Differential Geometry and its Applications 11 (1999) 245–256 North-Holland www.elsevier.com/locate/difgeo

# Constant mean curvature hypersurfaces foliated by spheres\*

Rafael López<sup>1</sup>

Departamento de Geometría y Topología, Universidad de Granada, 18071 Granada, Spain

Communicated by L. Vanhecke Received 16 July 1998 Revised 19 October 1998

Abstract: We ask when a constant mean curvature *n*-submanifold foliated by spheres in one of the Euclidean, hyperbolic and Lorentz–Minkowski spaces ( $\mathbf{E}^{n+1}$ ,  $\mathbf{H}^{n+1}$  or  $\mathbf{L}^{n+1}$ ), is a hypersurface of revolution. In  $\mathbf{E}^{n+1}$  and  $\mathbf{L}^{n+1}$  we will assume that the spheres lie in parallel hyperplanes and in the case of hyperbolic space  $\mathbf{H}^{n+1}$ , the spheres will be contained in parallel horospheres. Finally, Riemann examples in  $\mathbf{L}^3$  are constructed, that is, non-rotational spacelike surfaces foliated by circles in parallel planes.

Keywords: Foliation, mean curvature, Aleksandrov reflection method.

MS classification: 53A10, 53C42.

### 1. Introduction and statements of results

In Euclidean 3-space  $\mathbf{E}^3$ , the only complete minimal surface of revolution is the catenoid. In particular, the catenoid is fibred by circles in parallel planes. There exist other minimal surfaces in  $\mathbf{E}^3$  foliated by circles in parallel planes which were discovered by Riemann [14]. A Riemann surface is a simply periodic embedded minimal surface that is described in terms of elliptic functions on a twice punctured rectangular torus. Its two ends are flat. Enneper [3] proved that catenoids and Riemann examples are the only minimal surfaces foliated by circles.

Nitsche found all surfaces with non-zero constant mean curvature in  $\mathbf{E}^3$  generated by a one-parameter family of circles. In [13], he proved that the surface must be a sphere or, in the non-spherical case, the circles must lie in parallel planes. In the latter case, the only possibilities are the surfaces of revolution determined in 1841 by Delaunay [2].

In the arbitrary dimension, Jagy studied minimal submanifolds in  $\mathbf{E}^{n+1}$ ,  $n \ge 3$ , generated by a one-parameter family of hyperspheres. He showed that the hyperplanes containing the hyperspheres are parallel again, but, in contrast to what happens in  $\mathbf{E}^3$ , the hypersurface must be rotationally symmetric with respect to an axis. In this situation, the hypersurface obtained is the higher catenoid.

In this article, we deal with (connected) *n*-dimensional submanifolds in three different ambients: Euclidean, hyperbolic and Lorentz–Minkowski (n + 1)-dimensional spaces. We shall

<sup>1</sup>*E-mail*: rcamino@goliat.ugr.es.

\* Partially supported by a DGICYT Grant No. PB97-0785.

consider that the submanifolds are foliated by (n - 1)-hyperspheres in parallel hyperplanes (throughout this paper, hyperspheres will be called spheres for simplicity). More precisely:

1. Constant mean curvature *n*-submanifolds in Euclidean space  $\mathbf{E}^{n+1}$  foliated by spheres in parallel hyperplanes.

2. Constant mean curvature *n*-submanifolds in hyperbolic space  $\mathbf{H}^{n+1}$  foliated by spheres in parallel horospheres or parallel hyperplanes.

3. Constant mean curvature spacelike *n*-submanifolds in Lorentz–Minkowski space  $\mathbf{L}^{n+1}$  foliated by spheres in parallel spacelike hyperplanes.

The methods that we apply in our proofs are based on the following fact. Consider the Euclidean case. A smooth hypersurface  $M^n$  in  $\mathbf{E}^{n+1}$  can be written locally as the level set for a function. We orient M by the unit normal field  $N = -\nabla f / |\nabla f|$ . Then the mean curvature H of M is given by

$$nH = -\operatorname{div} \frac{\nabla f}{|\nabla f|},$$

where div denotes the divergence of the unit normal field N. An easy computation gives us

$$nH |\nabla f|^3 = \Delta f |\nabla f|^2 - \text{Hess} f(\nabla f, \nabla f),$$
(1)

where  $\nabla$ ,  $\Delta$  and Hess denote the gradient, laplacian and hessian operators respectively computed with the Euclidean metric. The idea is to express in terms of f the property that M is 'foliated by spheres in parallel hyperplanes.' The explicit computation of (1) and the fact that H is constant will impose restrictions on f that will conclude our results. In hyperbolic and Lorentz– Minkowski spaces, the reasoning is similar.

It should be pointed out that up until now, the only known example of a maximal surface (H = 0) in the Lorentz–Minkowski 3-space  $\mathbf{L}^3$  foliated by circles in parallel spacelike planes is the Lorentzian catenoid (see [7]). A major goal of this paper is the construction in  $\mathbf{L}^3$  of a family of non-rotational maximal surfaces foliated by circles in parallel spacelike planes (Theorem 4.1). Together with the Lorentzian catenoid, these new surfaces comprise all the maximal surfaces in  $\mathbf{L}^3$  foliated by circles in parallel spacelike planes. In this sense, these surfaces play the same role as Riemann minimal surfaces in Euclidean space  $\mathbf{E}^3$ . A different approach to the maximal spacelike surfaces in  $\mathbf{L}^3$  via the Weierstrass–Enneper representation has been studied in [8]. Finally, the case of spacelike surface with nonzero constant mean curvature and foliated by circles has been fully studied by the author [10, 11].

We can summarize the results obtained in the following way:

Let X be one of the following (n + 1)-dimensional spaces: Euclidean space  $\mathbf{E}^{n+1}$ , hyperbolic space  $\mathbf{H}^{n+1}$  and Lorentz–Minkowski space  $\mathbf{L}^{n+1}$ . Let  $M^n$  be an n-dimensional submanifold in X of constant mean curvature H.

1. If  $X = \mathbf{E}^{n+1}$ ,  $n \ge 3$ ,  $H \ne 0$  and M is foliated by spheres in parallel hyperplanes, then M is a hypersurface of revolution (Theorem 2.1).

2. If  $X = \mathbf{H}^{n+1}$  and M is foliated by spheres in parallel horospheres, then M is a hypersurface of revolution (Theorem 3.3).

3. If  $X = \mathbf{L}^{n+1}$  and M is foliated by spheres in parallel spacelike hyperplanes then (Theorem 4.1):

(a) *M* is a hypersurface of revolution if  $H \neq 0$  or H = 0 and  $n \ge 3$ ;

(b) if H = 0 and n = 2, M is the Lorentzian catenoid or M belongs to a non-rotational one-parametric family of maximal surfaces.

Added in proof. We have just known the existence of reference [6] where part of our results are also studied.

#### 2. Hypersurfaces in Euclidean space

Nitsche proved that a surface M of constant mean curvature  $H \neq 0$  in  $\mathbf{E}^3$  and foliated by circles in parallel planes must be a Delaunay surface [13]. We obtain this result in  $\mathbf{E}^{n+1}$ .

**Theorem 2.1.** Let  $M^n$  be an n-dimensional submanifold of  $\mathbf{E}^{n+1}$  of constant mean curvature  $H \neq 0$  and foliated by spheres in parallel hyperplanes. Then  $M^n$  is a hypersurface of revolution.

**Proof.** Without loss of generality, assume that each hyperplane of the foliation is parallel to  $x_{n+1} = 0$ . Let  $P_1 = \{x_{n+1} = t_1\}$  and  $P_2 = \{x_{n+1} = t_2\}$  be two hyperplanes of the foliation with  $t_1 < t_2$ . Consider  $M^*$  as the piece of M between  $P_1$  and  $P_2$ . We use the Aleksandrov reflection method in Euclidean space [1]. This method is based on the classical Hopf maximum principle [4], which stated that if two hypersurfaces with the same mean curvature are tangent at a common point p and one hypersurface (locally) lies by the side of the other one, then they agree in a neighbourhood of p.

The Aleksandrov method involves successive reflections across each family of parallel hyperplanes. A standard application of this technique with hyperplanes orthogonal to the foliation hyperplanes, shows that  $M^*$  inherits the symmetries of its boundary  $\partial M^* = (M^* \cap P_1) \cup (M^* \cap P_2)$ (see [9] for the three-dimensional case and [15] for the minimal case). Therefore, for each  $t_1 \leq t \leq t_2$ , the centers of each level  $M \cap \{x_{n+1} = t\}$  lie in the same 2-plane. After a translation, we can assume that this 2-plane is defined by  $x_2 = \cdots = x_n = 0$ . Let us parametrize the centers of the spheres by  $t \longmapsto (c(t), 0, \ldots, 0, t), t \in [t_1, t_2]$ . Furthermore,  $M^*$  is the level set of a smooth function f given by

$$f = (x_1 - c(t))^2 + \sum_{i=2}^n x_i^2 - r(t)^2,$$
(2)

where r(t) > 0 denotes the sphere radius at the level  $x_{n+1} = t$ . We shall prove that the line of the centers is a straight-line orthogonal to the hyperplane  $x_{n+1} = 0$ , that is, *c* is a constant map. This should show that  $M^*$  is a hypersurface of revolution.

We assume, by contradiction, that there is a sub-interval of  $[t_1, t_2]$  where c is not constant and so,  $c' \neq 0$ . Without loss of generality, we suppose this interval is  $[t_1, t_2]$ . Now, we use identity (1). Computations are the same as [5] and, for the sake of completeness, we repeat them:

$$\nabla f = 2(x_1 - c, x_2, \dots, x_n, -(x_1 - c)c' - rr'),$$
  

$$|\nabla f|^2 = 4(r^2 + [(x_1 - c)c' + rr']^2),$$
  

$$\Delta f = 2(n + c'^2 - r'^2 - rr'' - (x_1 - c)c''),$$
  

$$\operatorname{Hess} f = 2 \begin{pmatrix} 1 & 0 & \cdots & -c' & \\ 0 & 1 & \cdots & 0 & \\ \dots & \dots & \dots & \dots & \dots \\ -c' & 0 & \cdots & c'^2 - r'^2 - rr'' - (x_1 - c)c'' \end{pmatrix},$$
  

$$\operatorname{Hess} f (\nabla f, \nabla f) = 8(r^2 + 2c'(x_1 - c)[(x_1 - c)c' + rr'] + [(x_1 - c)c' + rr']^2[c'^2 - rr'' - r'^2 - (x_1 - c)c'']).$$

On the other hand, the left-hand side of (1) is

$$8nH(r^{2} + [(x_{1} - c)c' + rr']^{2})^{3/2}$$

Let us fix a section t. Since  $x_1$  is varied, we introduce the variable  $\lambda$  by

$$\lambda = \frac{(x_1 - c)c' + rr'}{r}.$$
(3)

Since  $c' \neq 0$  for each sphere of the foliation of  $M^*$ ,  $\lambda$  takes values in an interval of the line  $\mathbb{R}$ . By using (3), we regard identity (1) as a polynomial on  $\lambda$  where the coefficients are functions of the independent variable *t*. The right-hand side of (1) is a 2-degree polynomial  $a_0 + a_1\lambda + a_2\lambda^2$ :

$$8nHr(1+\lambda^2)^{3/2} = a_0 + a_1\lambda + a_2\lambda^2.$$
(4)

Squaring (4) and examining the leader coefficients, we have  $n^2 H^2 r^2 = 0$ , which is a contradiction because  $H \neq 0$ . Therefore c'(t) = 0. Since *t* is arbitrary, then *c* is constant and so,  $M^*$  is a hypersurface of revolution. Since  $M^*$  is an arbitrary piece of *M*, then *M* is a hypersurface of revolution.  $\Box$ 

#### 3. Hypersurfaces in hyperbolic space

Let us consider the upper halfspace model of hyperbolic space

$$\mathbf{H}^{n+1} =: \mathbb{R}^{n+1}_{+} = \{x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1}; x_{n+1} > 0\}$$

equipped with the metric

$$ds^{2} = \frac{(dx_{1})^{2} + \dots + (dx_{n+1})^{2}}{x_{n+1}^{2}}$$

Hyperbolic space  $\mathbf{H}^{n+1}$  has a natural compactification  $\overline{\mathbf{H}^{n+1}} = \mathbf{H}^{n+1} \cup \partial_{\infty} \mathbf{H}^{n+1}$ , where  $\partial_{\infty} \mathbf{H}^{n+1}$  can be identified with asymptotic classes of geodesic rays in  $\mathbf{H}^{n+1}$ . In the upper halfspace model,  $\partial_{\infty} \mathbf{H}^{n+1} = \{x_{n+1} = 0\} \cup \{\infty\}$  is the one-point compactification of the hyperplane  $x_{n+1} = 0$ .

248

We will deal with hypersurfaces foliated by spheres included either in horospheres or hyperplanes in two natural situations, which will be merely called *parallel horospheres* or *parallel hyperplanes*. For our own convenience, we give our definition.

**Definition 3.1.** A one-parameter family of horospheres or geodesic hyperplanes are called *parallel* if their asymptotic boundaries agree at exactly one point.

Since the asymptotic boundary of a horosphere is exactly one point, 'parallel horospheres' means that they have the same asymptotic boundary. By means of using an isometry of  $\mathbf{H}^{n+1}$ , one can describe a family of parallel horospheres as Euclidean hyperplanes in  $\{x_{n+1} > 0\}$  parallel to the hyperplane  $x_{n+1} = 0$  in the Euclidean sense. In the same way, a family of geodesic parallel hyperplanes can be viewed as Euclidean hyperplanes parallel to the hyperplane  $x_n = 0$ . Also, in our model for  $\mathbf{H}^{n+1}$ , (n-1)-spheres are simply Euclidean (n-1)-spheres included in  $\mathbb{R}^{n+1}_{\perp}$ 

In the proofs, we will write a hypersurface M in hyperbolic space locally as the level set of a smooth function f. So, we need the analogous formula (1) to describe the mean curvature H of M in terms of f. In our model of  $\mathbf{H}^{n+1}$ , the hyperbolic metric is conformal with the Euclidean metric supported by  $\mathbb{R}^{n+1}_+$ . A straightforward computation gives us the relation between the mean curvatures of M with the two induced metrics.

**Lemma 3.2.** Let M be an oriented hypersurface immersed in  $\mathbb{R}^{n+1}_+$  and let  $ds_0^2$  and  $ds^2$  be respectively the Euclidean and hyperbolic metrics on  $\mathbb{R}^{n+1}_+$ . Let N be a Gauss map for the immersion  $M \to (\mathbb{R}^{n+1}_+, ds_0^2)$  and consider the orientation on  $M \to (\mathbb{R}^{n+1}_+, ds^2)$  given by  $x_{n+1}N$ . Denote by h and H the mean curvatures of M for the immersion of M in  $(\mathbb{R}^{n+1}_+, ds_0^2)$  and  $(\mathbb{R}^{n+1}_+, ds^2)$  respectively. Then, for each  $p \in M$ ,

$$H(p) = x_{n+1}(p)h(p) + N_{n+1}(p),$$
(5)

where  $N_{n+1}(p)$  denotes the  $x_{n+1}$ -coordinate of N(p)

Equation (1) and relation (5) tells us that if M is a hypersurface in  $\mathbf{H}^{n+1}$  of constant mean curvature H given by the level set of f = 0, then

$$nH|\nabla f|^{3} = nN_{n+1}|\nabla f|^{3} + x_{n+1}(\Delta f|\nabla f|^{2} - \operatorname{Hess} f(\nabla f, \nabla f)),$$
(6)

where  $\nabla$ ,  $\Delta$  and Hess denote as (1).

We are in a position to study constant mean curvature submanifolds in  $\mathbf{H}^{n+1}$  foliated by spheres in parallel horospheres. In contrast with the Euclidean case (when H = 0), the only possibility will be that the hypersurface is a rotational hypersurface with a geodesic as the axis of revolution.

**Theorem 3.3.** Let  $M^n$  be an n-dimensional submanifold in  $\mathbf{H}^{n+1}$  of constant mean curvature and foliated by spheres in parallel horospheres. Then M is a hypersurface of revolution, that is, there exists a geodesic  $\gamma$  such that M is invariant by the group of isometries that leaves  $\gamma$ fixed pointwise.

**Proof.** As we have pointed out, we can assume that the horospheres are Euclidean hyperplanes of  $\mathbb{R}^{n+1}_+$  parallel to the hyperplane  $x_{n+1} = 0$ . Consider  $M^*$  as a piece of M between two levels

#### R. López

 $P_1 = \{x_{n+1} = t_1\}$  and  $P_2 = \{x_{n+1} = t_2\}, t_1 < t_2$ . The Aleksandrov reflection can be applied in our case as in Theorem 2.1, where by reflections we mean *hyperbolic reflections* across totally geodesic hyperplanes. In our model for  $\mathbf{H}^{n+1}$ , these hyperbolic reflections are regarded as Euclidean reflections across vertical hyperplanes and Euclidean inversions with respect to spheres meeting orthogonally  $\partial_{\infty} \mathbf{H}^{n+1}$ . Therefore we can parametrize the Euclidean centers of spheres  $M^* \cap \{x_{n+1} = t\}$  by  $t \mapsto (c(t), 0, \ldots, 0, t)$ , where r(t) > 0 denotes the Euclidean radius for each t. Then the surface  $M^*$  is the level set for the same function f defined in (2).

We proceed by contradiction. So, we suppose that  $c' \neq 0$  in the interval  $[t_1, t_2]$ . The  $x_{n+1}$ coordinate of the Gauss map N of  $M^* \subset \mathbf{E}^{n+1}$  is given by

$$N_{n+1} = -\frac{(x_1 - c)c' + rr'}{\sqrt{r^2 + [(x_1 - c)c' + rr']^2}}.$$

Let us fix the level  $x_{n+1} = t$ . By using (3), equation (6) can written in the following way:

$$nrH(1+\lambda^2)^{3/2} = nr\lambda(1+\lambda^2) + x_{n+1}(a_0+a_1\lambda+a_2\lambda^2),$$
(7)

where  $a_i$  are coefficients that do not depend on  $\lambda$ . The right-hand side in (7) is a 3-degree polynomial:  $b_0 + b_1\lambda + b_2\lambda^2 + b_3\lambda^3$ . Squaring both sides in (7), the identity of the leader coefficients gives

$$n^2 r^2 H^2 = n^2 r^2.$$

Thus  $H^2 = 1$ . Since the square of the left-hand side in (7) is a polynomial with non odd terms in  $\lambda$ , the coefficients of  $\lambda^5$  and  $\lambda^3$  vanish on the right-hand side. The 5-degree coefficient yields  $b_2b_3 = 0$ . Since  $b_3 = n^2r^2 \neq 0$ , then  $b_2 = 0$ . Now, the  $\lambda^3$ -term gives  $b_0b_3 = 0$  and then,  $b_0 = 0$ . However  $H^2 = 1$  and the  $\lambda^0$ -term on the left-hand side of (7) is  $n^2r^2H^2 = n^2r^2 \neq 0$ . This contradiction leads to c' = 0 on  $[t_1, t_2]$ , that is, c is constant. Therefore M is a hypersurface of revolution with the geodesic  $\gamma(t) = (c, 0, \dots, 0, t)$  being the rotation axis.

The second part of this section is concerned with submanifolds in  $\mathbf{H}^{n+1}$  foliated by spheres in parallel geodesic hyperplanes. Let M be a n-submanifold of constant mean curvature in  $\mathbf{H}^{n+1}$ . By means of using an isometry of the ambient, we suppose that the foliation of M is given by hyperplanes parallel to  $x_n = 0$ . As in Theorem 3.3, we pick a piece of M denoted as  $M^*$  between two hyperplanes  $P_1$ ,  $P_2$  of the foliation. In this situation, it is not possible to use Aleksandrov technique to show that the centers of the spheres of the foliation lie in a 2-plane: there does not exist a family of parallel geodesic hyperplanes orthogonal to *both* hyperplanes  $P_1$  and  $P_2$ . One case where the Aleksandrov technique works is when for each  $2 \leq i \leq n$ ,  $(M^* \cap P_1) \cup (M^* \cap P_2)$  is invariant under some hyperbolic reflection across a geodesic hyperplane parallel to  $x_i = 0$ . In this case, Aleksandrov method proves that the line of the sphere centers of the foliation lies in a 2-plane of  $\mathbf{H}^{n+1}$ .

**Theorem 3.4.** Let  $M^n$  be an n-dimensional submanifold in  $\mathbf{H}^{n+1}$  of constant mean curvature and foliated by spheres in parallel geodesic hyperplanes. Assume there exist two geodesic hyperplanes  $P_1$  and  $P_2$  of the foliation such that  $(M \cap P_1) \cup (M \cap P_2)$  is invariant under hyperbolic reflections across n - 1 orthogonal geodesic hyperplanes and all them orthogonal to  $P_1 \cup P_2$  as well. Then M is a totally umbilical hypersurface. **Proof.** We take  $M^*$  the piece of M between the two geodesic hyperplanes containing the two spheres of the hypothesis. By means of an isometry, we assume the centers of the spheres that foliate  $M^*$  can be parametrized by

$$\gamma(t) = (0, \ldots, 0, t, c(t)).$$

Then  $M^*$  is the level set of

$$f = \sum_{i=1}^{n-1} x_i^2 + [x_{n+1} - c(t)]^2 - r(t)^2 = 0,$$

where c(t) and r(t) denote as in the proof of Theorem 2.1. By contradiction, let us assume that  $c' \neq 0$  on  $[t_1, t_2]$ . Again let us fix a level t of the foliation and let

$$\lambda = \frac{(x_{n+1} - c)c' + rr'}{r}.$$
(8)

A computation of identity (6) becomes the polynomial equation on  $\lambda$ :

$$nrH(1+\lambda^2)^{3/2} = -\frac{nr(\lambda-r')}{c'}(1+\lambda^2) + x_{n+1}(d_0+d_1\lambda+d_2\lambda^2)$$
$$= e_0 + e_1\lambda + e_2\lambda^2 + e_3\lambda^3.$$
(9)

It is easy to check that

$$d_0 = n - 1 + c'^2 - r'^2 - rr'' - rc'', \qquad d_1 = 2r' - \frac{rc''}{c'}, \qquad d_2 = n - 2.$$

Notice that from (8)

$$x_{n+1} = \frac{r}{c'} \left(\lambda - r'\right) + c.$$

Squaring (9), the equality of the  $\lambda^6$ -terms gives

$$n^2 H^2 = \frac{4}{c'^2}.$$
 (10)

In particular,  $e_3 \neq 0$ . As in Theorem 2.1, all odd terms of the polynomial  $(e_0 + e_1\lambda + e_2\lambda^2 + e_3\lambda^3)^2$  are zero. Thus  $e_0 = e_2 = 0$ . If we regard the square of the left-hand side in (9) and by considering the independent term, we obtain  $n^2r^2H^2 = 0$ , in contradiction with (10).

As a conclusion, c is constant, that is,  $\gamma$  is a horizontal Euclidean straight-line. Returning to (6) and putting c' = 0, we have

$$nHr(1+r^{2})^{3/2} = (-rr''-1-r^{2})x_{n+1} + nc(1+r^{2}).$$

Consider that  $x_{n+1}$  varies in this identity. Then the radius r = r(t) satisfies the next two differential equations:

$$rr'' + 1 + r^2 = 0, (11)$$

$$Hr\sqrt{1+r'^2} = c.$$
 (12)

Each solution of (12) verifies (11) and the solutions of (11) are circles. Therefore, if we look at  $M^*$  as a subset of  $\mathbb{R}^{n+1}_+$ , then  $M^*$  is an open set of an *n*-dimensional Euclidean sphere. From the hyperbolic viewpoint, this *n*-sphere is an umbilical hypersurface of  $\mathbf{H}^{n+1}$  and hence, *M* is a totally umbilical hypersurface.  $\Box$ 

## 4. Hypersurfaces in Lorentz–Minkowski space

Let  $\mathbf{L}^{n+1}$  denote the (n + 1)-dimensional Lorentz–Minkowski space, that is, the space  $\mathbb{R}^{n+1}$  endowed with the Lorentzian metric

$$\langle \cdot, \cdot \rangle = (dx_1)^2 + \dots + (dx_n)^2 - (dx_{n+1})^2,$$

where  $(x_1 \dots, x_{n+1})$  are the canonical coordinates in  $\mathbb{R}^{n+1}$ . An *M* hypersurface immersed in  $\mathbf{L}^{n+1}$  is *spacelike* if the induced metric is a Riemannian metric on *M*. When the hypersurface is (locally) the level set of f = 0, and the fact *M* is spacelike means that  $\nabla f$  is a vector orthogonal to *M* of timelike character:

$$\langle \nabla f, \nabla f \rangle < 0. \tag{13}$$

Let us orient M by the unit normal field  $N = -\nabla f / |\nabla f|$ , where

$$|\nabla f| = \sqrt{-\langle \nabla f, \nabla f \rangle} = \sqrt{-\sum_{i=1}^{n} f_i^2 + f_{n+1}^2}.$$

Here  $f_j$  denotes the partial derivative of the function  $f = f(x_1, ..., x_{n+1})$  with respect to the  $x_j$ -coordinate. Now, if H is the mean curvature calculated with this orientation, then

$$nH = -\operatorname{Div} \frac{\nabla f}{|\nabla f|},$$

where Div denotes the divergence with the Lorentzian metric. A straightforward computation gives

$$nH|\nabla f|^{3} = \langle \nabla f, \nabla f \rangle \Delta f - \text{Hess} f(\nabla f, \nabla f),$$
(14)

with

$$\nabla f = (f_1, \dots, f_n, -f_{n+1}),$$
$$\Delta f = \sum_{i=1}^n f_{i,i} - f_{n+1,n+1},$$
$$\operatorname{Hess} f(\nabla f, \nabla f) = \sum_{i,j=1}^n f_i f_j f_{i,j}$$

In the present section we study constant mean curvature spacelike hypersurfaces in Lorentz– Minkowski space  $\mathbf{L}^{n+1}$  foliated by spheres in parallel spacelike hyperplanes. After using a Lorentz transformation, we can assume that these hyperplanes are parallel to the hyperplane  $x_{n+1} = 0$ . In this case, these spheres can be viewed as Euclidean spheres in horizontal hyperplanes. **Theorem 4.1.** Let  $M^n$  be a spacelike n-dimensional submanifold in  $\mathbf{L}^{n+1}$  of constant mean curvature H and foliated by spheres in parallel spacelike hyperplanes.

- 1. If  $H \neq 0$ , then M is a hypersurface of revolution.
- 2. *If* H = 0 *and*
- (a)  $n \ge 3$ , then M is a hypersurface of revolution.

(b) n = 2, then M is a surface of revolution or M belongs to a one-parameter family of non-rotational maximal surfaces.

**Proof.** A spacelike hypersurface of constant mean curvature in  $\mathbf{L}^{n+1}$  satisfies (locally) an elliptic equation to which we can apply the classical maximum principle (see, for instance, [16]). So, the Aleksandrov technique works in our situation. Let  $M^*$  be an arbitrary piece of M between two hyperplanes of the foliation:  $x_{n+1} = t_1$ ,  $x_{n+1} = t_2$ ,  $t_1 < t_2$ . Again, we apply the Aleksandrov reflection method by hyperplanes orthogonal to  $x_{n+1} = 0$  as in Theorem 2.1. Reflection across hyperplanes of this kind are Euclidean reflections. Then the centers of spheres can be parametrized by  $(c(t), 0, \ldots, t)$ ,  $t \in [t_1, t_2]$ . To show that M is a hypersurface of revolution, it suffices to prove that c is a constant function.

By contradiction, assume that  $c' \neq 0$  on  $[t_1, t_2]$ . Since the spheres of the foliation are Euclidean spheres, we take the same function f as in (2). Let us fix t with the variable  $\lambda$  as (3). Identity (14) gives

$$nrH(-1+\lambda^2)^{3/2} = g_0 + g_1\lambda + g_2\lambda^2,$$

where the coefficients  $g_i$  are functions on t. Squaring this identity, the leader coefficients give H = 0. Therefore, if  $H \neq 0$ , we obtain a contradiction unless c' = 0. In this case, M is a hypersurface of revolution and we have proved 1.

Now let us study the maximal case H = 0. Computing the right-hand side of (14), we have

$$\left(n - 1 + r^{\prime 2} - c^{\prime 2} + rr^{\prime \prime} - \frac{rr^{\prime}c^{\prime \prime}}{c^{\prime}}\right) + \left(\frac{rc^{\prime \prime}}{c^{\prime}} - 2r^{\prime}\right)\lambda + (2 - n)\lambda^{2} = 0.$$
 (15)

The 2-degree term in (15) gives  $g_2 = n - 2 = 0$ . Therefore, if  $n \ge 3$ , c' must vanish and M is a hypersurface of revolution again. This proves 2(a). Let us consider the case n = 2. The  $\lambda^1$  and  $\lambda^0$ -terms in (15) give

$$g_{1} = \frac{rc''}{c'} - 2r' = 0,$$
  

$$g_{0} = 1 + r'^{2} - c'^{2} + rr'' - \frac{rr'c''}{c'} = 0.$$

We simplify the above equations by

$$rc'' - 2r'c' = 0, (16)$$

$$1 - r^{\prime 2} + rr^{\prime \prime} - c^{\prime 2} = 0. (17)$$

A first integral of (16) is given by

$$c' = ar^2 \tag{18}$$

R. López

for a positive constant  $a \in \mathbb{R}$ . Substituting in (17), it follows that

$$1 - r^{\prime 2} + rr^{\prime \prime} - a^2 r^4 = 0. (19)$$

Let us integrate equation (19) by a similar approach to that given in [12, p. 87]. Consider  $x = r^2$  and  $y = (r^2)'$  as the new dependent and independent variables. A straightforward computation gives

$$(r^2)' = 2r\sqrt{a^2r^4 + 2br^2 + 1},$$

for a constant  $b \in \mathbb{R}$ . Thus

$$\frac{dt}{dr} = \frac{1}{\sqrt{a^2r^4 + 2br^2 + 1}}.$$

and (18) becomes

$$c(u) = a \int^{u} \frac{u^2}{\sqrt{a^2 u^4 + 2bu^2 + 1}} \, du.$$
<sup>(20)</sup>

In this way, the parametrization obtained is:

$$\begin{aligned} x(u,\theta) &= a \int^u \frac{u^2}{\sqrt{a^2 u^4 + 2bu^2 + 1}} \, du + u \cos \theta, \\ y(u,\theta) &= u \sin \theta, \\ z(u,\theta) &= \int^u \frac{du}{\sqrt{a^2 u^4 + 2bu^2 + 1}}. \end{aligned}$$

The integrals that appear in this parametrization come determined in terms of elliptic integrals.

We end Theorem 4.1 by presenting two examples.

**Example 1.** Firstly, we give the degenerate case by setting a = 0. The surface obtained is the *Lorentzian catenoid* and its parametrization is

$$x(u, \theta) = u \cos \theta,$$
  

$$y(u, \theta) = u \sin \theta,$$
  

$$z(u, \theta) = \frac{1}{\sqrt{2b}} \operatorname{arcsinh} (\sqrt{2b}u)$$

This surface is rotational and it is generated by the rotation of the curve  $(2b^{-1/2}\sinh(\sqrt{2b}u), 0, u)$  with respect to the  $x_3$ -axis (see Figure 1). The Lorentzian catenoid is the only maximal spacelike surface of revolution in  $\mathbf{L}^3$  with respect to a timelike rotation axis ([7]).

**Example 2.** To give another example, we put a = c = 1. The parametrization of the corresponding surface *M* is

$$\begin{aligned} x(u, \theta) &= u - \arctan u + u \cos \theta, \\ y(u, \theta) &= u \sin \theta, \\ z(u, \theta) &= \arctan u, \quad u \in (0, \infty), \ \theta \in \mathbb{R}, \end{aligned}$$

254

and its picture appears in Figure 2. This surface M is asymptotic to the plane  $z = \pi/2$ , that is, at this height, M has a flat end. Moreover the circles of the foliation converge to the straight-line  $L_1 = \{x = -\pi/2, z = \pi/2\}$  as  $u \to \infty$ : for each point  $(-\pi/2, y, \pi/2) \in L_1$ , it suffices to take the sequence  $\{u, \pi - y/u\}$  to prove that

$$\lim_{u\to\infty}\left(x\left(u,\pi-\frac{y}{u}\right),y\left(u,\pi-\frac{y}{u}\right),z\left(u,\pi-\frac{y}{u}\right)\right)=\left(-\frac{\pi}{2},y,\frac{\pi}{2}\right).$$

Thus, the reflection principle yields a new maximal surface by reflecting M across  $L_1$ .

If we consider the minus sign in (20), we obtain a surface M' that is congruent to M. More precisely, M' is the reflection of M across the origin. Denote  $M^* = M \cup M'$  (see Figure 3). This surface lies in the slab  $|z| < \pi/2$ , with two flat ends at  $\{z = \pm \pi/2\}$  and one singularity at the origin. In fact, the surface M is a fundamental domain of a simply periodic embedded maximal surface  $\tilde{M}$  in  $\mathbf{L}^3$  obtained by successive  $180^\circ$ -rotations across the straight-lines

$$L_n = \{x = (n - \frac{1}{2})\pi, z = (n - \frac{1}{2})\pi\}, n \in \mathbb{Z}.$$

The properties of  $\tilde{M}$  are summarized as follows:

 $-\tilde{M}$  intersects horizontal planes in lines at integer heights:

$$\tilde{M} \cap \left\{ z = \left(n - \frac{1}{2}\right)\pi \right\} = L_n, \quad n \in \mathbb{Z}.$$

- $\tilde{M}$  has flat ends at  $z = (n \frac{1}{2})\pi$ ,  $n \in \mathbb{Z}$ .
- $\tilde{M}$  is invariant under translations of the vector  $(-\pi, 0, \pi)$  and under reflections across the lines  $L_n$ .
- $\tilde{M}$  presents singularities at the points {( $-n\pi, 0, n\pi$ );  $n \in \mathbb{Z}$ }.  $\Box$



Figure 1. The Lorentzian catenoid



Figure 2. A piece M of a Riemann Lorentzian example

R. López



Figure 3. The Riemann Lorentzian example  $M^* = M \cup M'$ 

#### References

- A.D. Aleksandrov, Uniqueness theorems for surfaces in the large. V, Vestnik Leningrad Univ. 13 (1958) (19) 5–8; Amer. Math. Soc. Transl. (2) 21 (1962) 412–416.
- [2] C. Delaunay, Sur la surface de révolution dont la courbure moyenne est constante, *J. Math. Pure Appl.* **6** (1841) 309–320.
- [3] A. Enneper, Die cyklischen Flächen, Z. Math. Phys. 14 (1869) 393–421.
- [4] E. Hopf, Elementare Bemerkungen übeer die Lösungen partieller Differentialgleichungen zweiter Ordnung von Elliptischen Typen, *Preuss. Akad. Wiss.* **19** (1927) 147–152.
- [5] W. Jagy, Minimal hypersurfaces foliated by spheres, Michigan Math. J. 38 (1991) 255-270.
- [6] W. Jagy, Sphere-foliated constant mean curvature submanifolds, Rocky Mount. J. Math. 28 (1998) 983–1015.
- [7] O. Kobayashi, Maximal surfaces in the 3-dimensional Minkowski space  $L^3$ , Tokyo J. Math. 6 (1983) 297–303.
- [8] F.J. López, R. López and R. Souam, Maximal surfaces of Riemann-type in the Lorentz three-space, preprint.
- [9] R. López, Surfaces of constant mean curvature bounded by two planar curves, Ann. Glob. Anal. Geom. 15 (1997) 201–210.
- [10] R. López, Constant mean curvature surfaces foliated by circles in Lorentz–Minkowski space, *Geom. Dedicata* 76 (1999) 81–95.
- [11] R. López, Cyclic hypersurfaces of constant curvature, Adv. Stud. Pure Math., to appear.
- [12] J.C.C. Nitsche, Lectures on Minimal Surfaces (Cambridge Univ. Press, Cambridge, 1989).
- [13] J.C.C. Nitsche, Cyclic surfaces of constant mean curvature, Nachr. Akad. Wiss. Gottingen Math. Phys, II 1 (1989) 1–5.
- B. Riemann, Über die Flächen vom Kleinsten Inhalt be gegebener Begrenzung, Abh. Königl. Ges. Wissensch. Göttingen, Mathem. Cl. 13 (1868) 329-333.
- [15] R. Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces, J. Differential Geom. 18 (1983) 791–809.
- [16] A. Treibergs, Entire spacelike hypersurfaces of constant mean curvature in Minkowski space, *Invent. Math.* 66 (1982) 39–52.