On curvature estimates for constant mean curvature surfaces

Giuseppe Tinaglia

ABSTRACT. In this paper we review four curvature estimates for constant mean
curvature surfaces in R3. They are the Schoen Curvature Estimate [39], the
Choi-Schoen Curvature Estimate [5], the One-sided Curvature Estimate by
Colding and Minicozzi [14] and the Curvature Estimate for CMC Disks by
Meeks and Tinaglia [33].

Introduction

In the study of the geometry of surfaces in R?, estimates for the norm of the second
fundamental form, |A|, are particularly remarkable. In fact, when |A]| is bounded
the surface cannot bend too sharply and such estimates provide a very satisfying
description of its local geometry. If, as usual, we let Ky and H denote respectively
the Gaussian curvature and the mean curvature of 3, then the Gauss equation gives
that |A|?> — H?> = —2Kyx. Thus when H is constant, in fact when H? is bounded,
bounding the norm of the second fundamental form is equivalent to bounding the
Gaussian curvature. Thus, we refer to such estimates as curvature estimates.

There are many classical and recent important results in the literature where cur-
vature estimates for CMC surfaces are obtained assuming certain geometric con-
ditions, see for instance [2, 4, 5, 12, 14, 21, 33, 34, 38, 39, 40, 41, 44, 47]
et al.. In this paper we review four of them. They are the Schoen Curvature
Estimate [39], the Choi-Schoen Curvature Estimate [5], the One-sided Curvature
Estimate by Colding and Minicozzi [14] and the Curvature Estimate for CMC Disks
by Meeks and Tinaglia [33].

Throughout this paper, B,.(x) and B,.(x) will denote, respectively, the geodesic disk
and the Euclidean ball of radius r centered at x.

1. Bounding |A|

Let ¥ be a surface immersed in R3, not necessarily minimally immersed. Let x € ¥
and assume that 0Bgr(z) C ¥\0X. When supg,, ) |As| = 0, then Br(z) is a flat
disk of radius R.

Key words and phrases. constant mean curvature, curvature estimate.
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What happens when Rsupg, (. |[As| < 67

Let N denote the unit normal to ¥ and for any point y € Br(z), let 7, denote the
shortest geodesic connecting = and y. Then we have the following estimate,

distgz (N (z), N(y)) < [VN| < sup |VN|dists(z,y) < R sup |Ag| <o

Ty Br(z) Br(z)
If § < 7, then for any y € Bgr(z), dists2(N(x), N(y)) < § and Bg(x) is locally
graphical over its tangent plane at 2. Furthermore, if Br(z) is graphical over T,.3,

then

2 1 _ 1 an
V= N NP T e dista (V@) N @)

1)
|Hessu| < (1+ |Vul?)|As| < (1 + \VU‘2)§~

— 1 and a computation shows that if § < 7

Thus, |Vul? =
then

1

cos? distga (N (),N (y))
)

|Vul? <462 and |Hessu| < (1 + |Vul?)|Ag| < 55.

In other words, given a point x in a surface X, a neighbourhood of x is graphical
over the tangent plane of ¥ at x. However, the size of such neighbourhood depends
on z and, in general, it could be very small. The previous discussion shows that
when the norm of the second fundamental form is bounded then the size of such
neighbourhood is uniformly bounded from below independently of the point.

We conclude this brief section by proving a standard geometric fact about surfaces
with bounded norm of the second fundamental form that will be needed later.

LEMMA 1.1. Let ¥ be a surface in R®, p,q € X and let v : [0, \] — 2 be a geodesic,
parametrized by arclength, such that v(0) = p and y(\) = q. If for some a > 0,

«
sup [Ax(v()] < 5
te[0,A]

then |¢ —p| > A1 — a).
PROOF. Let k(t) denote the curvature in R3 of v at y(t). Then, since v is a
geodesic, for any t € [0, ]

k()] < [A(v(B)] <

> Q

Since




ON CURVATURE ESTIMATES FOR CONSTANT MEAN CURVATURE SURFACES 3

Also
rd
(v(X),7(0)) = (7(0),7'(0)) = / 5 0®:7(0) =
0
(0= p,7'(0)) = (v(X) = 7(0),7(0)) = A(1 — ).
This implies that |¢ — p| > A(1 — ). O

2. Schoen Curvature Estimate

In this section we review the Schoen Curvature Estimate.

THEOREM 2.1 (Schoen). There exists a constant C such that the following holds.

Let ¥ C R? be an orientable stable minimal surface. Take x € ¥ and assume that
Br(x) C X, 0Br(z) C X\0X. Then,

sup |AE\2 < CR™2.
Bg(f)

This estimate says that if a minimal surface is stable, then sufficiently away from
the boundary the surface looks “nice” on a fixed scale; here the word “nice” refers
to the discussion in Section 1.

In [37], Ros generalizes the Schoen Curvature Estimate by removing orientable
from the hypotheses. In [2] Bérard and Hauswirth extend Schoen’s work to stable,
constant mean curvature surfaces with trivial normal bundle in space forms. In [47]
Zhang generalizes the Schoen Curvature Estimate to stable, constant mean curva-
ture surfaces (with trivial normal bundle) in a general 3-manifold. His estimate
depends on the mean curvature, an upper bound on the sectional curvature, and
on the covariant derivative of the curvature tensor of the ambient manifold (see
also [8]). In [38] Rosenberg, Souam and Toubiana further generalize the Schoen
Curvature Estimate to stable, constant mean curvature surfaces in a 3-manifolds
assuming only a bound on the sectional curvature of the ambient manifold.

The Schoen Curvature Estimate can be used to prove the following characterization
of the plane that was proven independently by Do Carmo and Peng [18], Fisher-
Colbrie and Schoen [20] and Pogorelov [36].

THEOREM 2.2. The plane is the only complete and stable orientable minimal surface
immersed in R3.

PROOF. Let ¥ be a complete and stable orientable minimal surface immersed
in R? and let ¥ be its universal cover that is also stable. Letting R go to infinity in
the Schoen Curvature Estimate we obtain that the norm of the second fundamental
form of ¥ is identically zero and thus ¥ is a plane. (]

Let us begin by recalling the definition of stability. Let X be an orientable minimal
surface. Such surface X is said to be stable if it minimizes area up to second order,
that is if for any smooth normal variation F; with compact support

2

d
@(Afeaﬂ(z)) lt=0=> 0.

This condition is equivalent to the following:
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DEFINITION 2.3. An orientable minimal surface ¥ is stable if for any ¢ € C5°(X)

(2.1) /2 Ax6? < /2 Vo2,

Equation (2.1) is called stability inequality.

Thus, assuming some integral information for |A|, the Schoen Curvature Estimate
gives a point-wise estimate for |A|. One of the standard arguments to obtain point-
wise estimates from integral information is via the following lemma.

LEMMA 2.4. Let u € L*(X) and suppose that Area (X) is finite. Then,
SlEIPIUI = Hm [luflLe(s).

Here supy, |u| denotes the essential supremum.

Proor. Clearly, ||ul|z») < Area(E)% supsy, |ul, and thus

lim sup [[ul| z»(5) < sup |ul.
p—+00 3

On the other hand if A < supy, |u|, then Area(Xy := {p € X | |u(p)| > A}) > 0 and
lull v (=) > A(Area ZA)%. Thus liminf, oo [Jullrzy > A O

In order to prove the Schoen Curvature Estimate we also need to recall some well-
known properties of |A|: for a minimal hyper-surface in R™, | A| satisfies the follow-
ing partial differential inequality that is known as Simons’ inequality [43],

(2.2) AJAP? > —2|A]* +2 (1 + 2) |V|A|2.
n+1

Before proving the Schoen Curvature Estimate, it is important to note that in [39]
Schoen proves a lower bound for the conformal factor of 3, that is considerably more
than a curvature estimate, and then a curvature estimate. The proof of the Schoen
Curvature Estimate presented here uses a more direct argument; this argument,
in fact an even more general version of it, can be found in [41]. The strategy is
to estimate higher LP norms of the norm of the second fundamental form using a
standard Moser iteration technique and then apply Lemma 2.4.

In order to apply Lemma 2.4 and in other steps of the proof, we will also need the
following area bound for stable geodesic disks.

LEMMA 2.5. Let ¥ be a stable minimal surface in R®. If Bs(x) C %, 0Bs(z) C
Y\OX, then

4
AreaBs(x) < 371'82.

PRroOF. If B,(x) is not simply-connected for a certain r < s then let 5 be the
universal cover of ¥ and let Z € ¥ be a lift of 2. Then, Area Bs(x) < Area B, (Z) and
since the Gaussian curvature of a minimal surface immersed in R? is non-positive,
the exponential map is a diffecomorphism and B,.(Z) is simply-connected for any
r < s. Therefore, it suffices to prove the lemma when B, (x) is simply-connected
for any r < s.
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Let L(t) denote the length of 9B;(x). Then, the first variation of arc length gives

0=,
—L(t) = k
dt ( ) 08, (0) g9

where kg is the geodesic curvature. Thus, using Gauss-Bonnet theorem

dL
7(15):/ ky = 27 — K.
dt 9B, (0) By (z)

Integrating (2.3) twice, we get

Area Bg(x) — 7s? / / K.
B, (x)
Furthermore,

A s e (//f@
ﬁéﬁkﬂ@t“)/éw) N

and using the coarea formula,

s _\2 _ +)\2
/ / Ky (s—1)? _ Ky (s—1)°
0 JoB,(z) 2 By () 2

2
Recalling that for a minimal surface — Ky, = %, so far we have obtained that

(2.3)

2
(2.4) Area By (x) — ms? = / |A|2u.
By (x) 4

We are now going to use the stability inequality, that is equation (2.1), to bound
the right hand side of equation (2.4). Letting ¢ = M in the stability inequality,

we obtain
/ AP (s —1)? _ / 1 AreaBy(x)
B.(a) 4 7 @4 4

This together with equation (2.4) finishes the proof of the lemma. ]

Finally, we recall the following theorem of Schoen-Simon-Yau of which we omit the
proof [41].

THEOREM 2.6. Let X"~! C R"™ be an orientable stable minimal hyper-surface.
There exist constants C(n,p) such that for all p € [2,2 + ,/%) and any non-

negative Lipschitz function ® with compact support

/ A58 < C(n,p) / Vo,
> >

We are now ready to prove the Schoen Curvature Estimate.

Proof of Theorem 2. Tt suffices to show that |A|(z) < CR™? and, by rescaling, it
suffices to consider the case R = 1. Let X be a compact minimal surface and ®
be a smooth function on ¥. The Sobolev embedding theorem [23] together with
Holder inequality says that that for p € [1,2)
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(/erbmpp)’;p <c, </ vm)l < C, Area(S </ |v¢,2)

Using Holder inequality, raising to the power 2 and letting r = 2%’ we obtain
that
1
(2.6) ( / |¢>2r> < ¢, Area(S)* / Vo2
b b
for r € [1, 00).

Let g be a nonnegative, smooth function on ¥ such that

(2.7) Ag > —2|Alg.

Multiplying each side of equation (2.7) by £2g29~! where ¢ is a cut-off function
gives
EgPT 1 Ag > —2|APE g

Integrating by parts over ¥ we get

2
/6292" 1Ag—/V g% 1)Vg—/(Vé )vg i (261—1)/25292"_QIV9|2~

Thus
2 V92q 2 2¢-2 2 242 2q
[T v o) [ @ 2vgp <2 [ |apegn
by q b )
Computing |V(£g7)|> we obtain
_ 1
V(g = V€™ + ¢*€*g* 7| Vg[* + S VE Vg™,
Thus

V§2V92q>

Vo < VEPa™ + o (20 - DEP2vgP + T

[ vt < [ vsen 2 [ jape

Using equation (2.6) with ® = £g? and r = 3 we get

</ 5696‘1) <C(AreaX %/ [V (£g99)
b
C(Areay)s </ Vg 2q+q/ |A|P¢%g 2q>

Finally



ON CURVATURE ESTIMATES FOR CONSTANT MEAN CURVATURE SURFACES 7

where C' is a universal constant. Using Holder inequality with p = 2 and ¢ =

3 2
2 2 242 2 3 3.3 s
(/Ewa gq+q/E|A|£gq) <(Areay) (/E|vs| gq)
+q<L€3|AIG>S<A§393q>S

Let & be a function which is one in B, (), zero outside B,is(z) and [VE| < 1
then,
) 24

(/ 96q> o7 < (C(AreaBaJrs(I))
Ba(z)
24 3
(AreaB,is(z))%s ™% + ¢ </ |A6> </ 93q> '
Baﬁ»s("”) Ba+s (l)

Let ¢ = s72 = 2' and denote by ag = Y o, 273, qp = >, 2. Suppose that
AreaB,q,(z) and [, (@) |A|® are bounded then,
a+aq

wl=

Wl

1 3(2%)

(/ 93(2 +1)) s §C3(;i) 221'%11 / 93(2 )
Ba B i

1 1 i ; N
1L gl i1
<(C3eD T3E) 57T T o / 93(2 )
B

<) < /B gs) -
a+ag

a+2’%+2’T
In the previous sequence of inequalities, C' might not be the same constant but it
essentially depends only on Area B4, () and [, o (@) |A|®. Applying Lemma 2.4
atag

1
3(2i—1)

then gives that there exists a constant C' depending on Area Bqyq,(z) and [, o (@) |A|°
atao

such that
1
3
g(z) < sup g< C / 9 .
Ba(z) Ba+a0

If ¥ is a minimal surface, then A|A[? > —2|A[*. Therefore setting ¢ in the previous

discussion equal to [A]* and [, . 9 =I5 . |A|®, we obtain that there exists a
a+tag a+aq

constant C' depending on Area B, 4,(z) and [, o (@) |A| such that
atag

%
(2.8) AP(@) < sup [AP <C ( / |A|6> .
Ba+a0

Ba(x
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Thus, after choosing a such that a + ag < 1, the curvature estimate follows from
equation (2.8), if we can show that Area By and fBl |A|6 are bounded independently
of 3. In Lemma 2.5 we have provided a bound for Area ;. Taking p = 3 and a
standard cut-off function, Theorem 2.6 shows that |, B | A]6 is bounded. This finishes
the proof of Theorem 2. O

3. Choi-Schoen Curvature Estimate

The Choi-Schoen Curvature Estimate says that if the total curvature of a geodesic
minimal disk is sufficiently small, then the curvature of the disk is bounded in the
interior and it decays like the inverse square of the distance of the point to the
boundary. Once again, in a sense that has been described in Section 1, it says that
if the total curvature is small then there is a fixed scale where the surface looks
“nice” or, in other words, wherever the surface does not look “nice” there must be
a gain in total curvature. Note however that the helicoid has the simplest topology,
simply-connected, but it has infinite total curvature.

THEOREM 3.1 (Choi-Schoen Curvature Estimate). There exists €1 > 0 such that
the following holds. Let X be a surface immersed in R®, x € ¥ and B,,(z) C %,
0B, (x) C X\0X. If there exists § € [0,1] such that

/ |A§;|2 < d¢eq
Bro(w)

then for all0 < o <rg and y € By ()
o’|As(y) < 6.

In [4] Bourni and Tinaglia generalize the Choi-Schoen Curvature Estimate to sur-
faces with sufficiently small WP norm of the mean curvature and show that such
condition is optimal. Among other things, they use a generalized version of Simons’
inequality due to Ecker and Huisken [19].

We begin by proving certain general results about minimal submanifolds. The first
result is a Mean Value Property (see for instance Proposition 1.16 in [7]). Let B,
and B, denote, respectively, B,-(0) and B,(0).

LEMMA 3.2 (Mean Value Property). Let ¥ be a k-dimensional minimal submanifold
immersed in R™ and containing the origin and let f be a non-negative C' function
on X then

d ([ _ d |z |2 ke
3.1 —rk/ >=/ +rk1/ z-Vf,
3.1) dr < Bmzf dr Bmzf|30|k+2 B,NE !

where o™V denotes the normal component of x, and for 0 < s <t

(3.2) t*k/ f—s*k/ f:/ fkr]:fz—i-/trkl/ x-Vf.
B,NY B.NT (B;\Bs)NT |z [* s Ne)y
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ProOF. Using the formula

/diszzf/X.H:()

with the vector field X (z) = ~(|z|)f(z), where v € C*(R) is such that, for some
r>0,7v(t)=1fort <r/2,v(t) =0 for t > r and 7'(¢t) <0, we get

d -k |z] _ .~k d |$N\2 |z|
A /Bmﬁ(r)f)—’" ar Joos? #(7)
—h—1 . |$|>

+r /Bmzx Vf¢< "

where ¢ : R — R is defined by ¢(|z|/r) = v(Jz|) (cf. equation 18.1 in [42]).
Then (3.1) follows after letting ¢ in the above formula increase to the characteristic
function of (—o0,1) and (3.2) follows by integrating (3.1) from s to ¢. O

REMARK 3.3. The first term on the RHS of (3.1) and (3.2) in Lemma 3.1 are
positive. For the second term on the RHS of (3.2) we note that for any C'* function
h on X, integration by parts yields

t
1 1 1

L =i ()
s B,NE k BN Ty t

where s = max{|z|, s}, and furthermore
. 1 1
x-Vf=projp yr-Vf= §V|x|2 -Vf= 75V(r2 — |:c|2) -Vf.

Thus, integrating by parts, we get the following two estimates, as a corollary of
Lemma 3.1, which we will need later:

d —k ]‘ —k—1 2 2
(3.3) a ( /B f) > 1 /B = le)Asy

and

1 1 1
(3.4) t_k/ f—S_k/ fZ*/ ‘T'vf<k_k)
ByN% B.NS k Jp,nx ry ¢

where r; = ri(x) = max{|z|, s}.
Using Lemma 3.2 we obtain the following Mean Value Inequality (see for instance
Corollary 1.17 in [7]).

LEMMA 3.4 (Mean Value Inequality). Let X be a minimal hyper-surface immersed
in R™ containing the origin and such that B1(0) N 90X = (). Let also f be a non-
negative function on X such that

(3.5) Asf>-M\f
for some Ay > 0. Then

IR
F(0) < wilie /B o

where wy,_1 s the volume of the unit ball in R* 1.
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PROOF. Define

Ol
ByNE
then using (3.3) and (3.5)

Hence,
’ A Lty
gt) +5tg(t) 20 = (g(t)e=")" > 0.
After integrating from 0 to 1:
AL AL
i1 f(0) = Jim g(0) <eF o) =¥ [
t—0t BN

O

Using Simons’ inequality and the Mean Value Inequality we now prove Theorem 3.1.

Proof of Theorem 3.1. Note first that we can assume that § > 0, since else the
theorem is trivially true. Set F' = (rog — r)%|AJ? on B,,, where r(z) = |z|, and let
do be the maximum value of F' and zg the point where this maximum is attained.
Assume, for a contradiction, that dg > § and pick o so that

0
21 412
A = -,
o2 AP (wo) = §
Then: ) 5
o —T
20 < 1o — d-< 9~ <? ;
o <rg—r(xg) an 27T0_r(x0)72,vyc68(x0)
and

(ro — r(xo))2 sup |A|2 <4F(x9) = sup |A|2 < 4\A|2(x0) =g 2.
Bs (z0) Bs (z0)

Let & = Neo,2 (Br,) (where ;. x(y) = A™" (y—x) that is a rescaling and a translation)
and let A be the second fundamental form of 3. Then
1)

~ 2 K} 1 ~
(3.6) SUR‘A| <1 sup |A] < 5 and |A|“(0) o1

BiCcS Bo(z0)CE ~ 16 1

Note that by B, we now denote the geodesic balls of radius 7 in 3 centered at the
origin. Let ¥ be the connected component of By N By containing the origin. Then,
Yo has its boundary contained in dB7, see Lemma 1.1.

In what follows, we focus our analysis on io. Abusing the notations, we omit the
tildes and set ¥ = 3. Simons’ inequality with |A| < 1 implies:

AJAP? > —2|AP.

Hence the inequality in the assumptions of Lemma 3.4 is satisfied with A\; = 2.
Applying Lemma 3.4 we obtain

(3.7) T A0 < e </E A|2) < edep.
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Thus, picking ¢¢ sufficiently small, so that |A(0)]? < 6@4, contradicts (3.6) and
proves the theorem.

Note that in equation (3.7) we have used the fact that the total curvature is rescale
invariant. With an abuse of notation, let us reintroduce the tildes to denote the sur-
faces and quantities obtained after rescaling so that ¥ = 7, « (B;,). Then,

[oae< [1Ap = [ jap <on.
S0 = B

4. Colding-Minicozzi One-sided Curvature Estimate

In this section we discuss the Colding-Minicozzi One-sided Curvature Estimate [14].
This is one of the main results in Colding-Minicozzi Theory [6, 11, 12, 13, 14]. As
this very short overview certainly does not do justice to their pioneering work, we
refer the reader to the surveys [10, 15, 16] written by Colding and Minicozzi.

The One-sided Curvature Estimate says the following.

THEOREM 4.1. There exists € > 0 such that the following holds. Let ¥ be a minimal
disk embedded in R3 contained in Bar(0) N{z > 0} with 0% C 0Bar(0) and let '
be any component of ¥ N Br(0).

1
If ¥ N B.g(0) # 0, then sup |As| < o
Z/

In other words, Theorem 4.1 says that if an embedded minimal disk lies on one
side of a plane but sufficiently close to it, then the curvature is bounded at interior
points.

The One-sided Curvature Estimate has been an extremely useful tool in tackling
results that before had seemed unapproachable. For instance, in [29] Meeks and
Rosenberg prove that

The plane and the helicoid are the only simply-connected mini-
mal surfaces properly embedded in R3.

See also [3]. In [17] Colding and Minicozzi tackle the Calabi-Yau Conjectures and
prove that

A complete minimal surface of finite topology embedded in R?
is properly embedded.

In [33] Meeks and Tinaglia prove a curvature estimate for disks embedded in R3
with nonzero constant mean curvature, see the next section. They then use this
result to show that

Round spheres are the only complete, simply-connected surfaces
embedded in R? with nonzero constant mean curvature.

The aforementioned results are just a few instances where the One-sided Curvature
Estimate, and more generally Colding-Minicozzi Theory, has been applied.
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It is important to mention that Colding and Minicozzi also prove an intrinsic version
of the One-sided Curvature Estimate, that is the embedded minimal disk can be
replaced by an embedded minimal geodesic disk with no additional hypotheses on
the geometry of its boundary [17].

THEOREM 4.2. There exists € > 0 such that the following holds. Let Y be a minimal
disk embedded in R® contained in {z > 0}. If Bagp(z) C £\OX and |z| < eR, then

1
sup |As| < —=.
Br(z) R

Brief idea of the proof. Using the One-sided Curvature Estimate (extrinsic version),
Colding and Minicozzi show that on a simply-connected embedded minimal geodesic
disk there is a relation between intrinsic and extrinsic distances, that is a so-called
chord-arc bound. In other words, while for any two points on a surface the intrinsic
distance always bounds the extrinsic distance, in [17] they prove that on a simply-
connected embedded minimal geodesic disk a somewhat reverse property holds.
Thus, given a simply-connected minimal geodesic disk, while a priori there are no
information on the boundary of suck disk, in fact its intersection with a sufficiently
small extrinsic ball is compact. Finally, one can apply the One-sided Curvature
Estimate to such compact intersection to obtain an intrinsic version. (]

Moreover, the plane in the One-sided Curvature Estimate can be replaced by a
minimal surface. Namely, the following result is also true.

COROLLARY 4.3. There exist ¢,e > 0 such that the following holds. Let ¥; and
Y5 be disjoint minimal surfaces embedded in R?® contained in B.g(0) with 0%; C
OB.r(0) for 7 := 1,2. Assume also that X1 is a disk, 3o N B.g(0) # 0, and let >’
be any component of ¥; N Br(0).

1
If X' N B.r(0) # 0, then sup|Ax| < =
E/

ProOF. Under these hypotheses, using a result of Meeks and Yau [35] and a
linking argument one can show that there exists a stable embedded minimal disk
Y, such that X3 N B.g(0) # 0 and 0X5 N 0B.g(0). Thus, if ¢ is taken sufficiently
large then, using the Schoen Curvature Estimate for stable surfaces, see Section 2,
3, is rather flat away from the boundary and can play the role of the plane {z = 0}
in the One-sided Curvature Estimate. This role will be clear once we give an idea
of the proof of the curvature estimate. O

Before giving a rough idea of the proof of the One-sided Curvature Estimate, it is
interesting to point out how Theorem 4.1 can be thought of an effective version of
the Half-space Theorem by Hoffman and Meeks [22] for properly embedded minimal
disks. The Half-space Theorem is a very beautiful result that certainly concerns a
much more general class of complete surfaces but considering it in this less general
case might give an intuition on why one expects the One-sided Curvature Estimate
to be true.

THEOREM 4.4 (Half-space Theorem). Let X be a minimal surface properly immersed
in R? and contained in a half-space. Then, ¥ must be a flat plane.
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Proof when % is properly embedded. Without loss of generality, we can assume
Y C {z > 0}. Given a point p € X there certainly exists an R, such that p €
¥ N B:g(0) for any R > R,; here ¢ is the small value given by the One-sided
Curvature Estimate. Since the intersection XN Bg(0) is compact, applying the One-
sided Curvature Estimate and letting R go to infinity gives that |A| =0. O

We now sketch some of the basic principles behind the proof of the One-sided
Curvature Estimate. First of all, it can be shown that Theorem 4.1 is equivalent
to the following theorem, see Figure 4.

THEOREM 4.5. There exist C,\,e > 0 such that the following holds. Let % be a
minimal disk embedded in R3 contained in By (0)N{z > 0} with 0% C 0B, (0) then

sup |As| < C.
£NB.(0)

FIGURE 1. One-sided Curvature Estimate

In view of Theorem 4.5, arguing by contradiction, there exists a sequence of embed-
ded minimal disks, ¥,,, contained in a half-space, with boundary going to infinity,
0%, C 0B,(0), and norm of the second fundamental form arbitrary large at a
point p, converging to the origin, supy, g, (o) |A| > n. The strategy to prove the

One-sided Curvature Estimate is to show that under such hypotheses there exists
a sequence of points in X, where the curvature is large and use that to prove that
these points move downwards faster than they move sideways. That being the
case, the surface must intersect the plane {z = 0} giving a contradiction. For this,
Colding and Minicozzi carefully study the structure of an embedded minimal disk
at points where the curvature is large [11, 12, 13, 14]. In what follows we will
give a very brief idea of how they manage to describe the location in space of these
points but we will not address their existence. Let p, denote the points of such
sequence.

We first introduce the following definition.

DEFINITION 4.6. An N-valued graph over an annulus D,,\D,, is a graph over
(ri,7m2) X [-Nm, N7] C C* where C* is the universal cover of C.

In [11] they prove the following.

THEOREM 4.7 (Basic Structure Theorem). Given N,Q > 0 there exist C1,Cs, Cs
such that the following holds. Let ¥ be an embedded minimal disk contained in
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BCQR(O) with 9% C 8B02R(0). [f

C
sup |Ax| < 2|As|(0) = 2%
(0) S

then there exists an N-valued graph ¥, C XN {z% < Q*(2%+y?)} over Dr\D; with
gradient < Q and separation > C3s over 0Ds.

In other words, for each point where the curvature is large there exists a highly-
sheeted multi-valued graph, ¥ , i.e. there exists a flat annulus centered at that
point over which the surface spirals, much like a helicoid. Applying this result to
the sequence of points p?, we obtain a sequence of multi-valued graphs Ef}. Moreover,
since the boundaries of the disks ¥,, are going to infinity, the outer boundaries of
the annuli over which the Z;’s are defined are also going to infinity. In other words,
each E; is a large, highly-sheeted multi-valued graph. It is by using these multi-
valued graphs that Colding and Minicozzi are able to locate the position of pf, in
space.

Let us assume that E;H lies below E;. While this is already a very delicate
argument, it is still not sufficient to determine that the sequence of points must move
downwards. A multi-valued graph behaves, in some sense, much like a helicoid, it
is however NOT a helicoid. In other words, a priori the multi-valued graph does
not have to extend horizontally parallel to the plane {z = 0}. Thus, even if p;y;
lies in the component below E;, it could still be the case that p;;1 is well above
pi. The Basic Structure Theorem can be improved to show that if the number of
sheets of a multi-valued graph is sufficiently large, i.e. N is sufficiently large, the
growth of some sheets is sub-linear. Thus, if the number of pi,’s grows linearly then,
comparing the two growths, one obtains that these points must eventually move
downwards and below the plane, giving a contradiction.

This ends our brief description of the proof of the One-sided Curvature Estimate.
Notice that what they prove is precisely that under certain conditions, once the
curvature of an embedded minimal disk is sufficiently large, then it cannot stop
being large and the points where it is large are forced to move in one direction.
Adding the hypothesis of being contained in a half-space to this description then
gives the One-sided Curvature Estimate.

In [34] Meeks and Tinaglia generalize the One-sided Curvature Estimate to disks
embedded in R3 with bounded constant mean curvature. The proof of their general-
ization applies in an essential manner results and techniques that can be found in the
papers [9, 14, 17] by Colding and Minicozzi, [27] by Meeks, [28] by Meeks, Perez
and Ros, [29, 30] by Meeks and Rosenberg and their previous papers [31, 32, 33].
Except for the results in [28, 32], all of the other results depend on the One-sided
Curvature Estimates for minimal disks given by Colding and Minicozzi in [14].
Among other things, in the next section we give an idea on how to prove such
generalization.

5. Curvature Estimate for CMC Disks

In this section we review a curvature estimate for simply-connected surfaces embed-
ded in R? with constant mean curvature by Meeks and Tinaglia [33]. To simplify
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the statements, we define an H-disk to be a simply-connected surface embedded in
R3 with nonzero constant mean curvature equal to H.

THEOREM 5.1. Given 6 > 0 Hy > 0, there exists a constant K = K (0, Hy) such
that for any H-disk M, H > H,

sup |Ap| < K.
{peM | dn (p,0M)>6}

Theorem 5.1 says that if a point on an H-disk, with H bounded from below, is
sufficiently away from the boundary (intrinsically) then the curvature is bounded
at that point. Note that the curvature estimate does not depend on an upper-
bound for H. In order to prove Theorem 5.2 we first prove the curvature estimate
below that depends on the exact value for H and then we argue to improve this
result.

LEMMA 5.2. Given § > 0, there exists a constant K = K(§) such that for any
H-disk M
sup |An| < KH.
{peM | dn (p,OM)> 4}

Assuming this weaker curvature estimate, the following Radius Estimate for H-
disks follows, see Figure 5.

THEOREM 5.3 (Radius Estimate). There exists a constant R such that any H-disk
M has radius less than %. In other words,

sup dy(p, OM) <
pEM

T =

oM

<R/H

FIGURE 2. Radius Estimate

In 1951, Hopf [24] proved that a compact immersed sphere of constant mean cur-
vature in R® must be round. In 1956, Alexandrov [1] proved that the only closed
(compact without boundary) surfaces of constant mean curvature embedded in R?
are round spheres. These two results about closed surfaces in R? with constant
mean curvature lead naturally to the following longstanding problem:

Are round spheres the only complete, simply-connected
surfaces with nonzero constant mean curvature embed-
ded in R3?

In other words, what happens if the compactness hypothesis is replaced by com-
pleteness? Note that “simply-connected” and “embedded” are both necessary hy-
potheses in order to characterize the round sphere; cylinders are simple counter-
examples. The answer to this question is yes and it is the crowning result of
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the systematic study of the geometry of H-disks done by Meeks and Tinaglia
in [31, 33, 34]. This characterization of round spheres is an immediate conse-
quence of the Radius Estimate. In other words

THEOREM 5.4. Round spheres are the only complete, simply-connected surfaces
embedded in R? with nonzero constant mean curvature.

PROOF. Let M be such a surface then, because of the Radius Estimate, M is
compact. That is, M is topologically a sphere embedded in R? with constant mean
curvature. Using either Hopf Theorem or Alexandrov Theorem gives that M is a
round sphere. (I

Theorem 5.4 was proven by Meeks in [26] assuming that the surface is properly
embedded in R3. Being proper implies that if the intrinsic distance between two
points on the surface goes to infinity, the extrinsic distance goes to infinity as
well.

This new characterization of the round sphere, together with previous results of
Colding-Minicozzi [17] and Meeks-Rosenberg [29] for minimal surfaces, completes
the classification of complete, embedded, simply-connected surfaces with constant
mean curvature:

Planes, spheres and helicoids are the only complete,
simply-connected surfaces embedded in R?® with con-
stant mean curvature.

We now prove the Radius Estimate assuming Lemma 5.2.

Proof of Theorem 5.3. Arguing by contradiction, there exists a sequence of 1-disks
M,, with radii going to infinity. Theorem 5.2 implies that the sequence of 1-disks
Y, ={p € My, | dy(p,0M) > 1} have uniformly bounded norm of the second
fundamental form. A standard compactness argument shows that 3, converges
C? to a complete surface Yo “almost embedded” in R?® with bounded norm of
the second fundamental form, mean curvature equal to one and genus zero. Being
the limit of a sequence of embedded surfaces, ¥, cannot have a transverse self-
intersection but it could still intersect itself tangentially. However, if p € ¥ is
such a point, then the unit normal vectors at p point in the opposite direction.
Since this is the only way in which the limit surface might fail to be embedded,
we say that such surface is “almost embedded.” A simple example that clearly
illustrates how this could happen is the following one: consider a sequence of pairs
of spherical caps such that the distance between the pairs is going to zero. If the
concavities of the spherical caps are facing each other then they cannot approach
each other without intersecting. If the concavities face the same direction then, in
the limit, there will be only a single embedded spherical cap. If the concavities are
facing opposite directions and not facing each other then in the limit there will be
two spherical caps tangent at one point.

If X, converges to ¥, with multiplicity greater than two, then it can be shown that
the universal cover of ¥, would be stable, in the sense of (2.1). Since there are
no complete stable surfaces immersed in R3 with nonzero constant mean curvature,
we have obtained a contradiction and thus we also know that ¥,, converges to ¥,
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with multiplicity at most two, in particular finite. Similarly, we can use the non
existence of complete stable surfaces immersed in R?® with nonzero constant mean
curvature to show that Y., must be proper. If not, then a standard compactness
argument shows that Yo, — Zoo is a complete surface almost embedded in R3 with
nonzero constant mean curvature and its universal cover is stable. Such surface
does not exist and this contradiction gives that ¥, is proper.

In [32] Meeks and Tinaglia prove that a proper surface almost embedded in R?
with finite genus and bounded norm of the second fundamental form contains an
embedded Delaunay surface Do, at infinity. While this was shown in [25] to be true
for properly embedded surface of finite topology by Kusner, Korevaar and Solomon,
here the full generality of the results in [32] is needed.

CrAamM 5.5. The sequence ¥,, cannot converge to Do, with finite multiplicity.

Proof of the claim. Arguing by contradiction, suppose that X, converges to D,
with finite multiplicity. Consider a closed geodesic v on D, and let ,, be a sequence
of closed curves in ¥, converging to it. Since 7y is a closed geodesic in an embedded
Delaunay surface of constant mean curvature one,  is contained in a ball of radius
one. Therefore ,,, which is the boundary of a disk D,, in X,,, is also contained in a
ball of radius one for n large. We claim that D,, is contained in a ball of radius three
and thus cannot converge to D.,. More generally, if 7y is a closed curve contained in
B,(0) that is the the boundary of an H-disk Dy, then Dy is contained in B, 2 (0).
Let p € Dy be the point that is furthest away from the boundary, then the normal
vector at p, IV, is pointing toward the origin. Let II; be the plane perpendicular
to N, at distance ¢ from the origin. A standard argument using the Alexandrov
reflection principle shows that the connected component of Dy — [Dy N I jpj4r|

containing p is graphical over II p|1.. Standard height estimates for graphs with
2

constant mean curvature give that the distance from p to I 4, that is @, is
2

at most % Thus, |p| + 7 < % which proves the claim. O

Therefore, thanks to Claim 5.5 we have obtained a contradiction and the Radius
Estimate holds. O

We now use the Radius Estimate to improve the curvature estimate in Lemma 5.2,
that is to prove Theorem 5.1.

Proof of Theorem 5.1. Arguing by contradiction, suppose that the theorem fails for
some 0, Hy > 0. In this case there exists a sequence of H,,-disks, M,, with H,, > Hy
and points p,, € M, satisfying:

(5.1) § < dp, (pn, OM,,),

(5.2) n < A, [(pn)-

Rescale these disks by H,, to obtain the sequence of 1-disks ]\/Zn = H,M,, with the
related sequence of points p,, = H,p,. By definition of these disks and points, by
equations (5.1) and (5.2) and since H,, > Hy, we have

(5.3) Hoy < 6H, < dg; (Pn, 0M,),

n

(5.4) i

< |Ag (Pn)-
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Note that equation (5.3) together with Lemma 5.2 with H = 1 gives that [A; |(p,) <
K(6Hy).

By Theorem 5.3, das, (ﬁn,am) < R, for the universal constant R, and so, by
equation (5.3), H, < %. Finally, by equation (5.4) we obtain

6 n ~

En < E < |A1\7n‘(p") < K((SHO)a
which is false for n sufficiently large. This contradiction completes the proof of the
theorem. d

Thus, it remains to prove Lemma 5.2 and, by rescaling, it suffices to prove it for
H = 1. The steps to prove Lemma 5.2 are essentially two. The first step is to
prove a chord-arc bound for 1-disks. Just like in the proof of the Intrinsic 1-sided
Curvature Estimate of Colding and Minicozzi, the up-shot of such chord-arc bound
is that in order to prove the Intrinsic Curvature Estimate it is sufficient to prove
an extrinsic version, the second step.

We first discuss the second step, that is the Extrinsic Curvature Estimate for 1-
disks.

THEOREM 5.6. Given ¢ < 1 there exist C = C(g) > 0 such that the following holds.
Let M be an H-disk containing the origin. If OM N B (0) = 0, then

|An[(0) < CH.

Idea of the proof of Theorem 5.6. It suffices to prove the result for H = 1. Arguing
by contradiction, suppose that for some € < 1 there exists a sequence of 1-disks,
My, with OM,, N B<(0) = @ and norm of the second fundamental form arbitrary
large at the origin, |A[(0) > n. Using the uniqueness of the helicoid, it can be
shown that nearby the origin, on the scale of the norm of the second fundamental
form, the surface can be approximated by a helicoid (see also [45, 46]). This
is because using a rescaling argument one obtains a sequence of H,-disks with
boundary going to infinity, bounded norm of the second fundamental form which
is one at the origin and H,, going to zero. Such sequence converges to a non-flat,
simply-connected minimal surface M., embedded in R3. The surface M., must be
properly embedded [17] and thus a helicoid [29].

One can use this local picture on the scale of the norm of the second fundamental
form around the origin to extend this small “helicoid” with constant mean curvature
one to a larger, meaning on a fixed scale, multi-valued graph. To do this, the first
step is to find a closed curve ~ satisfying certain hypotheses and bounding a disk
on M,,. Then, using a result of Meeks and Yau [35] gives a stable minimal disk
Ymin with boundary ~ and disjoint from M,,. Finally, thanks to the properties of
its carefully chosen boundary and results in [14], one can show that ¥,,;, contains
a large multi-valued graph. The curvature of M,, is bounded between the sheets
of ¥,nin and this gives that M, itself contains a multi-valued graph on a fixed
scale. However, as the norm of the second fundamental form goes to infinity, this
description gives a sequence of graphs with constant mean curvature one which are
contained in arbitrarily small slabs. This is not possible and proves the theorem.
O
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Note that arguing as in the proof of Theorem 5.3 one can prove the following
Extrinsic Radius Estimate for 1-disks, Corollary 5.7, and then use such radius
estimate to improve the curvature estimate, Corollary 5.8.

COROLLARY 5.7 (Extrinsic Radius Estimate). There exists a constant Ry such that
the following holds. Let M be an H-disk then
R
sup dgs(p, OM) < =0

peEM H
COROLLARY 5.8. Given ¢ > 0 Hy > 0, there exists a constant K = K (d, Hyp) such
that for any H-disk M, H > Hj

sup |An| < K.
{pPEM | dys (p,0M)>5}

We now discuss the first step in the proof of the Intrinsic Curvature Estimate, that
is the chord-arc bound. The steps of the proof of the chord-arc bound for 1-disks
are essentially the same as the ones used by Colding and Minicozzi to prove the
chord-arc bound in the minimal case [17]. However, a key result that is needed to
carry-out such a straightforward generalization is a generalization of the Colding-
Minicozzi One-sided Curvature Estimate discussed in the previous section. This
latter generalization is nontrivial and applies in an essential manner the Colding-
Minicozzi One-sided Curvature Estimate for minimal disks and results depending
on it. See the last paragraph of the previous section. The One-sided Curvature
Estimate for H-disks says the following.

THEOREM 5.9. There exist C,e > 0 such that the following holds. Let M be an
H-disk embedded in R3. IfMﬂB% (0)N{z=0} =0 and 8MQB%(O)O{Z >0} =10,
then

sup |An| < C.
MNB.(0)n{z>0}

Let us first compare Corollary 5.8 and Theorem 5.9. Corollary 5.8 gives a curva-
ture estimate that does not require that the surface is contained in a half-space.
However, the estimate depends on a lower bound for the value of the mean cur-
vature and it becomes worse as such lower bound goes to zero. The estimate in
Theorem 5.9 is independent of the value of the mean curvature. This independence
is essential because in proving chord-arc bounds for H-disks we employ rescaling
arguments where the mean curvature goes to zero.

Idea of the proof of Theorem 5.9. As for the proof of the Colding-Minicozzi One-
sided Curvature Estimate, arguing by contradiction, there exists a sequence of em-
bedded disks, M,,, contained in a half-space with bounded constant mean curvature,
boundary going to infinity, OM,, € 9B,(0), and norm of the second fundamental
form arbitrary large at a point p, converging to the origin, sup,; g, (o) 4] > 7.

Note that thanks to Corollary 5.8 the mean curvature H,, of M, must be going to
Zero.

Arguing similarly to the proof of Theorem 5.6 but using also the fact that M,,N{z =
0} = 0, it can be shown that around the point p, and on the scale of the norm
of the second fundamental form, the surface can be approximated by a vertical
helicoid. Let p!, denote a point in M,, which is on the axis of such vertical helicoid.
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Let N: M, — S? denote the Gauss map and consider the connected component -,
of the pre-image of the equator, S? N {z = 0}, containing p/,. In other words, for
any point p € «y, the tangent plane to M, at p is vertical. In fact, it can be shown
that the unit tangent vector to v at each point p € v is vertical and thus that the
curve v must intersect the {z = 0} plane. This contradiction finishes the proof of

the generalization of the One-sided Curvature Estimate for H-disks. O
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