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1 Introduction

A constant mean curvature surface immersed in Euclidean three-space can be

viewed as a surface where the exterior pressure and the surface tension forces

are balanced. For this reason they are thought of as soap bubbles or films

depending on the considered surface being either closed (that is, compact

without boundary) or compact with non-empty boundary. With respect to

the closed case, until 1986 the only known examples of constant mean curva-

ture surfaces were the round spheres. In that year, Wente [W4] constructed

genus one constant mean curvature surfaces which are non-embedded (see

also [Ab,Bo,PS]). One year later, Kapouleas [Ka] did the same for genera

bigger than two. These results activated in a remarkable way the research

in this field and indicated the sharpness of the two principal theorems about

closed constant mean curvature surfaces which were known at that time: the

Hopf theorem, which asserts that the sphere is the only example with genus

zero [Ho] and the Alexandrov theorem which says that the sphere is the only

possible embedded example [Al].

With respect to the study of the space of compact constant mean curva-

ture H surfaces with prescribed non-empty boundary Γ, we do not know its

structure even in the easiest case, when Γ is a round circle with, for instance,
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unit radius. Heinz [He2] found that a necessary condition for existence in

this situation is that |H| ≤ 1. The only known examples, excluding the triv-

ial minimal case, are the two spherical caps with radius 1/|H|, which are the

only umbilical ones, and some non-embedded surfaces of genus bigger than

two whose existence was proved by Kapouleas in [Ka].

In general, when Γ is a Jordan curve in R3, the problem of existence of

constant mean curvature H surfaces Σ with ∂Σ = Γ has been studied by

Heinz [He1], Hildebrant [Hi], Wente [W1], Werner [We] and Steffen [St]

in the case of immersions from the two-dimensional disc. They solved the

corresponding (disc-parametric) Plateau problem (when H is small enough

in terms of the geometry of the curve Γ) by showing existence of small (that

is, contained in some sphere with radius less than 1/|H|) solutions which

are relative minimizers of the functional A − 2HV , A being the area and

V the algebraic volume functionals, respectively. On the other hand, Serrin

[Se1] proved, using continuity methods, existence of constant mean curvature

graphs on some strictly convex planar domains. All these works have culmi-

nated in those of Brézis and Coron [BrC] and Struwe [Str], who showed that,

with the same assumptions and H 6= 0, there exists a second non-minimizing

large solution. This gave a solution to the Rellich conjecture.

From another point of view, Wente has solved in [W2] the (disc-para-

metric) Plateau problem when the volume is constrained to take a fixed

value. Here, volume means the algebraic volume which will be defined in the

following section, for any immersion φ from a compact oriented surface Σ into

R3. This algebraic volume depends on the choice of origin, but when ∂Σ = Γ

is planar, φ is an embedding above the plane and the origin is taken in that

plane it coincides with the enclosed Lebesgue volume. Wente proved that,

for any Jordan curve Γ in R3 and any V ∈ R, there exists a constant mean

curvature immersion φ from the disc D which minimizes the area among all

the immersions from D into R3 with φ(∂D) = Γ and algebraic volume V .

After this, Steffen and Wente have seen that the minimizers so obtained are

regular [SW] and have studied its behaviour when the prescribed volume V

grows up to infinity [W3]. Without being precise, they converge to spheres

outside a given compact set containing the boundary.
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A third source of constant mean curvature surfaces with prescribed bound-

ary is the isoperimetric problem. Suppose that the Jordan curve Γ given as

a prescribed boundary is the boundary ∂Ω of an embedded surface Ω (for in-

stance, when Γ is a planar curve and Ω is the corresponding planar domain).

Given a positive number V , an isoperimetric region with respect to (Ω, V )

is a region M of volume V in R3 such that ∂M = Ω ∪ Σ and Σ has least

area among all the possible M . Existence of these isoperimetric regions is

guaranteed in our case in the context of the geometric measure theory. Also,

from the corresponding regularity theorems [Alm, p. 77, (6)] it turns out

that their boundaries are smooth except in Γ and so they give us embed-

ded constant mean curvature surfaces, possibly of high genus. The problem

is to understand what the isoperimetric regions look like when one varies

the prescribed volume V and what the behaviour of the corresponding mean

curvature H(V ) is.

In this paper we will obtain certain results about these isoperimetric

regions and constant mean curvature surfaces when the prescribed boundary

Γ is a convex planar Jordan curve. Precisely we will prove that

Given a bounded convex planar domain Ω, there exists a positive

constant VΩ such that isoperimetric regions with respect to the pair

(Ω, V ) for V ≤ VΩ are bounded by Ω ∪ Σ where Σ is a constant

mean curvature graph over Ω.

We will provide in this way a proof for what the G.A.N.G. at the University of

Massachusetts, Amherst, had seen on their computers [HR]. More generally,

we will able to show that

Given a convex closed planar curve Γ there is a constant VΓ de-

pending only on the curve such that any constant mean curvature

compact surface with boundary Γ and volume less than or equal

to VΓ must be a graph.

We will compute exactly the value of this critical volume in the case where

the surface is a disc and the boundary curve is a circle:
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A constant mean curvature disc spanning a unit circle in Eu-

clidean space is a small spherical cap provided that its volume is

not bigger than 2π/3.

A corresponding uniqueness theorem for constant mean curvature surfaces

which are small with respect to the area was already done in [LMo].

All these theorems come from a height estimate (in terms of the area,

that is, a sort of monotonicity formula) for constant mean curvature compact

surfaces with planar (not necessarily convex) boundary that we will get in

Theorem 1, and from a suitable use of the E. Hopf maximum principle.

This height estimate is more accurate than the corresponding estimate due

to Serrin [Se2] when one deals with small surfaces, moreover, it has the

advantage that it also works in the immersed case. It can be formulated in

the following way (see Figure 1)

Let Σ be a constant mean curvature H compact surface with pla-

nar boundary. Then the area of Σ is greater than or equal to the

area of the segment of a stack of spheres with the same mean cur-

vature whose highest point and boundary plane are at the same

heights as those of Σ.

By the way, this estimate for the growth of the area will allow us to prove

an existence theorem for graphs that, in some sense, improves, for planar

boundary, the corresponding result by Serrin. In fact

If Γ is a convex closed planar curve with length L and H is a

non-negative real number such that LH <
√

3π, then there exists

a graph with constant mean curvature H and boundary Γ.

Moreover, we will give an optimal bound in order for a constant mean cur-

vature compact embedded surface with convex planar boundary to be above

the boundary plane. We will show that

Let Σ be a constant mean curvature H compact embedded surface

with convex planar boundary such that its area A satisfies AH2 ≤
2π. Then Σ lies above the boundary plane. Moreover, if AH2 ≤
π, then Σ is a graph.
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This answers a question posed by Rosenberg in [HR] with experimental

evidences reported by Hoffman, at least in the case where the considered

surfaces are small.

As a conclusion, we could summarize the results in this work by saying

that constant mean curvature compact surfaces whose boundary is a convex

planar curve are graphs (and so topologically discs), provided they are as-

sumed to be small in some sense. It is interesting to point out that Ros and

Rosenberg [RR] have obtained some nice related results for large constan-

t mean curvature compact surfaces whose boundary is also a convex planar

curve and which belong to one of the half-spaces determined by the boundary

plane.

2 Preliminaries

Let Σ be a compact (always supposed connected) surface whose boundary

will be represented by ∂Σ. We will deal with immersions φ : Σ → R3

from Σ into three-dimensional Euclidean space with constant mean curvature

(abbreviated to cmc and to cmc H when we emphasize the value H of the

mean curvature). We will represent by ds2 the metric on Σ induced from

the Euclidean one in R3, by dA and A the associated measure and area

respectively and, if we assume that the surface is oriented, by V the algebraic

volume of the immersion given by

V = −1

3

∫

Σ
〈φ,N〉 dA,

where N : Σ → R3 is the Gauss map corresponding to the given orientation.

This is the signed volume of the cone constructed on the image φ(Σ) with

vertex at the origin. Of course it depends on the choice of the origin. Notice

that, when H 6= 0, our surface is necessarily orientable and, so, we may

choose, and will do it from now on, the Gauss map for the immersion φ in

such a way that H ≥ 0.

A basic tool in this context is the often invoked maximum principle due

to E. Hopf that can be stated as follows:
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Maximum principle ([HE], see [Ho] or [GT]) Let φ1, φ2 : Σ → R3 two cmc

immersions and p ∈ Σ such that φ1(p) = φ2(p) and (dφ1)pTpΣ = (dφ2)pTpΣ

(and (dφ1)pTp∂Σ = (dφ2)pTp∂Σ if p ∈ ∂Σ). If the mean curvatures of φ1 and

φ2 corresponding to a same choice of unit normal vector Np coincide and

〈φ1, Np〉 ≤ 〈φ2, Np〉 in some neighborhood of the point p, then φ1 = φ2 on Σ.

That is, if two immersed cmc surfaces are tangent at some point, the mean

curvatures agree for a common orientation and one of them is locally above

the other one, then they coincide (recall: the surfaces are always connected).

Together with this important principle, we have another useful tool that

appeared the first time in [K] and later has been considered in a lot of

works (see for example [EBMR], [KKS] and [KK]). In fact, suppose that

the surface Σ is orientable (for instance, in the non-minimal case) and let

N : Σ → R3 be a Gauss map for φ and H the constant mean curvature

corresponding to that choice of normal field. We may define a vector-valued

one-form ω on Σ by the equality

ω = (Hφ + N) ∧ dφ

where ∧ stands for the vector product of R3. It can be easily checked that

the fact that H is constant is equivalent to the one-form ω is closed. Hence,

we have

Balancing formula (see [KKS]) Let φ : Σ → R3 a cmc H immersion from

an oriented compact surface into Euclidean space. Then

∫

∂Σ
(Hφ + N) ∧ dφ = 0.

where N is the corresponding Gauss map N : Σ → R3.

Roughly speaking this balancing formula says that a cmc immersed com-

pact surface is in equilibrium with respect to the surface tension and the
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external pressure forces. Finally, we will also use below the so-called first

Minkowski formula, more familiar in the boundaryless compact case (see

[MoR] and references therein) and which is an immediate consequence of

∆|φ|2 = 4(1 + H〈φ,N〉),

where ∆ is the Laplacian operator of the induced metric ds2. Integrating,

we obtain

Minkowski formula Let φ : Σ → R3 be an immersion from an oriented

compact cmc H surface into Euclidean space. Then

A − 3HV = −1

2

∫

∂Σ
〈φ, ν〉 ds

where A is the area of the induced metric ds2, V denotes the algebraic volume

of φ and ν is the inner conormal along the boundary ∂Σ.

3 An a priori height estimate

We will begin to obtain an a priori estimate for the height of a compact

cmc surface immersed in R3 measured from a plane when its boundary is

contained in that plane. Our estimate has a different nature from the height

lemma due to Serrin (see [Se2] and [KKS]). The Serrin result asserts that a

compact cmc H graph, H > 0, with planar boundary has height at most 1/H

above the boundary plane and as a consequence of the Alexandrov reflection

principle [Al] one has that a compact cmc H surface with planar boundary

cannot extend more that 2/H above that plane. Notice first that this height

lemma is valid only for embedded surfaces and, second, the estimate is not

sharp for the so-called small cmc surfaces because when H tends to zero

there are cmc H surfaces with fixed boundary whose height tends to zero

(small cmc surfaces) and others whose height grows up to infinity (large cmc

surfaces). Our estimate will work in the immersed case and be accurate for

small and large cmc surfaces. In the case where the surface Σ is a disc it

can be obtained from a paper by Wente [W3], although it is not explicitely

written in that work.
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An equivalent statement of the balancing formula which can be found in

[KKS] is contained in the following result.

Lemma 1 (Balancing formula) Let φ : Σ → R3 be a cmc H immersion

from an oriented compact surface into Euclidean space such that φ(∂Σ) is a

planar curve. Then ∫

∂Σ
ν ds − 2HĀa = 0

where Ā is the algebraic area of the curve φ|∂Σ and a ∈ R3 is a unit vector

normal to the boundary plane.

Remark Using |〈ν, a〉| ≤ 1 in the equality of Lemma 1 we obtain

2H|Ā| ≤ L,

where L is the length of the curve φ(∂Σ). As a consequence we obtain a

restriction for the range of possible values of the mean curvature H of the

immersion in terms of the geometry of the prescribed boundary, provided

that this boundary has non-zero algebraic area (for instance, when it is a

planar Jordan curve). In fact, we have

H ≤ L

2|Ā| .(1)

Theorem 1 Let Σ be a cmc H compact surface immersed in Euclidean space

with boundary belonging to a plane P . If h denotes the height of Σ with respect

to P , we have that

h ≤ HA+

2π

where A+ is the area of the region of Σ above the plane P . The equality holds

if and only if Σ is a spherical cap.

Proof Let φ : Σ → R3 be the immersion. The minimal case H = 0 is clear

because, in this case, φ(Σ) is contained in the convex hull of φ(∂Σ) ⊂ P .
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So, suppose that H > 0 and represent by N the corresponding Gauss map.

After a translation, we may assume that

P = {x ∈ R3 | 〈x, a〉 = 0} for some a ∈ R3, |a| = 1.

We consider the height function f = 〈φ, a〉 : Σ → R. Clearly we have that

f|∂Σ ≡ 0. On the other hand, if p ∈ Σ and v ∈ TpΣ

〈∇fp, v〉 = 〈(dφ)p(v), a〉(2)

and, so, p ∈ Σ is a critical point of f if and only if the vector a is perpendicular

to φ at p, that is, if and only if Np = ±a. Then the set C of the critical

points of f is contained in

{p ∈ Σ | 〈N(p), b〉 = 〈N(p), c〉 = 0},

where a, b, c form an orthonormal basis of R3. In this way the set C is

contained in the intersection of nodal lines of two solutions u1 = 〈N, b〉 and

u2 = 〈N, c〉 of the Schrödinger equation ∆u + |σ|2u = 0, σ being the second

fundamental form of the immersion φ. If these two solutions were identically

zero, then we would have either N = a or N = −a everywhere on the surface

and, so, the surface would be minimal, which is not the case. Thus, either

u1 or u2 is not trivial and, so, its nodal line consists of a finite number of

immersed circles (as we can see, for example, in [Ch]). Hence, this set C of

the critical points of f has zero measure. In this situation, A(t) is continuous

and the coarea formula [F] gives us

A′(t) = −
∫

Γ(t)

1

|∇f | dst t ∈ R,

where A(t) is the area of Ω(t) = {p ∈ Σ | f(p) ≥ t} and Γ(t) = {p ∈ Σ | f(p) =

t}. If we denote by L(t) the length of the planar curve Γ(t), the Schwarz

inequality yields

L(t)2 ≤
∫

Γ(t)
|∇f | dst

∫

Γ(t)

1

|∇f | dst = −A′(t)
∫

Γ(t)
|∇f | dst.(3)
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But we have from (2) that, along the curve Γ(t),

|∇f |2 = 1 − 〈N, a〉2 = 〈νt, a〉2

where νt : Γ(t) → R3 is the inner conormal of Ω(t). Since Ω(t) is above the

plane Pt = {x ∈ R3 | 〈x, a〉 = t} we know that 〈νt, a〉 ≥ 0. Hence

|∇f ||Γ(t) = 〈νt, a〉.

Then, (3) can be rewritten as follows

L(t)2 ≤ −A′(t)
∫

Γ(t)
〈νt, a〉 dst t ∈ R.(4)

We know that Ω(t) is a compact surface with smooth boundary Γ(t) for

almost every t ∈ R. Notice that, if t < 0, then ∂Σ ⊂ Ω(t) and so φ(Γ(t))

has a component lying in P and possibly others in Pt. But if t ≥ 0, then

φ(Γ(t)) ⊂ Pt and, in this case, we may use Lemma 1 above and obtain
∫

Γ(t)
〈νt, a〉 dst = 2H|Ā(t)|

where Ā(t) is the algebraic area of the planar closed curve φ|Γ(t). Thus if we

substitute in (4) we have

L(t)2 ≤ −2HA′(t)|Ā(t)| for every t ≥ 0.(5)

Now, denote by Ω1(t), . . . ,Ωnt(t) the bounded domains which are determined

in the plane Pt by the closed curve φ|Γ(t), and by Ai(t) (with i = 1, . . . , nt)

the Lebesgue area of the corresponding Ωi(t). As one has that

Ā(t) = ε1A1(t) + · · · + εntAnt(t)

where εi ∈Z are the order numbers corresponding to the curves φ|∂Ωi(t), then

|Ā(t)| ≤ |ε1|A1(t) + · · · + |εnt|Ant(t).

On the other hand, if Li(t) is the length of the boundary of Ωi(t), we have

that L(t) = |ε1|L1(t) + · · · + |εnt|Lnt(t) and hence

L(t)2 ≥ ε2
1L1(t)

2 + · · · + ε2
nt

Lnt(t)
2.
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By using all these inequalities and (5) we have for t ≥ 0 that

ε2
1L1(t)

2 + · · · + ε2
nt

Lnt(t)
2 ≤ −2HA′(t)(|ε1|A1(t) + · · · + |εnt |Ant(t)).

If we take into account that Li(t)
2 ≥ 4πAi(t), from the isoperimetric inequal-

ity for the domain Ωi(t), and that ε2
i ≥ |εi|, we get

2π ≤ −HA′(t) for every t ≥ 0.

Integrating this inequality from 0 to h = maxp∈Σ f(p) ≥ 0 one gets

2πh ≤ H(A(0) −A(h)) = HA+

which is the inequality that we looked for.

If the equality holds with H > 0 then all the inequalities above become

equalities. In particular, |∇f |Γ(t) = 〈νt, a〉 is a constant for any t ≥ 0 and

φ(Γ(t)) is a circle. Thus, in a neighborhood of the point of Σ where the

greatest height is attained, the immersion φ is an embedding whose image is

a cmc surface with a circle as boundary and lying above the boundary plane.

The reflection principle [Al] of Alexandrov allows us to conclude that, in

that neighborhood, φ is umbilic. By analyticity, Σ must be a disc and φ an

embedding whose image is a spherical cap.

Remark Theorem 1 above can be paraphrased in the following way: A cmc

H > 0 compact surface immersed into Euclidean space with planar boundary

has area bigger than the area of a right cylinder with its same height and

radius 1/H unless it is a spherical cap of radius 1/H and, in this case, those

two areas coincide. The latter is an old theorem by Archimedes, as one can

see, for example, in [Hea, p. 293]. On the other hand, if we want to compare

the area growth of our surface with that corresponding to a standard surface

with the same constant mean curvature, we can easily see that Theorem 1

above says also that a cmc H > 0 compact immersed surface with planar

boundary has area bigger than the area of a segment of a stack of spheres

with radius 1/H whose highest point and boundary plane are the same as

those of the surface (see the Figure 1).
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Figure 1:

In the same hypothesis of Theorem 1 we have

h− ≥ −HA−

2π

where A− means the area of the region of the surface Σ which is below the

boundary plane and h− is the lowest height of the surface under the plane

containing its boundary. This yields the following

Corollary 1 If Σ is a cmc H compact surface immersed into Euclidean space

with boundary contained in a plane P and area A, then Σ lies in a slab parallel

to P with height less than HA/2π, unless Σ is a spherical cap (in which case

the thinnest slab has height exactly HA/2π).

The estimate which we have obtained for the height, together with the

maximum principle, allow us to obtain bounds relative to other directions of

space when we assume that the surface Σ is small in certain sense.

Corollary 2 Let Σ be a cmc H compact surface immersed into Euclidean

space with planar boundary. If the area A of the surface satisfies AH2 ≤ π,

then the surface Σ lies inside the right cylinder determined by the convex hull

of its boundary.
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Proof If Σ is a spherical cap with mean curvature H ≥ 0, one has that (see,

for instance, [LMo])

either AH2 = 2π(1 −
√

1 − H2) or AH2 = 2π(1 +
√

1 − H2),

depending on whether spherical cap is small or large. Since we are supposing

that AH2 ≤ π it must be small and the result is clear in this case.

In any other situation, from Corollary 1, the surface Σ is contained in a

slab parallel to the boundary plane P with height less than AH/2π ≤ 1/2H.

Thus Σ lies inside a slab parallel to P and symmetric with respect to P with

height less than 1/H. Suppose now that there is some point of Σ projecting

on a point p ∈ P outside the convex hull C of the boundary of Σ and choose

q ∈ C minimizing the distance to p. Denote by R the half-line of P starting

at q and passing through p and by CR a half-cylinder of radius 1/2H with

axis belonging to P and perpendicular to R. We move CR along R far enough

for it not to touch the surface Σ and we place its concave side in front of Σ.

Now we proceed to approach the half-cylinder CR to Σ and in this way we

get a first (and so tangential) contact point between the two surfaces. As

the axis of CR lies inside P and there is a point of Σ projecting on the point

p outside the convex hull of the boundary, this contact point so obtained is

non-boundary point of the surface Σ. It is also an interior point of the half-

cylinder CR because Σ is inside a slab with height less than the height 1/H

of CR. On the other hand, this half-cylinder has constant mean curvature H

with respect to the normal field pointing to its concave part. As we already

know that Σ is in that concave part, by elementary comparison, we have that

this same choice of normal at the contact point gives mean curvature H for

Σ. The interior maximum principle would say that CR and Σ agree. This

is a contradiction. As a consequence, all the points of the surface Σ must

project on the convex hull of its boundary.

Remark The assumption AH2 ≤ π in Corollary 2 above is not optimal.

Probably one should obtain the same result under the hypothesis AH2 ≤ 2π.

At least this occurs when the boundary of the surface Σ is a circle.

In the proof of Corollary 2, a fundamental fact was that the slab of width
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1/H where the surface Σ lies is symmetric with respect to the boundary plane

P . This was the reason to suppose AH2 ≤ π. If we weaken this hypothesis to

AH2 ≤ 2π, either Σ is a small spherical cap or, using Corollary 1, Σ is inside

a slab S parallel to P with height less than AH/2π ≤ 1/H. This slab S is

not necessarily symmetric with respect to P as above. But we may utilize

again half-cylinders of radius 1/2H and axis in the central plane of S as

barriers and obtain, by taking into account the maximum principle, that the

surface Σ is contained in the convex body of R3 delimited by the convex hull

C of ∂Σ and the afore-mentioned half-cylinders which are tangent to C. As

a consequence, if ∂Σ is a convex curve then the surface Σ does not intersect

outside the corresponding planar convex domain. This will permit us to find

a necessary condition in order that a cmc compact surface embedded into R3

with planar convex boundary stay in a half-space.

Corollary 3 Let Σ be a cmc H compact surface embedded into Euclidean

space whose boundary is a convex planar curve contained in a plane P . If

AH2 ≤ 2π, where A is the area of the surface, then Σ stays in a half-space

determined by P and is transverse to P along the boundary. By Alexandrov

reflection, Σ inherits the symmetries of its boundary.

Proof We already know that, if Ω is a convex domain in P with ∂Ω = ∂Σ,

then Σ∪ extΩ = ∅. Then one can consider a hemi-sphere under the plane P

whose boundary disc D is contained in P and is large enough that Ω ⊂ intD.

Thus Σ ∪ (D −Ω) ∪ (S − D) is a compact surface embedded into R3 and so

determines an interior domain, say W . Choose a Gauss map N for Σ in such

a way that N points into W at each point. It turns out that, if there are

points of the surface Σ in both half-spaces determined by P , then N takes

the same value at the points where the height function attains its maximum

and minimum respectively. Reversing N if necessary, we can conclude that

the Gauss map of Σ (for which H > 0) takes the same value at the highest

and at the lowest points of the surface. Lower a sphere of radius 1/H to the

highest point or pushing it up to the lowest one we obtain a contradiction

using the (interior) maximum principle. Thus the surface lies in one of the

half-spaces determined by the plane P and rises on it less than or equal to
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1/H. Using again half-cylinders of radius 1/2H and axis in a plane parallel

to P at height 1/2H as barriers, the (boundary) maximum principle shows

us that the surface is transversal along its boundary.

Remark Combining the two results obtained in Corollary 3 above and in

Corollary 2 one can conclude that a cmc H compact surface embedded in-

to Euclidean space with convex planar boundary and AH2 ≤ π must be

contained in one of the half-spaces determined by the boundary plane and,

moreover, inside the right cylinder with that boundary as cross-section. Using

Alexandrov reflection we can assert that if Σ is a cmc H compact surface em-

bedded into R3 with planar convex boundary and area A satisfying AH2 ≤ π,

then Σ is a graph.

Remark From (1), we have that H2 ≤ L2/4Ā2 where L is the length of

∂Σ and Ā is the area of the planar convex domain Ω which determines ∂Σ.

Hence if the cmc H compact surface Σ embedded in Euclidean space with

planar convex boundary has area A satisfying

A ≤ 8πĀ2

L2
,

then Σ lies in one of the half-spaces determined by the boundary plane and is

transversal to this plane along ∂Σ. Notice that, when the convex curve ∂Σ

is close to a circle, then the isoperimetric quotient 4πĀ/L2 approximates to

1 and so the upper bound above is near to 2Ā.

Now we are going to see that our height estimate for cmc compact surfaces

immersed into R3 allows us to obtain sometimes gradient estimates which will

serve to find an existence theorem for graphs, improving the one obtained by

Serrin in [Se1] when the prescribed boundary is planar.

Corollary 4 Let Γ be a convex closed planar curve with length L. If H is a

non-negative real number such that LH <
√

3π, then there exists a cmc H

graph whose boundary is Γ.
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Proof We denote by Ω the planar convex domain enclosed by the curve Γ.

To prove the existence of a cmc H graph with boundary Γ is equivalent to

finding a solution u of the Dirichlet problem corresponding to the equation

div
∇u√

1 + |∇u|2
= 2H.(6)

This can be achieved using a continuity method (see [GT, Theorem 13.8] and

[KK] for an example in the same context) provided we are able to get a priori

C1(Ω̄) estimates independent of H for each solution of (6) with 0 ≤ H ≤ c

and Lc <
√

3π. For H = 0 we have the trivial solution u ≡ 0, and the

implicit function theorem can be invoked in order to guarantee existence for

0 < H ≤ c0, where c0 is a positive small number. So, we will work in the

range c0 ≤ H ≤ c. For every solution u of (6) with these restrictions on H

we know that the height lemma for graphs due to Serrin [Se2] implies

u ≤ 1

H
≤ 1

c0
.

So it remains to look for global gradient estimates of our solutions on Ω̄. But

general considerations about quasilinear equations like (6) [GT, 11.3] or a

detailed analysis of our concrete case show that it suffices to obtain these gra-

dient estimates on the boundary ∂Ω = Γ. Let uH be a solution of (6) and ΣH

the corresponding cmc H surface with c0 ≤ H ≤ c. Then we have existence

of solutions uh for all h with 0 ≤ h ≤ H. All the corresponding surfaces

Σh are topologically discs whose corresponding Gauss curvature function-

s Kh satisfy Kh ≤ h2. So we may apply them the following isoperimetric

inequality due to Barbosa and do Carmo [BdC]

L2 ≥ 4πAh

(
1 − Ahh

2

4π

)
.

That is, the area Ah of Σh satisfies the following second degree inequality

h2A2
h − 4πAh + L2 ≥ 0,

which has discriminant 16π2 − 4L2h2 > 16π2 − L2c2 > π2 > 0. Then

either Ah ≤ 2π −
√

4π2 − L2h2

h2
or Ah ≥ 2π +

√
4π2 − L2h2

h2
.
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Since Ah depends continuously on h and the first inequality occurs when

h = 0, we have that this first inequality holds for all h with 0 ≤ h ≤ H, and

so, in particular, for h = H. This gives

AHH

2π
≤ 2π −

√
4π2 − L2H2

2πH
.

From here it is not difficult to see, using our assumption c <
√

3π/L , that

there exists a real number ε(c) > 0 depending only on the constant c such

that
AHH

2π
≤ 1

2H
− ε(c).

Now our Theorem 1 says that the graph ΣH rises above the plane P contain-

ing the curve Γ = ∂ΣH less than or equal to 1/2H − ε(c). Consider any slab

S with height 1/2H parallel to P and move the graph ΣH in such a way that

the boundary plane P is at height ε(c)/2 above the lowest limiting plane of

S. For each point p ∈ Γ we denote by Cp the piece belonging to S of a right

cylinder of radius 1/2H whose axis lies in the plane R and is parallel to the

tangent line to Γ at p. This surface Cp clearly has constant mean curvature

H. We separate Cp and ΣH for them not to intersect with the concave side

of Cp in front of the surface ΣH . After this, we slide Cp toward the surface

until they touch each other for the first time. The maximum principle and

the fact that Γ is convex imply that this contact point is p. As this holds for

every p ∈ Γ, the surface ΣH is inside the convex body delimited by the curve

Γ and all the cylinder pieces Cp with p ∈ Γ. Then the slope of our graph at

each point p of the boundary Γ is less than the slope of the corresponding Cp.

But this cylinder piece cuts the plane P with an angle which does not depend

on p and which is less than π/2. Hence, if a ∈ R3 is a unit vector orthogonal

to the plane P , we have obtained that there exists a positive number δ(c)

such that

〈νp, a〉 ≤ 1 − δ(c) for each p ∈ Γ,

where νp is the inner conormal to ΣH at p. It suffices to observe that

〈ν, a〉 =
1√

1 + |∇uH|2
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in order to conclude that we have found the global gradient estimate that we

were looking for.

Remark The existence theorem due to Serrin [Se1] asserts that, for a con-

vex closed planar curve Γ with curvature function k such that k ≥ 2H > 0,

there exist cmc H graphs with arbitrary boundary Dirichlet data. In this

sense, his theorem and our Corollary 4 are not comparable, but the Serrin

result has the drawback, when applied to our situation of vanishing boundary

data, that it requires the curve Γ to be strictly convex. This is not the case

in our hypothesis. On the other hand, an easy consequence of Corollary 4 is

the fact that if Γ is a planar closed convex curve whose curvature function

k satisfies
√

3k > 2H, then there exists a cmc H graph whose boundary is Γ.

4 Small volume cmc compact surfaces

Our aim at the beginning this work was to understand how the solutions

of Plateau’s problem with constrained (algebraic) volume look and how they

behave when the prescribed volume is modified. More generally we wanted to

know how the shape of a cmc compact surface (with prescribed boundary)

and some geometric quantities (such as the area and the mean curvature)

change as functions of the algebraic volume. When this volume is very large

this has been done by Wente in [W4], at least in the case of immersions from

the disc which minimize the area with fixed volume. A new approach for

embedded surfaces with convex planar boundary can be seen in a forthcoming

paper by Ros and Rosenberg [RR]. However nothing is known about the

shape, the area or the behaviour of the mean curvature for cmc compact

surfaces with assigned boundary when the corresponding algebraic volume

is small, aside from the experimental evidence obtained on the computers of

the Amherst G.A.N.G. pointed out by Hoffman in [HR].

Before starting with the results, we are going to comment on some relevant

facts concerning the algebraic volume of oriented compact immersed surfaces.

For an immersion φ : Σ → R3 from an oriented compact surface Σ with non-

empty boundary ∂Σ into Euclidean space, we had recalled in Section 2 that
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its algebraic volume V is defined as

V = −1

3

∫

Σ
〈φ,N〉 dA,

where N represents the Gauss map for the immersion φ compatible with the

orientation of Σ. Of course, this V depends on the choice of the origin in R3.

But in the case of cmc immersions with planar boundary the algebraic volume

is independent of the choosen origin provided it is taken in the boundary

plane. This can be easily shown from the fact that, in this case, ∆φ = 2HN ,

by combining the divergence theorem and balancing formula. So, we will

make such a choice from now.

On the other hand, assume that the boundary of our immersed surface

φ(∂Σ) is a Jordan curve Γ in the plane P and let Ω be the corresponding

bounded domain in P . In this situation, if φ is an embedding with image

M such that M ∪ Ω bounds a region W of R3, then it turns out from the

divergence theorem applied to the position vector field φ on W that

volW = −1

3

∫

M∪Ω
h,

where volW is the Lebesgue volume in R3 and h = 〈φ,N〉 is the support

function of the surface M ∪Ω corresponding to the inner normal field of W .

In the last equality the choice of origin is not significant, but if it is taken in

P the integral on the right side becomes

volW = −1

3

∫

M
h = −1

3

∫

Σ
〈φ,N〉 dA = V,

that is, the algebraic volume of the embedding φ coincides with the Lebesgue

measure of the region enclosed by its image M together with the convex planar

domain Ω determined by its boundary Γ.

Another remarkable peculiarity concerning the algebraic volume of cmc

H > 0 immersions from compact orientable surfaces with planar boundary

is that it is always positive (recall: we consider the orientation given by the

Gauss map for which H > 0). This assertion follows from the equality

2HV =
∫

Σ
|∇〈φ, a〉|2 dA,

19



which can be easily derived by using the divergence theorem. This proves

that V ≥ 0 and V = 0 only in the case that the image of the immersion lies

into the plane P , that is, in the minimal case H = 0.

After these observations we start to study cmc H > 0 immersions φ from

compact surfaces Σ into Euclidean three-space spanning a convex planar

curve Γ (that is, φ(∂Σ) = Γ) which are small from the volume point of view.

Lemma 2 Let φk : Σ → R3, k ∈ N, be a sequence of cmc Hk immersions

from a compact surface Σ into Euclidean space with φk(∂Σ) = Γk, where each

Γk is a star-shaped planar Jordan curve. Suppose that limk→∞ Γk = Γ, where

Γ is another star-shaped planar Jordan curve, and that the sequence of the

corresponding algebraic volumes satisfies limk→∞ Vk = 0. Then

lim
k→∞

Ak = Ā and lim
k→∞

Hk = 0,

Ak being the area of φk and Ā the area of the planar domain determined by

the limiting curve Γ.

Proof For each k ∈ N, let Ωk be the planar domain determined by the

respective Jordan curve Γk, Āk the corresponding (algebraic or Lebesgue)

area and Lk the length of Γk. Since Γk tends to the curve Γ when k goes to

infinity, we have

lim
k→∞

Āk = Ā lim
k→∞

Lk = L,

where L is the length of Γ. Using the inequality remarked in (1) and as Ā > 0

we observe that

0 ≤ lim
k→∞

Hk ≤ lim
k→∞

Lk

2Āk

=
L

2Ā
,

and so the sequence of the mean curvatures Hk is bounded. Then, from our

hypothesis about the volume sequence Vk, one sees that

lim
k→∞

HkVk = 0.(7)
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Consider now the Minkowski formula for each cmc immersion φk and, as Γk is

planar, we may choose an inner unit normal nk for ∂Ωk in the corresponding

plane Pk to obtain

Ak − 3HkVk = −1

2

∫

∂Σ
〈φk, νk〉 dsk = −1

2

∫

∂Σ
〈φk, nk〉〈nk, νk〉 dsk,

where νk is the upward conormal to φk. As the curve Γk is star-shaped, after

a suitable choice of nk, its support function 〈φk, nk〉 is negative on ∂Σ. Also

〈νk, nk〉 ≤ 1 and so

Ak − 3HkVk ≤ −1

2

∫

∂Σ
〈φk, nk〉 dsk = Āk.

On the other hand, the surface φk(Σ) projects on the correponding plane

Pk onto a region including Ωk because, if there were a point in Ωk such

that the straight line passing through it perpendicularly to the plane Pk

did not touch the surface φk(Σ), then the curve φk(∂Σ) = Γk would not be

homologous to zero in the shadow of φk(Σ) on Pk. However the boundary

∂Σ is null-homologous in the surface Σ and this is a contradiction. Hence

Ak ≥ Āk.

Taking limits in the two last inequalities, we may conclude from (7) that

lim
k→∞

Ak = Ā,

which was the first conclusion that we looked for. By the way, from these

very inequalities, it follows

Ā = lim
k→∞

−1

2

∫

∂Σ
〈φk, νk〉 dsk = lim

k→∞
−1

2

∫

∂Σ
〈φk, nk〉 dsk

and so

lim
k→∞

∫

∂Σ
−〈φk, nk〉 (1 − 〈nk, νk〉)

dsk

ds
ds = 0,

where ds is the arc-length element for Γ. Since our boundary curves are

star-shaped the integrands above are non-negative and so Fatou’s Lemma

implies

lim inf
k→∞

−〈φk, nk〉 (1 − 〈nk, νk〉)
dsk

ds
= 0.
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But limk→∞〈φk, nk〉(dsk/ds) < 0 because the sequence Γk converges to the

star-shaped curve Γ. Then, there is a subsequence (which will be suitably

relabelled) of the original sequence of immersions such that limk→∞〈νk, nk〉 =

1. Let ak be a unit vector of R3 orthogonal to the plane Pk where the curve

lies. Then

lim
k→∞

〈νk, ak〉 = 0.

Hence, our Lemma 1 and the Lebesgue bounded convergence theorem show

us that limk→∞ HkĀk = 0. But we already knew that the sequence Āk tends

to Ā > 0 when k goes to infinity. So, there exists a subsequence of our

sequence of cmc immersions with limk→∞ Hk = 0. As this holds for every

sequence, the second conclusion that we wanted to obtain follows.

Combining the two assertions of Lemma 2 above and Corollary 2 one sees

that, given a star-shaped planar Jordan curve Γ, any cmc compact surface Σ

immersed into Euclidean space with boundary Γ and algebraic volume small

enough lies inside of the right cylinder whose base is the convex hull of its

Γ. On the other hand, if the volume of Σ is sufficiently small, from Lemma

2, its mean curvature will be small and, using Corollary 4, provided that we

require Γ to be convex, there will exist a cmc graph G with boundary Γ and

with the same mean curvature H as Σ. Hence, if Γ is a convex closed planar

curve, there is a positive number VΓ such that any cmc compact surface Σ

immersed into R3 with ∂Σ = Γ and V ≤ VΓ lies inside the right cylinder

determined by the domain Ω which Γ bounds and such that there exists a

cmc graph G on Ω with the same curvature as Σ and ∂G = ∂Σ = Γ. The

following result will permit us to compare G and Σ (cf. the positive flux

lemma in [KK]).

Lemma 3 Let Γ be a planar closed Jordan curve and Ω the corresponding

bounded planar domain. Suppose that there exists a cmc H graph on Ω and

denote by C the right cylinder with cross-section Ω. Then, any compact cmc

H surface Σ immersed into Euclidean space with ∂Σ = Γ and lying in the

inside of C either coincide with G or with its reflection about the boundary

plane.
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Proof We first show that Σ must be under the graph G. Suppose in fact

that this were not the case. Then we translate G upwards so it does not

touch Σ and then we drop it until it reaches a contact point p with Σ for the

first time and, so, a final position tangent to Σ. Denote by G′ the translated

graph. We have that p /∈ ∂G′ because Σ ⊂ C and, since Σ rised on the

boundary plane more than G, we know that p /∈ ∂Σ. On the other hand, as

G′ is a graph, the unit vector Np normal to G′ at the point p for which the

mean curvature H is positive points downwards. Moreover, Σ is now under

G′ and so its mean curvature at p must be greater than or equal to that of G′.

As a conclusion, the mean curvatures of G′ and Σ agree for the same choice

of normal vector at p. Then, from the maximum principle, the surfaces G′

and Σ should be coincide and, so, we would reach a patent contradiction

because ∂G′ and ∂Σ are at different heights. Thus we see that Σ is under

G as we had claimed. The same reasoning is showing that Σ is above G∗,

G∗ being the reflection of G about the plane P containing Γ. Then, if a is a

unit vector perpendicular to P and νΣ, νG represent the inner conormals of

Σ and G respectively along their common boundary Γ, we have that

|〈νΣ, a〉| ≤ 〈νG, a〉.

If the equality held at some point of Γ, the (boundary) maximum principle

would say to us that either Σ = G or Σ = G∗ as we claimed. In other case

we would obtain that

|〈νΣ, a〉| < 〈νG, a〉

and, integrating this strict inequality on Γ and using balancing formula (in

Lemma 1), we would attain a contradiction because the mean curvatures of

Σ and G are the same.

Remark It is convenient to point out that this proof is similar to the proof

of the positive flux lemma in the paper [KK] by Korevaar and Kusner.

After the uniqueness result stated in Lemma 3 above, and from the con-

sequences that we have mentioned from Lemma 2 and Corollaries 2 and 4,
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we may state the following theorem about cmc compact surfaces with convex

boundary and small volume.

Theorem 2 Let Γ be a convex closed planar curve. There exists a positive

number VΓ depending only on Γ such that, for any 0 ≤ V ≤ VΓ, there is a

cmc graph GV with boundary Γ and enclosed volume V . Moreover this graph

GV is the only cmc compact surface immersed into Euclidean space whose

boundary is Γ and whose algebraic volume is V .

Since the smooth solutions to the isoperimetric problem are cmc surfaces

(because they are minimizers and so critical points for the area when the

volume is constrained to take a fixed value) and using the existence and

regularity results arising from geometric measure theory [Alm] remarked in

the Introduction of this paper, it follows that

Theorem 3 Let Ω be a bounded convex planar domain. Then there is a

positive number VΩ such that, for any real number 0 ≤ V ≤ VΩ, the isoperi-

metric region corresponding to the pair (Ω, V ) is bounded by Ω ∪ G where G

is a cmc graph on Ω with boundary ∂Ω.

In order to conclude this work and obtain all the results that we discussed

in the Introduction, it remains to show that, in case of the surfaces of disc-

type and when the prescribed boundary is a circle, the best constants whose

existence are asserted in the last two theorems are computable. In fact, we

have

Theorem 4 An immersed cmc disc spanning a unit circle in Euclidean space

is a small spherical cap provided that its algebraic volume is less than or equal

to the volume of a unit radius half-sphere.

Proof We will let D be the two-dimensional disc and φ : D → R3 a cmc H

immersion with area A and algebraic volume V . Clearly we can exclude from

consideration the minimal case H = 0. So, we assume that H > 0 and use

the corresponding orientation. From our hypothesis, φ(∂D) is a unit circle,

say

{p ∈ R3 | |p| = 1, 〈p, a〉 = 0},
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where a is a unit vector. If ν is the inner conormal of φ along the boundary

∂D, the Schwarz inequality yields

(∫

∂D
〈ν, φ〉 ds

)2

≤ 2π
∫

∂D
〈ν, φ〉2 ds = 2π

∫

∂D

(
1 − 〈ν, a〉2

)
ds.(8)

Using again the Schwarz inequality and balancing formula, we have

∫

∂D
〈ν, a〉2 ds ≥ 1

2π

(∫

∂D
〈ν, a〉 ds

)2

= 2πH2.

Substituting in (8), we obtain

∣∣∣∣
∫

∂D
〈ν, φ〉 ds

∣∣∣∣ ≤ 2π
√

1 − H2.

This inequality provides an upper bound for the right member in the Min-

kowski formula for the immersion φ. Then

A− 3HV ≤ π
√

1 − H2.(9)

On the other hand, we have proved in [LMo] that, if φ(D) is not the small

spherical cap with mean curvature H, then the area A must be greater than

that of the corresponding big spherical cap. That is

A >
2π

H2

(
1 +

√
1 −H2

)
.

Hence, from (9) and this last inequality, we get (unless the surface is a small

spherical cap) that

V > f(H) =
2π

3H3

(
1 +

√
1 − H2

)
− π

3H

√
1 − H2.

As the mean curvature H moves in the range 0 < H ≤ 1 (see [LMo] or

[He2]), we can look for the minimum of the increasing function f above in

this range and conclude that V > 2π/3, as we had asserted.
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