
Annals of Global Analysis and Geometry 20: 59–75, 2001.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.

59

Graphs of Constant Mean Curvature in
Hyperbolic Space

RAFAEL LÓPEZ�
Departamento de Geometría y Topología, Universidad de Granada, 18071 Granada, Spain.
e-mail: rcamino@goliat.ugr.es

(Received: 7 March 2000; accepted: 21 December 2000)

Abstract. We study the problem of finding constant mean curvature graphs over a domain � of
a totally geodesic hyperplane and an equidistant hypersurface Q of hyperbolic space. We find the
existence of graphs of constant mean curvature H over mean convex domains � ⊂ Q and with
boundary ∂� for −H∂� < H ≤ |h|, where H∂� > 0 is the mean curvature of the boundary ∂�.
Here h is the mean curvature respectively of the geodesic hyperplane (h = 0) and of the equidistant
hypersurface (0 < |h| < 1). The lower bound on H is optimal.
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1. Introduction and Statements of Results

One of the most important equations in differential geometry is the prescribed mean
curvature equation. Physically, a constant mean curvature surface in Euclidean
space describes a soap bubble trapping some air. If we think of a domain of a
plane as a membrane, and if we blow up air, we construct constant mean curvature
surfaces. Our intuition tells us that in a first moment, we will obtain graphs of
functions that satisfy the constant mean curvature equation (in fact, this occurs in
Euclidean 3-space if the enclosed volume is small enough [7]).

In this paper we study the Dirichlet problem for the mean curvature equation in
hyperbolic space Hn+1 of dimension n+ 1. Consider Q to be one of the following
types of umbilical hypersurfaces in Hn+1: a totally geodesic hyperplane, an equi-
distant hypersurface, and a horosphere. In Q we choose one orientation ξ . Let �
be a smooth bounded domain of Q and f a smooth function in �. The graph on �
determined by f is defined as follows. For each point q ∈ �, there exists a unique
unit speed geodesic γ : R → Hn+1 with γ (0) = q and ξ(q) as the initial tangent
vector. Let p be the point defined as p = γ (f (q)), that is, the point of the geodesic
γ at distance f (q) from Q. The graph � of f is defined as the set of all points
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γ (f (q)), q ∈ �. Remark that each point p of � is determined by one point q of �
and the number f (q). This is so because the geodesics passing through the points
of � and orthogonal to � do not intersect themselves (this is not the case if Q is a
hyperbolic sphere).

If f = 0 along ∂�, then the boundary of � is ∂�.
The case where Q is a horosphere, has been extensively studied when � is

a mean convex domain, that is, the minimum H∂� of the mean curvature of ∂�
in Q is positive with respect to the inner orientation. Lin proved that a minimal
graph (H = 0) exists with boundary ∂� [5]. In the interval 0 ≤ H ≤ 1, the
existence for such a graph was proved by Nelli and Spruck in [9]. Montiel and the
author extended the range of existence to −H∂� < H ≤ 1 [8]. In this connection,
we point out the considerable literature concerned with the existence of complete
hypersurfaces of a constant mean curvature in hyperbolic space with asymptotic
boundary at infinity (see [3] and references therein).

In this paper, we treat the Dirichlet problem for mean convex domains of totally
geodesic hyperplanes and equidistant hypersurfaces. We prove the following the-
orem:

THEOREM 1.1. Let Q be a totally geodesic hyperplane or an equidistant hyper-
surface and denote its mean curvature by h. Let � be a bounded domain inQ with
smooth boundary ∂�. Assume ∂� is mean convex, that is, the number

H∂� := min
q∈∂�H

∂�(q)

is positive, where H∂� denotes the mean curvature of ∂� in Q with respect to the
inner orientation. Let H be a real number such that

−H∂� < H ≤ |h|.
Then there exists a graph on � with mean curvature H and bounded by ∂�.
Furthermore, ifH∂� > 1, then the interval of existence extends to −H∂� < H ≤ 1.

This result may be regarded as an analogue of the main theorem in [8] cited above.
Remark that Theorem 1.1 cannot be improved, as the following case shows. Let ∂�
be a round (n − 1)-sphere in Q. Then the only graphs of constant mean curvature
on � with boundary ∂� are pieces of umbilical hypersurfaces [6, prop. 2.1 and
thm. 2.2]. Then it is not difficult to see that the mean curvature H satisfies |H | <
H∂�.

The technique for proving Theorem 1.1 is the continuity method applied to the
equation for the mean curvature on �. This is an elliptic equation of the diver-
gence type, and the difficult part of the proof is to obtain a-priori C1,α-bounds for
solutions of the equation (see [2]). Starting from the trivial solution f = 0 on �
(for H = |h|), that corresponds with the very domain �, appropriate C0 and C1-
estimates will allow us to blow up this solution, thus obtaining solutions for each
H until the bound −H∂�.
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The article is organized as follows. In Sections 2 and 3 we recall some basic
facts of hyperbolic geometry and we derive the equation that satisfies the mean
curvature. In Sections 4 and 5 we obtain, respectively, a-priori estimates for the C0

and C1 norms of the desired solutions. Then, in Section 6, Theorem 1.1 is proved
using the continuity method.

2. Preliminaries and Definitions

This section is devoted to fixing the notation, recalling a few properties of hy-
perbolic geometry, and introducing the concept of the graph. First, we recall the
Minkowski model for hyperbolic space. Let Ln+2 be the vector space Rn+2 = {x =
(x0, . . . , xn+1); xi ∈ R} equipped with the Lorentzian metric

〈, 〉 = −dx2
0 + dx2

1 + · · · + dx2
n+1.

Then the (n+ 1)-dimensional hyperbolic space Hn+1 can be viewed as

Hn+1 = {x ∈ Ln+2; 〈x, x〉 = −1, x0 > 0}
with the induced metric from Ln+2. In this model, the umbilical hypersurfaces are
determined as the intersections between Hn+1 with affine hyperplanes of Rn+2.
Depending on the causal character of the affine hyperplane, we have the following
description of umbilical hypersurfaces. Let a ∈ Ln+2 be a vector such that 〈a, a〉 =
ε, with ε = −1, 0, 1. Let τ ∈ R. Then the umbilical hypersurfaces of Hn+1 are
described as the sets

Ua,τ = {q ∈ Hn+1; 〈q, a〉 = τ }.
The kinds of umbilical hypersurfaces are the following: totally geodesic hyper-
planes (ε = 1, τ = 0), equidistant hypersurfaces (ε = 1, τ �= 0), horospheres
(ε = 0, τ �= 0), and hyperbolic spheres (ε = −1, |τ | > 1). A unit normal field on
Ua,τ is defined as

ξ(q) = −λ(a + τq), λ = 1√
τ 2 + ε . (1)

The shape operator D on Ua,τ is given by Dξ = λτ Id. Thus, the mean curva-
ture is constant on Ua,τ and is given by h = λτ : h = 0 for totally geodesic
hyperplanes, h ∈ (0, 1) for equidistant hypersurfaces, h = 1 for horospheres,
and h > 1 for hyperbolic spheres. In Euclidean space, the ambient space is foliated
by totally geodesic (parallel) hyperplanes. One of the differences between Hn+1

and Euclidean space is that, besides the totally geodesic hyperplanes, Hn+1 can be
foliated by equidistant hypersurfaces and horospheres. This fact will be applied in
our proofs.

Now we give the definition of graph in hyperbolic space that generalizes what
occurs in Euclidean space. Recall that a geodesic in the Minkowski model for
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Hn+1 through a point x and with initial velocity v is given by γ (s) = cosh (s)x +
sinh (s)v. According to what was stated in the Introduction, we have the following
definition:

DEFINITION 2.1. Consider the Minkowski model for hyperbolic space Hn+1 and
let Ua,τ be a totally geodesic hyperplane, an equidistant hypersurfaces or a horo-
sphere where an orientation ξ has been fixed. Consider � a domain in Ua,τ and let
f be a smooth function on �. The graph � of the function f is defined as

� = {cosh f (q)q + sinh f (q)ξ(q); q ∈ �}.
Each point p ∈ � is determined by the pair (q, f (q)) ∈ � × R, where p is

the point of the geodesic starting from q with velocity ξ(q) at distance f (q) from
q. In particular, if the choice of the orientation in Ua,τ is as in (1), the graph � is
explicitly given by

� = {(cosh f (q)− h sinh f (q))q − λ sinh f (q)a; q ∈ �}.
It is not difficult to see that the fact that � is a graph is equivalent to 〈N, a〉 �= 0 on
�, where N is a unit normal field on �.

Remark 1. The definition of the graph on a domain of a totally geodesic hyper-
plane that appears in [1] does not correspond to our case. Exactly, the function u
that describes the graph in [1] associates for each q ∈ � one point in one of the two
horocycles passing by q and orthogonal to the hyperplane. Therefore, the existence
result in [1] does not correspond to Theorem 1.1 in the present paper.

Convention. Throughout this paper, ifUa,τ is a totally geodesic hyperplane or an
equidistant hypersurface, we will choose τ to be nonnegative (it suffices to replace
−a by a if it should not be so). The orientation on Ua,τ will be ξ as in (1) and then
the mean curvature h is nonnegative. Also, the orientation N on the graph � will
be so that 〈N, a〉 < 0.

For the establishment of C1,α-bounds for our solution, we need two elliptic
equations that enclose important information about the geometry of a constant
mean curvature hypersurface M in Hn+1. Consider the Minkowski model of Hn+1

and let x:M → Hn+1 be an immersion of constant mean curvature H . If a ∈ Ln+2,
a brief calculation shows that (see [4]):

#〈x, a〉 = n〈x, a〉 + nH 〈N, a〉, (2)

#〈N, a〉 = −nH 〈x, a〉 − |σ |2〈N, a〉, (3)

where # stands for the Beltrami–Laplacian operator of � and σ is the second
fundamental form of x.

A characteristic of our graphs with constant mean curvature is that they lie in
one of the two sides that determine the umbilical hypersurface that contains its
boundary. The following result is a particular case of theorem 2.2 in [6]. For the
sake of completeness, we prove this result adapted to our situation.
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THEOREM 2.2. Let Q be a totally geodesic hyperplane or an equidistant hyper-
surface of Hn+1 and let � be a bounded domain of Q. Let � be a graph on �
with boundary ∂�. If � has constant mean curvature, then either � = � or � is
included in one of the two components of Hn+1 \Q.

Proof. We use the upper-halfspace model for Hn+1, i.e.,

Rn+1
+ = {(x1, · · · , xn+1) ∈ Rn+1; xn+1 > 0}

equipped with the hyperbolic metric

dx2
1 + · · · + dx2

n+1

x2
n+1

.

Up to an isometry of the ambient, we suppose that

Q = {(x1, . . . , xn+1 ∈ Rn+1
+ ; xn = cot (θ)xn+1},

where 0 < θ ≤ π/2. Remark that Q is a vector hyperplane that makes an angle θ
with xn+1 = 0. If θ = π/2, Q is a totally geodesic hyperplane; in another case, Q
is an equidistant hypersurface.

Denote w = (0, . . . , 0,− sin θ, cos θ). Choose in Q the orientation NQ given
by NQ = xn+1w. According to this orientation, the mean curvature of Q is h =
cos θ ≥ 0. LetN be the unit normal vector field in � such that 〈N,NQ〉 is positive.

Assume that � does not agree with �. By contradiction, suppose that � con-
tains points in both sides ofQ. Consider the foliation of Hn+1 defined by {Q(t); t ∈
R}, whereQ(t) is a horizontal translation of Q in the direction t (0, . . . , 1, 0):

Q(t) = {(x1, . . . , xn+1) ∈ Rn+1
+ ; xn = t + cot (θ)xn+1}.

Consider inQ(t) the unit normal vector field NQ(t) = NQ. Since � is compact, for
t being small enough, � ∩Q(t) = ∅. Letting t → 0, set t0 < 0 the first moment
such thatQ(t0) touches�. Since the boundary of� is ∂�, the intersection between
� and Q(t0) occurs at some interior point. Let x0 ∈ � ∩Q(t0). According to the
chosen orientations on � and Q(t0), we have N(x0) = NQ(x0). By comparing the
mean curvature of both hypersurfaces, the maximum principle yields h > H .

A similar reasoning with positive numbers t implies there exists t1 > 0 such
that � ∩Q(t1) �= ∅ and � ∩Q(t) = ∅ for t > t1. The maximum principle implies
H > h, which is a contradiction. �
Examining the above proof, we know on what side of Q lies �. With the orienta-
tions chosen on � and Q, we have that if H = h, then � = �; if H < h, then �
is included in the component W of Hn+1 \Q where NQ points to, and if H > h,
� ⊂ Hn+1\W . Remark that ifQ is a totally geodesic hyperplane, then the equation
that satisfies Q is xn = 0. In this situation, if H is negative, then � ⊂ {xn < 0}.
For our convenience, we need to establish these facts in the Minkowski model of
Hn+1. We easily obtain the following corollary:
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COROLLARY 2.3. Let Ua,τ be a totally geodesic hyperplane or an equidistant
hypersurface and let � be a bounded domain of Q. Let f be a smooth function on
�, f = 0 in ∂�, whose graph � has constant mean curvature H .

(1) If H = h, then � = �, i.e. f = 0 on �.
(2) If H < h, then 〈x, a〉 < τ , for x ∈ � \ ∂�, i.e. f > 0 on � \ ∂�.
(3) If H > h, then 〈x, a〉 > τ , for x ∈ � \ ∂�, i.e. f < 0 on � \ ∂�.

Moreover, if H ≥ 0, then 〈x, a〉 ≥ 0, for x ∈ �.
Proof. It remains to consider the case H ≥ 0. By contradiction, suppose that

〈x, a〉 assumes negative values on �. Let x0 ∈ � be a relative minimum of this
function where 〈x0, a〉 < 0. Then #〈x, a〉(x0) ≥ 0, this is a contradiction of
Equation (2). �
When Q is a totally geodesic hyperplane, we have the following property that
is analogous to what happens with constant mean curvature graphs in Euclidean
space:

PROPOSITION 2.4 (Symmetry). Let � be a domain of a totally geodesic hyper-
plane Q and let f be a smooth function on � whose graph has constant mean
curvature H . Then graph(−f ) has constant mean curvature −H .

Proof. Consider the upper-halfspace model for Hn+1. After an isometry of Hn+1,
let Q be the hyperplane defined as xn = 0. Then the (Euclidean) reflection across
toQ, i.e.

(x1, . . . , xn, xn+1) → (x1, . . . ,−xn, xn+1)

is an isometry of Hn+1 that leaves pointwise fixed Q. The surface obtained by
reflecting the graph (f ) across to Q is the graph (−f ) and this concludes the
proof. �
Corollary 2.3 and the symmetry property allow us to consider, without loss of
generality, that the mean curvature satisfies H ≤ 0 in the proof of Theorem 1.1,
that is, f > 0 on �.

3. The Mean Curvature Equation

In this section we establish the Dirichlet problem that we need to solve and we
study the nature of the prescribed mean curvature equation associated to this prob-
lem. Consider the upper-halfspace for Hn+1. Let Q be a totally geodesic hyper-
plane or an equidistant hypersurface. After an isometry of Hn+1, Q is given by
xn = cot (θ)xn+1. Let � be a bounded domain in Q. Parametrize � in rectangular
coordinates (x1, . . . , xn+1). The geodesic through a point of Q is given by

s →
(
x1, . . . , xn−1, xn

cos (s + θ)
cos θ

, xn
sin (s + θ)

cos θ

)
.
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Then the graph � is locally given by the parametrization

(x1, . . . , xn) →
(
x1, . . . , xn−1, xn

cos (u+ θ)
cos θ

, xn
sin (u+ θ)

cos θ

)
,

where u = u(x1, . . . , xn) is a smooth function on the variables xi . Let yi = xi, 1 ≤
i ≤ n− 1 and yn = xn(cos(u+ θ))/ cos θ) as new independent variables. Then the
new parametrization of � becomes

(y1, . . . , yn) → (y1, . . . , yn, yn tan (u+ θ)),
or, in other words, � satisfies the equation yn+1 = g(y1, . . . , yn), where

g(y1, . . . , yn) = yn tan (u+ θ).
Now recall the relation between H and the mean curvature H ′ of � with respect to
the Euclidean metric:

H = xn+1H
′ + xn+1 ◦N,

where N is an (Euclidean) unit normal vector field on � (see, for example, [8]).
From the classical formula of H ′ in terms of g, we have

EH(u) =: div
∇g√

1 + |∇g|2 − n

g

(
H − 1√

1 + |∇g|2
)

= 0.

Consequently, our problem of finding constant mean curvature graphs is equivalent
to solving the boundary-value problem

(PH ) =
{
EH(u) = 0 in �,
u = 0 on ∂�.

One can easily check that the operator EH is quasilinear elliptic (uniformly elliptic
if |∇u| remains bounded) and that there exists the trivial solution u = 0 for the
value H = cos θ . This solution corresponds to the domain �.

The Schauder theory requires C1-uniform bounds of the function u in (PH) to
establish C1,α uniform bounds. Hence, we would need C0 and C1 estimates for the
solution u of EH(u) = 0. First, we obtain C0 and C1 estimates for u provided that
we have the corresponding bounds for the function f that define the graph (see
Definition 2.1), since the relation between the functions u and f is

cos (u+ θ) = A e2f − 1

A e2f + 1
, A = 1 − cos θ

1 + cos θ
.

However, it is more convenient to work with other related functions that help us
for searching a-priori estimates. First, we begin with C0-bounds. With the above
notation, if x = (q, f (q)) ∈ �, we have

〈x, a〉 = (cosh f (q)− h sinh f (q))τ − λ sinh f (q)

= τ cosh f (q)− (λ+ hτ) sinh f (q) = τ cosh f (q)− 1

λ
sinh f (q).
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Hence, we obtain

f = log
λ

(1 − h)
1

〈x, a〉 +√
1 + 〈x, a〉2

. (4)

With the objective of obtaining C1-bounds of a solution f of our Dirichlet
problem, we have to estimate |∇f | on �. The gradient of f is related with the
function 〈N, a〉, where N is a unit normal vector field on � = graph(f ). More
precisely, a computation of N yields the following: if x = (q, f (q)) ∈ �,

N(x) = − 1

A(h, f (q),∇f (q))(cosh f (q)− h sinh f (q))(h cosh f (q)−

− sinh f (q))q + ∇f (q)+ λ cosh f (q)(cosh f (q)− h sinh f (q))a),

where

A(h, f (q),∇f (q)) =
√
(cosh f (q)− h sinh f (q))2 + |∇f |2(q).

With the choice of N , we obtain

〈N(q), a〉 = − (cosh f (q)− h sinh f (q))2

λ
√
(cosh f (q)− h sinh f (q))2 + |∇f |2(q) .

Thus

|∇f |(q) = (cosh f (q)− h sinh f (q))

√
(cosh f (q)− h sinh f (q))2

λ2〈N(q), a〉2
− 1. (5)

Collecting this work, identities (4) and (5) get

PROPOSITION 3.1. Let Ua,τ be either a totally geodesic hyperplane or an equi-
distant hypersurface in Hn+1 and let � be a domain in Ua,τ . Let f be a smooth
function on �.

(1) To obtain a-priori C0-bounds for f , it suffices to have a-priori C0-bounds of
the function 〈x, a〉, x ∈ �.

(2) To obtain a-priori C1-bounds for f , it suffices to have a-priori C0-bounds of
the function 〈x, a〉, x ∈ � and a-priori bound C > 0 such that 〈N, a〉 ≤ −C
on �.

4. A Priori C0-Bounds

In order to find a solution of our Dirichlet problem (PH ), the program of the
continuity method requires us to find a-priori C1,α-estimates for functions whose
graphs have constant mean curvature. In this section, we first seek C0-estimates
for our solutions. We start by considering the case that the mean curvature satisfies
|H | ≤ 1.



GRAPHS OF CONSTANT MEAN CURVATURE IN HYPERBOLIC SPACE 67

THEOREM 4.1. Let Q be either a totally geodesic hyperplane or an equidistant
hypersurface and let � be a bounded domain in Q. Then there exists a constant
C1 = C1(�) > 0 such that if f is a smooth function on �, f = 0 in ∂�, whose
graph � has constant mean curvature H , |H | ≤ 1, then

−C1 ≤ f ≤ C1.

Moreover, if −1 ≤ H ≤ h (resp. h ≤ H ≤ 1), then 0 ≤ f ≤ C1 (resp. −C1 ≤
f ≤ 0).

Proof. Without loss of generality, we can assume that a = (0, . . . , 0, 1). Then
the equation that satisfiesQ is xn+1 = τ and 〈x, a〉 = xn+1. Following Equation (9)
in [8], 0 < x0 ≤ max∂� x0 = −B1, where B1 = B1(�) is a negative constant. For
each x ∈ �, we have

−1 = 〈x, x〉 = −x2
0 +

n+1∑
i=1

x2
i ≥ −x2

0 + x2
n+1.

Then

−
√
B2

1 − 1 ≤ 〈x, a〉 ≤
√
B2

1 − 1.

The constant
√
B2

1 − 1 provides us with the correspondent constant C1 according
to Proposition 3.1. The final part is a consequence of Corollary 2.3. �
We also need C0-bounds in the range |H | > 1. The next theorem follows ideas due
to Serrin (see also [4] and [8]).

THEOREM 4.2. Let Q be either a totally geodesic hyperplane or an equidistant
hypersurface and let � be a bounded domain in Q. Consider H as a real number
with |H | > 1. Then there exist constants C2 = C2(Q,H) and C3 = C3(Q,H),
such that if f is a smooth function on�, f = 0 in ∂� whose graph � has constant
mean curvature H , then C2 ≤ f ≤ C3.

Proof. From Equations (2) and (3), we have

#(H 〈x, a〉 + 〈N, a〉) = (nH 2 − |σ |2)〈N, a〉 ≥ 0.

The maximum principle yields

H 〈x, a〉 + 〈N, a〉 ≤ max
q∈∂�

(H 〈x, a〉 + 〈N, a〉) ≤ Hτ. (6)

For each x ∈ �,

〈a, a〉 = 1 = 〈aT , aT 〉2 + 〈N, a〉2 − 〈x, a〉2 ≥ 〈N, a〉2 − 〈x, a〉2,

where aT denotes the tangent part of the vector a on �. Then

〈N, a〉2 ≤ 1 + 〈x, a〉2.
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Inequality (6) then implies

H(〈x, a〉 − τ) ≤ −〈N, a〉 ≤
√

1 + 〈x, a〉2. (7)

From Corollary 2.3, if H > 1, 〈x, a〉 ≥ τ and if H < −1, 〈x, a〉 ≤ τ . Squaring
(7), we obtain

H 2(〈x, a〉 − τ)2 ≤ 1 + 〈x, a〉2

or, equivalently,

(H 2 − 1)〈x, a〉2 − 2τH 2〈x, a〉 +H 2τ 2 − 1 ≤ 0.

Consequently,

τH 2 − √
H 2τ 2 +H 2 − 1

H 2 − 1
≤ 〈x, a〉 ≤ τH 2 + √

H 2τ 2 +H 2 − 1

H 2 − 1
. (8)

Hence, we have the lower and upper bounds for the function 〈x, a〉. The C0 estim-
ate for f follows from Proposition 3.1 and this completes the proof. �

Remark 2. Inequality (8) can be compared with the corresponding height estim-
ate that appears in [4] for a graph on a domain of totally geodesic hyperplanes. In
this case, [4] gives

f (q)| ≤ arc sinh
1√

H 2 − 1
.

By identity (4), this implies

− 1√
H 2 − 1

≤ 〈x, a〉 ≤ 1√
H 2 − 1

.

This is given in (8) for τ = 0. Thus, (8) extends the height estimates to graphs on
equidistant hypersurfaces.

5. A-Priori C1-Bounds

Continuing our treatment of the analysis of C1,α-bounds, in this section we derive
the C1-estimates for the solution of the Dirichlet problem (PH ).

THEOREM 5.1. Let Q be either a totally geodesic hyperplane or an equidistant
hypersurface and let � be a bounded domain in Q such that ∂� is mean convex.
LetH be a real number such that −H∂� < H < H∂�. Then there exists a constant
C4 = C4(Q,�,H) such that, if f is a smooth function on f , f = 0 in ∂� whose
graph � has with constant mean curvature H , we have sup� |∇f | ≤ C4.
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Proof. We distinguish two cases:

First case. Suppose −H∂� < H ≤ h. From Corollary 2.3 we have 〈x, a〉 ≤ τ .
Thus 〈ν, a〉 ≤ 0 in ∂� where ν denotes the inner conormal along ∂�. In view of
(6), there exists a boundary point q0 ∈ ∂� such that the function H 〈x, a〉 + 〈N, a〉
attains its maximum, that is,

H 〈x, a〉 + 〈N, a〉 ≤ Hτ + 〈N(q0), a〉. (9)

Furthermore, (6) implies

H 〈ν(q0), a〉 + 〈dNq0ν(q0), a〉 ≤ 0, (10)

where N is a unit normal field on � such that 〈N, a〉 ≤ 0. A computation of (10)
leads (H − σ (ν, ν)(q0))〈ν(q0), a〉 ≤ 0, where σ is the second fundamental form
of �. Since 〈ν, a〉 is nonpositive along ∂�, we obtain

H − σ (ν, ν)(q0) ≥ 0. (11)

On the other hand, if {v1, . . . , vn−1} is an orthonormal frame of ∂� and η is the
unit normal field to ∂� inQ pointing to �, we have

σ (vi, vi) = 〈N,α′′
i (0)〉

= −λh〈N(q0), a〉 + σ ∂�(vi, vi)〈N(q0), η(q0)〉, (12)

where αi : I → Q is a smooth curve with αi(0) = q0, α′
i(0) = vi , 1 ≤ i ≤ n − 1

and σ ∂� denotes the second fundamental form of ∂� in Q. Since, along ∂�,

1 = 〈N,N〉 = 〈N, η〉2 + 〈N, ξ 〉2 = 〈N, η〉2 + λ2〈N, a〉2,

then

〈N, η〉 = −
√

1 − λ2〈N, a〉2. (13)

By identity (13), and summing (12) from i = 1 to n− 1, we obtain

n−1∑
i=1

σ (vi, vi) = −λh(n− 1)〈N(q0), a〉 − (n− 1)H ∂�(q0)
√

1 − λ2〈N(q0), a〉2.

Then (11) yields

−λh〈N(q0), a〉 −H∂�(q0)
√

1 − λ2〈N(q0), a〉2 ≥ H (14)

or, equivalently,

H∂�(q0)
√

1 − λ2〈N(q0), a〉2 ≤ −λh〈N(q0), a〉 −H.
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Squaring this inequality, we obtain

λ2(h2 +H∂�(q0)
2)〈N(q0), a〉2

+ 2λhH 〈N(q0), a〉 +H 2 −H∂�(q0)
2 ≥ 0. (15)

Consider α1(H, q0), α2(H, q0) to be the two roots of the left-hand side in (15), with
α1(H, q0) ≤ α2(H, q0). Then

α2(H, q0) = −hH +H∂�(q0)
√
h2 +H∂�(q0)2 −H 2

λ(h2 +H∂�(q0)
2)

.

Inequality (15) implies that 〈N(q0), a〉 ≤ α1(H, q0) or 〈N(q0), a〉 ≥ α2(H, q0).
We distinguish three cases:

(1) AssumeH ≤ 0. In this case, α2(H, q0) > 0 because H ≤ 0. Since 〈N(q0), a〉
< 0, then 〈N(q0), a〉 ≤ α1(H, q0), that is

〈N(q0), a〉 ≤ −hH −H∂�(q0)
√
h2 +H∂�(q0)

2 −H 2

λ(h2 +H∂�(q0)2)
.

Since, by hypothesis, H∂�(q0) ≥ H∂� > −H , α1(H, q0) is a negative num-
ber. Using (9), we can estimate

〈N, a〉 ≤ H(τ − 〈x, a〉) +N(q0), a〉 ≤ 〈N(q0), a〉

≤ −hH −H∂�(q0)
√
h2 +H∂�(q0)

2 −H 2

λ(h2 +H∂�(q0)2)
(16)

Denote

H∂� = max
q∈∂�

H∂�(q) > 0.

By (16), one directly verifies that

〈N, a〉 ≤
−hH −H∂�

√
h2 +H 2

∂� −H 2

λ(h2 +H 2
∂�)

≤ H∂�

λ(h2 +H 2
∂�)

(
h−

√
h2 +H 2

∂� −H 2
)
. (17)

Remark that this case comprises of the case where Q is a totally geodesic
hypersurface, since h = 0. Therefore, the rest of the proof only assumes that
Q is an equidistant hypersurface.
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(2) Assume 0 < H ≤ h. Since ∂� is mean convex, we have that α1(0, q) <
0 < α2(0, q) for any q ∈ ∂�. By continuity and because ∂� is a compact set,
there exists a (small) constant h0 = h0(�,Q) < h, such that α1(H, q) < 0 <
α2(H, q) for all H ∈ [0, h0], q ∈ ∂�. Hence, 〈N(q0), a〉 ≤ α1(H, q0). Then,
for each H ∈ [0, h0] and by virtue of (9),

〈N, a〉 ≤ Hτ −H 〈x, a〉 + 〈N(q0), a〉 ≤ Hτ + 〈N(q0), a〉

≤ Hh(h2 +H∂�(q0)
2)− hH −H∂�(q0)

√
h2 +H∂�(q0)

2 −H 2

λ(h2 +H∂�(q0)2)

≤ Hh(h2 +H 2
∂�)−H 2

∂�

λ(h2 +H 2
∂�)

(18)

where, the second inequality we apply Corollary 2.3 to assure that 〈x, a〉 ≥ 0.

Choose h0 small so that h0h(h
2 +H 2

∂�)−H 2
∂� < 0. Then (18) becomes

〈N, a〉 ≤ h0h(h
2 +H 2

∂�)−H 2
∂�

λ(h2 +H 2
∂�)

< 0.

(3) Assume H ∈ [h0, h]. By (14), we have −λh〈N(q0), a〉 ≥ H or, equivalently,
〈N(q0), a〉 ≤ −(H/λh). Corollary 2.3 and inequality (9) yield

〈N, a〉 ≤ H

(
τ − 〈x, a〉 − 1

λh

)
= H

(
−〈x, a〉 + h2 − 1

λh

)

≤ H
h2 − 1

λh
≤ h0

h2 − 1

λh
= −h0

τ
< 0 (19)

Second case. Suppose h ≤ H < H∂�. The proof is similar and we only outline it.
In this case, 〈x, a〉 ≥ τ . With appropriate changes in (11), (13) and (14), we obtain
the same inequality (15). Since α2(H, q0) is positive again (because H∂� > H ),
we see that 〈N(q0), a〉 ≤ α1(H, q0). As in (17), we have

〈N, a〉 ≤ Hτ −H 〈x, a〉 + 〈N(q0), a〉 ≤ Hτ + 〈N(q0), a〉

≤
−hH −H∂�

√
h2 +H 2

∂� −H 2

λ(h2 +H 2
∂�)

≤ − hH∂�

λ(h2 +H 2
∂�)

= −τ H∂�

h2 +H 2
∂�

. (20)

Set
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−C = max

{
H∂�

λ(h2 +H 2
∂�)
(h−

√
h2 +H 2

∂� −H 2),

h0h(h
2 +H 2

∂�)−H 2
∂�

λ(h2 +H 2
∂�)

,−h0

τ
,−τ H∂�

h2 +H 2
∂�)

}
.

This constant is negative and only depends on Q, � and H . Recall that if Q is a
totally geodesic hyperplane, then let

C = −
H∂�

√
H 2
∂� −H 2

H
2
∂�

.

Now we obtain that 〈N, a〉 ≤ −C. It follows from Proposition 3.1, Theorems 4.1
and 4.2, the desired C1-estimates for the function f . �

6. Proof of Theorem 1.1

In this section we prove Theorem 1.1 using the method of continuity. As usual, the
proof is based on the establishment of global C1,α a-priori estimates for prospective
solutions. Consider the set S defined as

S = {H ∈ (−H∂�, h]; there exists a smooth function on �, f = 0

in ∂� whose graph � has constant mean curvature H }.
Since 0 ∈ S (for f = 0), then S is not an empty set.

We show that the set S is open. This is accomplished by using the implicit
function theorem for Banach spaces. Let x:M → Hn+1 be an isometric immersion,
where M is a compact manifold with ∂M �= ∅. For each u ∈ C1,α

0 (M), we define
xt : M → Hn+1 the map xt (p) = expx(p)(tu(p)N(p)), where N denotes a unit
normal vector field alongM in Hn+1. For t near zero, xt is an immersion. LetH be
the mean curvature function and define J : C1,α

0 (M) → Cα(M) by

J (u)(p) = d

dt |t=0
H(xt(p))).

The operator J is the linearization of H at x associated to normal variations given
by N . Then the Jacobi operator J is given by J = #+ |σ |2 − n.

Assume that H ∈ S and � is the associated graph for H . Consider the function
ψ = 〈N, a〉. By virtue of Equations (2) and (3), we have

Jψ = −n(H 〈x, a〉 + ψ).
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If H ≤ 0, inequality (6) implies Jψ ≥ 0. If H ∈ (0, h], (18) and (19) imply,
respectively,

H 〈x, a〉 + 〈N, a〉 ≤ Hτ + 〈N(q0), a〉 ≤ Hτ + α1(H, q0) ≤ 0,

H 〈x, a〉 + 〈N, a〉 ≤ −H
τ

≤ 0.

In conclusion Jψ ≥ 0. Therefore J is a Fredholm operator of index zero. By the
implicit function theorem, there exists a neighbourhood ofH , namely (H−δ,H +
δ), δ > 0, such that for each H ′ belonging to this interval, there exists a graph on
� of constant mean curvature H ′.

Finally, the proof ends by using the continuity method, provided a-priori C1,α-
bounds independent of H are established for each solution with c ≤ H ≤ h

and −H∂� < c. We now turn our attention to the upper bound for 〈N, a〉 in
Theorem 5.1. Consider

(1) Case −1 ≤ c. Theorem 4.1 gives C0-estimates depending only on Q and �.
On the other hand, in (17) and when H ≤ 0, we get

〈N, a〉 ≤ H∂�

λ(h2 +H 2
∂�)
(h−

√
h2 +H 2

∂� −H 2).

Call

C ′ = max

{
−H∂�

λ(h2 +H 2
∂�)
(h−

√
h2 +H 2

∂� −H 2),
h0

τ
,

H 2
∂� − h0h(h

2 +H 2
∂�)

λ(h2 +H 2
∂�)

}
;

whenQ is a totally geodesic hyperplane, take

C ′ =
H∂�

√
H 2
∂� − c2

H
2
∂�

.

This number C ′ depends only onQ and� and verifies 〈N, a〉 ≤ −C ′. In view
of Proposition 3.1, there are C1-estimates. The continuity method and the fact
that S is open imply that, for each H , c ≤ H ≤ h, there exists a function f
on� vanishing on its boundary and whose graph has constant mean curvature
H .

(2) Case c < −1. The above construction for −1 ≤ c assures the existence of
graphs with constant mean curvature until the value H = −1. Because S
is open, in a neighbourhood of this value there is an interval of solutions,
namely [−1 − δ,−1], where δ = δ(Q,�) > 0. Let c ≤ −1 − δ. The bound
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C ′ for 〈N, a〉 holds as above. Then, for each graph on�whose constant mean
curvature H satisfies c ≤ H ≤ −1 − δ, Corollary 2.3 and the estimate (8)
imply

τ ≥ 〈x, a〉 ≥ τ − √
c2τ 2 + c2 − 1

H 2 − 1

≥ τ − √
c2τ 2 + c2 − 1

δ2 + 2δ
.

Thus we have C0-bounds (independent on H ) in the interval [c,−1 − δ] and
this finishes the proof of Theorem 1.1.

Finally, it remains to examine the final statement of Theorem 1.1. Let S be as in
the definition but changing the interval of H by (−H∂�, 1]. Assume H∂� > 1. The
C0-bounds are derived in Theorem 4.1 and the C1-estimates hold as above, since
in the interval [h, 1] we have

〈N, a〉 ≤ −τ H∂�

h2 +H 2
∂�

.

Let us prove that [h, 1] is open in S. We only have to verify that Jψ ≥ 0. Since
H∂� > 1, inequality (20) implies

H 〈x, a〉 + 〈N, a〉 ≤ Hτ − Hh+H∂�(q0)
√
h2 +H∂�(q0)

2 −H 2

λ(h2 +H∂�(q0)2)

≤ Hh(h2 +H∂�(q0)
2 − 1)−H∂�(q0)

√
h2 +H∂�(q0)2 − 1

λ(h2 +H∂�(q0)
2)

≤
√
h2 +H∂�(q0)2 − 1

λ(h2 +H∂�(q0)2)
(
√
h2 +H∂�(q0)2 − 1 −H∂�(q0)) ≤ 0

and J follows being a Fredholm operator of zero index. This completes the proof
of Theorem 1.1.
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