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Abstract. In this paper we prove that a surface in Euclidean three-space

R3 with nonzero constant Gauss curvature foliated by circles is a surface of

revolution. In the case that the Gauss curvature vanishes on the surface,

then the planes containing the circles must be parallel.

1. Introduction and statement of results

A cyclic surface in R3 is a surface foliated by pieces of circles, that is, it
is generated by a smooth uniparametric family of pieces of circles. Surfaces of
revolution are the best known examples of cyclic surfaces. In the eighteenth
century, Euler proved that the catenoid is the only minimal surface of revolution.
In 1860s Riemann found a family of embedded minimal surfaces foliated by circles
in parallel planes. Each one of such surfaces is invariant by a group of translations
and presents planar ends in a discrete set of heights ([7]). At the same time,
Enneper proved that in a minimal cyclic surface, the foliating planes must be
parallel ([3, 4]). As a consequence of Euler, Riemann and Enneper’s works, we
have that the catenoid and Riemann minimal examples are the only minimal
cyclic surfaces in Euclidean space. A century later, Nitsche ([6]) studied in 1989
cyclic surfaces with nonzero constant mean curvature and he proved that the only
such surfaces are the surfaces of revolution discovered by Delaunay in 1841 ([1]).

In this paper we study cyclic surfaces with constant Gauss curvature. As first
examples, we have the family of surfaces of revolution (see [2] for a description of
these surfaces). We shall prove that, except in the case that the Gauss curvature
vanishes on the surface, the only cyclic surfaces with constant Gauss curvature
are the surfaces of revolution. When the Gauss curvature is zero, the surface
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are not necessarily rotational, but we shall describe all them. We summarize the
results of this paper in the next two theorems:

Theorem 1. Let M be a surface in R3 with constant Gauss curvature and foliated
by pieces of circles. Then M is included in a sphere or the planes containing the
circles of the foliation are parallel.

Theorem 2. Let M be a surface in R3 with constant Gauss curvature K and
foliated by pieces of circles in parallel planes.

(1) If K 6= 0, then M is a surface of revolution.
(2) If K = 0, then M can be parameterized, up a rigid motion of R3, as

X(u, v) = (a1u+a0, b1u+b0, u)+(r1u+r0)(cos v, sin v, 0), a0, a1, b0, b1, r0, r1 ∈ R.

As a corollary of both theorems, we obtain:

Corollary 1. All cyclic surfaces in R3 with nonzero constant Gauss curvature
are surfaces of revolution.

In this sense, this corollary may be viewed as the analogous result to the
Nitsche’s theorem of the case of nonvanishing constant mean curvature surfaces.

Remark. The author has extended these results of cyclic surfaces to other ambient
spaces. See [5] as a survey on this subject and references therein.

2. Proof of results

Consider M a surface in R3 with Gauss curvature K. Let X = X(u, v) be a
local parametrization of M and let ν denote the unit normal vector field on M

given by

ν =
Xu ∧Xv

|Xu ∧Xv|
, Xu =

∂X
∂u

, Xv =
∂X
∂v

,

where ∧ stands the cross product of R3. The metric 〈, 〉 in each tangent plane is
determined by the first fundamental form

I = 〈dX, dX〉 = Edu2 + 2Fdudv + Gdv2,

with differentiable coefficients

E = 〈Xu,Xu〉, F = 〈Xu,Xv〉, G = 〈Xv,Xv〉.

The shape operator of the immersion is represented by the second fundamental
form

II = −〈dν, dX〉 = e du2 + 2f dudv + g dv2,
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with differentiable coefficients

e = 〈ν,Xuu〉, f = 〈ν,Xuv〉, g = 〈ν,Xvv〉.

Under this parametrization X the Gauss curvature K has the classical expression

(1) K =
eg − f2

EG− F 2
.

Let us denote by [, , ] the determinant in R3 and put W = det I = EG − F 2.
With this notation (1) writes as

(2) KW 2 = P
def= [Xu,Xv,Xuu][Xu,Xv,Xvv]− [Xu,Xv,Xuv]2.

Consider now that M is a cyclic surface with constant Gauss curvature. After a
homothety, it may be assumed without loss of generality that the Gauss curvature
is ε = −1, 0 or 1.

Proof of Theorem 1. We follow the same ideas as in [6]. Let Γ = Γ(u) be
an orthogonal smooth curve to each u-plane of the foliation and denote by u its
arc-length parameter. We assume that the planes of the foliation are not parallel
and we shall arrive that M is included in a sphere. Let t be the unit tangent
vector to Γ. Consider the Frenet frame of the curve Γ, {t,n,b}, where n and b
denote the normal and binormal vectors respectively. Locally we parameterize M

by

(3) X(u, v) = c(u) + r(u)(cos v n(u) + sin v b(u)),

where r = r(u) > 0 and c = c(u) denote the radius and centre of each u-circle o
f the foliation. Consider the Frenet equations of the curve Γ:

t′ = κn

n′ = −κt + σb

b′ = −σn

where the prime ′ denotes the derivative with respect to the u-parameter and
κ and σ are the curvature and torsion of Γ, respectively. Observe that κ 6= 0
because Γ is not a straight-line. Also, set

(4) c′ = αt + βn + γb,

where α, β, γ are smooth functions on u.
By using the Frenet equations and (4), a straightforward computation of W 2

and P shows that both functions can be expressed by trigonometric polynomial
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on cos nv, sin nv. Exactly, there exist smooth functions on u, namely An and Bn,
such that (2) writes as

(5) 0 = εW 2 − P = A0 +
4

∑

n=1

(An cos nv + Bn sin nv), ε = −1, 0, or 1.

Since this is an expression on the independent trigonometric terms cos nv and
sin nv, all coefficients Ai, Bi vanish. We discuss two cases:
Case ε = 0. Equation (5) reduces simply as P = 0. A straightforward computa-
tion shows that

A4 =
κ2r4(β2 + κ2r2 − γ2)

8
= 0

B4 =
κ2r4βγ

4
= 0.

According the expression of B4, let us distinguish two possibilities:

(1) β = 0. From A4 = 0, it implies

κ2r4(−γ2 + κ2r2)
8

= 0,

and then γ = ±κr. The computation of the coefficient A3 leads

A3 =
−3κ3r5α

4
= 0

and thus α = 0. Then B3 = 3κ3r5r′/4 = 0, that is, r′ = 0. In this
situation, A2 = κ4r6 = 0, contradiction.

(2) γ = 0. From the coefficient of A4, we have

A4 =
r4(β2 + κ2r2)2

8
= 0,

which is a contradiction again.

Case ε = ±1. In this situation, the coefficient B4 is

B4 =
βγr4(2β2 − 2γ2 − εκ2 + 2κ2r2)

4
= 0.

Consider the following cases:

(1) β = 0. Now we have

A4 =
r4(−γ2 + κ2r2)(−γ2 − εκ2 + κ2r2)

8
= 0

A3 =
ακr5(4γ2 + 3εκ2 − 4κ2r2)

4
= 0.
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In view of the expression of A3, we distinguish two possibilities according
the value of α.
(a) α = 0. Then A1 = −κ2r5γσ = 0. Thus σ = 0 or γ = 0.

(i): σ = 0. Now A4 = 0 yields two cases depending on the value of
γ. If γ = ±κr, then B3 = 0 gives κ3r5r′ = 0 and so r′ = 0. In
this case, A2 = 0 yields κ4r6 = 0, contradiction. Now consider
the case γ = ±κ

√
r2 − ε. Suppose ε = 1. If r2 = 1, then γ = 0

and as a consequence the line c reduces at one point c0. In
this case, M is included in the sphere of radius 1 centered at
c0. If r2 − 1 6= 0, and according of equation B3 = 0, we have
κ2r6r′ = 0 and thus r′ = 0 again. In this case, the coefficient
A0 is

A0 = κ4r6(r2 − 1) = 0,

contradiction. When ε = −1, identity B3 = 0 implies κ3r6r′ =
0, and then r′ = 0. With these conditions, A0 = κ4r6(1+r2) =
0: contradiction.

(ii): γ = 0. In this case,

A4 =
κ4r6(r2 − ε)

8
= 0.

If ε = 1 then r2 = 1. Since α = β = γ = 0, identity (4) implies
that c is a constant c0 ∈ R3. Thus the surface M is included
in the sphere of radius 1 centered at c0. In the case ε = −1,
we get a contradiction.

(b) α 6= 0. From A3 = 0 we have

(6) 4γ2 + 3εκ2 − 4κ2r2 = 0.

On the other hand, A4 = 0 implies γ = ±κr or γ = ±κ
√

r2 − ε.
Both cases are in contradiction with the identity (6).

(2) γ = 0. Now

A4 =
r4(β2 + κ2r2)(β2 − εκ2 + κ2r2)

8
= 0.

If ε = −1, we obtain a contradiction. Suppose now ε = 1. Then β =
±κ
√

1− r2. If r2 − 1 = 0, then β = 0 and this case has been discussed
previously. So, let us assume r2−1 6= 0. Substituting in the corresponding
expression of A3, we obtain

(7) α +
rr′√
1− r2

= 0.
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Now the coefficient A2 implies κ2r6r′
2 = 0 and thus r′ = 0. Equation (7)

leads α = 0. Then r is constant and equation (4) writes

c′ = ±κ
√

1− r2 n = ±
√

1− r2 t′.

By integrating, we conclude that there exists c0 ∈ R3 such that c(u) =
c0 +

√
1− r2 t(u). It follows that the parametrization (3) of M is given

by

X(u, v) = c0 +
√

1− r2 t(u) + r(cos v n(u) + sin v b(u)).

Therefore |X(u, v) − c0|2 = 1 and M is included in a sphere centered at
c0 of radius 1.

(3) βγ 6= 0. From the value of B4 we have

(8) γ2 = β2 − ε
κ2

2
+ κ2r2.

Substituting in A4 we conclude

(9) 16β4 − 8εβ2κ2 + κ4 + 16β2κ2r2 = 0.

If ε = −1, we get a contradiction. Assume ε = 1. Identity (8) yields
β2 − κ2

2 + κ2r2 ≥ 0. Substituting in (9), we conclude

0 = 16β4 − 8β2κ2 + κ4 + 16β2κ2r2 ≥ κ4,

contradiction.

Proof of Theorem 2. Without loss of generality, we assume that the planes
of the foliation are parallel to the (x1, x2)-plane. Let

X(u, v) = (a(u) + r(u) cos v, b(u) + r(u) sin v, u), u ∈ I, v ∈ J,

be a local parametrization of M . A computation of W and P yields

W = r2(1+
a′

2 + b′
2

2
+r′

2)+(2a′r′) cos v+(2b′r′) sin v+
a′

2 − b′
2

2
cos 2v+(a′b′) sin 2v.

P = −r3r′′ − r3a′′ cos v − r3b′′ sin v.

(1) Case ε = ±1. Again the identity (5) writes as

A0(u) +
4

∑

n=1

An(u) cos nv +
4

∑

n=1

Bn(u) sin nv = 0.

A computation yields

A4 = ε
r4

8
(a′4 − 6a′

2
b′

2 + b′
4)
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B4 = ε
r4

2
a′b′(a′2 − b′

2)

Assume a′ 6= 0 and b′ 6= 0 at some u-interval. Since B4 = 0, a′ =
±b′. Taking in account A4 = 0, it follows that r4b′

4 = 0, which is a
contradiction. Hence a′ = 0 or b′ = 0. Firstly assume a′ = 0 and b′ 6= 0
at some u-interval. The equation A4 = 0 yields r4b′

4 = 0 and we obtain
a contradiction again. The case a′ 6= 0 and b′ = 0 at some u-interval is
analogous and gives also a contradiction. As a consequence, a′ = b′ = 0.
This means that the circles generating M are coaxial and M must be a
surface of revolution.

(2) Case ε = 0. Identity (5) writes as P = 0. In view of the above expression
of P , it follows that r′′ = a′′ = b′′ = 0. As consequence, there are
constants r0, r1, a0, a1, b0, b1, such that

r(u) = r1u + r0

a(u) = a1u + a0

b(u) = b1u + b0

and we have the second statement of Theorem 2.
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[5] R. López, Cyclic hypersurfaces of constant curvature, to appear in Advances Studies in

Mathematics.

[6] J.C.C. Nitsche, Cyclic surfaces of constant mean curvature, Nachr. Akad. Wiss. Gottingen

Math. Phys, II 1 (1989) 1–5.
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