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Abstract. We prove that a spacelike surface inL3 with nonzero constant mean curvature and foliated
by pieces of circles in spacelike planes is a surface of revolution. When the planes containing the
circles are timelike or null, examples of nonrotational constant mean curvature surfaces constructed
by circles are presented. Finally, we prove that a nonzero constant mean curvature spacelike surface
foliated by pieces of circles in parallel planes is a surface of revolution.
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1. Introduction and Statements of Results

In this paper we investigate constant mean curvature spacelike surfaces in Lorentz–
Minkowski three-dimensional spaceL3 that are foliated by pieces of circles. We
say that a surfaceM is foliated by circles (resp. pieces of circles) ifM is con-
structed by a smooth uniparametric family of circles (resp. pieces of circles). The
planes containing the circles are called planes of the foliation. In Euclidean 3-space
a classical result of Meusnier [12] states that the only minimal surface of revolution
is the catenoid. In 1867, Riemann [16] found all complete minimal surfaces foliated
by circles in parallel planes, which can be parametrized by one real parameter. Each
one of these surfaces is a simply periodic embedded minimal surfaces defined by
elliptic functions on a twice punctured rectangular torus. In the same time, Enneper
[4, 5] proved that if a minimal surface is foliated by pieces of circles, then the
foliation planes are actually parallel, and so the surface is one of Riemann type. A
historical discussion about these investigations can be found in [13].

In Euclidean three-space, Nitsche proved that if a surface with nonzero constant
mean curvatureH is foliated by pieces of circles, then the planes containing the
circles must be parallel [14]. Furthermore, he showed that the surface is rotational,
that is, it is one of the surfaces discovered by Delaunay [3]. In arbitrary dimension,
the study of minimal hypersurfaces foliated by spheres has been done in [7]. He
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proved that, as in the three-dimensional case, the hypersurface is rotational, that is,
is the generalized catenoid.

We extend this kind of results to the Lorentzian setting. A surface inL3 is called
spacelikeif the induced metric is positive definite. From the physical viewpoint,
constant mean curvature spacelike surfaces in Lorentzian spaces appear related
with different problems in general relativity and have been the focus for a number
of authors (a lengthy discussion can seen in [2, 11]). Maximal surfaces (H = 0)
foliated by pieces of circles have been classified in [9]. In this case, it is proved
that the foliation planes are parallel. Furthermore, besides rotational examples (that
were studied in [8]), new examples of maximal surfaces are constructed. In this
situation, there exists a family of singly periodic maximal surfaces foliated by
pieces of circles in parallel planes that play the same role as Riemann surfaces
in Euclidean space. A different approach to these periodic maximal surfaces can
found in [10].

In this paper, we continue studying nonvanishing constant mean curvature space-
like surfaces inL3 foliated by pieces of circles. The paper is organized as follows.
In Section 2, we give a quick review of some classical formulas of the local surface
theory inL3 and a discussion about what it is the concept of circle that we will use.
In Section 3, the following results are proved

THEOREM 1. LetM be a spacelike surface inL3 with nonzero constant mean
curvature foliated by pieces of circles. If the planes of the foliation are spacelike,
then they are parallel planes.

THEOREM 2. LetM be a spacelike surface inL3 with nonzero constant mean
curvature and foliated by pieces of circles in parallel planes. ThenM is a surface
of revolution.

As a consequence of Theorems 1 and 2, we obtain

COROLLARY 1. LetM be a spacelike surface inL3 with nonzero constant mean
curvature and foliated by pieces of circles in spacelike planes. ThenM is a surface
of revolution.

Section 3 is divided in three subsections according with the causal character of
the foliation planes. Theorem 1 and Corollary 1 are the analogous ones with Euc-
lidean case (cf. [14]). When the surface is foliated by pieces of circles in timelike or
null planes, Theorem 1 is not true. In this paper, we exhibit examples of spacelike
surfaces inL3 of nonzero constant mean curvature foliated by pieces of circles in
nonparallel timelike or null planes. In particular, these examples are nonrotational.
Theorem 2 is the extension to the Lorentz–Minkowski three-space of Lemma 2 in
[14]. In this sense, the surfaces of revolution of constant mean curvature have been
classified in [6]. In the maximal case, i.e. when the mean curvature vanishes on
the surfaceM, it has been proved in [9] that ifM is foliated by pieces of circles,
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the planes containing the circles must be parallel. In [10], Theorem 2 has been
generalized to higher dimensions when the foliation is made by hyperspheres in
spacelike hyperplanes.

Finally, with the help of the Mathematica software, we present different draw-
ings of constant mean curvature surfaces foliated by circles in nonparallel (timelike
or null) planes. Moreover, in each one of the three cases, we show drawings of
rotational constant mean curvature spacelike surfaces.

2. Preliminaries

Let L3 be the three-dimensional Lorentz–Minkowski space, that is, the spaceR3

endowed with the metric

〈, 〉 = (dx1)
2+ (dx2)

2− (dx3)
2,

where(x1, x2, x3) denote the coordinates inR3. A vectorv 6= 0 is called spacelike
(resp. timelike or null) if〈v, v〉 > 0 (resp.〈v, v〉 < 0 or 〈v, v〉 = 0). A plane inL3

is called spacelike (resp. timelike or null) if its Euclidean unit normals are timelike
(resp. spacelike or null). LetM be a smooth surface immersed inL3. We say that
M is spacelike if the induced metric onM is a Riemannian metric in each tangent
plane. This is equivalent to each tangent plane is spacelike or that, locally, the unit
normal vector is timelike in each point ofM.

LetM be a connected immersed spacelike surface inL3. SinceL3 has defined a
globally unit timelike vector field,M is oriented. Take the unit normal vector field
ofM, i.e. a vector fieldν alongM which satisfies〈ν, ν〉 = −1. The mean curvature
function ofM is defined by

H = −1
2trace dν.

Let X = X(u, v) be a local parametrization ofM. We consider the first funda-
mental form

I = 〈dX, dX〉 = E du2+ 2F dudv +Gdv2

and the second fundamental form

II = −〈dν, dX〉 = e du2+ 2f dudv + g dv2.

From the classical local theory (see, for example, [15]), the mean curvature is
given by

H = 1
2traceI II = eG− 2f F + gE

2W 2
, (1)

where

W =
√
EG− F 2 > 0.
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By using the Minkowski vector product∧, the formula (1) for the mean curvature
H changes as follows

2HW 3 = E[Xu,Xv,Xvv] − 2F [Xu,Xv,Xuv] +G[Xu,Xv,Xuu] def= P, (2)

where[, , ] denotes the determinant ofL3

[v1, v2, w] = 〈v1 ∧ v2, w〉 ∀w ∈ L3.

In this paper we will study spacelike surfaces of constant mean curvature, that
is,H is a constant function onM. These surfaces are critical points of the area with
respect to volume preserving spacelike variations. The surfaces withH = 0 onM
are called also as maximal surfaces because they are maximal for the area integral
[1].

To end this section, we deal with the concept of circle inL3. Our own definition
of circle comes motivated from the Euclidean setting.

DEFINITION 1. A circle in L3 is the orbit of a pointp out of a straight linel under
the action of the group of rotations inL3 that leavel pointwise fixed.

Thus, a circle is included in an orthogonal plane tol. Depending on the causal
character ofl, we describe the circles ofL3

(1) l is a timelike line. The group of the Lorentz motions{Rθ ; θ ∈ R} that fix l
pointwise is given by the matrix

Rθ =
 cosθ sinθ 0

− sinθ cosθ 0

0 0 1


with respect to an orthonormal basis(e1, e2, e3), wheree3 spans the linel. The
circles ofL3 corresponding with this case are written as

α(s) = c + r(coss e1+ sins e2), (3)

with r 6= 0, c ∈ l.
(2) l is a spacelike line. In this case, the group of rotations determined byl with

respect to an orthonormal basis(e1, e2, e3) of L3, wherel is generated bye1, is

Rθ =
 1 0 0

0 coshθ sinhθ

0 sinhθ coshθ

 .
The circles obtained are given by

α(s) = c + r(sinhs e2+ coshs e3), (4)
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wherec andr are as above and

〈e2, e2〉 = 1 〈e3, e3〉 = −1.

(3) l is a null line. Consider thatl is spanned by the vectore2+e3, where(e1, e2, e3)

is an orthonormal basis ofL3 ande3 is a timelike vector. The group of rotations
associated tol is

Rθ =
 1 θ −θ
−θ 1− 1

2θ
2 1

2θ
2

−θ −1
2θ

2 1+ 1
2θ

2


and the circles are described as

α(s) = c + se1 + 1
2rs

2(e2+ e3), (5)

with r 6= 0.

According to our definition, it is not hard to express each one of the above cases
from Euclidean viewpoint. After an isometry of the ambient, we can assume that

(1) l is thex3-axis. The circles obtained in (3) are actually Euclidean circles in
parallel planes to thex1x2-plane.

(2) l is thex1-axis. The circles (4) are Euclidean hyperbolas in parallel planes to
thex2x3-plane.

(3) l is the line{x2 = x3, x1 = 0}. In this case, the circles (5) are Euclidean
parabolas in parallel planes tox2 − x3 = 0.

Finally, we have the following

DEFINITION 2 . A surfaceM in L3 is a surface of revolution (or rotational sur-
face) if there exists a straight linel such thatM is invariant by the rotations that
leavel pointwise fixed.

Therefore, a surface of revolution is formed by a uniparametric family of circles
of L3 in parallel planes. Moreover, these planes are orthogonal to the axis of
revolutionl. Notice also that when the planes are null, they contain the axisl.

3. Proofs of Results

Without loss of generality and after a homothety ofL3, we assume thatH = 1/2
onM. SinceM is foliated by circles, it is generated by a one-parameter family of
pieces of circles. Denote byu the parameter of the foliation. Since Theorems 1 and
2 are local, we divide theirs proofs in three parts, depending on the causal character
of the foliation planes. If these planes are spacelike, we will prove both theorems.
In each one of the two remaining cases, we show examples of surfaces foliated by
circles in nonparallel planes. Finally, and each one of three cases, we shall prove
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Theorem 2. For this, and after a Lorentz motion, we can assume that the planes
of the foliation are parallel to thex1x2-plane,x2x3-plane orx2 − x3 = 0-plane
according if they are spacelike, timelike or null respectively. Then we shall prove
thatM is invariant by one of the rotation groups described in Section 2.

3.1. THE PLANES OF THE FOLIATION ARE SPACELIKE

Consider0 = 0(u) an orthogonal smooth curve to eachu-plane of the foliation
and denote byu an arc-length parameter. Firstly, we will prove that the foliation
is given by parallel planes. For this, it suffices to prove that0 is a straight line.
The proof is by contradiction. Lett be the unit tangent to0. Thent is a timelike
vector and0 is a timelike curve. Consider the Frenet frame for0: {t,n,b}. Heren
andb are spacelike unit vectors. Each circle of the foliation writes as (3). Up to a
change of coordinates in (3) and a change of the basis(e1, e2) by (n,b), a (local)
parametrization ofM is defined by

X(u, v) = c+ r(cosv n+ r sinv b),

wherer > 0 andc are differentiable functions ofu. Put

c′ = αt + βn+ γ b, (6)

with α, β, γ smooth functions onu. Set the Frenet equations of0, that is, the
expressions of the derivatives of(t,n,b) in terms of this basis

t′ = κn

n′ = κt + σb

b′ = −σn,

whereκ andσ are smooth onu. Notice thatκ 6= 0 in some interval because0 is
not a straight line.

Taking account of (6), a computation ofW 2 andP yields that both numbers
are trigonometric polynomial on cosnv, sinnv. So there exist complex smooth
functions onu, An andBn, such that

W 2 =
2∑

n=−2

An(cosnv + i sinnv),

P =
3∑

n=−3

Bn(cosnv + i sinnv),

wherei = √−1,A−n = An, B−n = Bn (An andBn denote the conjugate ofAn
andBn) andA0, B0 are real numbers.
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A straightforward computation ofW 2 andP leads to the values ofAn,Bn:

A0 = r2(−α2+ r ′2 + 1
2(β

2 + γ 2− κ2r2)) (7)

A1 = r2(−ακr + βr ′)+ i(γ r2r ′) (8)

A2 = 1
4r

2(β2 − γ 2− κ2r2)+ i(1
2βγ r

2) (9)

B0 = r2(−α3+ αβ2+ αγ 2+ α′rr ′ + 2βκrr ′ + αr ′2− αrr ′′ +
+γ κr2σ − 1

2β
′κr2− 1

25ακ2r2 + 1
2βκ

′r2) (10)

B1 = 1
4r

2(2α′βr − 2αβ ′r − 8α2κr + 3β2κr + 3γ 2κr − 3κ3r3+
+4αβr ′ + 2κ ′r2r ′ + 6κrr ′2 − 2κr2r ′′ + 2αγ rσ )+

+1
2ir

2(α′γ r − αγ ′r + 2αγ r ′ − αβrσ + κr2r ′σ ) (11)

B2 = 1
4r

3(−β ′κr − 5ακ2r + βκ ′r + 6βκr ′)+
+1

2r
3i(−γ ′κr + γ κ ′r + 6κγ r ′) (12)

B3 = 1
4r

3κ(β2− γ 2− κ2r2)+ i(1
2βγ κr

3). (13)

On the other hand, squaring (2) and sinceH = 1/2, we have the identity

(W 2)3 = P 2. (14)

This equation imposes a series of relations betweenAn andBn and that can be
easily checked directly

A3
2 = B2

3, (15)

3A1A
2
2 = 2B2B3, (16)

3A0A
2
2 + 3A2

1A2 = B2
2 + 2B1B3, (17)

A2
0A2+ 3A0A

2
1+ 6|A1|2A2 + 3A2|A2|2 = B2

1 + 2B0B2+ 2B3B1. (18)

It follows from (13) thatB3 = rκA2. Using (15), we have thatA2
2(A2−r2κ2) =

0. There are two possibilities
• First case.A2 = 0. By (9), we obtainγ = 0 andβ = ±rκ. Now (17) and

(12) leadB2 = 0 andα = ±r ′. Substituting this into (7) and (8), we get
A0 = A1 = 0. ThusW = 0, which is a contradiction.
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• Second case.A2 = κ2r2. ThenB3 = κ3r3. Now (9) givesγ = 0 andβ2 =
4κ2+ κ2r2. Equation (16) shows thatB2 = 3rκA1/2. Identities (8), (12) give

ακ2+ βκ ′ − β ′κ = 0 (19)

andA1 = r2(−ακr + βr ′). Define a functiony by setting

y = β

κ
.

Therefore,y2 = 4+ r2. By (11) and the equation (18) we have

4κ2+ κ2r2 + 2r ′2 = 0.

In particular, this implies thatκ = 0, getting a contradiction.

In conclusion, we achieve that the orthogonal curve0 to the foliation planes is
a straight line. It follows that the planes of the foliation are parallel. This concludes
Theorem 1.

Now, we shall prove thatM is surface of revolution. After a motion ofL3, we
can assume that the foliation planes are parallel to thex1x2-plane. ThenM can be
parametrized locally as

X(u, v) = (a + r cosv, b + r sinv, u), (20)

wherea = a(u), b = b(u) are differentiable functions. In order to show thatM is
rotational, we prove thata andb are constant functions. Again, let us computeW 2

andP :

W 2 = r2

2
(a′2− b′2) cos 2v + (r2a′b′) sin 2v +

+(2r2r ′a′) cosv + (2r2r ′b′) sinv + r2

(
−1+ r ′2+ a

′2 + b′2
2

)
,

P = r2(−ra′′ + 2a′r ′) cosv + r2(2r ′b′ − rb′′) sinv +
+r2(−1+ a′2+ b′2+ r ′2− rr ′′).

In this situation, we have

A2 = 1
4r

2(a′2 − b′2+ 2ia′b′), B3 = 0.

From (15), we obtainA2 = 0. Thereforea′ = b′ = 0 and the curve formed by the
centers of circles of the foliation is an orthogonal straight line to thex1x2-plane. In
conclusion,M is surface of revolution and this proves Theorem 2 for this case.

By (14), the functionr in (20) that determinesM is ruled by the differential
equation

−1+ r ′2− rr ′′ = r(−1+ r ′2)3/2, (21)
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Figure 1. A surface of revolution withH = 1
2 and thex3 as axis of revolution. The foliation

is given by Euclidean circles in parallel planes to thex1x2-plane.

wherer ′2 > 1 (see also [6]). In Figure 1 we draw a rotational spacelike surface for
H = 1

2 with initial conditionsr(0) = 1, r ′(0) = 2 in Equation (21).

3.2. THE PLANES OF THE FOLIATION ARE TIMELIKE

Related with Theorem 1, we exhibit an example of a spacelike surfaceM of con-
stant mean curvatureH = 1/2 foliated by circles in nonparallel timelike planes. In
our example, the planes of the foliation will be orthogonal, in the Lorentz sense, to
the vectort = (1, u, u). Definen by settingn = t ′. Thenn is a null vector. Letb
be the only null vector such that

〈b,n〉 = 1 〈b, t〉 = 0 [t,n,b] = 1.

In this case,n andb belong to each plane of the foliation. With the notation of (4),
there exists a differentiable functionλ = λ(u) 6= 0 such that

e2 = λn+ 1

2λ
b, e3 = λn− 1

2λ
b.

Then a parametrization ofM is given by (see (4))

X(u, v) = c+ r
(
λevn− 1

2λ
e−vb

)
,

wherer > 0 andc are smooth functions. We consider the following change of
coordinates:

v→ λ(u)ev, u→ u.
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Then the parametrizationX writes as

X(u, v) = c+ rvn− r

2v
b.

In our case, let

n = (0,1,1), b =
(
−u, 1− u2

2
,−1+ u2

2

)
,

c= (1, u, u), r = √5.

Then the surface is parametrized by

X(u, v) =
(

1+
√

5u

2v
, u−

√
5(1− u2)

4v
+√5v, u+

√
5(1+ u2)

4v
+√5v

)

has 1/2 as mean curvature and it is not difficult to notice that the foliation planes
are not parallel. This surface is drawn in Figure 2.

To end this subsection, we prove Theorem 2 for the timelike case. So, letM be
a constant mean curvature spacelike surface foliated by pieces of circles in parallel
timelike planes. After a motion inL3, we can suppose that these planes are parallel
to thex2x3-plane. In this case, we can parametrize the surface by

X(u, v) = (u, a + r sinhv, b + r coshv),

wherea andb are differentiable functions onu. To conclude thatM is rotational
it suffices to prove thata andb are constant. A computation ofW 2 andP shows
that both numbers can be expressed as trigonometric polynomial on coshnv and
sinhnv. Exactly, we have

W 2 = −1
2r

2(a′2+ b′2) cosh 2v + (r2a′b′) sinh 2v −

−2r2r ′b′ coshv + 2r2r ′a′ sinhv + r2

(
1− r ′2 + a

′2− b′2
2

)
,

P = r2(−2r ′b′ + rb′′) coshv + r2(2r ′a′ − ra′′) sinhv+
+r2(1− r ′2 + rr ′′ + a′2− b′2).

Putting

w = −iv,
the same relations (15)–(18) hold again. In our case,A2 = −r2(a′2 + b′2)/4 and
B3 = 0. By (15), we obtaina′ = b′ = 0 and this means thatM is rotational.
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Figure 2. A spacelike surface foliated by pieces of circles in nonparallel timelike planes and
with constant mean curvatureH = 1

2.

Sincea′ = b′ = 0, the expressions ofW 2 andP and the identity (14) gives us
the next differential equation forr

1− r ′2+ rr ′′ = r(1− r ′2)3/2, (22)

wherer ′2 < 1. These surfaces are studied in [6]. In Figure 3 we present a drawing
of one of them for the initial conditionsr(0) = 1, r ′(0) = 0.2 in (22).

3.3. THE PLANES OF THE FOLIATION ARE NULL

We construct an example of a spacelike surface with constant mean curvature
H = 1

2 foliated by circles in nonparallel null planes. In this case, a parametriza-
tion of the surface is given by (see (5)):

X(u, v) = c+ rv2t + vn,

wherer > 0, c are differentiable functions onu and

〈n,n〉 = 1 〈t, t〉 = 〈t,n〉 = 0.
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Figure 3. A surface of revolution withH = 1
2 and thex1 as axis of revolution. The foliation

is given by hyperbolas in parallel planes to thex2x3-plane.

Considerb the only null vector such that〈n,b〉 = 1 and[t,n,b] = 1. Let

t =
(
u,

1− u2

2
,−1+ u2

2

)
, n = (1,−u,−u), b = (0,1,1).

c= (u,−1
2u

2,−1
2u

2).

Again, a computation in (2) leads that the spacelike surfaceM parametrized by

X(u, v) =
(
u+ v + uv

2

2
,−u

2

2
− uv + v

2− u2v2

8
,−u

2

2
− uv − v

2+ u2v2

8

)
.

has constant mean curvatureH = 1
2 and the above reasoning shows thatM is

foliated by circles in null planes. An easy computation proves that the foliation is
given by nonparallel planes. This surface is shown in Figure 4.

When the surface is foliated by pieces of circles in parallel planes, we prove that
M is rotational and so, Theorem 2 for this case. As above, we assume thatH = 1

2.
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Figure 4. A spacelike surface foliated by pieces of circles in nonparallel null planes and with
constant mean curvatureH = 1

2.

After a motion inL3, we can assume that the planes of the foliation are parallel to
the planex2− x3 = 0. Then a local parametrization is given by

X(u, v) =
(
a + v, b + u+ r v

2

2
, b − u+ r v

2

2

)
,

wherea, b andr > 0 are differentiable functions onu. If the functiona is constant,
thenM is a surface of revolution. Calculating the expressions ofW 2 andP we have

W 2 = 2(r ′ − 2r2)v2− 4ra′v + 4b′ := A2v
2+ A1v + A0.

P = (4rr ′ − r ′′)v2+ (4r ′a′ + 2ra′′)v − 2ra′2 − 8rb′−
−2b′′ := B2v

2+ B1v + B0.

The relation (14) implies

A3
2 = 0, (23)

3A2
1A2 + 3A0A

2
2 = B2

2, (24)

A3
1+ 6A0A1A2 = 2B1B2, (25)

A3
0 = B2

0. (26)
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Figure 5. A surface of revolution withH = 1
2 and the line{x2 = x3, x1 = 0} as axis of

revolution. The foliation is given by parabolas in parallel planes to the{x2 − x3 = 0}-plane.

From (23) we obtain

r ′ = 2r2. (27)

Therefore,r = 1/(−2u + µ1), for some constantµ1. From (24), we haveB2 = 0
and equation (25) getsA1 = 0. From the expression ofW 2, this impliesa′ = 0.
Therefore,M is rotational. Moreover, using (26), we get

4b′3/2 = 4rb′ + b′′. (28)

SinceW 2 = A0 = 4b′ > 0, we have thatb′ > 0. The differential equation
(28), joint (27), describes all rotational constant mean curvature surfaces foliated
by parabolas. Forµ1 = 0, the solutions of (28) are

b(u) = u

2(µ2− u2)
−

arctahn u√
µ2

2
√
µ2

+ µ3, µ2, µ3 ∈ R.

The surface obtained withµ2 = 4 andµ3 = 0 is shown in Figure 5.
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