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Abstract. We prove that a spacelike surface.ifwith nonzero constant mean curvature and foliated

by pieces of circles in spacelike planes is a surface of revolution. When the planes containing the
circles are timelike or null, examples of nonrotational constant mean curvature surfaces constructed
by circles are presented. Finally, we prove that a nonzero constant mean curvature spacelike surface
foliated by pieces of circles in parallel planes is a surface of revolution.
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1. Introduction and Statements of Results

In this paper we investigate constant mean curvature spacelike surfaces in Lorentz—
Minkowski three-dimensional spade® that are foliated by pieces of circles. We

say that a surfacé/ is foliated by circles (resp. pieces of circles)Mf is con-
structed by a smooth uniparametric family of circles (resp. pieces of circles). The
planes containing the circles are called planes of the foliation. In Euclidean 3-space
a classical result of Meusnier [12] states that the only minimal surface of revolution
is the catenoid. In 1867, Riemann [16] found all complete minimal surfaces foliated
by circles in parallel planes, which can be parametrized by one real parameter. Each
one of these surfaces is a simply periodic embedded minimal surfaces defined by
elliptic functions on a twice punctured rectangular torus. In the same time, Enneper
[4, 5] proved that if a minimal surface is foliated by pieces of circles, then the
foliation planes are actually parallel, and so the surface is one of Riemann type. A
historical discussion about these investigations can be found in [13].

In Euclidean three-space, Nitsche proved that if a surface with nonzero constant
mean curvatured is foliated by pieces of circles, then the planes containing the
circles must be parallel [14]. Furthermore, he showed that the surface is rotational,
that is, it is one of the surfaces discovered by Delaunay [3]. In arbitrary dimension,
the study of minimal hypersurfaces foliated by spheres has been done in [7]. He
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proved that, as in the three-dimensional case, the hypersurface is rotational, that is,
is the generalized catenoid.

We extend this kind of results to the Lorentzian setting. A surfat€iis called
spacelikeif the induced metric is positive definite. From the physical viewpoint,
constant mean curvature spacelike surfaces in Lorentzian spaces appear related
with different problems in general relativity and have been the focus for a number
of authors (a lengthy discussion can seen in [2, 11]). Maximal surfdées (0)
foliated by pieces of circles have been classified in [9]. In this case, it is proved
that the foliation planes are parallel. Furthermore, besides rotational examples (that
were studied in [8]), new examples of maximal surfaces are constructed. In this
situation, there exists a family of singly periodic maximal surfaces foliated by
pieces of circles in parallel planes that play the same role as Riemann surfaces
in Euclidean space. A different approach to these periodic maximal surfaces can
found in [10].

In this paper, we continue studying nonvanishing constant mean curvature space-
like surfaces irl_* foliated by pieces of circles. The paper is organized as follows.

In Section 2, we give a quick review of some classical formulas of the local surface
theory inL3 and a discussion about what it is the concept of circle that we will use.
In Section 3, the following results are proved

THEOREM 1 Let M be a spacelike surface in® with nonzero constant mean
curvature foliated by pieces of circles. If the planes of the foliation are spacelike,
then they are parallel planes.

THEOREM 2 Let M be a spacelike surface in® with nonzero constant mean
curvature and foliated by pieces of circles in parallel planes. Theis a surface
of revolution.

As a consequence of Theorems 1 and 2, we obtain

COROLLARY 1 LetM be a spacelike surface In* with nonzero constant mean
curvature and foliated by pieces of circles in spacelike planes. Thé&na surface
of revolution.

Section 3 is divided in three subsections according with the causal character of
the foliation planes. Theorem 1 and Corollary 1 are the analogous ones with Euc-
lidean case (cf. [14]). When the surface is foliated by pieces of circles in timelike or
null planes, Theorem 1 is not true. In this paper, we exhibit examples of spacelike
surfaces ir_3 of nonzero constant mean curvature foliated by pieces of circles in
nonparallel timelike or null planes. In particular, these examples are nonrotational.
Theorem 2 is the extension to the Lorentz—Minkowski three-space of Lemma 2 in
[14]. In this sense, the surfaces of revolution of constant mean curvature have been
classified in [6]. In the maximal case, i.e. when the mean curvature vanishes on
the surfaceM, it has been proved in [9] that ¥/ is foliated by pieces of circles,
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the planes containing the circles must be parallel. In [10], Theorem 2 has been
generalized to higher dimensions when the foliation is made by hyperspheres in
spacelike hyperplanes.

Finally, with the help of the Mathematica software, we present different draw-
ings of constant mean curvature surfaces foliated by circles in nonparallel (timelike
or null) planes. Moreover, in each one of the three cases, we show drawings of
rotational constant mean curvature spacelike surfaces.

2. Preliminaries

Let L be the three-dimensional Lorentz—Minkowski space, that is, the sl@%ce
endowed with the metric

(,) = (dx1)? + (dxp)® — (dx3)?,

where(x1, x, x3) denote the coordinates RF. A vectorv # 0 is called spacelike
(resp. timelike or null) if(v, v) > 0 (resp.(v, v) < 0 or (v, v) = 0). A plane inL3

is called spacelike (resp. timelike or null) if its Euclidean unit normals are timelike
(resp. spacelike or null). Le’ be a smooth surface immersedLf. We say that

M is spacelike if the induced metric @i is a Riemannian metric in each tangent
plane. This is equivalent to each tangent plane is spacelike or that, locally, the unit
normal vector is timelike in each point &1.

Let M be a connected immersed spacelike surfadte’irSincel ® has defined a
globally unit timelike vector field)M is oriented. Take the unit normal vector field
of M, i.e. avector field alongM which satisfiegv, v) = —1. The mean curvature
function of M is defined by

H = —itrace d.

Let X = X(u, v) be a local parametrization @ff. We consider the first funda-
mental form

| = (dX, dX) = E du® + 2F du dv + G dv?
and the second fundamental form
Il = —(dv, dX) = e du? + 2 du dv + g dv?.

From the classical local theory (see, for example, [15]), the mean curvature is
given by

eG —2fF +gE

H = itracell =
9 W2

-2

1)
where

W=vVEG—-F2>0.

201282.tex; 21/05/1999; 7:07; p.3



84 RAFAEL LOPEZ

By using the Minkowski vector produet, the formula (1) for the mean curvature
H changes as follows

2HW3 - E[Xu’ Xv’ va] - 2F[Xu’ Xv’ Xuv] + G[Xuv va qu] d:ef P, (2)

wherel[, , ] denotes the determinant bf
[v1, Vo, w] = (V1 A vp, w) Vw € L3

In this paper we will study spacelike surfaces of constant mean curvature, that
is, H is a constant function oM. These surfaces are critical points of the area with
respect to volume preserving spacelike variations. The surfacediith0 on M
are called also as maximal surfaces because they are maximal for the area integral

(1].
To end this section, we deal with the concept of circle fnOur own definition
of circle comes motivated from the Euclidean setting.

DEFINITION 1. Acircle inL2is the orbit of a poinp out of a straight liné under
the action of the group of rotations ir? that leave pointwise fixed.

Thus, a circle is included in an orthogonal plané.tBepending on the causal
character of, we describe the circles &f
(1) I is a timelike line. The group of the Lorentz motiopgy; 6 € R} that fix [
pointwise is given by the matrix

cos® sind O
Ro=] —sind cos® O
0 0 1

with respect to an orthonormal basis, e, e3), wherees spans the liné. The
circles ofL® corresponding with this case are written as

a(s) = ¢ + r(coss eq + Sins ey), 3)

withr £0,c el.
(2) 1 is a spacelike line. In this case, the group of rotations determinédalih
respect to an orthonormal basig, ¢, e3) of L3, wherel is generated by, is

1 0 0
Ro=1] 0 coshW sinhd
0 sinh® coshd

The circles obtained are given by

a(s) = ¢ + r(sinhs e; + coshs e3), (4)
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wherec andr are as above and
(e2,e2) =1 (es,e3) =—1

(3) Zisanullline. Consider thdtis spanned by the vectes+e3, where(es, ez, e3)
is an orthonormal basis &f® andes is a timelike vector. The group of rotations
associated tdis

1 0 —0
Ry=| -0 1-302 3067
-0 —102 14 102
and the circles are described as
o(s) =c+se; + %rsz(ez + e3), (5)
with r # 0.

According to our definition, it is not hard to express each one of the above cases
from Euclidean viewpoint. After an isometry of the ambient, we can assume that

(1) I is the xz-axis. The circles obtained in (3) are actually Euclidean circles in
parallel planes to the; x,-plane.

(2) 1 is thex;-axis. The circles (4) are Euclidean hyperbolas in parallel planes to
the x,x3-plane.

(3) I is the line{x, = x3,x; = 0}. In this case, the circles (5) are Euclidean
parabolas in parallel planestg — x3 = 0.

Finally, we have the following

DEFINITION 2. A surfaceM in L3 is a surface of revolution (or rotational sur-
face) if there exists a straight lifesuch thatM is invariant by the rotations that
leavel pointwise fixed.

Therefore, a surface of revolution is formed by a uniparametric family of circles
of L? in parallel planes. Moreover, these planes are orthogonal to the axis of
revolution!/. Notice also that when the planes are null, they contain thel axis

3. Proofs of Results

Without loss of generality and after a homothetyLSf we assume thatl = 1/2

on M. SinceM is foliated by circles, it is generated by a one-parameter family of
pieces of circles. Denote hythe parameter of the foliation. Since Theorems 1 and

2 are local, we divide theirs proofs in three parts, depending on the causal character
of the foliation planes. If these planes are spacelike, we will prove both theorems.
In each one of the two remaining cases, we show examples of surfaces foliated by
circles in nonparallel planes. Finally, and each one of three cases, we shall prove
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Theorem 2. For this, and after a Lorentz motion, we can assume that the planes
of the foliation are parallel to the;x,-plane,x,x3-plane orx, — x3 = 0-plane
according if they are spacelike, timelike or null respectively. Then we shall prove
that M is invariant by one of the rotation groups described in Section 2.

3.1. THE PLANES OF THE FOLIATION ARE SPACELIKE

Considerl” = I'(«) an orthogonal smooth curve to eagtplane of the foliation
and denote by: an arc-length parameter. Firstly, we will prove that the foliation
is given by parallel planes. For this, it suffices to prove thas a straight line.
The proof is by contradiction. Ldtbe the unit tangent t&'. Thent is a timelike
vector and" is a timelike curve. Consider the Frenet frameffort, n, b}. Heren
andb are spacelike unit vectors. Each circle of the foliation writes as (3). Up to a
change of coordinates in (3) and a change of the lasig,) by (n, b), a (local)
parametrization oM is defined by

X(u,v) =c+r(cosvn+rsinv b),
wherer > 0 andc are differentiable functions of. Put
¢ =at+ An+ yb, (6)

with «, 8, ¥ smooth functions om. Set the Frenet equations bf, that is, the
expressions of the derivatives @f n, b) in terms of this basis

t' =«n
n=«xt+ob
b= —on,

wherex ando are smooth om. Notice that« # 0 in some interval becaudeis
not a straight line.

Taking account of (6), a computation &2 and P yields that both numbers
are trigonometric polynomial on ca®, sinnv. So there exist complex smooth
functions oru, A, andB,,, such that

2
W2 = Z A,(cosnv +isinnv),

n=—2

3
P = Z B, (cosnv +isinnv),
n=-3

wherei = /—1,A_, = A,, B_, = B, (A, andB, denote the conjugate of,
andB,) andAq, B are real numbers.
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A straightforward computation d¥2 and P leads to the values of,,, B,:

Ao = r¥(—a® + 1% + 3(B* +y? — k%r?) (7)
A1y = r?(—akr + Br') +i(yr?r') (8)
Ap = r2(B% — y? — k%) +i(3Byr?) €)

By = ri(—a® +af?+ ay?+a'rr’ + 2Bkrr’ +ar’? —arr” +
+ykrio — %/3/10’2 — %50(/(2;’2 + %ﬂlc/rz) (20)
B = L—ler(Za/ﬂr — 2aB'r — 8a’kr + 3B%kr + 3y?kr — 333 +

+AaBr' + 2¢'r?r’ + 6irr’? — 2r?r” + 2ayro) +
+%ir2(o/yr —ay'r +2ayr —afro + «rér'o) (1D

B, = ;11r3(—,3/Kr — Ba?r + Br'r + 6Bkr’) +
+%r3i(—y’/cr + yK'r + 6kyr’) (12)
B3 = %r3/c(,32 — 2 —Kk%r?) + i(%ﬁy/cr3). (13)
On the other hand, squaring (2) and siiite= 1/2, we have the identity
(W23 = P2 (14)

This equation imposes a series of relations betwégrand B, and that can be
easily checked directly

A3 = B2, (15)
3A1A5 = 2B,Bs, (16)
3A0A3 + 3A3A, = B2+ 2B1Bs, 17)
A3A5 + 3A0A7 + 6|A1|?As 4 34| Az|? = B? + 2BoB, + 2B3B;. (18)

It follows from (13) thatBs = rk A,. Using (15), we have that3(A; —r?k?) =
0. There are two possibilities
e First case.A, = 0. By (9), we obtainy = 0 andg = +r«x. Now (17) and
(12) leadB, = 0 anda = =+r’. Substituting this into (7) and (8), we get
Ag = A1 = 0. ThusW = 0, which is a contradiction.
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e Second cased, = «?r2. ThenBz = «3r3. Now (9) givesy = 0 andg? =
4c? + k?r?. Equation (16) shows thdt, = 3rk A1/2. Identities (8), (12) give

ak?+ Bk’ — Bk =0 (19)
andA; = r2(—akr + Br’). Define a functiory by setting
B
y=-.
K

Therefore,y? = 4+ r2. By (11) and the equation (18) we have
4 + k%r?P+ 272 = 0.
In particular, this implies that = 0, getting a contradiction.

In conclusion, we achieve that the orthogonal curvi® the foliation planes is
a straight line. It follows that the planes of the foliation are parallel. This concludes
Theorem 1.

Now, we shall prove tha¥/ is surface of revolution. After a motion &f®, we
can assume that the foliation planes are parallel tocthg-plane. ThenV can be
parametrized locally as

X(u,v) = (a +rcosv, b +rsinv, u), (20)

wherea = a(u), b = b(u) are differentiable functions. In order to show thdtis
rotational, we prove that andb are constant functions. Again, let us computé
andP:

2

w2 — %(a/z —b?)cosd + (r2a'b)sinv +

a/2 + b/2
2 9

+(2r%r'd’) cosv + (2r%7'b') sinv + r? (—l + 7% +
P = r?(—rd" +2d'r") cosv + r?(2r'b' — rb") sinv +
+r2(=1+a?+ b2+ % —rr").
In this situation, we have
Ay = %rZ(a/Z —b?+2id'b)), B3;=0.

From (15), we obtaim, = 0. Therefore’ = b’ = 0 and the curve formed by the
centers of circles of the foliation is an orthogonal straight line todhg-plane. In
conclusion,M is surface of revolution and this proves Theorem 2 for this case.

By (14), the functionr in (20) that determined/ is ruled by the differential
equation

142 =" =r(=14r?>%2, (21)
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X

Figure 1. A surface of revolution withH = % and thexg as axis of revolution. The foliation
is given by Euclidean circles in parallel planes to theo-plane.

wherer’? > 1 (see also [6]). In Figure 1 we draw a rotational spacelike surface for
H = % with initial conditionsr(0) = 1, r'(0) = 2 in Equation (21).

3.2. THE PLANES OF THE FOLIATION ARE TIMELIKE

Related with Theorem 1, we exhibit an example of a spacelike suMaoé con-

stant mean curvatur = 1/2 foliated by circles in nonparallel timelike planes. In
our example, the planes of the foliation will be orthogonal, in the Lorentz sense, to
the vectort = (1, u, u). Definen by settingn = t’. Thenn is a null vector. Leb

be the only null vector such that

(b,ny=1 (b,ty=0 [t,n,b]=1.

In this casen andb belong to each plane of the foliation. With the notation of (4),
there exists a differentiable function= A(u) # 0 such that

1 1
ezz)un—i-zb, egzkn—zb.

Then a parametrization @ is given by (see (4))
X( = e’ ! b
u,v) =Cc+r en—ze ,

wherer > 0 andc are smooth functions. We consider the following change of
coordinates:

v— Au)e’, u— u.
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Then the parametrizatiod writes as
r
X(u,v) =c+rvn— —h.
2v

In our case, let

1— 2 1 2
n= (0,1 1), b:(—u, v +”>,

2’ 2
c=Q,u,u)), r =+/5.

Then the surface is parametrized by

_ 2 2
X(”’U)=<1+ﬁu,u—ﬁ(l u)—i-«/gv,u—i-M—i-\/gv)
2v 4 4

has 12 as mean curvature and it is not difficult to notice that the foliation planes
are not parallel. This surface is drawn in Figure 2.

To end this subsection, we prove Theorem 2 for the timelike case. S4, et
a constant mean curvature spacelike surface foliated by pieces of circles in parallel
timelike planes. After a motion ih®, we can suppose that these planes are parallel
to thex,xsz-plane. In this case, we can parametrize the surface by

X(u, v) = (u,a +r sinhv, b + r coshv),

wherea andb are differentiable functions om. To conclude thal is rotational
it suffices to prove that andb are constant. A computation &2 and P shows
that both numbers can be expressed as trigonometric polynomial oncestu
sinhnv. Exactly, we have

WZ — _% 2(012 4 b/Z) cosh @ + (r2a/b/) sinh 2y —

2.1/ 2, 4 2 2 a? — p2
—2r<r’'b’ coshv + 2r<r’a’ sinhv +r< (1 —r -|-T ’

P = r?(=2r'b' 4 rb") coshv + r2(2r'a’ — ra”) sinhv+
+I’2(1 _ r/2 + rr’” + a/2 _ b/Z).

Putting
w=—iv,

the same relations (15)—(18) hold again. In our case= —r?(a’> + b'?)/4 and
B3 = 0. By (15), we obtairi’ = b’ = 0 and this means thaf is rotational.
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¥

Figure 2. A spacelike surface foliated by pieces of circles in nonparallel timelike planes and
with constant mean curvatuié = %

Sincea’ = b’ = 0, the expressions d¥2 and P and the identity (14) gives us
the next differential equation for

1—r?+rr" =r(l—r?%2 (22)

wherer? < 1. These surfaces are studied in [6]. In Figure 3 we present a drawing
of one of them for the initial conditions(0) = 1,7'(0) = 0.2 in (22).

3.3. THE PLANES OF THE FOLIATION ARE NULL
We construct an example of a spacelike surface with constant mean curvature
H = % foliated by circles in nonparallel null planes. In this case, a parametriza-
tion of the surface is given by (see (5)):

X(u, v) = ¢+ rv’t + vn,

wherer > 0, ¢ are differentiable functions omand

(n,n) =1 (t,t) =({t,n) =0.
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X

Figure 3. A surface of revolution withH = % and thex, as axis of revolution. The foliation
is given by hyperbolas in parallel planes to ha3-plane.

Considerb the only null vector such thgh, b) = 1 and[t, n, b] = 1. Let

1— 2 1 2
t:(u, 2”,— J;”) n=( —u —u), b=(0 11).

c=(u, —%u , —§u2).

Again, a computation in (2) leads that the spacelike surldqearametrized by

X( ) fot uv? u? " v2 — u?p? u? v2+u2v2
, V) = vt —, -+ —-7——=—-—uv-—, >
" " 22 " 8 2 " 8

has constant mean curvatufe = % and the above reasoning shows thatis
foliated by circles in null planes. An easy computation proves that the foliation is
given by nonparallel planes. This surface is shown in Figure 4.

When the surface is foliated by pieces of circles in parallel planes, we prove that
M is rotational and so, Theorem 2 for this case. As above, we assumé Haa%.
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® 7
Figure 4. A spacelike surface foliated by pieces of circles in nonparallel null planes and with
constant mean curvaturé = %

After a motion inL3, we can assume that the planes of the foliation are parallel to
the planex, — x3 = 0. Then a local parametrization is given by

U2 U2

wherea, b andr > 0 are differentiable functions an If the functiona is constant,
thenM is a surface of revolution. Calculating the expression# éand P we have

W? =20 — 2r®)v? — dra’v + 4b' = Av? + Aqv + A,.

P = (4rr' — "W+ (4r'a’ + 2ra")v — 2ra’® — 8rb'—
—2b" = Bzv2 + Biv + Bo.

The relation (14) implies

A3 =0, (23)
3A3A; + 3A0A5 = B2, (24)
A3 1640414, = 2B Bs, (25)
A% = B2. (26)
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Figure 5. A surface of revolution withH = % and the line{xp = x3,x1 = 0} as axis of
revolution. The foliation is given by parabolas in parallel planes tq the- x3 = 0}-plane.

From (23) we obtain
r =22 (27)
Thereforey = 1/(—2u + 1), for some constant,. From (24), we haves, = 0

and equation (25) getd; = 0. From the expression d¥2, this impliesa’ = 0.
Therefore,M is rotational. Moreover, using (26), we get

4p73% = 4rp' + b (28)

SinceW? = Ag = 4b' > 0, we have that’ > 0. The differential equation
(28), joint (27), describes all rotational constant mean curvature surfaces foliated
by parabolas. For; = 0, the solutions of (28) are

u arctahn=
b(u) = - LR 3, p2, u3 € R.

2(z — u?) 2\/12
The surface obtained with, = 4 andus = 0 is shown in Figure 5.
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