Journal of Differential Equations 171, 54-62 (2001) ®
doi:10.1006/jdeq.2000.3830, available online at http://www.idealibrary.com on 1DE ):I

Constant Mean Curvature Graphs on Unbounded
Convex Domains

Rafael Lopez!

Departamento de Geometria y Topologia, Universidad de Granada,
18071 Granada, Spain
E-mail: rcamino@ugr.es

Received July 26, 1999; revised January 31, 2000

In this paper, we consider the Dirichlet problem for the constant mean curvature
equation on an unbounded convex planar domain Q. Let H>0. We prove that
there exists a graph with constant mean curvature H and with boundary 02 if and
only if 2 is included in an infinite strip of width iH We also establish an existence
result for convex bounded domains contained in a strip.  © 2001 Academic Press

1. INTRODUCTION AND STATEMENT OF RESULTS

Consider a smooth surface M in three-dimensional Euclidean space,
having a non-parametric representation z=u(x, y) and consider the
upwards orientation. Then M has mean curvature H provided that the
function u=u(x, y) satisfies the partial differential equation

L) =div— om0, (1)
1+ |Vu|?

where div and V are the Euclidean divergence and gradient operators.
A solution of (1) is called an H-graph. The Dirichlet problem for Eq. (1)
corresponding to a fixed (smooth) domain € in the (x, y)-plane and H a
given constant consists of finding a solution of Lg(u#)=0 in 2 taking on
assigned continuous values on the boundary 0Q of Q. Geometrically, this
has the meaning that the resulting surface z =u(x, y) is defined over 2 and
spans a given space curve with single valued projection on the (x, y)-plane.

The first general existence theorem for H-graphs is due to Serrin. He
showed in [9] that when the curvature of 0Q satisfies

Kk=2H>0, (2)
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then there exists a solution of (1) for arbitrary prescribed boundary values.
His result requires, in particular, that Q be bounded and convex. In this
context, Serrin also showed that the lower bound (2) is necessary for the
existence of solutions with arbitrary boundary values. Serrin’s necessary and
sufficient condition was a natural extension of that given by Finn in [3]
who showed that minimal graphs (H =0) exist over a bounded domain for
arbitrary boundary values if and only if the domain is convex.

Necessary Condition. In the same paper, Finn derived a necessary condi-
tion for the existence of a solution on the unbounded domain (strip) between
two parallel lines: If u is a solution of (1) on a strip, then necessarily the width
h of the strip satisfies h < %. Our first result generalizes this to unbounded con-
vex domains and shows that a similarly strict condition is imposed on the
geometry of 2 by the existence of a solution.

THEOREM 1.1.  Let H >0 and let Q be an unbounded convex planar domain.
If Eq. (1) has a solution in Q, then Q is included in a strip of width 3.

Sufficient Conditions. It is important to notice that the results of Finn
and Serrin give sufficient conditions under which a domain admits solu-
tions with arbitrary boundary values. We now consider the particular case
of zero boundary data. In this particular case, there is a unique value H, >0
depending on @ for which solutions of (1) exist (as graphs over )
precisely for |H| < H,, (a discussion of this point may be found in [7]). In
[6] the author in collaboration with Montiel gives estimates on the value
of H, in terms of the geometry of Q. Further related results are also
obtained by the author in [5]

THEOREM 1.2. Let H>0 and let Q be an unbounded convex planar
domain included in a strip of width +. Then there exists an H-graph on
with boundary 0%.

As a consequence of Theorems 1.1 and 1.2, we obtain:

COROLLARY 1.3. Let H>0 and let Q be an unbounded convex planar
domain. Then there exists an H-graph in Q with boundary 08 if and only if
Q is included in a strip of width %;.

Finally, we establish an existence result of H-graphs for bounded convex
domains included in a strip.

THEOREM 1.4. Let H>0 and let Q be a bounded convex domain included
in a strip of width h>0. If H<3}, there exists an H-graph on Q whose
boundary is 0Q.
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Theorems 1.2 and 1.4 assert us that the Dirichlet problem with zero
boundary data associated to the constant mean curvature equation (1) can
be solved for convex domains included in a strip of width 4. When € is not
bounded, the result is optimum. However, when 2 is a bounded convex
domain included in a strip, it is to be wished that the assumption H <} on

the width of the strip can be relaxed in some sense, as it occurs when £ is
a disk.

2. PROOF OF RESULTS

Proof of Theorem 1.1. Let u be a solution of (1) in Q and let G denote
the graph of u. Next result follows the same ideas as in [3].

LeMMA 2.1.  For each p € Q, the disk D(p, &) centred at p and with radius
& is not included in Q.

Proof. We proceed by contradiction. Let X be a sphere of radius

whose center lies on the straight-line through p that is orthogonal to the
(x, y)-plane. Lift X vertically upwards until X' is completely above G. Then,
let us descend X until to find a first point of contact of 2" and G. Since
D(p, %) =, the contact point is interior and the maximum principle gives
us a contradiction. ||

We continue with the proof of Theorem 1.1. From Lemma 2.1 and the
convexity of €, it follows that Q is included in a strip B’ of width %. By
means of a rigid motion, we can assume that the strip is given by

1 1
B':{u, V) —H<y<H}. 3)

Since Q is a convex domain, then we have two possibilities: if the x-coor-
dinate is not bounded from above or below in ©, then 2 is a strip included
in B’; in other case, Q is asymptotic to a strip included in B'. In the first
case, it is known that the width of Q is less than %. Consider the second
one. Without loss of generality, we suppose that @ = {x >0} and Q n {x =0}
# . Let Bj, = B’ be the strip of width 4> 0 such that Q is asymptotic to
the boundary of Bj,. For each n>0, let { y,(n), y,(n)} =Q2n {x=n}, with
y1(n) < y,(n). For each m>n>0, consider 2, ,,=Q2n{(x, y); n<x<m,
y1(n) <y < y,(n)}. An integration of (1) over 2, ,, yields
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2H(m —n)(y,(n) — yy(n)) =2H area(Q,, ,,)

J {Vu, vy
02, /1 + |Vu|?

= 2m =t o) =y <2 (m=n 1),

‘ <length(0Q, ,,)

where v denotes the exterior directed unit normal along 02, ,,. Letting
m— oo, we have y,(n)— y,(n) <. Since the two branches of 9Q are
asymptotic to dB),, in the limit case (n— o), we conclude /1 < %, and the
theorem is proved.

Proof of Theorem 1.2. Without loss of generality, we suppose that the
strip B in the statement of the theorem is given by B={(x, y); —35<
» < 3%}. Solutions of Eq. (1) on unbounded convex planar domains and
with zero boundary data on the boundary satisfy a priori height estimates.
Let u be a solution of (1) such that u=0 on 0Q, being Q an unbounded
domain. First, since u is zero along 0€2, u is bounded in 2 (see [ 8, Lemma 2.4]).
Suppose now that Q is convex. Then a standard barrier argument [ 1] by
using halfcylinders of radius 5% of type z(x, y)= —./1/4H?*— y* and the
plane z=0 gives us

2(x, y)<uly, y) <0, (x,y)eQ. (4)

Now we are in position to prove Theorem 2. There exists two types of
unbounded convex domains in B: either an infinite strip parallel to the
x-axis, or a domain with the x-coordinate is lower (or upper) bounded and
asymptotic to a strip included in B.

(I) In the case that  is an infinite strip, by means of using a rigid
motion, we can suppose that Q= {(x, y); —h<y<h} with h<5g. Then
the piece of the cylinder of radius 5 given by

1 1 1
u(x,y)z/w—hz—/“_[z—yz, (x, y) e,

is a solution of (1) with =0 on 0Q.

(2) Now consider that Q is not a strip. In order to find a solution u
of the corresponding Dirichlet problem, we shall use of the classical Perron
method of superfunctions for (1) (see [4]; also [ 1] for an example in the
same context). This will be possible provided that for sufficiently small
disks there exist solutions of (1) with arbitrary continuous boundary
values. Let ve C%(Q) be a continuous function in Q and let D be a closed
disk in Q. We denote by ¢ the unique solution of the Dirichlet problem
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Ly,(0)=0 in D satisfying the condition #=v on dD. The existence of the
function v is assured by the Serrin result stated in Introduction: as D — B,
the radius of the disk D is less than ;% and so, the curvature of dD is
greater than 2H. We define the uniquely continuous function M ,(v) in Q
as

o(p), peD
v(p), peQ—D.

Following [4], we call a function ve C%Q) supersolution in Q if it satisfies
v= M p(v) for every disk D in Q. On the other hand, a continuous function
in Q will be called a superfunction relative to 0 if v is a supersolution in
Q and if, on 0D, v=0.

Let F denote the class all superfunctions relative to 0. The set F is not
empty since 0 € F: for any disk D= Q, 0= M ,(0) in D by the maximum
principle of Eq. (1). The next lemma gives some properties of F that are
necessary in the Perron technique.

Lemma 2.2. (1) If{vy,..v,} =F, then min{vy, .., v,} also belongs to F.
(2) IfveF and if D is a disk in Q, then M p(v)eF.

Proof. (1) Let D be a disk in Q and denote v=min{ov,, .., v,}. On
0D, we have v;>v and the maximum principle gives M ,(v;) = M p(v) for
each i. Then min{ M ,(v,), ..., M p(v,)} = M p(v). Furthermore, as the functions
v are supersolutions, v; > M ,(v;) on D and then v > min{ M 5(v,), ..., M p(v,)}.
As a consequence, we obtain the desired inequality v > M, (v). This proves
that v is a supersolution. On the other hand, v;>0 on 0Q2. Thus v>=0 on
0Q, and we arrive that v is a superfunction in 2 relative to 0.

(2) First, we must show that
Mp(v) =M p(Mp(v))

for any disk D' < Q. This clearly holds if D’ lies either completely inside or
completely outside of D. Thus, we only consider the case where D’ is partly
inside and partly outside of D. As ve F, it follows that v > M ,(v) and the
maximum principle yields > M p(v) on D'. The fact that v > M ,(v) and
the maximum principle leads again

03> Mp(v) > M p(Mp(v)). (5)

We now observe that by (5), we have M p(v)=v= M p(Mp(v)) in D' — D.
We study the situation in D' n D.
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(a) If ped(D'nD)nID, Mp(v)(p)=v(p) and by (5), Mp(v)(p)
=M p(Mp(v))(p)-
(b) Ifped(D'nD)NOD", Mp(Mp(v))(p)=Mpv)(p).

As a consequence, it follows
Mp(v)>Mp(Mp(v))  ond(D'AD)

and the maximum principles yields the desired inequality M ,,(v) = M (M p(v))
in D' D. Finally, since 02<Q—D, My(v)=v=>0 on 9Q. Hence, we
conclude that M ,(v) is a superfunction in Q relative to 0. ||

Let z be the function defined in B given by z(x, y) = —./1/4H* — 32 Let
Z =1z, be the restriction of z to the domain Q. Consider

F*={veF,Z<v<0in Q}.

Remark that the functions of F* are uniformly bounded. Also, the functions

of F* satisfy the properties (1) and (2) of Lemma 2.2. For the property (1),

Z <v;<0 and the same occurs with the function min{v,, ..., v,}. In relation

to the second property, let ve F*. As Z<v<0, the maximum principle

implies M p,(Z) < M p(v) < Mp(0) on D. But M,(Z)=Z and M ,(0) <O0.
Define

u=inf{v;ve F*} =inf{M(v); ve F*, D < Q}.

Perron’s method shows that the function u is a solution of equation L ,(u) =0
in Q. We want to prove that u is continuous in Q and assumes 0 as boundary
values. The fact that u is continuous in € is a consequence of Harnack’s
principle: if D is a disk in Q, the functions M ,(v) are uniformly bounded
and this implies uniform boundedness of their first derivatives (see [9]).
Thus the family {Mp(v); ve F*} is uniformly continuous in D and the
same occurs for the function w.

It remains to show that the Perron solution actually takes the value 0 on
the boundary. The study of the boundary behaviour of the Perron solution
is determined by the geometric properties of the boundary of 2. This can
be accomplished by the technique of barriers. Indeed, let p € 02. Consider
an (infinite) quarter-cylinder C, of radius 55 whose axis is parallel to the
tangent line / to 022 at the point p. Now let us place C, in such a way that
the axis and one component of C, lie in the (x, y)-plane. Also, assume that
C, = {z<0}, the concave side of C, is looking towards p and 0C, N
{z=0} lies in the component of {z=0} —/ that does not contain Q. By
the convexity of 02, we get C, n G= &, where G is the graph of the func-
tion u. Move C, towards © by horizontal translations until to touch G. By
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taking account of maximum principle, the convexity of © and the height
estimate (4), the first point of contact between C, and G occurs at p.
Denote by v, the function whose graph is C,. Consequently, the functions
v, and w=0 are a modulus of continuity in a neighbourhood of p. Since

v,(p)=w(p)=0, we obtain u(p) = 0. This completes the proof of Theorem 2.

Remark 1. The solution obtained in Theorem 1.2 is unique at infinity [2].
In the paper [3] mentioned above, Finn also conjectured that the half-
cylinder of radius 1/2H was the only H-graph in a strip of width 1/H.
A counterexample can be obtained from the 1990 paper of Collin [1] who
succeeded in proving the existence of H-graphs over a strip of width 1/H
with boundary formed by two convex functions on 0Q.

Proof of Theorem 1.4. Let Q be a convex bounded domain included in
a strip of width h. If H <, the solvability of the Dirichlet problem

divL=2H in Q,
1+ |Vul? (6)
u=0 on 0Q,

can be achieved using the continuity method. Following the usual Leray—
Schauder approach (see [4, Theorem 13.8]), solvability of (6) follows if
there is a constant M >0 such that an apriori bound

|t| c1 (@) =sup |u| +sup [Vu| <M
Q Q

holds for any solution u of (6) with 0 < H <c¢, where ¢ is a fixed real
positive number such that ¢ <. The constant M is required to be inde-
pendent of u and H. Standard theory of quasilinear equations assures that
the estimate of |Vu| in Q is obtained if we have bounds of |Vu| along 0.

For H=0, we have the trivial solution ¥ =0 and from the implicit func-
tion theorem applied to Eq. (1), there exists a range of solutions for (6)
with 0 < H < ¢, for a small number ¢,. In the interval [0, ¢, ], there exists
uniform C°-bounds depending only on Q. For every solution u of (6) with
¢o < H < ¢ the height estimate for graphs due to Serrin implies that |u]| <
I/|H| <1/cy ([9]; see also [8]). Thus we obtain an apriori estimation
of supg |ul.

On the other hand, C'-estimates of u along the boundary 0£2 are obtained
provided that we are able to establish apriori estimates of the slope of
the H-graph G of u along its boundary 0G =0Q. This estimate will be
accomplished with quarter-cylinders as geometrical barrier surfaces as in



CONSTANT MEAN CURVATURE GRAPHS 61

[6, Corollary 4]. This is summarized as follows. Without loss of generality,
consider that € is contained in the strip

‘1 €1
B* = < y<—=<¢,
{(x, Y —5<y<3 }
with ¢; <h/2. We need first a slight improvement on the height estimates
for u. By comparing with halfcylinders of radius % as in Theorem 1.2, the
maximum principle gets immediately —%<u <0 (remark that H<c<}).
Let K be the halfcylinder

h h 1
KZ{(X, yaz); _§<y<§’Z: _5\/ h2_4y2}a

whose mean curvature is ;. Consider K’ the piece of K that projects ortho-
gonally onto B*. Then the maximum principle asserts that we can move
upwards K’ until to touch the first time the plane z=0 and without con-
tacting with G. Therefore,

ey =: —3(h—/h*—4c?) <u(x, y) <0, (x, y)ef. (7)

In order to estimate the slope of the graph G, let pedG =02 be an
arbitrary boundary point. Consider K, a quarter-cylinder of radius 4 whose
axis is parallel to the tangent line / to 0Q at the point p and with the same
characteristics as C, in Theorem 1.2. Applying the estimate (7), we move
up K, slightly without touching G until to obtain a piece K}, of K, such
that its height is ¢, with respect to the plane z =0. After a rigid motion, the
surface K, can be viewed as the half portion of K'. By moving K, towards
p and by the convexity of 2, the same reasoning as in Theorem 1.2 proves
that the slope of G at the point p is less than the slope of K' along its
boundary. This estimate depends only on / and c¢,, or in others words, it
is independent on H. This completes the proof of the theorem.

Remark 2. 1t is worth pointing out that the bounded domain Q in
Theorem 1.4 is not necessarily strictly convex, in contrast to the Serrin result
in [9]. As a consequence, the boundary of our domain  can contain pieces
of straight-lines or, in other situation, the size of £2 can be too big inside
the strip.
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