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Abstract We ask when a constant mean curvanssibmanifold foliated by spheres in one of the Euclidean,
hyperbolic and Lorentz—Minkowski spacas't, H"*1 or L"*1), is a hypersurface of revolution. E'*1
andL "1 we will assume that the spheres lie in parallel hyperplanes and in the case of hyperboli¢ $pace
the spheres will be contained in parallel horospheres. Finally, Riemann exampfeara constructed, that
is, non-rotational spacelike surfaces foliated by circles in parallel planes.
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1. Introduction and statements of results

In Euclidean 3-spacg?, the only complete minimal surface of revolution is the catenoid. In
particular, the catenoid is fibred by circles in parallel planes. There exist other minimal surfaces
in E2 foliated by circles in parallel planes which were discovered by Riemann [14]. A Riemann
surface is a simply periodic embedded minimal surface that is described in terms of elliptic
functions on a twice punctured rectangular torus. Its two ends are flat. Enneper [3] proved that
catenoids and Riemann examples are the only minimal surfaces foliated by circles.

Nitsche found all surfaces with non-zero constant mean curvatukg igenerated by a
one-parameter family of circles. In [13], he proved that the surface must be a sphere or, in the
non-spherical case, the circles must lie in parallel planes. In the latter case, the only possibilities
are the surfaces of revolution determined in 1841 by Delaunay [2].

In the arbitrary dimension, Jagy studied minimal submanifolds"ift, n > 3, generated
by a one-parameter family of hyperspheres. He showed that the hyperplanes containing the
hyperspheres are parallel again, but, in contrast to what happé&istime hypersurface must
be rotationally symmetric with respect to an axis. In this situation, the hypersurface obtained
is the higher catenoid.

In this article, we deal with (connectedjdimensional submanifolds in three different am-
bients: Euclidean, hyperbolic and Lorentz—Minkowsgki+ 1)-dimensional spaces. We shall
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consider that the submanifolds are foliated (lby— 1)-hyperspheres in parallel hyperplanes
(throughout this paper, hyperspheres will be called spheres for simplicity). More precisely:

1. Constant mean curvatunesubmanifolds in Euclidean spaE&** foliated by spheres in
parallel hyperplanes.

2. Constant mean curvatunesubmanifolds in hyperbolic spa¢€'*? foliated by spheres
in parallel horospheres or parallel hyperplanes.

3. Constant mean curvature spacelikeubmanifolds in Lorentz—Minkowski spaté+!
foliated by spheres in parallel spacelike hyperplanes.

The methods that we apply in our proofs are based on the following fact. Consider the
Euclidean case. A smooth hypersurfad8 in E"* can be written locally as the level set for a
function. We orientM by the unit normal fielo0N = —V f/|V f|. Then the mean curvatuté
of M is given by

Vv

nH = —div——,
V1]

where div denotes the divergence of the unit normal fiéldAn easy computation gives us
NH|Vf2=Af|Vf|?—Hessf(Vf, VT), (1)

whereV, A and Hess denote the gradient, laplacian and hessian operators respectively computed
with the Euclidean metric. The idea is to express in terms tife property thaM is ‘foliated
by spheres in parallel hyperplanes.” The explicit computation of (1) and the facHthat
constant will impose restrictions dnthat will conclude our results. In hyperbolic and Lorentz—
Minkowski spaces, the reasoning is similar.

It should be pointed out that up until now, the only known example of a maximal surface
(H = 0) in the Lorentz—Minkowski 3-spade® foliated by circles in parallel spacelike planes
is the Lorentzian catenoid (see [7]). A major goal of this paper is the constructibf df
a family of non-rotational maximal surfaces foliated by circles in parallel spacelike planes
(Theorem 4.1). Together with the Lorentzian catenoid, these new surfaces comprise all the
maximal surfaces it foliated by circles in parallel spacelike planes. In this sense, these
surfaces play the same role as Riemann minimal surfaces in EuclideanEhaceifferent
approach to the maximal spacelike surfacesirvia the Weierstrass—Enneper representation
has been studied in [8]. Finally, the case of spacelike surface with nonzero constant mean
curvature and foliated by circles has been fully studied by the author [10, 11].

We can summarize the results obtained in the following way:

Let X be one of the followingn + 1)-dimensional space&uclidean spac&"**, hyperbolic
spaceH"! and Lorentz—Minkowski spat&™**. Let M" be an n-dimensional submanifold in
X of constant mean curvature H.

1.1f X = E™! n > 3, H # 0and M is foliated by spheres in parallel hyperplangsn
M is a hypersurface of revolutiofTheoren?.1).

2.1f X = H™! and M is foliated by spheres in parallel horospheréen M is a hyper-
surface of revolutiorfTheorent.3).
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3.1f X = L™ and M is foliated by spheres in parallel spacelike hyperplanes fiaao-
rem4.1):
(a) M is a hypersurface of revolutionif Bt 0or H = 0and n> 3;
(b) ifH = 0and n= 2, M is the Lorentzian catenoid or M belongs to a non-rotational
one-parametric family of maximal surfaces.

Added in proofWe have just known the existence of reference [6] where part of our results are
also studied.

2. Hypersurfaces in Euclidean space

Nitsche proved that a surfadé of constant mean curvatuté # 0 in E® and foliated by
circles in parallel planes must be a Delaunay surface [13]. We obtain this re&it’in

Theorem 2.1. Let M" be an n-dimensional submanifold B! of constant mean curvature
H # Oand foliated by spheres in parallel hyperplanes. Thehid& hypersurface of revolution.

Proof. Without loss of generality, assume that each hyperplane of the foliation is parallel to
Xny1 = 0. Let Py = {Xny1 = t1} and P, = {Xny1 = to} be two hyperplanes of the foliation
with t; < t,. ConsiderM* as the piece oM betweenP; and P,. We use the Aleksandrov
reflection method in Euclidean space [1]. This method is based on the classical Hopf maximum
principle [4], which stated that if two hypersurfaces with the same mean curvature are tangent
at a common poinp and one hypersurface (locally) lies by the side of the other one, then they
agree in a neighbourhood pf

The Aleksandrov method involves successive reflections across each family of parallel hyper-
planes. A standard application of this technique with hyperplanes orthogonal to the foliation hy-
perplanes, shows thit* inherits the symmetries of its boundaiyl* = (M*NP)U(M*NPy)
(see [9] for the three-dimensional case and [15] for the minimal case). Therefore, for each
t; <t < ty, the centers of each lev N {Xn,1 = t} lie in the same 2-plane. After a transla-
tion, we can assume that this 2-plane is defineddy: - - - = x, = 0. Let us parametrize the
centers of the spheres by— (c(1),0,...,0,1),t € [ty, to]. FurthermoreM* is the level set
of a smooth functiorf given by

f=0a—ct)’+ )Y ¥ —rm? 2)

i=2

wherer (t) > 0 denotes the sphere radius at the leygh = t. We shall prove that the line of
the centers is a straight-line orthogonal to the hyperpkane = 0, that is,c is a constant map.
This should show that1* is a hypersurface of revolution.
We assume, by contradiction, that there is a sub-intervat, of,] wherec is not constant
and so,c’ # 0. Without loss of generality, we suppose this intervaltistp]. Now, we use
identity (1). Computations are the same as [5] and, for the sake of completeness, we repeat
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them:
VE=2(Xx1—C X, ..., %, —(Xg —C)C —rr’),

IV 12 =4(r?+[(x1 — ©C + 1)),
Af =2(n+c?—r1?—rr" — (xg — o),

- 0 - ?—r?—rr"—(xg—c)
Hessf (Vf, V) =8(r*+2c¢'(xy — ©)[(Xg — €)C + 1]
+ (e — O +r1r'1?[c? —rr” — 1% — (x, — ©)c']).
On the other hand, the left-hand side of (1) is
BNH(r? + [(xy — )¢’ +rr']?)%2.
Let us fix a sectiont. Sincex; is varied, we introduce the variableby

(xg — o) +rr’
- 1% 3)
Sincec’ £ 0for each sphere of the foliation df*, A takes values in an interval of the lifke By
using (3), we regard identity (1) as a polynomiabowhere the coefficients are functions of the
independent variable The right-hand side of (1) is a 2-degree polynomaigh a;x + apr?:

A

8nHr(1+ 12)¥2 = ag+ a1x + aA’. (4)

Squaring (4) and examining the leader coefficients, we ndw#r? = 0, which is a contra-
diction becauséd # 0. Therefored/(t) = 0. Sincet is arbitrary, thert is constant and sdvl*
is a hypersurface of revolution. Siné&* is an arbitrary piece oM, thenM is a hypersurface
of revolution. O

3. Hypersurfaces in hyperbolic space

Let us consider the upper halfspace model of hyperbolic space
HY = RT = {xq, ..., Xop1) € R™ Xqqq > 0}
equipped with the metric

4o — @% 4+ [@%0)?
- , .
Xn+l

Hyperbolic spaceél™*! has a natural compactificatiofi 1 = H™ U9, H" !, whered, H" 1
can be identified with asymptotic classes of geodesic ray8 . In the upper halfspace model,
dsocH™?! = {Xn411 = 0} U {o0} is the one-point compactification of the hyperplaqe; = O.
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We will deal with hypersurfaces foliated by spheres included either in horospheres or hyper-
planes in two natural situations, which will be merely calpedallel horospheresr parallel
hyperplanesFor our own convenience, we give our definition.

Definition 3.1. A one-parameter family of horospheres or geodesic hyperplanes are called
parallel if their asymptotic boundaries agree at exactly one point.

Since the asymptotic boundary of a horosphere is exactly one point, ‘parallel horospheres’
means that they have the same asymptotic boundary. By means of using an isoigtry ofie
can describe a family of parallel horospheres as Euclidean hyperplaixgsin- 0} parallel to
the hyperplang,.; = 0in the Euclidean sense. In the same way, a family of geodesic parallel
hyperplanes can be viewed as Euclidean hyperplanes parallel to the hypegptarie Also,
in our model foH"*, (n — 1)-spheres are simply Euclideam— 1)-spheres included i]RS‘:rl

In the proofs, we will write a hypersurfadé in hyperbolic space locally as the level set of a
smooth functionf . So, we need the analogous formula (1) to describe the mean curtatfre
M in terms of f . In our model ofH"*1, the hyperbolic metric is conformal with the Euclidean
metric supported b&RUfl. A straightforward computation gives us the relation between the
mean curvatures d¥l with the two induced metrics.

Lemma 3.2. Let M be an oriented hypersurface immersedih™ and let dg and d$ be
respectively the Euclidean and hyperbolic metricswl. Let N be a Gauss map for the
immersion M— (R, d%) and consider the orientation on M> (R}, ds?) given by
xnt1N. Denote by h and H the mean curvatures of M for the immersion of (\]R[th, d%)
and (R, ds?) respectively. Theror each pe M,

H(p) = Xnt1(P)N(P) + Nny1(p), ()

where N 1(p) denotes the x 1-coordinate of N p)

Equation (1) and relation (5) tells us that\f is a hypersurface ifl"** of constant mean
curvatureH given by the level set of = 0, then

NHIV {2 = NN |V T2+ Xopa (AT |V T2 = Hessf (V £, VT)), (6)

whereV, A and Hess denote as (1).

We are in a position to study constant mean curvature submanifold$ih foliated by
spheres in parallel horospheres. In contrast with the Euclidean case fvkem®), the only
possibility will be that the hypersurface is a rotational hypersurface with a geodesic as the axis
of revolution.

Theorem 3.3. Let M" be an n-dimensional submanifold it of constant mean curvature
and foliated by spheres in parallel horospheres. Then M is a hypersurface of revothbn
is, there exists a geodesjcsuch that M is invariant by the group of isometries that leayes
fixed pointwise.

Proof. Aswe have pointed out, we can assume that the horospheres are Euclidean hyperplanes
of ]Ri*l parallel to the hyperplang,, 1 = 0. ConsideM* as a piece oM between two levels
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P1 = {Xny1 = t1} and P, = {Xn,1 = t3}, t1 < to. The Aleksandrov reflection can be applied
in our case as in Theorem 2.1, where by reflections we nhggaerbolic reflectionsacross
totally geodesic hyperplanes. In our model i1, these hyperbolic reflections are regarded
as Euclidean reflections across vertical hyperplanes and Euclidean inversions with respect to
spheres meeting orthogonally, H"**. Therefore we can parametrize the Euclidean centers of
spheredM* N {xn;1 =t} byt — (c(t),0,...,0,t), wherer (t) > 0 denotes the Euclidean
radius for each. Then the surfac®1* is the level set for the same functidndefined in (2).

We proceed by contradiction. So, we suppose thet 0 in the interval {i, t2]. The Xy 1-
coordinate of the Gauss mapof M* c E™1 is given by

Xy — )¢ +rr’
Vr24+[(xg—o)c +rr1]2
Let us fix the levek,,; = t. By using (3), equation (6) can written in the following way:

Nn+l = -

nrH@ 4+ 2%)%2 = nra(1 4 1%) 4 Xnp1(80 + agh + agr?), 7)

whereg; are coefficients that do not depend bnThe right-hand side in (7) is a 3-degree
polynomial: by 4+ biA + A2 + b3A3. Squaring both sides in (7), the identity of the leader
coefficients gives

nr?H? = n%r2.
ThusH? = 1. Since the square of the left-hand side in (7) is a polynomial with non odd terms
in A, the coefficients of® and® vanish on the right-hand side. The 5-degree coefficient yields
bobs = 0. Sincebs = nr? #£ 0, thenb, = 0. Now, thex3-term givesbgbz = 0 and then,
bp = 0. HoweverH? = 1 and ther®-term on the left-hand side of (7) iBr?H? = n%r2 # 0.

This contradiction leads @ = 0 on [ty, ty], thatis,cis constant. Thereforll is a hypersurface
of revolution with the geodesig(t) = (c, 0, ..., 0, t) being the rotation axis.

The second part of this section is concerned with submanifoldi§ i foliated by spheres
in parallel geodesic hyperplanes. Lt be an-submanifold of constant mean curvature in
H"*1. By means of using an isometry of the ambient, we suppose that the foliatighisf
given by hyperplanes parallel ¢, = 0. As in Theorem 3.3, we pick a piece bf denoted
as M* between two hyperplaneB;, P, of the foliation. In this situation, it is not possible
to use Aleksandrov technique to show that the centers of the spheres of the foliation lie in
a 2-plane: there does not exist a family of parallel geodesic hyperplanes orthogdaih to
hyperplanes?; and P,. One case where the Aleksandrov technique works is when for each
2<i < n (M*N Py U (M*N P,) is invariant under some hyperbolic reflection across a
geodesic hyperplane paralleltp= 0. In this case, Aleksandrov method proves that the line
of the sphere centers of the foliation lies in a 2-planéibt?.

Theorem 3.4. Let M" be an n-dimensional submanifoldlitf"** of constant mean curvature

and foliated by spheres in parallel geodesic hyperplanes. Assume there exist two geodesic
hyperplanes Pand R of the foliation such thatM N P;) U (M N P,) is invariant under
hyperbolic reflections across-A 1 orthogonal geodesic hyperplanes and all them orthogonal

to P, U P, as well. Then M is a totally umbilical hypersurface.
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Proof. We takeM* the piece ofM between the two geodesic hyperplanes containing the two
spheres of the hypothesis. By means of an isometry, we assume the centers of the spheres that
foliate M* can be parametrized by

y(t)=(0,...,0,t,c()).

ThenM* is the level set of

=

=Y X7+ Xy — e’ —r ()? =0,

1
N

wherec(t) andr (t) denote as in the proof of Theorem 2.1. By contradiction, let us assume that
¢’ # 0 on [ty, to]. Again let us fix a levet of the foliation and let

_ Gpr—o)c' +rr’
= ; .
A computation of identity (6) becomes the polynomial equation.on

s (8)

nr(x —r’
nrH 1+ 22)32 = —% (L+ 2% + Xnp1(do + did + d2%)

=&+ ek + er? + el (9)
It is easy to check that

do=n—1+c?—r?—rr" —rc’, d1:2r/—%, db=n-2
Notice that from (8)

Xny1 = % (A—r")Y+c.
Squaring (9), the equality of the-terms gives

n?H? = :2. (10)

In particulargs # 0. Asin Theorem 2.1, all odd terms of the polynonteaH-e; 1 +e1%+e31%)?
are zero. Thugy = & = 0. Ifwe regard the square of the left-hand side in (9) and by considering
the independent term, we obtaifr 2H? = 0, in contradiction with (10).

As a conclusiong is constant, that ig; is a horizontal Euclidean straight-line. Returning to
(6) and puttingc’ = 0, we have

NHr(L+r?%2 = (=rr” =1 —=r?Xq41 + ncd +r?).

Consider thatx,,1 varies in this identity. Then the radius = r(t) satisfies the next two
differential equations:

rr’” +1+r1?2=0, (11)

Hryv1l+4+r?2=c. (12)
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Each solution of (12) verifies (11) and the solutions of (11) are circles. Therefore, if we look at
M* as a subset dm”, thenM* is an open set of an-dimensional Euclidean sphere. From
the hyperbolic viewpoint, thia-sphere is an umbilical hypersurfacet#?! and henceM is

a totally umbilical hypersurface. O

4. Hypersurfaces in Lorentz—Minkowski space

Let L"*! denote theén + 1)-dimensional Lorentz—Minkowski space, that is, the spiite
endowed with the Lorentzian metric

() = @X)? 4 - 4 (dX))? = (dX11)%,

where(x; . .., Xh+1) are the canonical coordinatesi®i*X. An M hypersurface immersed in
L"*1is spacelikdf the induced metric is a Riemannian metric h When the hypersurface is
(locally) the level set of = 0, and the facM is spacelike means th&tf is a vector orthogonal
to M of timelike character:

(VE,Vf)<O. (13)
Let us orientM by the unit normal fieldN = —V f/|V f|, where

n
Vi =/—(VTf,VT) :/—Z f2+ £2.1.
i=1

Here f; denotes the partial derivative of the functibn= f (xy, ..., X,4+1) with respect to the
xj-coordinate. Now, ifH is the mean curvature calculated with this orientation, then
. Vf
nH=-Div—,
IV £l

where Div denotes the divergence with the Lorentzian metric. A straightforward computation
gives
NHIVFIS= (Vf, VI)Af — Hessf (Vf, V), (14)

with
VI =(f,..., fn, — frs1),

n
Af = Z fii — fayinta,

i=1

n
Hessf (Vf, V) = Z fi £ fi ;.
ij=1

In the present section we study constant mean curvature spacelike hypersurfaces in Lorentz—
Minkowski spacel."*! foliated by spheres in parallel spacelike hyperplanes. After using a
Lorentz transformation, we can assume that these hyperplanes are parallel to the hyperplane
Xn+1 = 0. In this case, these spheres can be viewed as Euclidean spheres in horizontal hyper-
planes.
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Theorem 4.1. Let M" be a spacelike n-dimensional submanifold.ifi! of constant mean
curvature H and foliated by spheres in parallel spacelike hyperplanes.
1.1f H #£ 0,then M is a hypersurface of revolution.
2.1fH =0and
(@) n > 3,then M is a hypersurface of revolution.
(b) n = 2,then M is a surface of revolution or M belongs to a one-parameter family of
non-rotational maximal surfaces.

Proof. A spacelike hypersurface of constant mean curvature"in satisfies (locally) an
elliptic equation to which we can apply the classical maximum principle (see, forinstance, [16]).
So, the Aleksandrov technique works in our situation. Mgt be an arbitrary piece o
between two hyperplanes of the foliatioxy 1 = t1, Xnr1 = t, t1 < to. Again, we apply
the Aleksandrov reflection method by hyperplanes orthogona] tp= 0 as in Theorem 2.1.
Reflection across hyperplanes of this kind are Euclidean reflections. Then the centers of spheres
can be parametrized bic(1),0,...,t), t € [t1,t;]. To show thatM is a hypersurface of
revolution, it suffices to prove thatis a constant function.

By contradiction, assume that £ 0 on [t1, t;]. Since the spheres of the foliation are
Euclidean spheres, we take the same funcfi@s in (2). Let us fixt with the variablex as (3).
Identity (14) gives

nrH(—=1+ 2%%2 = go + g2 + A%,

where the coefficientg; are functions oi. Squaring this identity, the leader coefficients give
H = 0. Therefore, ifH # 0, we obtain a contradiction unless= 0. In this caseM is a
hypersurface of revolution and we have proved 1.

Now let us study the maximal case = 0. Computing the right-hand side of (14), we have

1Al

re'c rc”
(n—1+r’2—c’2+rr”— 5 >+(7—2r’>k+(2—n)A2:0. (15)

The 2-degree term in (15) givegg = n — 2 = 0. Therefore, ilh > 3, ¢ must vanish and\
is a hypersurface of revolution again. This proves 2(a). Let us consider tha eag Thea!
anda’-terms in (15) give

O = r((::/” —-2r' =0,
Jo=1+r%2—c?+rr"— rr’/c” =0.
We simplify the above equations by
r¢’ —2r'c =0, (16)
1—r?4rr”"—-c?=0. (17)

A first integral of (16) is given by

¢ =ar? (18)
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for a positive constard € R. Substituting in (17), it follows that
1—r?+4rr” —a%r*=0. (19)

Let us integrate equation (19) by a similar approach to that given in [12, p. 87]. Corsidef
andy = (r?)’ as the new dependent and independent variables. A straightforward computation
gives

(r?) =2ry/a2r4 +2br2 + 1,
for a constanb € R. Thus

dt 1

dr — Jazréyopre+ 1
and (18) becomes

u u2
c(u) = a/ du. 20
Ja2ut +2bu? + 1 (20)

In this way, the parametrization obtained is:

u2

u
x(u,@):a/ du+ ucoso,
\/a2u4

+2bu? 41
y(u, 6) = using,
u du
z(u,0) = .
Jva2u4 + 2o + 1
The integrals that appear in this parametrization come determined in terms of elliptic integrals.
We end Theorem 4.1 by presenting two examples.

Example 1. Firstly, we give the degenerate case by setting 0. The surface obtained is the
Lorentzian catenoi@dnd its parametrization is

X(u, #) = ucosh,

y(u, ) = using,

z(u, 0) = «/12_b arcsinh(~/2bu).

This surface is rotational and it is generated by the rotation of the ¢@bve’? sinh(v/2bu),
0, u) with respect to thexz-axis (see Figure 1). The Lorentzian catenoid is the only maximal
spacelike surface of revolution I with respect to a timelike rotation axis ([7]).

Example 2. To give another example, we pat= ¢ = 1. The parametrization of the corre-
sponding surfac®! is

X(u, #) = u — arctaru + u cosb,

y(u, ) = using,

zZ(u,0) = arctaru, ue (0,00), 6 € R,
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and its picture appears in Figure 2. This surflites asymptotic to the plane= x /2, thatis, at

this height,M has a flat end. Moreover the circles of the foliation converge to the straight-line
Ly = {X = —n/2,z=m/2} asu — oo: for each point(—x/2,y, 7/2) € L1, it suffices to
take the sequenda, = — y/u)} to prove that

i (x(ox =)o 2) el = 1)) = (- 505)
Thus, the reflection principle yields a new maximal surface by refledfiracross. ;.

If we consider the minus sign in (20), we obtain a surf&tehat is congruent té1. More
precisely,M’ is the reflection ofM across the origin. Denotél* = M U M’ (see Figure 3).
This surface lies in the slala] < x/2, with two flat ends atz = +x/2} and one singularity
at the origin. In fact, the surfadd is a fundamental domain of a simply periodic embedded
maximal surfaceM in L2 obtained by successive 18fbtations across the straight-lines

Ln={x=(-3)rmz=(n-3)x}, neZ

The properties oM are summarized as follows:
— M intersects horizontal planes in lines at integer heights:

MN{z=(n-3)r}=Ln neZ

— M has flatends a = (n — 1)z, n € Z.

— M is invariant under translations of the vecterr, 0, ) and under reflections across the
linesLy.

- M presents singularities at the poitits-nz, 0, n7); n e Z}. O

= NS
=——</ <

Figure 2. A pieceM of a Riemann Lorentzian example
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Figure 3. The Riemann Lorentzian exampié = M U M’
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