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Abstract. Let � be a smooth domain on the unit sphere S
n whose closure is contained

in an open hemisphere and denote by H the mean curvature of ∂� as a submanifold of
� with respect to the inward unit normal. It is proved that for each real number H that
satisfies inf H > −H ≥ 0, there exists a unique radial graph on � bounded by ∂� with
constant mean curvatureH . The orientation on the graph is based on the normal that points
on the opposite side as the radius vector.

1. Introduction and statement of results

Let� be a smooth domain (i.e. open and connected) of the unit sphere S
n ⊂ R

n+1,
the Euclidean (n+1)-space. We define the radial graph of a function ρ ∈ C2(�)∩
C0(�) as the hypersurface


 = {X(q) = exp(ρ(q))q; q ∈ �},
where X denotes the position vector of 
 in R

n+1. From the geometric viewpoint,
a radial graph
 is characterized as a hypersurface that is starshaped relative to the
origin, that is, each ray emanating from the origin intersects 
 once at most. Con-
sequently, if N is a unit normal vector field on 
, the support function 〈N(p), p〉,
p ∈ �, is either positive or negative in the whole of 
. Throughout this work, we
shall assume the orientation opposite to the radius vector, that is, 〈N(p), p〉 < 0
for all p ∈ 
.

In the work we present here, we consider the problem of finding radial graphs
with constant mean curvature H ∈ R (briefly radial H -graphs). The pioneering
work on this subject is due to Radó [8]. He proved that for any Jordan space curve
in R

3 with single valued radial projection onto a convex curve of S
2 bounds a

minimal radial graph. More recently, Tausch showed that if� ⊂ S
n is a convex set

and � is a radial graph on ∂�, then there exists a disc-type hypersurface of least
area among all integral currents having boundary �. Moreover, this hypersurface
can locally be represented as a radial graph [10].
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On the other hand, Serrin [9, §23] studied the existence and uniqueness of radial
graph with prescribed mean curvature. Taking into account the chosen orientation
on a radial graph, he proved the following theorem.

Theorem 1 (Serrin). Let � be a smooth domain in Sn whose closure is contained
in an open hemisphere. Denote by H the mean curvature of ∂� as submanifold
of�, computed with respect to the unit normal pointing to the interior of�. Let ψ
a smooth function on ∂� and letH be a non-positive smooth function defined over
the closure of � such that

H(q) ≥ − n

n− 1
H(q) eψ(q) ≥ 0 (1)

for each q ∈ ∂�. Then there exists a unique radial graph on�with mean curvature
H and boundary data ψ .

In particular, if H(q) ≥ 0 at each point q of the boundary, there exists a minimal
radial graph on �, for arbitrary value ψ on ∂�. When ψ ≡ 0, that is, when the
prescribed boundary is included in S

n, the mean curvature condition (1) can be
relaxed. In the present note, our main result may be stated as follows:

Theorem 2. Let � be a smooth domain on the unit sphere S
n whose closure is

contained in an open hemisphere and letH ≤ 0 . Denote by H the mean curvature
of ∂� as above. If H satisfies

H(q) > −H
for each point q ∈ ∂�, then there exists a unique radial H -graph on � with
boundary ∂�.

Although most of the computations presented in this work are well known for
specialists, as far as I know the statement of Theorem 2 does not seem to have
appeared previously in the literature.

The problem of existence of radial graphs of prescribed constant mean curva-
ture leads to a quasilinear elliptic equation (see formula (4) below). In providing
the setting of our result, it would be necessary to point out some differences with
the Dirichlet problem for the mean curvature equation in a planar domainD ⊂ R

n

(also so-called vertical graphs):

div
∇u√

1 + |∇u|2
= nH in D (2)

where H is a constant. Investigations of such equation have historically attracted
the interest for geometers. We refer the reader to e.g. [1] for a modern treatment in
the theory of existence and uniqueness of equation (2). Different kinds of boundary
conditions have been imposed to equation (2) in order to obtain existence of solu-
tion. For example, ifD is a bounded domain with H ≥ n|H | > 0, Serrin [9] proved
that for any arbitrary given (n − 1)-submanifold � with single valued projection
onto ∂D, there exists a unique solution of (2) whose graph has boundary � [9]. In
the case of zero boundary data, it suffices in assuming H > |H | ≥ 0 (see e.g. [4]).
The techniques employed can be generalized in other ambient spaces. This occurs
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in hyperbolic space, where the same hypothesis H > |H | > 0 assures the existence
of constant mean curvature graphs on domains of a totally geodesic hyperplane or
a horosphere ([5],[6]).

However differences appear between the Dirichlet problems for radial and ver-
tical graphs. This is the case of the uniqueness (see Example 1 below in Section
2), where no uniqueness holds if H is positive. In fact, the sign of H plays a
fundamental role for existence and uniqueness of radial H -graphs (recall that a
symmetry property of (2) for zero boundary data shows that the sign on H is
irrelevant). Exactly, there exist three intervals in the range ofH where the behavior
of the Dirichlet problem for radial graphs presents important differences, namely,
(−∞, 0], [0, 1] and (1,+∞). Definitively, this shows that the Dirichlet problem
for radial H -graphs has a richness that deserves well of its own interest. In this
sense, it has been some activity in the existence and uniqueness of a starshaped
closed hypersurfaces in R

n+1 with prescribed mean curvature (see e.g. [11] and
references therein).

This paper is organized as follows. In Section 2, we introduce the Dirichlet
problem and discuss some properties of uniqueness. In Section 3 we shall derive
C0 and C1 estimates for the desired solutions. In Section 4 we then prove Theorem
2 using the continuity method.

2. Some facts about the Dirichlet problem

In proving Theorem 2, it is convenient to establish the associated Dirichlet problem.
Consider a smooth radial graph 
 = graph(ρ) over a domain� on the unit sphere
S
n ⊂ R

n+1, where ρ ∈ C2(�) ∩ C0(�). Let e1, . . . , en be a smooth local frame
field on S

n and let ∇ denote the covariant differentiation on S
n. We use the notation

∇i = ∇ei , ∇ij = ∇i∇j . Let θij = 〈ei, ej 〉 denote the metric on S
n. The metric of

X(q) = eρ(q)q is then given in terms of ρ by

gij = 〈∇iX,∇jX〉 = e2ρ(θij + ∇iρ∇j ρ),
where 〈, 〉 denotes the standard inner product in R

n+1. The inward unit normal to
X is

N(X(q)) = ∇ρ(q)− q√
1 + |∇ρ|2(q)

, (3)

where ∇ρ = grad ρ. This the Gauss map N on 
 satisfies the inequality
〈N(X(q)),X(q)〉 < 0, and thus, it agrees with our choice of the orientation on
radial graphs. The second fundamental form of X is

σij = 〈∇ijX,N〉 = e
ρ(θij + 2∇iρ∇j ρ − ∇ij ρ)√

1 + |∇ρ|2
.

The mean curvature H of 
 is defined by

nH =
∑
ij

gij σij ,
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where (gij ) is the inverse of (gij ). After a straightforward computation, the mean
curvature H satisfies the following equation:

div
∇ρ√

1 + |∇ρ|2
= n

(
−Heρ + 1√

1 + |∇ρ|2

)
, (4)

where div denotes the divergence operator with the standard metric of S
n. Equation

(4) is a quasilinear elliptic equation in � ⊂ S
n of divergence form ([1], Chapter

10) and the machinery of Schauder theory can be used in the problem of existence.
Thus Theorem 2 is equivalent to find a unique solution ρ ∈ C2(�)∩C0(�) of the
Dirichlet problem

Q[ρ] ≡ div
∇ρ√

1 + |∇ρ|2
+ n

(
Heρ − 1√

1 + |∇ρ|2

)
= 0 in � (5)

with boundary data,
ρ = 0 on ∂�. (6)

Following the method of continuity, the solvability of the Dirichlet problem (5)–(6)
can be established provided we can introduce a real parameter τ ∈ [0, 1] into the
boundary-value problems

(Dτ ) Qτ [ρτ ] = 0 in � ρτ = 0 on ∂�,

whereQτ is equal thatQ in (5), except that we replaceH by τH , and such that the
following holds: for τ = 0 the problem has a solution of class C2,α; for τ = 1 we
obtain the given problem (5)–(6). Finally, for all τ ∈ [0, 1] we have to find uniform
a priori estimates in the C2,α norm for all solutions C2,α(�) of the auxiliary prob-
lems (Dτ ). Following the usual Schauder approach [1, Th. 13.8], C1(�) uniform
bounds imply C2,α(�) uniform bounds for α ∈ (0, 1). Therefore, one has to seek
a positive constantM , independently of τ , such that the estimate

‖ ρτ ‖C1(�)= sup
�

ρτ + sup
�

|∇ρτ | ≤ M

holds for any C2,α(�)-solution ρτ of (Dτ )
It is convenient to point out that a standard argument by using the Hopf max-

imum principle proves uniqueness of solutions in the Dirichlet problem for the
vertical graphs. In general, solutions to equation (5)–(6) are not unique, as it shows
the following example for H > 0:

Example 1. Let

1√
2

≤ r < 1, a ∈ [0,
2r2 − 1√

1 − r2
], Ra =

√
1 + a2 + 2a

√
1 − r2.

Consider x = (x1, . . . , xn+1) and

S(a) = {x ∈ R
n+1;

n∑
i=1

x2
i + (xn+1 + a)2 = R2

a}.
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This hypersurface S(a) is a sphere centered at (0, . . . ,−a) with radius Ra . Let

1(a) be the part of S(a) above the hyperplane P : xn+1 = √

1 − r2 and let
2(a)

be the reflection of S(a)\
1(a) with respect to P . The condition on a assures that
both hypersurfaces are radial 1/Ra-graphs in the domain � defined by

� = {x ∈ S
n; xn+1 >

√
1 − r2}.

Moreover, the mean curvature Ha = 1/Ra , satisfies 0 < Ha ≤ 1. Let us observe
that the case a = 0 leads S(0) = S

n. Hence
1(0) = � and
2(0) is the reflection
of S

n\� with respect to the hyperplane P .

However uniqueness of the solution holds if H ≤ 0.

Proposition 1 (Uniqueness for H ≤ 0). Let
1 and
2 be two radial graphs of two
functions ρ1 and ρ2 respectively defined on� ⊂ S

n. Represent byH1 andH2 their
(not necessarily constant) mean curvatures, respectively. If ρ1 ≤ ρ2 on ∂� and if
H1 ◦ ρ1 ≤ H2 ◦ ρ2 ≤ 0, then ρ1 ≤ ρ2 in �. In particular, there is uniqueness of
solutions for the Dirichlet problem (5)–(6).

Proof. Assume that ρ1 > ρ2 at some point of �. By homotheties, we lift 
2 out-
wards until it lies entirely above the hypersurface 
1 (with respect to the radius
vector). Then lower it by homotheties again until an initial pointp of contact occurs.
Let 
′

2 = t0
2 be the position of 
2 at this time (t0 > 1). Since 
′
2 is tangent to


1 at p the normal vectors to 
′
2 and 
1 coincide. Then 
′

2 lies locally above 
1
and an application of the maximum principle implies that the mean curvature H ′

2
at that point cannot exceed the mean curvature H1 of 
1. However, and because
H2 ≤ 0, we have

H ′
2 = 1

t0
H2 > H2 ≥ H1,

obtaining a contradiction. ��
Remark 1. One cannot expect solvability of the Dirichlet problem (5)–(6) without
any assumptions on H and the size of the domain �. In fact, if � is a domain
containing an open hemisphere of S

n, the Dirichlet problem forH ≤ 0 is not solv-
able: this is an application of the maximum principle between radialH -graphs and
hyperplanes.

Remark 2. As a direct consequence of the maximum principle, a vertical H -graph
with planar boundary lies completely in one side of the hyperplane containing the
boundary. An interesting question is whether this occurs in our setting, that is, if a
radial H -graph on � ⊂ S

n and with boundary ∂� lies in one side of � (this holds
when � is included in a hemisphere and |H | > 1, see [3]).

Remark 3. In the simplest case of domain �, that is, when � is a totally geode-
sic disc of S

n, appropriate spherical caps with boundary ∂� are radial H -graphs
on�. In this case, ∂� is a (n− 1)-sphere. But no more examples are known. In the
case that � is included in a open hemisphere, an argument comparing our radial
H -graph with hyperplanes together the Alexandrov reflection method shows that
the graph must be a spherical cap. However it is still opened the following



50 R. López

Conjecture. Spherical caps and planar n-discs are the only radial graphs in R
n+1

with constant mean curvature and with boundary a (n− 1)-sphere.

If the Conjecture is true, it would be the boundary version of a beautiful theorem in
classical differential geometry due to Jellet in 1853, that asserts that a starshaped
closed surface with constant mean curvature is a round sphere [2].

3. A priori C0 and C1 estimates

In this section we shall derive a priori estimates that we need to establish for the
existence of a solution of (5)–(6). The modulus function together the support func-
tion defined on the radial graph shall allow to obtain these estimates.
(a) Bounds for ρ on �. If p = X(q) = eρ(q)q denotes the position vector of a
radial graph 
, |p| = eρ . Then C0 estimates of ρ corresponds with bounds in the
modulus of each point of the graph. Denote

m = min
p∈∂


|p|2, M = max
p∈∂


|p|2.

Theorem 3. Let � be a domain in S
n and let 
 be a radial H -graph. Then:

1. If H < 0,
−1 + √

1 +mH 2

−H ≤ |p| ≤
√
M, p ∈ 
 (7)

2. If H > 0,

|p| ≤ 1 + √
1 +MH 2

H
, p ∈ 
 (8)

3. If H = 0,
|p| ≤

√
M, p ∈ 
 (9)

Proof. (Compare with Proposition 2.1 in [7] for verticalH -graphs). A direct com-
putation leads to obtain the following formulae for hypersurfaces with constant
mean curvature:

)|p|2 = 2n+ 2nH 〈N(p), p〉 (10)

)〈N(p), p〉 = −nH − |σ |2(p)〈N(p), p〉, (11)

where) is the Laplace-Beltrami operator of the induced metric on the hypersurface

 and |σ | is the length of the second fundamental form σ . Then

)

(
H

2
|p|2 + 〈N(p), p〉

)
= (nH 2 − |σ |2(p))〈N(p), p〉 ≥ 0.

The maximum principle for elliptic equations gives us

H

2
|p|2 + 〈N(p), p〉 ≤ max

p∈∂


(
H

2
|p|2 + 〈N(p), p〉

)
(12)

and this concludes, for the case H �= 0, the proof of Theorem in the usual way.
Concerning to the case H = 0, the maximum principle for equation (10) yields
directly (9). ��
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In the case that the boundary ∂
 lies in S
n, the statement (7) asserts

−1 + √
1 +H 2

−H ≤ |p| ≤ 1 (13)

for each p ∈ 
.
It is interesting to observe that estimates (7), (8) and (9) are the best ones

possible as shows the following example:

Example 2. Let r ∈ (0, 1) and � = {x ∈ S
n; xn+1 >

√
1 − r2}.

Let

S(r) = {x ∈ R
n+1;

n∑
i=1

xi + (xn+1 − 1√
1 − r2

)2 = r2

1 − r2 }.

The hypersurface S(r) is a sphere of radius R = r/√1 − r2 centered at the point
(0, . . . , 1/

√
1 − r2). Then ∂� determines two spherical caps on S

n, namely
1 and

2, that are radial graphs on �. It is easy to see that 
1 and 
2 attain the bounds
(7) and (8) of Theorem 3, respectively. We also note that both graphs are tangent
to the cone determined by ∂�. Finally, {xn+1 = √

1 − r2} ∩ {|x| ≤ 1} is a radial
minimal graph on � and |p| ≤ 1.

Remark 4. In the case that H > 0, it is possible to have a priori lower estimates
for ρ, provided the closure of � is included in an open hemisphere. This improves
the estimate (8). Indeed, we assume without loss of generality that � is includ-
ed in the upper hemisphere of S

n. Denote µ = minq∈∂� xn+1(q) > 0. Then we
compare 
 with parallel hyperplanes to xn+1 = 0 that come from the halfspace
xn+1 < 0. Recall that the orientation on 
 points in the opposite direction of the
vector position. Then the maximum principle for hypersurfaces with constant mean
curvature assures that the first contact point between the hyperplanes and
 occurs
at some boundary point. In particular, |p| ≥ xn+1(p) ≥ µ, for all p ∈ 
, and thus,
logµ ≤ ρ on �.

(b) Bounds for |∇ρ| on �. We now proceed to estimate the first derivatives of ρ
whenH ≤ 0 and ρ = 0 on ∂� . In order to see this, it will be convenient to express
∇ρ in terms of the support function of 
. The expression of N on 
 given in (3)
yields

〈N(p), p〉 = 〈N(X(q)),X(q)〉 = − eρ(q)√
1 + |∇ρ|2(q)

. (14)

Thus C1 bounds of ρ are obtained provided that we have bounds for the support
function together the C0 estimates obtained for ρ in Theorem 3.

Let � ⊂ S
n be a smooth domain whose boundary ∂� has mean curvature H

measured by the inward unit normal (as submanifold of �).

Theorem 4. Let � ⊂ S
n be a smooth domain of S

n and let H ≤ 0. Assume that
inf H > −H . Then there exists a positive constant C = C(�,H) depending only
on � and H , such that if ρ is a solution of (5)–(6), we have

sup
�

|∇ρ| ≤ C.
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Proof. Denote by 
 the graph of ρ. From (7), |p| ≤ 1 on 
 and one has from
the maximum principle 〈ν(p), p〉 ≤ 0 along ∂�, where ν represents the inner unit
conormal vector along ∂�. Inequality (12) assures that the function H |p|2/2 +
〈N(p), p〉 attains its maximum at some point q ∈ ∂�:

H

2
|p|2 + 〈N(p), p〉 ≤ H

2
+ 〈N(q), q〉 for all p ∈ 
. (15)

Thus the maximum principle gives us

H 〈ν(q), q〉 + 〈dNqν(q), q〉 ≤ 0.

Consequently,
(H − σ(ν(q), ν(q))〈ν(q), q〉 ≤ 0.

The above inequality and the fact of 〈ν(q), q〉 ≤ 0 yields H ≥ σ(ν(q), ν(q)). As
nH = −trace(dN), we have

(n− 1)H ≤
n−1∑
i=1

σ(ei, ei), (16)

where e1, . . . , en−1 is an orthonormal basis of Tq∂
. Now, we may decompose the
second fundamental form σ of the immersion ∂�→ Sn as the sum of the second
fundamental form σ� of ∂� into� and the second fundamental form of� into Sn.
Thus

σ(ei, ei) = σ�(ei, ei)〈ν(q), q〉 − 〈N(q), q〉.
Summing from i = 1 to i = n− 1 and using inequality (16), we have

〈N(q), q)〉 +H ≤ −H(q)
√

1 − 〈N(q), q〉2.

Since 〈N(q), q〉 ≤ 0, we have

〈N(q), q〉 ≤ −H − H(q)
√

H2(q)+ 1 −H 2

1 + H2(q)
.

Introduce
κ0 = min

q∈∂�
H(q) κ1 = max

q∈∂�
H(q).

Taking into account the above inequality and (15), it follows that

〈N(p), p〉 ≤ H
2
(1 − |p|2)− H + H(q)

√
H2(q)+ 1 −H 2

1 + H2(q)

≤ −H + H(q)
√

H2(q)+ 1 −H 2

1 + H2(q)

≤ −
H + κ0

√
κ2

0 + 1 −H 2

1 + κ2
1

=: b1, (17)

for each p ∈ 
. Let us remark that b1 < 0 (H ≥ κ0 > −H ) and that this constant
b1 = b1(�,H) depends only on � and H . According (14) and (7), the number b1
determines a constant C(�,H) such that |∇ρ| ≤ C. ��
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Remark 5. Let us note that if H ≤ 0 and by using (11), we have )〈N(p), p〉 ≥ 0.
Thus the maximum principle says us that the function 〈N(p), p〉 attains its max-
imum at some point of ∂
. In this case (no assumption on H), sup� |∇ρ| =
sup∂� |∇ρ|.

4. Proof of the Theorem 2

In Section 3, we have obtained a priori C0 and C1 estimates for prospective solu-
tions of (5)–(6). Once such estimates have been established, we shall prove existence
of the Dirichlet problem by means of the continuity method ([1]). We briefly ex-
plain this technique with some detail. Assume the hypothesis of Theorem 2. Define
the set

J = {τ ∈ [0, 1]; ∃ρτ solution of (Dτ )}.
In this situation, one has to show that J is a non-void, open and closed subset of
[0, 1], and hence, J = [0, 1]. In particular, 1 ∈ J , proving Theorem 2. We shall
show by steps.

First, we prove that 0 ∈ J . As we observed in the introduction, this is a con-
sequence if one applies Serrin’s theorem. Let us note that this moment is the only
place we need hypothesis that � is included in a hemisphere and it allows us to
start the existence procedure.

In a second step, we prove that J is open in [0, 1]. This is accomplished by using
the implicit function theorem for Banach spaces. Consider τ ∈ J and let us see that
the Dirichlet problem (Dβ) can be solved for each β in a certain interval around τ .
Denote by
τ the graph hypersurface corresponding to ρτ . For the invertibility, one
just needs to make sure that the null space of the linearisation of the mean curvature
of 
τ is trivial. Define a map

h : C2,α
0 (
τ )→ Cα0 (
τ )

taking each u onto the mean curvature function of the normal graph on 
τ cor-
responding to the function u. This map h between both Banach spaces has as the
linearisation the Jacobi operator of the hypersurface 
τ , that is,

L(u)(p) = (dh)0 = )+ |σ |2,

where) is the Laplace-Beltrami operator in
τ and σ is its the second fundamental
form. Here L(u) is a self-adjoint linear elliptic operator. The kernel of L is trivial
since

L〈N(p), p〉 = −nH,
(recall that H ≤ 0). Thus, L is a operator of index zero. Using the Riesz spectral
theory of compact operators, the Fredholm alternative applies and the invertibility
of (5)–(6) is assured around τ . The implicit function theorem in Banach spaces
guarantees then an interval of solutions of the auxiliary problems (Dβ) in a neigh-
borhood of τ .
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It remains to see that J is closed in [0, 1]. This is equivalent if we have C0 and
C1 global estimates of each solutionρτ of (Dτ ) independent on τ .As a consequence
of Theorem 3 and Proposition 1, for each solution ρτ , τ ∈ [0, 1], we have

−1 + √
1 +H 2

−H ≤ exp(ρτ ) ≤ 1.

Thus

log
−1 + √

1 +H 2

|H | ≤ ρτ ≤ 0,

obtaining the desired C0 a priori bounds for ρτ independent on τ .
Turning to the estimates for the first derivatives of ρ, we use Theorem 4. We

need only estimate b1 in (17) from above by a bound independent on τ . But

b1 = −
τH + κ0

√
κ2

0 + 1 − τ 2H 2

1 + κ2
1

≤ −
H + κ0

√
κ2

0 + 1 −H 2

1 + κ2
1

< 0,

and thus giving the bounds for ‖ ρ ‖C1,α(�), as requires for the Schauder procedure.

Thus, there is a C2,α(�) solution of the Dirichlet problem as claimed. The elliptic
regularity theory implies that ρ ∈ C∞(�). Uniqueness of solutions follows from
Proposition 1. This completes the proof of Theorem 2.
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