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Abstract: We ask when a constant mean curvaturen-submanifold foliated by spheres in one of the Euclidean,
hyperbolic and Lorentz–Minkowski spaces (En+1, Hn+1 or Ln+1), is a hypersurface of revolution. InEn+1

andLn+1 we will assume that the spheres lie in parallel hyperplanes and in the case of hyperbolic spaceHn+1,
the spheres will be contained in parallel horospheres. Finally, Riemann examples inL3 are constructed, that
is, non-rotational spacelike surfaces foliated by circles in parallel planes.
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1. Introduction and statements of results

In Euclidean 3-spaceE3, the only complete minimal surface of revolution is the catenoid. In
particular, the catenoid is fibred by circles in parallel planes. There exist other minimal surfaces
in E3 foliated by circles in parallel planes which were discovered by Riemann [14]. A Riemann
surface is a simply periodic embedded minimal surface that is described in terms of elliptic
functions on a twice punctured rectangular torus. Its two ends are flat. Enneper [3] proved that
catenoids and Riemann examples are the only minimal surfaces foliated by circles.

Nitsche found all surfaces with non-zero constant mean curvature inE3 generated by a
one-parameter family of circles. In [13], he proved that the surface must be a sphere or, in the
non-spherical case, the circles must lie in parallel planes. In the latter case, the only possibilities
are the surfaces of revolution determined in 1841 by Delaunay [2].

In the arbitrary dimension, Jagy studied minimal submanifolds inEn+1, n > 3, generated
by a one-parameter family of hyperspheres. He showed that the hyperplanes containing the
hyperspheres are parallel again, but, in contrast to what happens inE3, the hypersurface must
be rotationally symmetric with respect to an axis. In this situation, the hypersurface obtained
is the higher catenoid.

In this article, we deal with (connected)n-dimensional submanifolds in three different am-
bients: Euclidean, hyperbolic and Lorentz–Minkowski(n + 1)-dimensional spaces. We shall
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consider that the submanifolds are foliated by(n − 1)-hyperspheres in parallel hyperplanes
(throughout this paper, hyperspheres will be called spheres for simplicity). More precisely:

1. Constant mean curvaturen-submanifolds in Euclidean spaceEn+1 foliated by spheres in
parallel hyperplanes.

2. Constant mean curvaturen-submanifolds in hyperbolic spaceHn+1 foliated by spheres
in parallel horospheres or parallel hyperplanes.

3. Constant mean curvature spaceliken-submanifolds in Lorentz–Minkowski spaceLn+1

foliated by spheres in parallel spacelike hyperplanes.
The methods that we apply in our proofs are based on the following fact. Consider the

Euclidean case. A smooth hypersurfaceMn in En+1 can be written locally as the level set for a
function. We orientM by the unit normal fieldN = −∇ f/|∇ f |. Then the mean curvatureH
of M is given by

nH = − div
∇ f

|∇ f | ,

where div denotes the divergence of the unit normal fieldN. An easy computation gives us

nH |∇ f |3 = 1 f |∇ f |2 − Hessf (∇ f, ∇ f ), (1)

where∇,1and Hess denote the gradient, laplacian and hessian operators respectively computed
with the Euclidean metric. The idea is to express in terms off the property thatM is ‘foliated
by spheres in parallel hyperplanes.’ The explicit computation of (1) and the fact thatH is
constant will impose restrictions onf that will conclude our results. In hyperbolic and Lorentz–
Minkowski spaces, the reasoning is similar.

It should be pointed out that up until now, the only known example of a maximal surface
(H = 0) in the Lorentz–Minkowski 3-spaceL3 foliated by circles in parallel spacelike planes
is the Lorentzian catenoid (see [7]). A major goal of this paper is the construction inL3 of
a family of non-rotational maximal surfaces foliated by circles in parallel spacelike planes
(Theorem 4.1). Together with the Lorentzian catenoid, these new surfaces comprise all the
maximal surfaces inL3 foliated by circles in parallel spacelike planes. In this sense, these
surfaces play the same role as Riemann minimal surfaces in Euclidean spaceE3. A different
approach to the maximal spacelike surfaces inL3 via the Weierstrass–Enneper representation
has been studied in [8]. Finally, the case of spacelike surface with nonzero constant mean
curvature and foliated by circles has been fully studied by the author [10,11].

We can summarize the results obtained in the following way:

Let X be one of the following(n+1)-dimensional spaces: Euclidean spaceEn+1, hyperbolic
spaceHn+1 and Lorentz–Minkowski spaceLn+1. Let Mn be an n-dimensional submanifold in
X of constant mean curvature H.

1. If X = En+1, n > 3, H 6= 0 and M is foliated by spheres in parallel hyperplanes, then
M is a hypersurface of revolution(Theorem2.1).

2. If X = Hn+1 and M is foliated by spheres in parallel horospheres, then M is a hyper-
surface of revolution(Theorem3.3).
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3. If X = Ln+1 and M is foliated by spheres in parallel spacelike hyperplanes then(Theo-
rem4.1):

(a) M is a hypersurface of revolution if H6= 0 or H = 0 and n> 3;
(b) if H = 0 and n = 2, M is the Lorentzian catenoid or M belongs to a non-rotational

one-parametric family of maximal surfaces.

Added in proof.We have just known the existence of reference [6] where part of our results are
also studied.

2. Hypersurfaces in Euclidean space

Nitsche proved that a surfaceM of constant mean curvatureH 6= 0 in E3 and foliated by
circles in parallel planes must be a Delaunay surface [13]. We obtain this result inEn+1.

Theorem 2.1. Let Mn be an n-dimensional submanifold ofEn+1 of constant mean curvature
H 6= 0and foliated by spheres in parallel hyperplanes. Then Mn is a hypersurface of revolution.

Proof. Without loss of generality, assume that each hyperplane of the foliation is parallel to
xn+1 = 0. Let P1 = {xn+1 = t1} and P2 = {xn+1 = t2} be two hyperplanes of the foliation
with t1 < t2. ConsiderM∗ as the piece ofM betweenP1 and P2. We use the Aleksandrov
reflection method in Euclidean space [1]. This method is based on the classical Hopf maximum
principle [4], which stated that if two hypersurfaces with the same mean curvature are tangent
at a common pointp and one hypersurface (locally) lies by the side of the other one, then they
agree in a neighbourhood ofp.

The Aleksandrov method involves successive reflections across each family of parallel hyper-
planes. A standard application of this technique with hyperplanes orthogonal to the foliation hy-
perplanes, shows thatM∗ inherits the symmetries of its boundary∂M∗ = (M∗∩P1)∪(M∗∩P2)

(see [9] for the three-dimensional case and [15] for the minimal case). Therefore, for each
t1 6 t 6 t2, the centers of each levelM ∩ {xn+1 = t} lie in the same 2-plane. After a transla-
tion, we can assume that this 2-plane is defined byx2 = · · · = xn = 0. Let us parametrize the
centers of the spheres byt 7−→ (c(t), 0, . . . , 0, t), t ∈ [t1, t2]. Furthermore,M∗ is the level set
of a smooth functionf given by

f = (x1 − c(t))2 +
n∑

i =2

x2
i − r (t)2, (2)

wherer (t) > 0 denotes the sphere radius at the levelxn+1 = t . We shall prove that the line of
the centers is a straight-line orthogonal to the hyperplanexn+1 = 0, that is,c is a constant map.
This should show thatM∗ is a hypersurface of revolution.

We assume, by contradiction, that there is a sub-interval of [t1, t2] wherec is not constant
and so,c′ 6= 0. Without loss of generality, we suppose this interval is [t1, t2]. Now, we use
identity (1). Computations are the same as [5] and, for the sake of completeness, we repeat
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them:
∇ f = 2

(
x1 − c, x2, . . . , xn, −(x1 − c)c′ − rr ′),

|∇ f |2 = 4
(
r 2 + [(x1 − c)c′ + rr ′]2),

1 f = 2
(
n + c′2 − r ′2 − rr ′′ − (x1 − c)c′′),

Hessf = 2


1 0 · · · −c′

0 1 · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−c′ 0 · · · c′2 − r ′2 − rr ′′ − (x1 − c)c′′

 ,

Hessf (∇ f, ∇ f ) = 8
(
r 2 + 2c′(x1 − c)[(x1 − c)c′ + rr ′]

+ [(x1 − c)c′ + rr ′]2[c′2 − rr ′′ − r ′2 − (x1 − c)c′′]
)
.

On the other hand, the left-hand side of (1) is

8nH
(
r 2 + [(x1 − c)c′ + rr ′]2)3/2.

Let us fix a sectiont . Sincex1 is varied, we introduce the variableλ by

λ = (x1 − c)c′ + rr ′

r
. (3)

Sincec′ 6= 0 for each sphere of the foliation ofM∗,λ takes values in an interval of the lineR. By
using (3), we regard identity (1) as a polynomial onλ where the coefficients are functions of the
independent variablet . The right-hand side of (1) is a 2-degree polynomiala0 + a1λ + a2λ

2:

8nHr(1 + λ2)3/2 = a0 + a1λ + a2λ
2. (4)

Squaring (4) and examining the leader coefficients, we haven2H2r 2 = 0, which is a contra-
diction becauseH 6= 0. Thereforec′(t) = 0. Sincet is arbitrary, thenc is constant and so,M∗

is a hypersurface of revolution. SinceM∗ is an arbitrary piece ofM , thenM is a hypersurface
of revolution. ¤

3. Hypersurfaces in hyperbolic space

Let us consider the upper halfspace model of hyperbolic space

Hn+1 =: Rn+1
+ = {

x1, . . . , xn+1) ∈ Rn+1; xn+1 > 0
}

equipped with the metric

ds2 = (dx1)
2 + · · · + (dxn+1)

2

x2
n+1

.

Hyperbolic spaceHn+1 has a natural compactificationHn+1 = Hn+1∪∂∞Hn+1, where∂∞Hn+1

can be identified with asymptotic classes of geodesic rays inHn+1. In the upper halfspace model,
∂∞Hn+1 = {xn+1 = 0} ∪ {∞} is the one-point compactification of the hyperplanexn+1 = 0.
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We will deal with hypersurfaces foliated by spheres included either in horospheres or hyper-
planes in two natural situations, which will be merely calledparallel horospheresor parallel
hyperplanes. For our own convenience, we give our definition.

Definition 3.1. A one-parameter family of horospheres or geodesic hyperplanes are called
parallel if their asymptotic boundaries agree at exactly one point.

Since the asymptotic boundary of a horosphere is exactly one point, ‘parallel horospheres’
means that they have the same asymptotic boundary. By means of using an isometry ofHn+1, one
can describe a family of parallel horospheres as Euclidean hyperplanes in{xn+1 > 0} parallel to
the hyperplanexn+1 = 0 in the Euclidean sense. In the same way, a family of geodesic parallel
hyperplanes can be viewed as Euclidean hyperplanes parallel to the hyperplanexn = 0. Also,
in our model forHn+1, (n− 1)-spheres are simply Euclidean(n− 1)-spheres included inRn+1

+
In the proofs, we will write a hypersurfaceM in hyperbolic space locally as the level set of a

smooth functionf . So, we need the analogous formula (1) to describe the mean curvatureH of
M in terms of f . In our model ofHn+1, the hyperbolic metric is conformal with the Euclidean
metric supported byRn+1

+ . A straightforward computation gives us the relation between the
mean curvatures ofM with the two induced metrics.

Lemma 3.2. Let M be an oriented hypersurface immersed inRn+1
+ and let ds20 and ds2 be

respectively the Euclidean and hyperbolic metrics onRn+1
+ . Let N be a Gauss map for the

immersion M→ (Rn+1
+ , ds2

0) and consider the orientation on M→ (Rn+1
+ , ds2) given by

xn+1N. Denote by h and H the mean curvatures of M for the immersion of M in(Rn+1
+ , ds2

0)

and(Rn+1
+ , ds2) respectively. Then, for each p∈ M ,

H(p) = xn+1(p)h(p) + Nn+1(p), (5)

where Nn+1(p) denotes the xn+1-coordinate of N(p)

Equation (1) and relation (5) tells us that ifM is a hypersurface inHn+1 of constant mean
curvatureH given by the level set off = 0, then

nH|∇ f |3 = nNn+1|∇ f |3 + xn+1
(
1 f |∇ f |2 − Hessf (∇ f, ∇ f )

)
, (6)

where∇, 1 and Hess denote as (1).
We are in a position to study constant mean curvature submanifolds inHn+1 foliated by

spheres in parallel horospheres. In contrast with the Euclidean case (whenH = 0), the only
possibility will be that the hypersurface is a rotational hypersurface with a geodesic as the axis
of revolution.

Theorem 3.3. Let Mn be an n-dimensional submanifold inHn+1 of constant mean curvature
and foliated by spheres in parallel horospheres. Then M is a hypersurface of revolution, that
is, there exists a geodesicγ such that M is invariant by the group of isometries that leavesγ

fixed pointwise.

Proof. As we have pointed out, we can assume that the horospheres are Euclidean hyperplanes
of Rn+1

+ parallel to the hyperplanexn+1 = 0. ConsiderM∗ as a piece ofM between two levels
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P1 = {xn+1 = t1} and P2 = {xn+1 = t2}, t1 < t2. The Aleksandrov reflection can be applied
in our case as in Theorem 2.1, where by reflections we meanhyperbolic reflectionsacross
totally geodesic hyperplanes. In our model forHn+1, these hyperbolic reflections are regarded
as Euclidean reflections across vertical hyperplanes and Euclidean inversions with respect to
spheres meeting orthogonally∂∞Hn+1. Therefore we can parametrize the Euclidean centers of
spheresM∗ ∩ {xn+1 = t} by t 7−→ (c(t), 0, . . . , 0, t), wherer (t) > 0 denotes the Euclidean
radius for eacht . Then the surfaceM∗ is the level set for the same functionf defined in (2).

We proceed by contradiction. So, we suppose thatc′ 6= 0 in the interval [t1, t2]. The xn+1-
coordinate of the Gauss mapN of M∗ ⊂ En+1 is given by

Nn+1 = − (x1 − c)c′ + rr ′√
r 2 + [(x1 − c)c′ + rr ′]2

.

Let us fix the levelxn+1 = t . By using (3), equation (6) can written in the following way:

nr H(1 + λ2)3/2 = nrλ(1 + λ2) + xn+1(a0 + a1λ + a2λ
2), (7)

whereai are coefficients that do not depend onλ. The right-hand side in (7) is a 3-degree
polynomial:b0 + b1λ + b2λ

2 + b3λ
3. Squaring both sides in (7), the identity of the leader

coefficients gives

n2r 2H2 = n2r 2.

ThusH2 = 1. Since the square of the left-hand side in (7) is a polynomial with non odd terms
in λ, the coefficients ofλ5 andλ3 vanish on the right-hand side. The 5-degree coefficient yields
b2b3 = 0. Sinceb3 = n2r 2 6= 0, thenb2 = 0. Now, theλ3-term givesb0b3 = 0 and then,
b0 = 0. HoweverH2 = 1 and theλ0-term on the left-hand side of (7) isn2r 2H2 = n2r 2 6= 0.
This contradiction leads toc′ = 0 on [t1, t2], that is,c is constant. ThereforeM is a hypersurface
of revolution with the geodesicγ (t) = (c, 0, . . . , 0, t) being the rotation axis. ¤

The second part of this section is concerned with submanifolds inHn+1 foliated by spheres
in parallel geodesic hyperplanes. LetM be an-submanifold of constant mean curvature in
Hn+1. By means of using an isometry of the ambient, we suppose that the foliation ofM is
given by hyperplanes parallel toxn = 0. As in Theorem 3.3, we pick a piece ofM denoted
as M∗ between two hyperplanesP1, P2 of the foliation. In this situation, it is not possible
to use Aleksandrov technique to show that the centers of the spheres of the foliation lie in
a 2-plane: there does not exist a family of parallel geodesic hyperplanes orthogonal toboth
hyperplanesP1 and P2. One case where the Aleksandrov technique works is when for each
2 6 i 6 n, (M∗ ∩ P1) ∪ (M∗ ∩ P2) is invariant under some hyperbolic reflection across a
geodesic hyperplane parallel toxi = 0. In this case, Aleksandrov method proves that the line
of the sphere centers of the foliation lies in a 2-plane ofHn+1.

Theorem 3.4. Let Mn be an n-dimensional submanifold inHn+1 of constant mean curvature
and foliated by spheres in parallel geodesic hyperplanes. Assume there exist two geodesic
hyperplanes P1 and P2 of the foliation such that(M ∩ P1) ∪ (M ∩ P2) is invariant under
hyperbolic reflections across n− 1 orthogonal geodesic hyperplanes and all them orthogonal
to P1 ∪ P2 as well. Then M is a totally umbilical hypersurface.
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Proof. We takeM∗ the piece ofM between the two geodesic hyperplanes containing the two
spheres of the hypothesis. By means of an isometry, we assume the centers of the spheres that
foliate M∗ can be parametrized by

γ (t) = (0, . . . , 0, t, c(t)).

ThenM∗ is the level set of

f =
n−1∑
i =1

x2
i + [xn+1 − c(t)]2 − r (t)2 = 0,

wherec(t) andr (t) denote as in the proof of Theorem 2.1. By contradiction, let us assume that
c′ 6= 0 on [t1, t2]. Again let us fix a levelt of the foliation and let

λ = (xn+1 − c)c′ + rr ′

r
. (8)

A computation of identity (6) becomes the polynomial equation onλ:

nr H(1 + λ2)3/2 = −nr(λ − r ′)
c′ (1 + λ2) + xn+1(d0 + d1λ + d2λ

2)

= e0 + e1λ + e2λ
2 + e3λ

3. (9)

It is easy to check that

d0 = n − 1 + c′2 − r ′2 − rr ′′ − rc′′, d1 = 2r ′ − rc′′

c′ , d2 = n − 2.

Notice that from (8)

xn+1 = r

c′ (λ − r ′) + c.

Squaring (9), the equality of theλ6-terms gives

n2H2 = 4

c′2 . (10)

In particular,e3 6= 0. As in Theorem 2.1, all odd terms of the polynomial(e0+e1λ+e2λ
2+e3λ

3)2

are zero. Thuse0 = e2 = 0. If we regard the square of the left-hand side in (9) and by considering
the independent term, we obtainn2r 2H2 = 0, in contradiction with (10).

As a conclusion,c is constant, that is,γ is a horizontal Euclidean straight-line. Returning to
(6) and puttingc′ = 0, we have

nHr(1 + r ′2)3/2 = (−rr ′′ − 1 − r ′2)xn+1 + nc(1 + r ′2).

Consider thatxn+1 varies in this identity. Then the radiusr = r (t) satisfies the next two
differential equations:

rr ′′ + 1 + r ′2 = 0, (11)

Hr
√

1 + r ′2 = c. (12)
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Each solution of (12) verifies (11) and the solutions of (11) are circles. Therefore, if we look at
M∗ as a subset ofRn+1

+ , thenM∗ is an open set of ann-dimensional Euclidean sphere. From
the hyperbolic viewpoint, thisn-sphere is an umbilical hypersurface ofHn+1 and hence,M is
a totally umbilical hypersurface. ¤

4. Hypersurfaces in Lorentz–Minkowski space

Let Ln+1 denote the(n + 1)-dimensional Lorentz–Minkowski space, that is, the spaceRn+1

endowed with the Lorentzian metric

〈· , ·〉 = (dx1)
2 + · · · + (dxn)

2 − (dxn+1)
2,

where(x1 . . . , xn+1) are the canonical coordinates inRn+1. An M hypersurface immersed in
Ln+1 is spacelikeif the induced metric is a Riemannian metric onM . When the hypersurface is
(locally) the level set off = 0, and the factM is spacelike means that∇ f is a vector orthogonal
to M of timelike character:

〈∇ f, ∇ f 〉 < 0. (13)

Let us orientM by the unit normal fieldN = −∇ f/|∇ f |, where

|∇ f | =
√

−〈∇ f, ∇ f 〉 =
√

−
n∑

i =1

f 2
i + f 2

n+1.

Here f j denotes the partial derivative of the functionf = f (x1, . . . , xn+1) with respect to the
xj -coordinate. Now, ifH is the mean curvature calculated with this orientation, then

nH = − Div
∇ f

|∇ f | ,

where Div denotes the divergence with the Lorentzian metric. A straightforward computation
gives

nH|∇ f |3 = 〈∇ f, ∇ f 〉1 f − Hessf (∇ f, ∇ f ), (14)

with ∇ f = ( f1, . . . , fn, − fn+1),

1 f =
n∑

i =1

fi,i − fn+1,n+1,

Hessf (∇ f, ∇ f ) =
n∑

i, j =1

fi f j fi, j .

In the present section we study constant mean curvature spacelike hypersurfaces in Lorentz–
Minkowski spaceLn+1 foliated by spheres in parallel spacelike hyperplanes. After using a
Lorentz transformation, we can assume that these hyperplanes are parallel to the hyperplane
xn+1 = 0. In this case, these spheres can be viewed as Euclidean spheres in horizontal hyper-
planes.
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Theorem 4.1. Let Mn be a spacelike n-dimensional submanifold inLn+1 of constant mean
curvature H and foliated by spheres in parallel spacelike hyperplanes.

1. If H 6= 0, then M is a hypersurface of revolution.
2. If H = 0 and

(a)n > 3, then M is a hypersurface of revolution.
(b) n = 2, then M is a surface of revolution or M belongs to a one-parameter family of

non-rotational maximal surfaces.

Proof. A spacelike hypersurface of constant mean curvature inLn+1 satisfies (locally) an
elliptic equation to which we can apply the classical maximum principle (see, for instance, [16]).
So, the Aleksandrov technique works in our situation. LetM∗ be an arbitrary piece ofM
between two hyperplanes of the foliation:xn+1 = t1, xn+1 = t2, t1 < t2. Again, we apply
the Aleksandrov reflection method by hyperplanes orthogonal toxn+1 = 0 as in Theorem 2.1.
Reflection across hyperplanes of this kind are Euclidean reflections. Then the centers of spheres
can be parametrized by(c(t), 0, . . . , t), t ∈ [t1, t2]. To show thatM is a hypersurface of
revolution, it suffices to prove thatc is a constant function.

By contradiction, assume thatc′ 6= 0 on [t1, t2]. Since the spheres of the foliation are
Euclidean spheres, we take the same functionf as in (2). Let us fixt with the variableλ as (3).
Identity (14) gives

nr H(−1 + λ2)3/2 = g0 + g1λ + g2λ
2,

where the coefficientsgi are functions ont . Squaring this identity, the leader coefficients give
H = 0. Therefore, ifH 6= 0, we obtain a contradiction unlessc′ = 0. In this case,M is a
hypersurface of revolution and we have proved 1.

Now let us study the maximal caseH = 0. Computing the right-hand side of (14), we have(
n − 1 + r ′2 − c′2 + rr ′′ − rr ′c′′

c′
)

+
(rc′′

c′ − 2r ′
)

λ + (2 − n)λ2 = 0. (15)

The 2-degree term in (15) givesg2 = n − 2 = 0. Therefore, ifn > 3, c′ must vanish andM
is a hypersurface of revolution again. This proves 2(a). Let us consider the casen = 2. Theλ1

andλ0-terms in (15) give

g1 = rc′′

c′ − 2r ′ = 0,

g0 = 1 + r ′2 − c′2 + rr ′′ − rr ′c′′

c′ = 0.

We simplify the above equations by

rc′′ − 2r ′c′ = 0, (16)

1 − r ′2 + rr ′′ − c′2 = 0. (17)

A first integral of (16) is given by

c′ = ar2 (18)
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for a positive constanta ∈ R. Substituting in (17), it follows that

1 − r ′2 + rr ′′ − a2r 4 = 0. (19)

Let us integrate equation (19) by a similar approach to that given in [12, p. 87]. Considerx = r 2

andy = (r 2)′ as the new dependent and independent variables. A straightforward computation
gives

(r 2)′ = 2r
√

a2r 4 + 2br2 + 1,

for a constantb ∈ R. Thus

dt

dr
= 1√

a2r 4 + 2br2 + 1
.

and (18) becomes

c(u) = a
∫ u u2√

a2u4 + 2bu2 + 1
du. (20)

In this way, the parametrization obtained is:

x(u, θ) = a
∫ u u2√

a2u4 + 2bu2 + 1
du + u cosθ,

y(u, θ) = u sinθ,

z(u, θ) =
∫ u du√

a2u4 + 2bu2 + 1
.

The integrals that appear in this parametrization come determined in terms of elliptic integrals.
We end Theorem 4.1 by presenting two examples.

Example 1. Firstly, we give the degenerate case by settinga = 0. The surface obtained is the
Lorentzian catenoidand its parametrization is

x(u, θ) = u cosθ,

y(u, θ) = u sinθ,

z(u, θ) = 1√
2b

arcsinh(
√

2bu).

This surface is rotational and it is generated by the rotation of the curve(2b−1/2 sinh(
√

2bu),
0, u) with respect to thex3-axis (see Figure 1). The Lorentzian catenoid is the only maximal
spacelike surface of revolution inL3 with respect to a timelike rotation axis ([7]).

Example 2. To give another example, we puta = c = 1. The parametrization of the corre-
sponding surfaceM is

x(u, θ) = u − arctanu + u cosθ,

y(u, θ) = u sinθ,

z(u, θ) = arctanu, u ∈ (0, ∞), θ ∈ R,
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and its picture appears in Figure 2. This surfaceM is asymptotic to the planez = π/2, that is, at
this height,M has a flat end. Moreover the circles of the foliation converge to the straight-line
L1 = {x = −π/2, z = π/2} asu → ∞: for each point(−π/2, y, π/2) ∈ L1, it suffices to
take the sequence{u, π − y/u)} to prove that

lim
u→∞

(
x
(
u, π − y

u

)
, y

(
u, π − y

u

)
, z

(
u, π − y

u

))
=

(
− π

2
, y,

π

2

)
.

Thus, the reflection principle yields a new maximal surface by reflectingM acrossL1.

If we consider the minus sign in (20), we obtain a surfaceM ′ that is congruent toM . More
precisely,M ′ is the reflection ofM across the origin. DenoteM∗ = M ∪ M ′ (see Figure 3).
This surface lies in the slab|z| < π/2, with two flat ends at{z = ±π/2} and one singularity
at the origin. In fact, the surfaceM is a fundamental domain of a simply periodic embedded
maximal surfaceM̃ in L3 obtained by successive 180◦-rotations across the straight-lines

Ln = {
x = (

n − 1
2

)
π, z = (

n − 1
2

)
π

}
, n ∈ Z.

The properties ofM̃ are summarized as follows:
– M̃ intersects horizontal planes in lines at integer heights:

M̃ ∩ {
z = (

n − 1
2

)
π

} = Ln, n ∈ Z.

– M̃ has flat ends atz = (n − 1
2)π , n ∈ Z.

– M̃ is invariant under translations of the vector(−π, 0, π) and under reflections across the
linesLn.

– M̃ presents singularities at the points{(−nπ, 0, nπ); n ∈ Z}. ¤

Figure 1. The Lorentzian catenoid

Figure 2. A pieceM of a Riemann Lorentzian example
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Figure 3. The Riemann Lorentzian exampleM∗ = M ∪ M ′
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[10] R. López, Constant mean curvature surfaces foliated by circles in Lorentz–Minkowski space,Geom. Dedicata

76 (1999) 81–95.
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