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Abstract

Our aim is the study of constant mean curvature hypersurfaces (H-hypersurfaces)
in hyperbolic space with non connected boundary with possible asymptotic
boundary. We ask when the hypersurface inherits the symmetries of its bound-
ary. Also, results of non-existence of H-hypersurfaces are obtained in rela-
tion with the value of H and the distance between the boundary components.
The methods by which we arrive at our conclusions are the tangency princi-
ple, the Alexandrov reflection method and the existence of a special family of
H-hypersurfaces of revolution.

1 Introduction and preliminaries

In 1958 Alexandrov [1] showed that the round spheres are the only embedded closed
hypersurfaces of constant mean curvature in (n + 1)-dimensional hyperbolic space Hn+1.
The purpose of this paper is the study of smooth constant mean curvature hypersurfaces in
Hn+1 with non empty boundary. Recent progress have been obtained for several authors
when the hypersurface is compact and the boundary is a codimension two sphere [3, 13,
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14, 15]. Denote by H the mean curvature. When |H| ≤ 1 the only compact immersed
hypersurfaces of constant mean curvature H bounded by a codimension two round sphere
are the umbilical ones: domains of totally geodesic hyperplanes (H = 0), hyperspheres
(0 < |H| < 1) and horospheres (|H| = 1) (see [3, 13]). However, for |H| > 1 it is still
unknown if spherical caps are the only compact embedded hypersurfaces with spherical
boundary. There is a qualitative difference with respect to the study of constant mean
curvature hypersurfaces in hyperbolic and Euclidean spaces. The reason is that in Hn+1

there are spheres which have mean curvature bounded away from zero with their radii
tend to infinity. When |H| = 1, the behaviour of surfaces in H3 is looks as minimal
surfaces in Euclidean space, and the existence of horospheres makes rich the treatment of
the problems in Hn+1. The similarity between 1-surfaces in H3 and minimal surfaces in
R3 is made evident in [4], and it is the origin of a wide research on hypersurfaces of mean
curvature 1 [16]. If |H| > 1, the properties are very different from the case |H| < 1 and
some investigations have been done on the behaviour near the infinity [10].

Following in this direction, we deal what influence does the boundary have over the
shape of a H-hypersurface in Hn+1 and when, in the case that is embedded, the hyper-
surface inherits the symmetries of its boundary. In this sense and in order to set up
definitions to be used later, we say that M is a hypersurface of revolution if there exists a
geodesic in Hn+1 such that M is invariant by the group of rotations of Hn+1 that leaves
this geodesic pointwise fixed.

We will work in the upper halfspace model of Hn+1, that is,

Hn+1 = {(x1, . . . , xn+1) ∈ Rn+1;xn+1 > 0}

equipped with the metric

ds2 =
dx2

1 + . . . + dx2
n+1

x2
n+1

.

The hyperbolic space Hn+1 has a natural compactification Hn+1 = Hn+1 ∪Sn(∞), where
Sn(∞) is identified with asymptotic classes of geodesics rays in Hn+1. In the upper
halfspace model of Hn+1, the asymptotic boundary Sn(∞) of Hn+1 is the one-point com-
pactification of the hyperplane {xn+1 = 0}. Let M be a subset of Hn+1. We call the
asymptotic boundary of M the set ∂∞M given by

∂∞M = M ∩ Sn(∞),

where M denotes the closure of M in Hn+1. The concept of asymptotic boundary was in-
troduced by Anderson [2] to prove that any closed submanifold in Sn(∞) is the asymptotic
boundary of a minimal variety of Hn+1. The notion of asymptotic boundary is important
to understand the behaviour of noncompact constant mean curvature hypersurfaces (cf.
[5, 6, 7, 9, 11]).

2



For future references, we shall refer any codimension two spheres in Hn+1 or in Sn(∞)
as spheres. Let φ : M → Hn+1 be an isometric immersion of a smooth hypersurface M
with boundary ∂M 6= ∅, and let C be a codimension two submanifold of Hn+1. We say C is
the boundary of φ if φ maps diffeomorphically ∂M onto C and briefer, M with boundary
C without particular references to the parametrization. Also, we call the generalized
boundary of M the set ∂gM given by φ(∂M) ∪ ∂∞φ(M). Finally, we say that M is an
H-hypersurface if φ has constant mean curvature H, where H ∈ R.

We extend the concept of distance between two compact sets of Sn(∞) to subsets in
Hn+1 according to [5]. Let P1 and P2 be disjoint geodesic hyperplanes in Hn+1. Then
P1 ∪ P2 divides Hn+1 in three components. Let D1 and D2 be the two of them with
boundary P1 and P2 respectively. Given two subsets A1 and A2 of Hn+1, we say that P1

and P2 separate A1 and A2 if Ai ⊂ Di, i = 1, 2. In this case, we call the distance between
A1 and A2 the number

d(A1, A2) = sup{d(P1, P2); P1 and P2 separate A1 and A2},

where d(P1, P2) denotes the distance between P1 and P2. In other case, we put d(A1, A2) =
0. Roughly speaking d(A1, A2) is the largest distance between the ’parallel’ geodesic
hyperplanes that separate A1 and A2. When A1 ⊂ Hn+1 and A2 ⊂ Sn(∞), we say that
P1 and P2 separate A1 and A2 if A1 ⊂ D1 and A2 ⊂ ∂∞D2. Finally, if A1, A2 ⊂ Sn(∞), P1

and P2 separate A1 and A2 if Ai ⊂ ∂∞Di, i = 1, 2. Let us observe that if the asymptotic
boundary has an isolated point p, then d(p,C) = ∞ for each other component C of ∂gM .

Also, we need the concept of regularity at the asymptotic boundary. We say that M

is regular at infinity if M ⊂ Hn+1 is a C2-hypersurface (with boundary) of Hn+1, and
∂∞M is a C2-submanifold of Sn(∞).

Finally, we need the next definition. Two (n−1)-spheres C1 and C2 in Hn+1 are called
coaxial if there is a geodesic γ such that C1 ∪ C2 is invariant by the group of rotations
that leaves pointwise fixed γ. The geodesic γ will be called the rotation axis of C1 ∪ C2.
Since isometries in Hn+1 induce conformal diffeomorphisms on Sn(∞), we can extend this
definition when C1 ⊂ Hn+1 and C2 ⊂ {xn+1 = 0}.

We are in position to give a brief summary of the main results. In Section 2 we use
the Alexandrov reflection method to study the behaviour of a compact embedded H-
hypersurface with non connected boundary in relation to the symmetries of its boundary.
We establish (Corollaries 2.3 and 2.4):

Let C1 and C2 be coaxial spheres of codimension two such that C1 is included in
a horosphere (or in a geodesic hyperplane) Q1 and C2 in {xn+1 = 0} ⊂ Sn(∞).
Let M ⊂ Hn+1 be an embedded H-hypersurface with ∂gM = C1 ∪ C2. If M is
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included in the domain of Hn+1 \Q1 that contains C2, then M is a hypersurface
of revolution.

In Section 3 we consider the existence of compact H-hypersurfaces with non connected
boundary in relation to the distance between their boundary components:

Given H ∈ (−1, 1), there exists a constant dH depending only on H such that
if C1 and C2 are codimension two submanifolds with d(C1, C2) > dH , then there
exists no immersed connected compact H-hypersurfaces in Hn+1 spanning C1 ∪
C2.

This result is a consequence of other one more general for hypersurfaces with non nec-
essarily constant mean curvature function H and |H| < 1 (Theorem 3.1). In this sense,
if we recall that the only compact H-hypersurfaces in Hn+1, |H| ≤ 1, spanning a round
(n − 1)-sphere are the umbilical examples, we can observe that the behaviour of the H-
hypersurfaces with |H| ≤ 1 constitutes a new phenomena inside the general theory of
constant mean curvature hypersurfaces in Hn+1.

In Section 4 we study possible configurations of a H-hypersurface in Hn+1 when
the boundary components are included in geodesic hyperplanes of horospheres. In this
direction, we show in Theorem 4.1:

Let C1 and C2 be compact (n− 1)-submanifolds included respectively in disjoint
geodesic hyperplanes P1 and P2. There is a positive number d0 such that if
d(C1, C2) ≥ d0 and H 6= 0, any compact embedded connected H-hypersurface in
Hn+1 bounded by C1 ∪ C2 and that intersects no the exterior of Ci in Pi must
be included in the domain determined by P1 and P2.

One may obtain analogous results when the boundary is included in disjoint horospheres
(Theorem 4.3) and the case that one of the two boundary components lies in Sn(∞)
(Corollary 4.5).

2 Symmetries of embedded H-hypersurfaces

Let us consider an embedded H-hypersurface M ⊂ Hn+1 with boundary. If one studies
whether M inherits the symmetries of its boundary, an important tool is the so-called
Alexandrov reflection method [1], which is based in the classical maximum principle for
elliptic equations. The following version of the maximum principle for hypersurfaces can
be stated (see [6] for details and definitions):
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Proposition 2.1 (Tangency principle) Let M1 and M2 be two oriented constant mean
curvature hypersurfaces in Hn+1 of mean curvature H1 ≤ H2 respectively. If M1 and M2

have a point p of common tangency, either in the interior or in the (analytic) boundary,
and M1 lies above M2 near p, then M1 = M2 in a neighbourhood of p

With the aid of the Alexandrov method, it is proved that a compact embedded H-
hypersurface in Hn+1 spanning a sphere and contained in one of the two halfspaces de-
termined by the geodesic hyperplane that contains the boundary must be a hypersurface
of revolution. Others applications can be viewed in [5, 7, 11, 15]. This section is devoted
to derive some consequences of this technique in the case that the boundary of the hy-
persurface is not connected. We start by considering the following result that is similar
as for H-hypersurfaces in Rn+1 (for example, see [12, Theorem 2.1]).

Proposition 2.2 Let Q1 and Q2 be two horospheres with the same asymptotic boundary.
Let C1 and C2 be coaxial spheres of codimension two included in Q1 and Q2 respectively.
Let M be a compact embedded H-hypersurface in Hn+1 with boundary C1 ∪ C2. If M is
included in the domain determined by Q1 and Q2, then M is a hypersurface of revolution.

Proof: The proof is a standard application of the Alexandrov reflection technique. We
make hyperbolic reflections with respect to a family of totally geodesic hyperplanes or-
thogonal to Q1 ∪ Q2. The fact that M is included in the domain defined by Q1 and Q2

leads that the possible contact points between M and its successive reflections occurs at
interior or boundary points where the tangency principle can be applied. As consequence,
M inherits the symmetries of its boundary. In our case, M is a hypersurface of revolution.

2

The same reasoning holds when one of the two boundary components lies in Sn(∞):

Corollary 2.3 Let C1 and C2 be coaxial spheres of codimension two such that C1 is
included in a horosphere Q1 and C2 ⊂ Sn(∞). Let M be an embedded H-hypersurface in
Hn+1 with ∂gM = C1 ∪ C2. If M is included in the domain of Hn+1 \ Q1 that contains
C2, then M is a hypersurface of revolution.

Remark 1: We observe that the same argument applies even if C2 is a single point
p ∈ Sn(∞) provided the geodesic joining the centre of C1 and p defines a group of

rotations in Hn+1 that leaves invariant C1 ∪ {p}.
It is remarkable that the same process in Proposition 2.2 does not work when the

hypersurface is included in the domain determined by two disjoint geodesic hyperplanes.
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This anomaly is partly explained by the fact that there exists no a one-parameter family
of geodesic hyperplanes orthogonal to both hyperplanes. However, we have the analogous
result to Corollary 2.3 when one of the boundary components lies at infinity.

Corollary 2.4 Let C1 and C2 be coaxial spheres of codimension two where C1 is included
in a geodesic hyperplane P1, C2 ⊂ Sn(∞) and C2 ∩ ∂∞P1 = ∅. Let M be an embedded
H-hypersurface in Hn+1 with ∂gM = C1 ∪ C2. If M is included in the component of
Hn+1 \ P1 that contains C2, then M is a hypersurface of revolution.

Proof: Without loss of generality, we assume that the rotation axis γ of C1 ∪ C2 is the
xn+1-axis. Consider Ω1 ⊂ P1 and Ω2 ⊂ {xn+1 = 0} the bounded domains determined by
C1 and C2 respectively. We construct the embedded hypersurface M ∪ Ω1 ∪ Ω2 and let
W denote the bounded domain that determines in {xn+1 > 0} (Figure 1).

Let P be a geodesic hyperplane containing γ and we shall prove that P is a hyperplane
of symmetry of M . Let α be an infinite geodesic in P1 that intersects P orthogonally
at γ ∩ P1. Let {P (t); t ∈ R} be the one-parameter family of geodesic hyperplanes of
Hn+1 such that for each t, P (t) intersects α orthogonally at the point α(t). We use the
Alexandrov method with the family P (t). The key fact is that the domain determined by
P1 and Sn(∞) that contains M is invariant by the hyperbolic reflections with respect to
P (t) (see Figure 1). Now, the Alexandrov reflection method finishes with the proof.

2

Remark 2: From the proof, we observe that the assumption ’C2∩∂∞P1 = ∅’ in Corollary
2.4 can be replaced by either of the two following situations:

1. C2 = ∂∞P1 and M ⊂ Hn+1 \ P1, or

2. C2 is a component of ∂∞γ.

To end this section, we consider other kind of symmetry for H-hypersurfaces with
boundary. Let P be a geodesic hyperplane and γ a geodesic orthogonal to P . If Ω is a
domain in P , we call the solid cylinder K(Ω, γ) determined by Ω with respect to γ, the set
of all hyperbolic translations of Ω along γ, i.e., if q ∈ Ω and lq is the integral curve of the
Killing vector field associated to the hyperbolic translation along γ, K(Ω, γ) = ∪q∈Ωlq.

Proposition 2.5 Let P1 and P2 be two geodesic hyperplanes such that P2 is a hyperbolic
translation with respect to a geodesic γ orthogonal to P1. Let C1 be a closed codimension
two submanifold in P1 and C2 the corresponding translation in P2. Let Ω1 ⊂ P1 be the
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Figure 1:

bounded domain determined by C1. Assume that M ⊂ Hn+1 is a compact embedded
connected H-hypersurface spanning C1 ∪ C2 such that M ∩ ∂K(Ω1, γ) = C1 ∪ C2 and
either

M ⊂ K(Ω1, γ) or M ⊂ Hn+1 \ K(Ω1, γ).

Then M is symmetric with respect to the hyperplane P3 that is equidistant from P1 and
P2. Moreover, P3 divides M in two graphs on P3.

Proof: After an isometry in Hn+1, we can suppose that γ is the xn+1-axis and thus, P1

and P2 are two Euclidean concentric hemispheres in xn+1 ≥ 0 centred at the origin.
Consider the family of geodesic hyperplanes {P (t); t ≥ 0}, where P (0) = P1 and P (t) is
the hyperbolic translation along γ: the parameter t denotes the distance between P (t)
and P (0). Assume that P2 = P (d), that is, d is the distance between P1 and P2. Let W
denote the bounded domain determined by

B = M ∪ (∂K(Ω1, γ) ∩ (∪0≤t≤dP (t)) .

The hypothesis M ∩ ∂K(Ω1, γ) = C1 ∪ C2 assures that B is an embedded closed hy-
persurface (non smooth along C1 ∪ C2). By the argument of Corollary 2.3, we reflect
M with respect to hyperplanes P (t) coming t = ∞ until the first time so that the re-
flected of M touches M again. By the tangency principle, it cannot exist a tangent point.
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Thus the reflection process continues until the intermediate position between P1 and P2.
Changing the roles of P1 and P2, it concludes that P3 is a hyperplane of symmetry of M .
Furthermore the Alexandrov technique implies that

M1 = M ∩ (∪t≤d/2P (t)) and M2 = M ∩ (∪t≥d/2P (t))

are graphs on P3 (by graph we mean that for each point q of P3, lq meets Mi just at a
single point at most).

2

3 Non-existence of H-hypersurfaces with boundary

This section is devoted to analyse how the distance between two boundary components
of a H-hypersurface M determines some aspects related with the shape of M . A classic
result in the minimal surfaces theory states that a minimal surface M in R3 bounded by a
pair of sufficiently distant curves cannot be connected. For this, we include the boundary
curves in a solid cylinder. One proves the result by ’pinching’ the surface with a family
of catenoids having the same rotation axis as the cylinder, but smaller and smaller ’neck-
size’, and applying the maximum principle at the moment of the first contact. As in [5],
we use the same argument with an analogous family of constant mean curvature surfaces
of revolution studied by J. Gomes in [8, 9]. With the aid of these surfaces, we will prove
that hypersurfaces of small mean curvature in hyperbolic space are disconnected if their
boundary components are sufficiently distant.

Next we describe this kind of hypersurfaces (see [9] and [5]). Let h ∈ [0, 1) and a
geodesic γ in Hn+1. Then there exists a uniparametric family {Mh

λ ;λ ≥ 0} of (non-
umbilical) embedded h-hypersurfaces of revolution with the same axis of rotation. This
axis is orthogonal to γ. Moreover

1. Each Mh
λ is symmetric with respect to γ.

2. The asymptotic boundary is formed by two disjoint spheres: ∂∞Mh
λ = Sh

1,λ ∪ Sh
2,λ.

3. If P h
1,λ, P

h
2,λ are the geodesic hyperplanes of Hn+1 such that ∂∞P h

i,λ = Sh
i,λ, i = 1, 2,

then Mh
λ is included in the component of Hn+1 \ (P h

1,λ ∪ P h
2,λ) whose boundary is

Sh
1,λ ∪ Sh

2,λ.

4. Each hypersurface Mh
λ divides Hn+1 in two components, one of them contains the

rotation axis. The mean curvature vector points towards this component.
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5. The distance function dh(λ) = d(Sh
1,λ, S

h
2,λ) = d(P h

1,λ, P
h
2,λ) satisfies dh(0) = 0, is

increasing near λ = 0, reaches a maximum dh > 0 and decreases monotonically to
zero as λ → ∞. The value of dh(λ) is

dh(λ) =
∫ ∞

λ

sinhλ cosh λ − h sinh2λ + h sinh2x

cosh x

√
sinh4x cosh4x −

(
sinh λ coshλ − h sinh2λ + h sinh2x

)2
dx

and the number dh depends only on h.

The first result is an extension of Theorem 1 in [5] in the case that the hypersurface has
non empty boundary. In fact, it is possible to consider immersed hypersurfaces with non
necessarily constant mean curvature.

Theorem 3.1 Let h ∈ (0, 1). Then there exists a positive constant dh depending only on
h with the following property: let M be a connected hypersurface immersed in Hn+1 with
mean curvature function H and H ≤ h. Then it holds that d(C, ∂gM \ C) ≤ dh for any
component C of ∂gM . The equality holds if and only if M is a hypersurface of revolution.

Proof: The value of dh is given by the maximum of the function dh defined previously. The
proof is by contradiction. Let C2 be a component of ∂gM \C1. Since d(C1, C2) > dh, there
exist two disjoint geodesic hyperplanes P1 and P2 separating C1 and C2 and d(P1, P2) > dh.
Let D1 and D2 be the two components of Hn+1\(P1∪P2) such that ∂Di = Pi and Ci ⊂ Di.
Call D3 the other component with ∂D3 = P1 ∪ P2. There exists a geodesic γ in D3 such
that the corresponding family {Mh

λ ;λ > 0} is included in D3.

For small number λ > 0, M ∩ Mh
λ = ∅ because in the domain D3 there are no

components of ∂gM . Let λ → ∞. Since M is connected, there exists a first time λ0 such
that Mh

λ0
has an intersection point p with M . Because Mh

λ0
⊂ D3, this point p must be

interior in M . Thus the tangent spaces of M and Mh
λ0

agree at p. Choose an orientation
of Mh

λ0
to have positive mean curvature. Then the hypersurface M is over Mh

λ0
(Figure

2). Since H ≤ h, the tangency principle assures that Mh
λ0

agrees with M in an open set.
This is a contradicition with the fact that D3 ∩ ∂∞M = ∅. Consequently, d(C1, C2) ≤ dh.

Finally, if d(C1, C2) = dh, the tangency principle yields that ∂∞Mh
λ0

= ∂∞(P1 ∪ P2). In
this case, Mh

λ0
has a common tangent point with M and the tangency principle gets again

that Mh
λ0

= M , H = h and M is a hypersurface of revolution.

2

As a particular case of Theorem 3.1 we have:
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Figure 2:

Corollary 3.2 Given H ∈ (−1, 1), there exists a constant dH depending only on H such
that if C1 and C2 are codimension two submanifolds with d(C1, C2) > dH , then there exists
no immersed connected compact H-hypersurfaces in Hn+1 spanning C1 ∪ C2.

This result says us that for |H| < 1 there are no connected H-hypersurfaces in Hn+1

with boundary components sufficiently distant. In this sense, the behaviour of the H-
hypersurfaces in Hn+1 where H ∈ (−1, 1) is similar as minimal surfaces in R3. In the
Euclidean ambient this result is not true for nonzero constant mean curvature surfaces:
given H ∈ R, a piece of a right cylinder of radius 1

2|H | can be bounded by two circles with
arbitrary distance.

We have as consequence of Theorem 3.1:

Corollary 3.3 Let M be a connected H-hypersurface with boundary in Hn+1 with |H| <
1. Then the asymptotic boundary of M has not isolated points.

The following result is the analogous one to Theorem 2 in [5].

Theorem 3.4 Let M ⊂ Hn+1 be an embedded H-hypersurface with boundary and regular
at infinity such that ∂∞M 6= ∅. Then |H| ≤ 1 and
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1. If |H| < 1, then ∂∞M = ∂∞M and M is nowhere tangent to Sn(∞).

2. If |H| = 1, then M is everywhere tangent to Sn(∞) along ∂M ∩ Sn(∞).

Proof: After a rigid motion in Hn+1, consider a horosphere Q = {xn+1 = a}, a > 0,
such that the boundary ∂M of M lies in {xn+1 > a}, M is transverse to Q and ∂∞M ⊂
{xn+1 = 0}. Set M∗ = M ∩ {xn+1 ≤ a}. Then M∗ spans a set of closed submanifods
C1, . . . , Ck included on Q. We decompose M∗ in the following way. Let ε be a small
positive number. For each i = 1, . . . , k, let C−

i (ε) be the bounded (n− 1)-submanifold on
M∗ near Ci obtained by intersecting M∗ with the horosphere {xn+1 = a − ε}. Remove
from M∗ the annuli bounded by Ci∪C−

i (ε) and let us attach the domains D−
i (ε) bounded

by C−
i (ε) in {xn+1 = a − ε} obtaining an embedded hypersurface B. We use different

values of ε when several Ci are concentric. Let M∗ be any component of B such that
∂∞M∗ 6= ∅. Then we have an embedded hypersurface (not smooth along C−

i (ε) for some
values i) that divides Hn+1 in two components, denoted by I and O. Without loss of
generality, assume that for H ≥ 0, the unit normal vector field N of M∗ points towards
I.

Firstly we prove that H ≤ 1. We assume on the contrary, H > 1. Since ∂∞M∗ 6= ∅, let
Σ be a sphere of constant mean curvature H, with small Euclidean radius and sufficiently
close to Sn(∞) so that Σ is inside I. This is possible because a sphere with centre in
p = (p1, . . . , pn+1) and Euclidean radius s > 0, s < pn+1 has H = pn+1

s
as mean curvature.

Move Σ by horizontal translations towards M∗, i.e., according to a parallel direction to
the xn+1-hyperplane. Then the first intersection point q between M∗ and Σ is interior.
In this case, the normal vector field of M∗ and Σ agree at q because both vectors point
towards I. This is a contradiction with the tangency principle because ∂∞Σ = ∅. Thus
H ≤ 1.

If H < 1, Corollary 3.3 assures that ∂∞M∗ does not contain isolated points. Thus
M∗ is not tangent to Sn(∞) and so, ∂∞M∗ agrees with ∂∞M∗.

If H = 1 and ∂∞M∗ 6= ∅, the domain ∂∞I is not empty. Let p ∈ O and Σp be a
horosphere with ∂∞Σp = {p} and with Euclidean radius sufficiently small so that Σp−{p}
is included in I. This is possible by the regularity at infinity. Let us move Σp towards
M∗ by horizontal translations. In view of the tangency principle and since ∂Σp = ∅, the
first intersection point lies at the boundary of ∂∞I. Moreover M∗ is tangent to Sn(∞) at
this point. By moving Σp in each horizontal direction, we concluded that M∗ is tangent
to Sn(∞) at any point.

2
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4 Certain configurations of H-hypersurfaces with
boundary

We consider embedded hypersurfaces with nonzero mean curvature such that the bound-
ary components are included in geodesic hyperplanes or horospheres. The method of
proof introduced in Theorem 3.1 allows us to obtain information about the geometry of
the hypersurface in relation with these hyperplanes or horospheres.

Theorem 4.1 Let C1 and C2 be compact (n−1)-submanifolds in disjoint geodesic hyper-
planes P1 and P2 of Hn+1 and let Ωi ⊂ Pi be the domains bounded by Ci, i = 1, 2. There
exists a positive number d0 with the following property: if d(C1, C2) ≥ d0 any connected
compact embedded hypersurface M of mean curvature function H 6= 0 spanning C1 ∪ C2

and such that M ∩ (Pi \ Ωi) = ∅, i = 1, 2 must be included in the domain S determined
by P1 and P2.

Proof: Let us take d0 the maximum of the function d0(λ) given in Section 3. By standard
hyperbolic geometry and after an isometry in Hn+1, the asymptotic boundaries of P1 and
P2 are coaxial spheres in {xn+1 = 0} (see Figure 3). Without loss of generality, we suppose
that P1 lies above P2 respect to the positive direction of the xn+1-axis. Since H 6= 0, we
can choose an orientation of M by the unit normal vector field N such that the mean
curvature function H is positive.

Let us attach to M two great geodesic balls Oi ⊂ Pi, with Ωi ⊂ Oi. We denote
by P+

1 the upper halfspace determined by P1, that is, the component of Hn+1 \ P1 that
does not contain P2. Also, let P−

2 be the halspace below P2. We consider appropriate
compact hypersurfaces S1 and S2 such that ∂Si = ∂Oi, S1 ⊂ P+

1 , S2 ⊂ P−
2 and M does

not intersect S1 ∪ S2 (for example, spherical geodesic domains. See Figure 3). This is
possible by the compactness of M . Hence, we obtain a closed embedded hypersurface

M ∪ (S1 ∪ (O1 \ Ωi)) ∪ (S2 ∪ (O2 \ Ω2))

enclosing a domain W non smooth on Ci ∪ ∂Oi, i = 1, 2.

By contradiction, suppose that M contains points outside S. If some part of M lies above
P1, let p ∈ M be the highest point with respect to P1. Then p 6∈ ∂M . Consider an
Euclidean hemisphere P3 in xn+1 ≥ 0 such that ∂P3 ⊂ {xn+1 = 0} is a concentric sphere
with ∂P1 and such that p ∈ P3. In hyperbolic geometry, P3 is a geodesic hyperplanes
and satisfies that M lies below P3. Since P3 is a minimal hypersurface, by comparying
P3 and M at p, the tangency principle leads that N(p) points towards Hn+1 \W (Figure
3). In the case that M contains points below P2, we consider geodesic hyperplanes that
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Figure 3:

come from Sn(∞) below M touching M at the lowest (interior) point with respect to P2.
Again, N points towards Hn+1 \ W .

Consider the corresponding family of minimal hypersurfaces {M0
λ;λ > 0}. Since

d(C1, C2) ≥ d0, each hypersurface M0
λ lies in the domain S. For small number λ > 0 and

since M is compact, M0
λ is included in Hn+1 \W . Now we increase λ → ∞ until the first

intersection point q with M for the value λ = λ0. This point is not at the boundary of
M , because M0

λ ⊂ S for each λ > 0. Since N(q) points outside W , M0
λ0

lies above M in a
neighbourhood of q: this is a contradiction by the tangency principle, because the mean
curvature H on M is positive. Hence, we conclude that M ⊂ S and this completes the
proof of the theorem.

2

When the boundary is formed by two round spheres, we obtain as a consequence:

Corollary 4.2 Let C1 and C2 be coaxial spheres of the same radii r0 included in hyper-
planes P1 and P2 respectively such that d(C1, C2) ≥ d0. Let M ⊂ Hn+1 be a compact
embedded hypersurface of mean curvature function H, 0 < |H| ≤ 1, and with boundary
C1 ∪ C2. Then M is included in the domain determined by P1 and P2.
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Proof: After an isometry of Hn+1, we suppose that the xn+1-axis is the rotation axis of
C1 ∪ C2. Let us denote C(r) the cylinder of radius r > 0 around γ, that is, the set of
points at distance r from γ:

C(r) = {(x1, . . . , xn+1) ∈ Hn+1;
n∑

i=1

x2
i = (sinh2r)x2

n+1}.

Let us call B(r) the domain in Hn+1 \C(r) that contains γ. Let us choose the orientation
of C(r) such that its mean curvature H(r) is positive. Then the unit normal vector field
points towards B(r) and its value is

H(r) =
1

2
(tanh r + coth r) > 1.

Since M is compact, consider a sufficiently large number r such that M is included in the
domain B(r). Let us decrease r until the first cylinder C(r) that touches M . Because
H(r) > 1 ≥ |H|, the tangency principle implies r = r0, M ⊂ B(r0) and M ∩ ∂C(r0) =
C1 ∪ C2. In particular, M does not intersect the exterior of Ci in Pi. Now, we apply
Theorem 4.1.

2

Remark 3: The map H 7−→ dH = max dH is a monotone increasing function on H.
This allows us compare Theorem 3.1 with Theorem 4.1 in the case that the boundary of
an embedded H-hypersurface is formed by two compact submanifolds C1, C2 in geodesic
hyperplanes P1 and P2 respectively: if 0 < H < 1, the distance between P1 and P2 is dH

at most; moreover, if d0 < d(P1, P2) ≤ dH and M does not intersect the exterior of the
bounded geodesic domains determined by the boundary, then the hypersurface is included
in the domain determined by P1 and P2.

When the boundary is included in horospheres, we have the following result for |H| ≥
1:

Theorem 4.3 Let Q1 and Q2 be two horospheres with the same asymptotic boundary.
Let C1 and C2 be compact (n − 1)-submanifolds included in Q1 and Q2 respectively and
let Ω1 and Ω2 be the two domains that bound in Q1 and Q2. Then there is a positive
number d0 with the following property: if d(C1, C2) ≥ d0, any connected compact embedded
hypersurface M ⊂ Hn+1 of mean curvature function H, |H| ≥ 1, bounded by C1 ∪C2 and
M∩(Qi\Ωi) = ∅, i = 1, 2 is included in the domain S defined by Q1 and Q2. In particular,
if C1 and C2 are coaxial spheres and H is constant, M is a hypersurface of revolution.
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Proof: The reasoning is similar to Theorem 4.1 and we indicate it briefly. Choose an
orientation on M such the mean curvature is positive. Suppose, contrary to the assertion
that M contains points outside S. Construct a domain W by attaching two ’caps’ S1 and
S2 in a similar way as the proof of Theorem 4.1. After an isometry of Hn+1, we consider
Q1 = {xn+1 = a1} and Q2 = {xn+1 = a2} with 0 < a2 < a1. We have two possibilities: if
M contains points below Q2, we come from Sn(∞) by geodesic hyperplanes until to touch
the lowest point of M (with respect to Q2). The tangency principle assures that the unit
normal vector field N of M points outside W . In the case that M contains points above
Q1, we place a horosphere with asymptotic boundary ∞ ∈ Sn(∞) in the highest point
of M with respect to Q1. The tangency principle assures again that N points outside
W . Now a similar reasoning as Theorem 4.1 works in the same way. In the case that the
boundary is spherical, we apply Proposition 2.2.

2

As consequence of Corollary 4.2 and Theorem 4.3, we have the following result proved
in [7]:

Corollary 4.4 Let C1 and C2 be codimension two spheres with the same radii. Then there
exists d0 > 0 such that if d(C1, C2) ≥ d0 any connected compact embedded H-hypersurface
M in Hn+1 with |H| = 1 and bounded by C1 ∪ C2 is a hypersurface of revolution.

With appropriate modifications in the statements, Theorems 4.1 and 4.3 generalize
to the case that one of the two boundary components is included in Sn(∞).

Corollary 4.5 Let C1 and C2 be codimension two compact submanifolds of Hn+1, where
C2 ⊂ Sn(∞) and assume that d(C1, C2) ≥ d0 (d0 is the number given in Theorem 4.1).

1. Suppose that C1 and C2 are included in disjoint geodesic hyperplanes P1 and P2

respectively, where C2 = ∂∞P2. Then any connected embedded hypersurface M of
mean curvature function H 6= 0 with ∂gM = C1 ∪ C2 and M ∩ (P1 \ Ω1) = ∅ is
included in the domain determined by P1 and P2.

2. Suppose that C1 is included in a geodesic hyperplane P1. Let Ω2 be one of the two
domains in Sn(∞) determined by ∂∞P1. Assume that C2 is a subset of Ω2. Then any
connected embedded hypersurface of mean curvature function H 6= 0 with generalized
boundary C1∪C2 that does not intersects P1\Ω1 is included in the domain determined
by P1 and Ω2.
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3. Suppose that C1 is included in a horosphere Q1 and ∂∞Q1 6∈ C2. Then any connected
embedded hypersurface of mean curvature function |H| ≥ 1 with ∂gM = C1 ∪C2 that
does not intersect Q1 \ Ω1 is included in the domain of Hn+1 \ Q1 that contains C2.
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[14] R. López, S. Montiel, Existence of constant mean curvature graphs in hyperbolic space,
Calc. Var. and Partial Diff. Eq., 8 (1999), 177–190.

[15] B. Nelli, H. Rosenberg, Some remarks on embedded hypersurfaces in hyperbolic space
of constant mean curvature and spherical boundary, Ann. Glob. Anal. Geom., 13
(1995), 23–30.

[16] M. Umehara, K. Yamada, Complete surfaces of constant mean curvature one in the
hyperbolic 3-space, Ann. of Math., 137 (1993), 611–638.

17


