = Z aj, e yex,

k=1

VN; = — Z g9 ai ey e

k=1
Then Proposition 4 and the Green’s identity imply

n+1

A|x]F =2 Z (xiAx; + a(Vx;, Vx;))
i=1
n+1

J=1

=2 Z(anNi—Fi <ai7ej>2> = 2n<N7x> +2zn:gj/
i=1

=1
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Since {ey, ...,e,} is an orthonormal basis for o,

zn: = trace( )—l—i— +1_S,,
£ 9= I =g, K

‘n

On the other hand, and again by Proposition 4, we obtain for the supporting
function (N, x>,

n+1
A° <N, X> = Z(N,’oni + )CiAaNl' + 20(V0X,', VUNI'))

i=1

n+1 n
=y (anz —nHx;N; =2 " ({ar, ;) <ai,€/c>gkj)>

i=1 Jk=1

=n—nH{N,x) -2 Z gjkgkj =-n—nH{N,x>,
Jk=1

and this completes the proof of (15). O

3. Proof of Theorems 1 and 2

Let x: X —R""! be a convex radial graph over a domain Q< S” and with positive
constant Gauss curvature K. We consider on X the orientation N so that the second
fundamental form ¢ is a positive definite quadratic form (and thus, H is a positive
function). Since X is a radial graph, the function supporting { N, x ) either positive
or negative in the whole hypersurface X.

For clarity in this section, we first prove the following lemma:

Lemma 6. With the above assumptions, the following holds:
(1) If the sign of {N,x) is positive, then
Ip|< sup |p|, for all peX.
peox

(2) Assume that Q is strictly included in a hemisphere and 0X = 0Q. If K>1 and
{N,x) is negative on X, then |p|>1, for all pe .

Proof. The first assertion is a consequence of the maximum principle applied to
Eq. (14). For the second statement and without loss of generality, let D =
{peS"; pu+1>0} be the hemisphere containing Q. Assume to the contrary, that is,
there are interior points of X in the open ball B = {pe R"*!; |p| < 1}. Take the family
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of spherical caps C,, 0<t<1 such that 9C, = 9D, int(C,)c Bn{peR" ! p,,1 >0}
and where ¢ denotes the Gauss curvature of C,. Starting from the disc Cy, we blow up
until the first point of contact between some C,, and X, fy< 1. This occurs at some
common interior point of both hypersurfaces. Then the comparison principle for X
and C,, yields a contradiction. [J

Now we are in position to prove Theorem 1. Denote by X the graph of the
function p in the statement of theorem. We need to estimate the modulus function of
X, since |p| = |x(¢q)| = p(q), g€ Q. If the supporting function { N, x) is positive, then
Lemma 6 gives |p| <M, what proves (5).

We then assume that { N, x) is negative in X. Combining (14) and (15),

1 n—1

o[ Kn 1 S, —nK n
A 7|x|2+<zv,x> =n(Kn— H){N,x) +—"———. (16)

K n

Inequality between the geometric and arithmetic average gives K'/* — H<0. Using
again this inequality for each one of the summands of S,, we have

1
S 1 n . . n P X n n—1
;"Z; ; (M...Aj...)vn)><jn (Al...ﬂj...ﬂn)> =K.

In view of (16), we then obtain

1
Kn
A° 7n|x\2+<N,x> >0.

The maximum principle for elliptic equations gives us

1 1 1

Kn Kn Kn
S+ <N, xy < max [ =o|pl? + (N(p),p)> | <=M (17)
2 peIX 2 2

Using the fact that < N, x> > — |x|, one has
Lo 1o,
Kn|x|” = 2|x| — KnM*~<0.

This inequality is quadratic in |x|, and we easily obtain from it estimate (5). This
completes Theorem 1.
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Remark 7. In the case that the boundary values ¢ is constant, namely ¢ = R>0,

inequality (5) written as
1+V1 Rng
pgo T VIR RA

T (18)
Kn

In this situation, we get equality in (18) when X is a spherical cap that meets the
sphere S"(R) of radius R orthogonally along its boundary. Exactly, let e (0, 1) and

Q={xeS";x,11>V1—r’}. Let

n R 2 R22
S = R : - = :
{xe ,; X7 4 | Xnp1 m =2

Then the spherical cap S {x,11 >RV 1 — 12} attains estimate (18).

Remark 8. We point out that Rosenberg’s estimate (6) is obtained from (18) by
subtracting R from each side and letting R tend to +o0.

We now proceed to show Theorem 2. Let the setting be as in Theorem 2 and
consider p a solution of (1)—(2). Denote by X the corresponding K-hypersurface
defined by p. In deriving the gradient estimate, it is much more convenient to express
Vp in terms of the supporting function { N, x)» of 2. Recall that the orientation N is
given by (3), and then

0

VP2 + Vol

Moreover, Lemma 6 implies |p|>1 for each peX.

Thus a priori C' estimates of p are reduced to control the supporting function
{N,x), together C° estimates of the function p.

Let 5 (resp. v) be the inward unit normal vector of 0Q (resp. %) regarded as
submanifold of Q (resp. X). Because |[p|>1 on X, we know {v,,p) >0, for all pe0Q.

Now M =1 in (5). Inequality (17) assures that the maximum is achieved at some
boundary point g€ 0Q:

(N,x> =— <. (19)

1
Kn
7|P|2 +<{NPp),p> <

| 3

+ <{N(q),qy, for all peX. (20)

Thus the maximum principle gives us

1
K”<Vq7q> + <quVq,Q> <0,



R. Lopez | J. Differential Equations 194 (2003) 185-197 195

and consequently,

(Kt — 04(vg:4)) vgr 4> <0. (21)

If {vg,¢> =0, the (boundary version) maximum principle between X and Q<=S"
concludes that ¥ = Q. Thus, we can assume that {v,,¢» >0. Then (21) yields

1
Kn<ay(vg,vg)- (22)

Denote by ¢ the second fundamental form of the immersion 9Q<Q, and by

Uy, -, I, their principal curvatures. Consider ey, ...,e,_; an orthonormal basis of
T,0%, such that 62%(e;, ;) = d;u;. Then we have

o4ler,er) =08 (ei,e)) N (q),n,> — <N (q),q)

=w(g9)\/1 - {N(q),q>* - {N(9),q>, 1<i<n-—1,

og(eie)) = —<eie; ) {N(q),q) =0, i#].
We claim that
oq(ei,vg) =0, foralli=1,...,n—1.
Combining (18) and (20), the restriction of function { N, x) into 92 has a maximum
at ¢. Because (N,x>>+ (N,n>>=1 along 9Q, and (N,x)», {N,n)> has sign
along 0Q, ¢ is also a critical point of {N,n) along 9Q. Hence, for all 1<i<n — 1,
ei{N,x> =0, e{(N,ny=0.
Thus, V,,N is a tangent vector to S" at the point ¢. In view of this,
0o vg) = =XV, vy = =(VuNy 1, Cvgyn, -
Finally

(VeN,ngp =eidN,ny =0.

As the Gauss curvature is given by the determinant of the second fundamental form
in an orthonormal basis, from (22) and together with that fact that {/N,x) is
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negative, we have

K= 0‘1(qu Vq) det(aq(eiv ej))

n—1

=04(vg:vg) | | (mi(@)\/1 = (N(9),q>> — {N(q),9))

i=1

> Kt (g)(1— (N(g),g>)'T .

Then

n—1

K > # ()1 - (N(@),0>)'T (23)
Set

= inf
/0 plglf)Q /(p)

n—1
Hypothesis (7) leads a constant C; = C;(K, ") such that K » <C; <X y. In virtue
of (23), one has

(1- <N(‘])7(]>2)%<C2 =1 <.

Thus

2
{(N(q),q><—\/1- Cg”1<0.

Taking into account the above inequality and that |p|>1 (see Lemma 6), it follows
from (20) that

1
n 2
N> <5 = pP) + (N> <G = 1= (2

Remark that the negative number C; depends only on " and K.
Let C4 = C4(K) be the right-hand of estimate (18). Then from (19) and (24), we
obtain finally

Cy(K)*

<CK, A =
Vol CUKAH) =~ ey

that proves (8). This ends the proof of Theorem 2. [
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