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Abstract. In these lectures, we review some recent results on the existence

of solutions of the Allen-Cahn equation ε2 ∆gu + u− u3 = 0 in a Riemannian

manifold (M, g). In the case where the ambient manifold M is compact, we
also provide a proof of the existence of such solutions whose zero set is close

to a given minimal hypersurface.

Given a (n+ 1)-dimensional Riemannian manifold (M, g), we are interested in
solutions of the semilinear elliptic equation

(0.1) ε2 ∆gu+ (1− u2)u = 0,

which is known as the Allen-Cahn equation following [2]. Here ε > 0 is a parameter.
The ambient manifold M which might be compact or non compact but, for the sake
of simplicity, we will assume that M does not have a boundary. This problem has
its origin in the gradient theory of phase transitions [2] where one is interested in
critical points of the energy

Eε(u) :=
ε

2

∫
M

|∇gu|2g dvolg +
1

4ε

∫
M

(1− u2)2 dvolg ,

and one easilly ses that (0.1) is the Euler-Lagrange equation of Eε. Will see in
these lectures that the space of solutions of (0.1) is surprisingly rich and also that
it has an interesting structure. As we will see, minimal hypersurfaces play a key role
in the understanding of the set of solutions of (0.1). We will review the different
technics leading to existence of solutions and we will also provide a simplified proof
of an existence result which was first published in [44] and which is at the origin
of most of the constructions in the field.

1. The role of minimal hypersurfaces

The relation between sets of minimal perimeter and critical points of Eε was
first established by Modica in [41]. Let us briefly recall the main results in this
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direction : If uε is a family of local minimizers of Eε whose energy is controlled,
namely for which

(1.1) sup
ε>0

Eε(uε) < +∞,

then, up to a subsequence, uε converges as ε tends to 0, in L1 to 1Γ − 1Γc , where
∂Γ has minimal perimeter. Here 1Γ (resp. 1Γc) is the characteristic function of the
set Γ (resp. Γc = M − Γ). Moreover,

Eε(uε) −→
1√
2
Hn(∂Γ).

For critical points of Eε which satisfy (1.1), a related assertion is proven in [30].
In this case, the convergence of the interface holds with certain integer multiplicity
to take into account the possibility of multiple transition layers converging to the
set of minimal perimeter (or to the same minimal hypersurface).

These results provide a link between solutions of (0.1) and the theory of minimal
hypersurfaces which has been exploited to construct nontrivial solutions of (0.1)..
For example, solutions concentrating along non-degenerate, minimal hypersurfaces
of a compact manifold were found in [44] (see also [33] for the Euclidean case).
Let us describe these results more carefully. We assume that (M, g) is a compact
Riemanian (n + 1)-dimensional manifold without boundary (in the case where M
has a boundary one requires that the solution u of (0.1) has 0 Neumann boundary
condition) and that Γ ⊂ M is an oriented minimal hypersurface which separates
M into two different connected components. Namely, Γ is the zero set of a smooth
function fΓ which is defined on M and for which 0 is a regular value. Then M \Γ =
M+ ∪M− where

M+ := f−1
Γ ((0,∞)) and M− := f−1

Γ ((−∞, 0)).

We also assume that, N , the unit normal vector field of Γ which is compatible with
the given orientation, points towards M+ while −N points toward M− (Γ might
have many connected components).

We recall the definition of the Jacobi operator about Γ

(1.2) JΓ := ∆g̊ + |AΓ|2 + Ricg (N,N),

where ∆g̊ is the Laplace-Beltrami operator on Γ for g̊ the induced metric on Γ,
Ricg denotes the Ricci tensor on (M, g) and |AΓ|2 denotes the square of the norm
of the shape operator defined by

g̊(AΓX,Y ) = g(∇gXY,N),

for all X,Y ∈ T Γ. We will say that Γ is a nondegenerate minimal hypersurface if
JΓ has trivial kernel.

Given these definitions, we have the :

Theorem 1.1. [44] Assume that (M, g) is an (n + 1)-dimensional compact
Riemanian manifold without boundary and Γ ⊂ M is a nondegenerate oriented
minimal hypersurface such that M \Γ = M+ ∪M− and N points toward M+ while
−N points towards M−. Then, there exists ε0 > 0 and for all ε ∈ (0, ε0) there
exists uε, critical point of Eε, such that uε converges uniformly to 1 on compacts
subsets of M+ (resp. to −1 on compacts subsets of M−) and

Eε(uε) −→
1√
2
Hn(Γ),
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as ε tends to 0.

The proof of this result relies on an infinite dimensional Liapunov-Schmidt
reduction argument which, in this context was first developed in [44]. As already
mentioned, in the second part of these lectures, we will provide a complete, simple
proof of this result. This proof is much simpler than the original proof in [44]
and makes use of many ideas which have been developed by the different authors
working in the field.

As far as multiple transition layers are concerned, given a minimal hypersurface
Γ (subject to some additional property on the sign of the potential of the Jacobi
operator about Γ, which holds on manifolds with positive Ricci curvature) and
given an integer k ≥ 1, solutions of (0.1) with multiple transitions layers near Γ
were built in [18], in such a way that

Eε(uε) −→
k√
2
Hn(Γ).

More precisely, we have the following difficult result :

Theorem 1.2. [18] Assume that (M, g) is a (n+ 1)-dimensional compact Rie-
manian manifold and Γ ⊂ M is a nondegenerate, oriented, connected minimal
hypersurface such that M \Γ = M+∪M− and N points toward M+ and −N points
toward M−. Further assume that

|AΓ|2g̊ + Ricg (N,N) > 0,

along Γ. Then, there exists a sequence (εj)j of positive numbers tending to 0 and
there exists uj, critical point of Eεj , such that uj converges uniformly to 1 on

compacts subsets of M+ (resp. to (−1)k on compacts subsets of M−) and

Eεj (uj) −→
k√
2
Hn(Γ),

as j tends to ∞. In particular, uj has k transition layers close to Γ.

Observe that Theorem 1.1 provides solutions for any ε small while the later
only produces solutions for some sequence of ε tending to 0. This new restriction
is due to some subtle resonance phenomena which arises in the case of multiple
interfaces.

2. Entire solutions to the Allen-Cahn equation in Euclidean space

In this section, we focus on the case where the ambient manifold is the Euclidean
space. Hence, we are interested in entire solutions of

(2.1) ∆u+ u− u3 = 0,

in Rn+1. Namely, solutions which are defined on all Rn+1. We review some recent
results and explain the different existence proofs which are available in this case.

2.1. The de Giorgi’s conjecture. In dimension 1, solutions of (2.1) which
have finite energy are given by translations of the function u1 which is the unique
solution of the problem

(2.2) u′′1 + u1 − u3
1 = 0, with u1(±∞) = ±1 and u1(0) = 0.
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In fact, the function u1 is explicitly given by

u1(x) = tanh

(
x√
2

)
.

Observe that, for all a ∈ Rn+1 with |a| = 1 and for all b ∈ R, the function

(2.3) u(x) = u1(a · x + b),

solves (2.1).
A celebrated conjecture due to de Giorgi asserts that, in dimension n+ 1 ≤ 8,

these solutions are the only ones which are bounded, non constant and monotone
in one direction. In other words, if u is a (smooth) bounded solution of (2.1) and
if ∂xn+1

u > 0 then u−1(λ) is either a hyperplane or the empty set.
In dimensions 2 and 3, de Giorgi’s conjecture has been proven in [25], [4] and

(under some extra assumption) in the remaining dimensions in [48] (see also [21],
[23]). When n + 1 = 2, the monotonicity assumption can even be replaced by a
weaker stability assumption [28]. Finally, counterexamples in dimension n+ 1 ≥ 9
have recently been built in [17], using the existence of non trivial minimal graphs
in higher dimensions. We will return to this later on.

Let us briefly explain the proof of the de Giorgi conjecture in the two dimen-
sional case, as given by A. Farina in [22].

Theorem 2.1. [25] The de Giorgi’s conjecture is true in dimension 2.

Proof. [22] Assume that u satisfies (2.1). Then

(2.4) ∆∇u+ (1− 3u2)∇u = 0.

It is convenient to identify R2 with C and write

∇u = ρ eiθ,

where ρ and θ are real valued functions. Observe that we implicitly use the fact
that ∂x2

u > 0 and hence we can choose the function θ to take values in (0, π).
Elliptic estimates imply that ∇u is bounded and hence so is ρ.

Now, with these notations, (2.4) can be written as

∆ρ− |∇θ|2 ρ+ (1− 3ρ2) ρ+ i (ρ∆θ + 2∇ρ · ∇θ) = 0.

In particular, the imaginary part of the left-hand side of the equation is identically
equal to 0 and hence

div
(
ρ2∇θ

)
= 0.

As already mentioned, θ ∈ (0, π) and the next Lemma (Liouville type result) implies
that θ is in fact a constant function. Therefore, the unit normal vector to the level
lines of u is constant. �

In order for the proof to be complete, it remains to prove the following :

Lemma 2.1. Assume that ρ is a positive smooth, bounded function. Further
assume that θ is a bounded solution of

(2.5) div
(
ρ2∇θ

)
= 0,

in R2. Then, θ is the constant function.



THE ROLE OF MINIMAL SURFACES IN THE STUDY OF THE ALLEN-CAHN EQUATION 5

Proof. Let χ be a cutoff function which is identically equal to 1 in the unit
ball and identically equal to 0 outside the ball of radius 2. For all R > 0 we define

χR = χ(·/R).

Observe that |∇χR| ≤ C R−1 for some constant C > 0 independent of R > 0. We
multiply (2.5) by χ2

R θ and integrate the result over R2 to find∫
R2

|∇θ|2 ρ2 χ2
R dx = −2

∫
R2

θρ2χR∇θ∇χR dx.

Now, the integral on the right-hand side it taken over the set of x ∈ R2 such that
|x| ∈ [R, 2R]. Using Cauchy-Schwarz inequality, we conclude that∫

R2

|∇θ|2 ρ2 χ2
R dx ≤ 2

(∫
|x|∈[R,2R]

ρ2θ2 |∇χR|2 dx

)1/2

×

(∫
|x|∈[R,2R]

|∇θ|2 ρ2 χ2
R dx

)1/2

.

Using the bound |∇χR| ≤ C R−1, we conclude that

(2.6)

∫
R2

|∇θ|2 ρ2 χ2
R dx ≤ C

(∫
|x|∈[R,2R]

|∇θ|2 ρ2 χ2
R dx

)1/2

.

This in particular implies that∫
R2

|∇θ|2 ρ2 χ2
R dx ≤ C2,

and hence

lim
R→∞

∫
x∈[R,2R]

|∇θ|2 ρ2 χ2
R dx = 0.

Inserting this information back in (2.6), we conclude that∫
R2

|∇θ|2 ρ2 χ2
R dx = 0,

which implies that θ is the constant function. �

2.2. Solutions obtained using the variational structure of the prob-
lem. In this section we explain how the variational structure of the problem can
be exploited to derive the existence of nontrivial solutions of (2.1) which zero set is
prescribed.

As already mentioned , the functions u(x) = u1(a ·x+ b) are obvious solutions
of (2.1). In dimension 2, nontrivial examples (whose nodal set is the union of two
perpendicular lines) were built in [11] using the following strategy :

Theorem 2.2. [11] In dimension 2, there exists a solution of (2.1) whose zero
set is the union of two perpendicular lines.

Proof. For all R > 0 we define

ΩR := {(x, y) ∈ R2 : x > |y| and x2 + y2 < R2}.
Then one considers the energy

ER(u) :=
1

2

∫
ΩR

|∇u|2 dx+
1

4

∫
ΩR

(1− u2)2 dx.
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Standard arguments of the calculus of variations implies that, for all R > 0, there
exists a minimiser uR ∈ H1

0 (ΩR) which can be assumed to be positive and bounded
by 1. This minimiser is a smooth solution of (2.1) in ΩR which has 0 boundary
data and is bounded. It is easy to cook up a test function to show that

(2.7) ER(uR) ≤ C R.

Indeed, just build a function which interpolate smoothly from 0 to 1 in a layer of
size 1 around the boundary of ΩR and which is identically equal to 1 elsewhere.
Obviously the energy of this function is then controlled by the length of ∂ΩR and
hence is less than a constant times R). Since the energy of the trivial solution
(identically equal to 0) is

ER(0) =
1

4

∫
ΩR

dx ≥ C̄ R2,

we conclude that uR is certainly not identically equal to 0 for R large enough since
otherwise we would have the inequalities

C̄ R2 ≤ ER(0) ≤ ER(uR) ≤ C R,

which does not hold for R large enough.
Elliptic estimates together with Ascoli-Arzela’s theorem allow one to prove that,

as R tends to ∞, this sequence of minimisers uR converges (up to a subsequence
and uniformly on compacts) to a solution of (2.1) which is defined in the quadrant
{(x, y) ∈ R2 : x > |y|} and which vanishes on the boundary of this set. A solution
u2 defined in the entire space is then obtained using odd reflections through the
lines x = ±y. The function u2 is a solution of (2.1), whose 0-level set is the union
of the two axis.

Observe that we need to rule out the fact that u2 is the trivial solution (iden-
tically equal to 0). The proof is again by contradiction. If u2 ≡ 0, then for R large
enough, the solution uR would be less that 1/2 on ΩR̄ (here R̄ is fixed large enough,
independently of R). However, arguing as above it would be possible to modify the
definition of uR on ΩR̄ while reducing its energy (this would contradict the fact
that uR is a minimiser of the energy). �

This construction can easily be generalized to obtain solutions with dihedral
symmetry by considering, for k ≥ 3, the corresponding solution within the angular
sector {

(r cos θ, r sin θ) : r > 0 , |θ| < π

2k

}
,

and extending it by 2k − 1 consecutive odd reflections to yield an entire solution
uk (we refer to [27] for the details). The zero level set of uk is constituted by 2k
infinite half lines with dihedral symmetry.

Following the same strategy, X. Cabre and J. Terra [5] have obtained a higher
dimensional version of this construction and they are able to prove the :

Theorem 2.3. [5] There exist solutions of (2.1) which are defined in R2m and
whose zero set is the minimal cone

Cm,m := {(x, y) ∈ R2m : |x| = |y|}.
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Again using similar arguments, it is proven in [20] that there exists solutions
of (2.1) in R3 whose zero set is a given helicoid. In dimension 3, given λ > 0, we
define the helicoid Hλ to be the minimal surface parameterized by

R× R 3 (t, θ) 7−→
(
t cos θ, t sin θ,

λ

π
θ

)
∈ R3,

and, identifying R3 with C× R, we define the screw motion of parameter λ by

σαλ (z, t) =

(
eiα z, t+

λ

π
α

)
,

for all α ∈ R. Using the variational argument as above, solutions of the Allen-Cahn
equation which are defined in R3 and whose zero set is equal to Hλ are constructed
in [20]. More precisely :

Theorem 2.4. [20] Assume that λ > π, then there exists an entire solution to
the Allen-Cahn equation (2.1) which is bounded and whose zero set is equal to Hλ.
This solution is invariant under screw motion of parameter λ, namely u ◦ σαλ = u,
for all α ∈ R.

The constrain on λ is sharp since we also have the :

Theorem 2.5. [20] Assume that λ ≤ π, then there are no nontrivial bounded
entire solution of the Allen-Cahn equation (2.1) whose zero set is equal to Hλ.

Observe that, in this last result, we do not assume that the solution is invariant
under screw motion.

This result generalizes in higher dimensions to provide solutions of (2.1) which
are defined in R2m+3, whose zero set is the (2m+2)-dimensional helicoid, [7], which
is embedded in R2m+3 as the

R× R× (Sm × Sm) −→ R2m+3

(t, θ, (z1, z2)) 7−→ (t (cos θ z1 − sin θ z2), t (sin θ z2 + cos θ z1), θ) .

2.3. Entire solutions of the Allen-Cahn equation which are associated
to embedded minimal surfaces or hypersurfaces. Recently, there has been
important existence results for entire solutions of (2.1) which are associated to
complete noncompact embedded minimal surfaces in Euclidean space. All these
solutions are counterparts, in the noncompact setting, of the solutions obtained in
[44] in the compact setting. They all rely on the knowledge of complete noncompact
minimal hypersurfaces and use the infinite dimensional Liapunov-Schmidt reduction
argument introduced in [44]. Let us mention two important results along these lines.

There is a rich family of minimal surfaces in R3 which are complete, embedded
and have finite total curvature. Among these surfaces there is the catenoid, Costa’s
surface [8] and its higher genus analogues, and all k-ended embedded minimal
surfaces studied by J. Perez and A. Ros [46].

The main result in [19] asserts that there exists solutions of (2.1) whose nodal
set is close to a dilated version of any nondegenerate complete, noncompact minimal
surface with finite total curvature. In other words, if one considers the equation
with scaling

(2.8) ε2 ∆u+ u− u3 = 0,

then the following result holds :
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Theorem 2.6. [19] Given Γ, a nondegenerate complete, embedded minimal
surface with finite total curvature, there exists ε0 > 0 and for all ε ∈ (0, ε0) there
exists uε solution of (2.8), such that u−1

ε (0) converges uniformly on compacts to Γ.

In this result, nondegeneracy refers to the fact that all bounded Jacobi fields
of Γ come from the action of rigid motions on Γ.

Also, thanks to the result of Bombieri-de Giorgi-Giusti [3], it is known that
there exists minimal graphs which are not hyperplanes in dimension n + 1 ≥ 9.
Following similar ideas, it is proved in [17] that one can construct entire solutions
of (2.1) whose level sets are not hyperplanes, provided the dimension of the ambient
space is n+ 1 ≥ 9.

Theorem 2.7. [17] In dimension 9, there exist solutions of the Allen-Cahn
equation which are monotone in one direction and whose level sets are not hyper-
planes.

2.4. Entire solutions of (2.1) which are associated to the Toda sys-
tem. We assume in this section that the dimension is equal to 2. There is yet
another interesting construction of entire solutions of (2.1) which can be done in
dimension 2. Surprisingly, this construction relates solutions of (2.1) whose zero set
is the union of finitely many curves which are close to parallel lines with solutions
of a Toda system.

Definition 2.1. We say that u, solution of (2.1), has 2k-ends if, away from
a compact set, its nodal set is given by 2k connected curves which are asymptotic
to 2k oriented, disjoint, half lines aj · x + bj = 0, j = 1, . . . , 2k (for some choice of
aj ∈ R2, |aj | = 1 and bj ∈ R) and if, along these curves, the solution is asymptotic
to either u1(aj · x + bj) or −u1(aj · x + bj).

Given any k ≥ 1, one can prove the existence of a wealth of 2k-ended solutions
of (2.1). Moreover, one can show that these solutions belong to a smooth 2k-
parameter family of 2k-ended solutions of (2.1). To state this result in precise way,
we assume that we are given a solution q1, . . . , qk of the Toda system

(2.9) c0 q
′′
j = e

√
2(qj−1−qj) − e

√
2(qj−qj+1),

for j = 1, . . . , k, where c0 =
√

2
24 and we agree that

q0 ≡ −∞ and qk+1 ≡ +∞.

The Toda system (2.9) is a classical example of integrable system which has
been extensively studied. It models the dynamics of finitely many mass points on
the line under the influence of an exponential potential. We refer to [32] and [42]
for the complete description of the theory. Of importance is the fact that solutions
of (2.9) can be described (almost explicitly) in terms of 2k parameters. Moreover,
if q is a solution of (2.9), then the long term behavior (i.e. long term scattering)
of the qj at ±∞ is well understood and it is known that, for all j = 1, . . . , k, there
exist a+

j , b
+
j ∈ R and a−j , b

−
j ∈ R, all depending on q1, . . . , qk, such that

(2.10) qj(t) = a±j |t|+ b±j +OC∞(R)(e
−τ0 |t|),

as t tends to ±∞, for some τ0 > 0. Moreover, a±j+1 > a±j for all j = 1, . . . , k − 1.
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Given ε > 0, we define the vector valued function q1,ε, . . . , qk,ε, whose compo-
nents are given by

(2.11) qj,ε(x) := qj(ε x)−
√

2
(
j − k + 1

2

)
log ε.

It is easy to check that the qj,ε are again solutions of (2.9).
Observe that, according to the description of the asymptotics of the functions

qj , the graphs of the functions qj,ε are asymptotic to oriented half lines at infinity.
In addition, for ε > 0 small enough, these graphs are disjoint and in fact their
mutual distance is given by −

√
2 log ε+O(1) as ε tends to 0.

It will be convenient to agree that χ+ (resp. χ−) is a smooth cutoff function
defined on R which is identically equal to 1 for x > 1 (resp. for x < −1) and
identically equal to 0 for x < −1 (resp. for x > 1) and additionally χ− + χ+ ≡ 1.
With these cutoff functions at hand, we define the 4 dimensional space

(2.12) D := Span {x 7−→ χ±(x), x 7−→ xχ±(x)},
and, for all µ ∈ (0, 1) and all τ ∈ R, we define the space C2,µ

τ (R) of C2,µ functions
h which satisfy

‖h‖C2,µτ (R) := ‖(coshx)τ h‖C2,µ(R) <∞.
Keeping in mind the above notations, we have the :

Theorem 2.8. [13] For all ε > 0 sufficiently small, there exists an entire
solution uε of the Allen-Cahn equation (2.1) whose nodal set is the union of k
disjoint curves Γ1,ε, . . . ,Γk,ε which are the graphs of the functions

x 7−→ qj,ε(x) + hj,ε(ε x),

where the functions hj,ε ∈ C2,µ
τ (R)⊕D satisfy

‖hj,ε‖C2,µτ (R)⊕D ≤ C ε
α.

for some constants C,α, τ, µ > 0 independent of ε > 0.

In other words, given a solution of the Toda system, we can find a one parameter
family of 2k-ended solutions of (2.1) which depend on a small parameter ε > 0. As
ε tends to 0, the nodal sets of the solutions we construct become close to the graphs
of the functions qj,ε.

Going through the proof, one can be more precise about the description of the
solution uε. If Γ ⊂ R2 is a curve in R2 which is the graph over the x-axis of some
function, we denote by dist (·,Γ) the signed distance to Γ which is positive in the
upper half of R2 \Γ and is negative in the lower half of R2 \Γ. Then, we have the :

Proposition 2.1. [13] The solution of (2.1) provided by Theorem 2.8 satisfies

‖eε α̂ |x| (uε − u∗ε)‖L∞(R2) ≤ C εᾱ,
for some constants C, ᾱ, α̂ > 0 independent of ε, where

(2.13) u∗ε :=

k∑
j=1

(−1)j+1H
(
dist(·,Γj,ε)

)
− 1

2
((−1)k + 1).

It is interesting to observe that, when k ≥ 3, there are solutions of (2.9) whose
graphs have no symmetry and our result yields the existence of entire solutions of
(2.1) without any symmetry provided the number of ends is larger than or equal to
6.
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2.5. Stable solutions of the Allen-Cahn equation. Recently, building on
the recently developed tools and progress on the understanding of solutions of (2.1),
there has been some interest in the understanding of stable solutions of (2.1). We
start with the :

Definition 2.2. We will say that u, solution of (0.1), is stable if

(2.14)

∫
Rn+1

(|∇ψ|2 − ψ2 + 3u2 ψ2) dx ≥ 0,

for any smooth function ψ with compact support.

In dimensions 2 and 3, the stability property is also a key ingredient in the proof
of the de Giorgi’s conjecture which is given in [4], [25] and, as observed by Dancer
[10], the stability assumption is indeed a sufficient condition to classify solutions
of (2.1) in dimensions 2 and 3 and prove that solutions satisfying (2.14) are given
by (2.3) in these dimensions.

The monotonicity assumption in the de Giorgi conjecture implies the stability
of the solution. Indeed, if u is a solution of (2.1) such that ∂xn+1u > 0, then u is
stable in the above sense and the linearized operator

L := −(∆ + 1− 3u2),

satisfies maximum principle. More generally, observe that if φ > 0 is a solution of

Lφ = 0,

one can multiply this equation by φ−1 ψ2 and integrate the result by part to get∫
Rn+1

(|∇ψ|2 − ψ2 + 3u2 ψ2) dx =

∫
Rn+1

∣∣∇ψ − φ−1 ψ∇φ
∣∣2 dx ≥ 0,

and hence u is stable in the sense of Definition 2.2. In the case where u is monotone
in the xn+1 direction, this argument can be applied with φ = ∂xn+1

u to prove that
monotone solutions of (2.1) are stable. Standard arguments imply that L also
satisfy the maximum principle.

As a consequence, in dimension 9, the monotone solutions constructed by del
Pino, Kowalczyk and Wei [17] provide some non trivial stable solutions of the
Allen-Cahn equation. It is shown in [45] that :

Theorem 2.9. [45] Assume that n+ 1 = 2m ≥ 8. Then, there exist bounded,
stable solutions of (2.1) whose level sets are not hyperplanes.

In fact, we can be more precise and we prove that the zero set of our solutions
are asymptotic to

Cm,m := {(x, y) ∈ Rm × Rm : |x| = |y|},
which is a minimal cone in R2m usually referred to as Simons’ cone. The proof
of Theorem 2.9 strongly uses the fact that Simons’ cone is a minimizing minimal
hypersurface and hence is stable but also uses the fact that this cone is strictly area
minimizing (we refer to [29] or [45]) for a definition).

As already mentioned, in dimension n+ 1 = 2m, with m ≥ 1, Cabré and Terra
[5] have found solutions of the Allen-Cahn equation whose zero set is exactly given
by the cone Cm,m. When m ≥ 1, these solutions generalize the so called saddle
solutions which have been found by Dang, Fife and Peletier [11] in dimension 2.
The proof of this result makes use of a variational argument in the spirit of [11].
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Moreover, the same authors have proven that, when m = 2 or 3, the solutions they
find is unstable [6].

This result is in fact a corollary of a more general result :

Theorem 2.10. [45] Assume that n+1 ≥ 8 and that C is a minimizing cone in
Rn+1. Then, there exist bounded solutions of (2.1) whose zero sets are asymptotic
to C at infinity.

We refer to [29] or [45]) for a definition of minimizing cone. The solutions of
(2.1) constructed in these theorems are not unique and in fact they arise in families
whose dimension can be computed.

In view of the de Giorgi’s conjecture, the results of Dancer and the above result,
the following statement seems natural : Assume that u is a bounded, stable solution
of (2.1) and that n+ 1 ≤ 7, then the level sets of u should be hyperplanes.

This question parallels the corresponding well known conjecture concerning the
classification of stable, embedded minimal hypersurface in Euclidean space : Stable,
embedded minimal hypersurfaces in Euclidean space Rn+1 are hyperplanes as long
as n+ 1 ≤ 7. This latter problem is still open except when the ambient dimension
is equal to 3 where the result of Ficher-Colbrie and Schoen [24] guaranties that
affine planes are the only stable embedded minimal surface in R3.

3. Proof of Theorem 1.1

As already mentioned, the proof of Theorem 1.1 and many constructions in
the field make use of an infinite dimensional Lyapunov-Schmit reduction argument
which originally appeared in [44]. We present here a rather detailed proof which
is much simpler than the original proof since it uses many ideas which have been
developed by all the different authors working on the subject or on closely related
problems : del Pino, Kowalczyk, Wei, Brendle, Malchiodi, Montenegro, ..... We
believe that the technical tools have now evolved sufficiently so that they can be
presented in a rather simple and synthetic way.

3.1. Local coordinates near a hypersurface and expression of the
Laplacian. The first important tool is the use of Fermi coordinates to parame-
terize a neighborhood of a given hypersurface which is embedded in M .

In this section, we assume that n ≥ 1 and that Γ is an oriented smooth hyper-
surface embedded in a compact (n + 1) dimensional Riemannian manifold (M, g).
We assume that Γ separates M into two different connected components in the
sense that Γ is the zero set of a smooth function fΓ for which 0 is a regular value.
We define the Fermi coordinates about Γ and then, we provide some asymptotic
expansion of the Laplace-Beltrami operator in Fermi coordinates about Γ.

We denote by N the unit normal vector field on Γ which defines the orientation
of Γ. We make use of the exponential map to define

(3.1) Z(y, z) := Expy(z N(y)),

where y ∈ Γ and z ∈ R. The implicit function theorem implies that Z is a local
diffeomorphism from a neighborhood of a point (y, 0) ∈ Γ×R onto a neighborhood
of y ∈Mn+1.

Remark 3.1. In the case where the ambient manifold is the Euclidean space,
we simply have

Z(y, z) = y + z N(y),
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for y ∈ Γ and z ∈ R.

Given z ∈ R, we define Γz by

Γz := {Z(y, z) ∈M : y ∈ Γ}.

Observe that for z small enough (depending on the point y ∈ Γ where one is
working), Γz restricted to a neighborhood of y is a smooth hypersurface which will
be referred to as the hypersurface parallel to Γ at height z. The induced metric on
Γz will be denoted by gz.

The following result is a consequence of Gauss’ Lemma. It gives the expression
of the metric g on the domain of M which is parameterized by Z.

Lemma 3.1. We have

Z∗ g̊ = gz + dz2,

where gz is considered as a family of metrics on TΓ, smoothly depending on z,
which belongs to a neighborhood of 0 ∈ R.

Proof. It is easier to work in local coordinates. Given y ∈ Γ, we fix local
coordinates x := (x1, . . . , xn) in a neighborhood of 0 ∈ Rn to parameterize a neigh-
borhood of y in Γ by Φ, with Φ(0) = y. We consider the mapping

F̃ (x, z) = ExpΦ(x)(z N(Φ(x))),

which is a local diffeomorphism from a neighborhood of 0 ∈ Rn+1 into a neighbor-
hood of y in M . The corresponding coordinate vector fields are denoted by

X0 := F̃∗(∂z) and Xj := F̃∗(∂xj ),

for j = 1, . . . , n. The curve x0 7−→ F̃ (x0, x) being a geodesic we have g(X0, X0) ≡ 1.
This also implies that ∇gX0

X0 ≡ 0 and hence we get

∂zg(X0, Xj) = g(∇gX0
X0, Xj) + g(∇gX0

Xj , X0) = g(∇gX0
Xj , X0).

The vector fields X0 and Xj being coordinate vector fields we have ∇gX0
Xj =

∇gXjX0 and we conclude that

2 ∂zg(X0, Xj) = 2 g(∇gXj X0, X0) = ∂xjg(X0, X0) = 0.

Therefore, g(X0, Xj) does not depend on z and since on Σ this quantity is 0 for
j = 1, . . . , n, we conclude that the metric g can be written as

g = gz + dz2,

where gz is a family of metrics on Γ smoothly depending on z (this is nothing but
Gauss’ Lemma). �

The next result expresses, for z small, the expansion of gz in terms of geometric

objects defined on Γ. In particular, in terms of g̊ the induced metric on Γ, h̊ the
second fundamental form on Γ, which is defined by

h̊(t1, t2) := −g̊(∇gt1N, t2 )

and in terms of the square of the second fundamental form which is the tensor
defined by

h̊⊗ h̊(t1, t2) := g̊(∇gt1N,∇
g
t2N),
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for all t1, t2 ∈ TΓ. Observe that, in local coordinates, we have

(̊h⊗ h̊)ij =
∑
a,b

h̊ia g̊
ab h̊bj .

With these notations at hand, we have the :

Lemma 3.2. The induced metric gz on Γz can be expanded in powers of z as

gz = g̊ − 2 z h̊+ z2
(̊
h⊗ h̊+ g(Rg( · , N), · , N)

)
+O(z3),

where Rg denotes the Riemannian tensor on (M, g).

Proof. We keep the notations introduced in the previous proof. By definition
of g̊, we have

gz = g̊ +O(z).

We now derive the next term the expansion of gz in powers of z. To this aim, we
compute

∂z g(Xi, Xj) = g(∇gXi X0, Xj) + g(∇gXj X0, Xi) ,

for all i, j = 1, . . . , n. Since X0 = N on Γ, we get

∂z ḡz |z=0 = −2 h̊,

by definition of the second fundamental form. This already implies that

gz = g̊ − 2 h̊ z +O(z2) .

Using the fact that the X0 and Xj are coordinate vector fields, we can compute
(3.2)
∂2
z g(Xi, Xj) = g(∇gX0

∇gXi X0, Xj) + g(∇gX0
∇gXj X0, Xi) + 2 g(∇gXi X0,∇gXjX0).

By definition of the curvature tensor, we can write

∇gX0
∇gXj = Rg(X0, Xj) +∇gXj ∇

g
X0

+∇g[X0,Xj ]
,

which, using the fact that X0 and Xj are coordinate vector fields, simplifies into

∇gX0
∇gXj = Rg(X0, Xj) +∇gXj ∇

g
X0
.

Since ∇gX0
X0 ≡ 0, we get

∇gX0
∇gXjX0 = Rg(X0, Xj)X0 .

Inserting this into (3.2) yields

∂2
z g(Xi, Xj) = 2 g(Rg(X0, Xi)X0, Xj) + 2 g(∇gXi X0,∇gXjX0) .

Evaluation at x0 = 0 gives

∂2
z gz |z=0 = 2 g(R(N, ·)N, ·) + 2 g(∇g· N,∇g·N).

The formula then follows at once from Taylor’s expansion. �

Similarly, the mean curvature Hz of Γz can be expressed in term of z, g̊ and h̊.
We have the :

Lemma 3.3. The following expansion holds

Hz = Tr̊gh̊+
(

Tr̊gh̊⊗ h̊+ Ricg(N,N)
)
z +O(z2),

for z close to 0.
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Proof. The mean curvature appears in the first variation of the volume form
of parallel hypersurfaces, namely

Hz = − 1√
det gz

d

dz

√
det gz

The result then follows at once from the expansion of the metric gz in powers of z
together with the well known formula

det(I +A) = 1 + TrA+
1

2

(
(TrA)2 − TrA2

)
+O(‖A‖3),

where A ∈Mn(R). �

Remark 3.2. In the case where the ambient manifold is the Euclidean space,
we simply have

gz = g̊ − 2 z h̊+ z2 h̊⊗ h̊,

and this implies that we also have an explicit formula for the expression of the mean
curvature of Γz in terms of z. Indeed, we have, for z close enough to 0,

Hz =

∞∑
j=0

Tr̊g (̊h⊗ . . .⊗ h̊︸ ︷︷ ︸
j times

) zj .

This last expression follows from the fact, in the proof of Lemma 3.3, we can use
the formula

d

dz
det(I − zA) = Tr

 ∞∑
j=0

zj Aj+1


where A ∈ Mn(R) and z ∈ R is small. Now, we can always assume that, at the

point where the computation is performed, gij = δij. In this case we can identify h̊

with a symmetric matrix A and k̊ with A2. In particular, we can write

Hz = − 1

det (I − z A)

d

dz
det(I − z A) = Tr

 ∞∑
j=0

zj Aj+1

 ,

for all z small enough.

Recall that the Laplace Beltrami operator is given by

∆g =
1√
|g|

∂xi

(
gij
√
|g| ∂xj

)
.

in local coordinates. Therefore, in a tubular neighborhood of Γ, the Euclidean
Laplacian in Rn+1 can be expressed in Fermi coordinates by the (well-known) for-
mula

(3.3) ∆ge = ∂2
z −Hz ∂z + ∆gz .
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3.2. Construction of an approximate solution. In this section, we use the
Fermi coordinates which have been introduced in the previous section and rephrase
the equation we would like to solve in a tubular neighborhood of Γ. We also build
an approximate solution to (0.1) whose nodal set is equal to Γ.

We define
uε := u1(·/ε)

and
u̇ε(z) := u′1(z/ε) üε(z) := u′′1(z/ε),

where u1 is the solution of (2.2)
We agree that Γ is a smooth, compact, minimal hypersurface which is embedded

in M and we use the notations introduced in the previous section for the Fermi
coordinates about Γ.

Given any (sufficiently small) smooth function ζ defined on Γ, we define Γζ to
be the normal graph over Γ for the function ζ. Namely

Γζ := {Expy(ζ(y)N(y)) ∈M : y ∈ Γ} .
We keep the notations of the previous section and, in a tubular neighborhood

of Γ we write
Z∗u(y, z) = ū (y, z − ζ(y)) ,

where ζ is a (sufficiently small) smooth function defined on Γ. It will be convenient
to denote by t the variable

t := z − ζ(y) .

Using the expression of the Laplacian in Fermi coordinates which has been derived
in (3.3), we find with little work that the equation we would like to solve can be
rewritten as

(3.4)

ε2
[
(1 + ‖dζ‖2gz )∂

2
t ū+ ∆gz ū− (Hζ + ∆gzζ) ∂tū

−2 (dζ, d∂tv)gz

]
|z=t+ζ

+ ū− ū3 = 0,

for t > 0 close to 0 and y ∈ Γ. Some comments are due about the notations. In this
equation and below all computations of the quantities between the square brackets
[ ] are performed using the metric gz defined in Lemma 3.2 and considering that
z is a parameter, and once this is done, we set z = t+ ζ(y).

We set
ū(y, t) := uε(t) + v(y, t),

in which case, the equation (3.4) becomes

N(v, ζ) = 0 ,

where we have defined

(3.5)

N(v, ζ) :=
[ (
ε2(∂2

t + ∆gz ) + 1− 3u2
ε

)
v − ε (∆gzζ +Hz)(u̇ε + ε ∂tv)

+‖dζ‖2gz (u̇ε + ε2 ∂2
t v)− 2 ε2 (dζ, d ∂tv)gz

]
|z=t+ζ

+ v3 + 3uε v
2.

Observe that, when v ≡ 0 and ζ ≡ 0, we simply have

(3.6) N(0, 0) = −εHt u̇ε.

Also recall that

(3.7) Ht =
(

Tr̊gh̊⊗ h̊+ Ricg(N,N)
)
t+O(t2).
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Observe that we have implicitely used the fact that Γ is a minimal hypersurface

and hence H0 = Tr̊g h̊ = 0.
In particular, this implies that, there exists a constant C > 0 such that

(3.8) |N(0, 0)| ≤ C ε2.

Similar estimates can be derived for the partial derivatives of N(0, 0).
We have the :

Lemma 3.4. For all k, k′ ≥ 0, there exists a constant Ck,k′ > 0 such that

(3.9) |∇k
′
∂kt N(0, 0)|̊g ≤ Ck,k′ ε2−k,

in the neighborhood of Γ which is parameterized by Z.

Given a function f which is defined in Γ×R, we define Π to be the L2-orthogonal
projection on u̇ε, namely

Π(f) :=
1

ε c

∫
R
f(y, t) u̇ε(t) dt,

where the normalization constant

c :=
1

ε

∫
R
u̇2
ε(t) dt =

∫
R

(u′1)2(t) dt.

Of importance for us, will be the L2-projection of N(0, 0) over u̇ε. The crucial
observation is that

(3.10)

∫
R
Ht u̇

2
ε dt = O(ε3),

because of parity. Using this property, we conclude that :

Lemma 3.5. For all k ≥ 0, there exists a constant Ck > 0 such that

(3.11) |∇k Π (N(0, 0))|̊g ≤ Ck ε3,

in Γ.

The function ūε, which is defined by

(3.12) Z∗ūε(y, t) := uε(t),

in a neighborhood of Γ, will be used to define an approximate solution to our
problem.

3.3. Analysis of the model linear operator. In this section, we analyze
the operator

(3.13) Lε := ε2
(
∂2
t + ∆g̊

)
+ 1− 3u2

ε,

which is acting on functions defined on the product space Γ×R, which is naturally
endowed with the product metric

g̊ + dt2.

First, we will recall some standard injectivity result which is the key result.
Then, we will use this results to obtain an a priori estimate for solutions of Lε w = f ,
when the functions w and f are defined in appropriate weighted spaces. The proof
of the a priori estimate is by contradiction. Finally, application of standard results
in functional analysis will provide the existence of a right inverse for the operator
Lε acting on some special infinite codimension function space.
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3.3.1. The injectivity result. We collect some basic information about the spec-
trum of the operator

(3.14) L0 := −
(
∂2
t + 1− 3u2

1

)
,

which arises as the linearized operator of (2.1) about u1 and which is acting on
functions defined in R. All the informations we need are included in the :

Lemma 3.6. The spectrum of the operator L0 is the union of the eigenvalue
µ0 = 0, which is associated to the eigenfunction

w0(t) :=
1

cosh2( t√
2
)
,

the eigenvalue µ1 = 3
2 , which is associated to the eigenfunction

w1(t) :=
sinh( t√

2
)

cosh2( t√
2
)
,

and the continuous spectrum which is given by [2,∞).

Proof. The fact that the continuous spectrum is equal to [2,∞) is standard.
The fact that the bottom eigenvalue is 0 follows directly from the fact that the
equation for u1 is autonomous and hence the function u′1 = ∂tu1 is in the L2-kernel
of L0. Since this function is positive, it has to be the eigenfunction associated to the
lowest eigenvalue of L0. Direct computation shows that µ1 is an eigenvalue of L0

and, finally, it is proven in [43] that µ0 = 0 and µ1 = 3/2 are the only eigenvalues
of L0. �

Observe that this result implies that the quadratic form associated to L0 is
definite positive when acting on functions which are L2-orthogonal to u′1. More
precisely, we have

(3.15)

∫
R

(
|∂tw|2 − w2 + 3u2

1 w
2
)
dt ≥ 3

2

∫
R
w2 dt,

for all function w ∈ H1(R) satisfying the orthogonality condition

(3.16)

∫
R
w(t)u′1(t) dt = 0.

As already mentioned, the discussion to follow is based on the understanding
of the bounded kernel of the operator

(3.17) L∗ := ∂2
t + ∆Rn + 1− 2u2

1,

which is acting on functions defined on the product space R × Rn. This is the
contain of the following :

Lemma 3.7. Assume that w ∈ L∞(R × Rn) satisfies L∗ w = 0. Then w only
depends on t and is collinear to u′1.

Proof. The original proof of this Lemma, which is based on Fourier transform
in Rn, can be found in [44]. We give here a much simpler proof which is borrowed
from [17]. First, we observe that, by elliptic regularity theory, the function w is
smooth and we decompose

w(t, y) = c(y)u′1(t) + w̄(t, y),
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where w̄(·, y) satisfies (3.16) for all y ∈ Rn. Inserting this decomposition into the
equation satisfied by w, we find

u′1 ∆Rn c+
(
∂2
t + 1− 2u2

1

)
w̄ + ∆Rn w̄ = 0.

Multiplying this equation by u′1 and integrating the result over t ∈ R, we conclude
easily that

∆Rnc = 0

since L0 u
′
1 = 0 and since ∆Rn w̄ is L2-orthogonal to the function u′1. Since w is a

bounded function, so is the function c and hence, we conclude that c is the constant
function.

Next, we prove that w̄ ≡ 0. Since we have proven that c is the constant
function, we can now write

(3.18)
(
∂2
t + 1− 2u2

1

)
w̄ + ∆Rn w̄ = 0

We claim that, for any σ ∈ (0,
√

2), the function w̄ is bounded by a constant
times (cosh s)−σ. Indeed, in the equation (3.18), the potential, which is given by
1 − 3u2

1, tends to −2 as |t| tends to ∞. Using this property, we conclude that the
function

W (y, t) := e−σ|t| + η cosh(δt)

n∑
i=1

cosh(δyi),

satisfies L∗W < 0 in the region where |t| ≥ t∗, provided t∗ > 0 is fixed large enough
(depending on σ). Since w̄ is bounded, we conclude that

|w̄| ≤ ‖w̄‖L∞ eσt∗
(
e−σ|t| + η cosh(δt)

n∑
i=1

cosh(δyi)

)
,

when |t| ≥ t∗. Letting η tend to 0, this implies that

|w̄| ≤ ‖w̄‖L∞ e−σ(|t|−t∗),

for |t| ≥ t∗ and this completes the proof of the claim.
Multiplying the equation satisfied by w̄ by w̄ and integrating the result over R

(and ot over Rn), we find that∫
R

(
|∂tw̄|2 − w̄2 + 3u2

1 w̄
2
)
dt+

∫
R
w̄∆Rnw̄ dt = 0.

Using the identity

2 w̄∆Rnw̄ = ∆Rnw̄
2 − 2 |∇w|2

together with Lemma 3.6, we conclude that the function

V (y) :=

∫
R
w̄2(t, y) dt,

satisfies

∆RnV −
3

4
V =

∫
R
|∇w̄|2 dt ≥ 0.

We define E1 to be the first eigenvalue of −∆Rn , with 0 Dirichlet boundary
condition, in the ball of radius 1. The associatd eigenvalue will be denoted by λ1.
In particular

(3.19) ∆RnE1 = −λ1E1
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Then ER(x) := E1(x/R) is the first eigenfunction of −∆Rn , with 0 Dirichlet bound-
ary condition, in the ball of radius R and the associated eigenvalue is given by
λ1R

−2.
We multiply (3.18) by ER and integrate by parts the result over BR, the ball

of radius R in Rn. We get(
λ1R

−2 − 3

4

) ∫
BR

V ER dx+

∫
∂BR

∂rER V da ≥ 0.

Choosing R large enough and using the fact that V ≥ 0, we conclude that V ≡ 0
in BR. Therefore V ≡ 0 on Rn. �

3.3.2. The a priori estimate. We are now in a position to analyze the operator
Lε which has been defined in (3.13) and which is acting on Hölder weighted spaces
which we now define. We define on Γ× R, the scaled metric

gε := ε2 (̊g + dt2).

With these notations in mind, we can state the :

Definition 3.1. For all k ∈ N, α ∈ (0, 1), the space Ck,αε (Γ × R) is the space

of functions w ∈ Ck,αloc (Γ × R) where the Hölder norm is computed with respect to
the scaled metric gε.

In other words, if w ∈ Ck,αε (Γ× R), then

|∇a ∂btw(y, t)|̊g ≤ C ‖w‖Ck,αε,ν (Γ×R) ε
−a−b dΓ(y)ν ,

provided a+ b ≥ k. Hence, taking partial derivatives, we loose powers of ε.
We shall work in the closed subspace of functions satisfying the orthogonality

condition

(3.20)

∫
R
w(t, y)u′1(t) dt = 0,

for all y ∈ Γ.
We have the following :

Proposition 3.1. There exist constants C > 0 and ε0 > 0 such that, for all
ε ∈ (0, ε0) and for all w ∈ C2,α

ε (Γ× R) satisfying (3.20), we have

(3.21) ‖w‖C2,αε (Γ×R) ≤ C ‖Lε w‖C0,αε (Γ×R).

Proof. Observe that, by elliptic regularity theory, it is enough to prove that

‖w‖L∞(Γ×R) ≤ C ‖Lε w‖L∞(Γ×R).

The proof of this result is by contradiction. We assume that, for a sequence εi
tending to 0 there exists a function wi such that

‖wi‖L∞(Γ×R) = 1,

and

lim
i→∞

‖Lεi wi‖L∞(Γ×R) = 0

For each i ∈ N, we choose a point xi := (ti, yi) ∈ R× Γ where

|wi(ti, yi)| ≥ 1/2.
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Arguing as in the proof of Lemma 3.7, one can prove that the sequence ti tends to
0 and more precisely that |ti| ≤ C εi. Indeed, the function

(t, y) 7−→ 1,

can again be used as a supper-solution for the problem and this shows that neces-
sarily |ti| ≤ t∗ εi.

Now, we use

y ∈ TyiΓ 7−→ ExpΓ
yi

(y) ∈ Γ

the exponential map on Γ, at the point yi, and we define

w̃i(y, t) := wi(εi t,ExpΓ
yi

(εi y))

which is defined on TyiΓ× R.
Using elliptic estimates together with Ascoli’s Theorem, we can extract sub-

sequences and pass to the limit in the equation satisfied by w̃i. We find that w̃i
converges, uniformly on compacts to w̃ which is a non trivial solution of(

∂2
t + 1− 3u2

1 + ∆Rn
)
w̃ = 0

In addition w̃ satisfies (3.16) and w̃ ∈ L∞(Rn × R). This clearly contradicts the
result of Lemma 3.7. The proof of the result is therefore complete. �

3.3.3. The surjectivity result. The final result of this section is the surjectivity
of the operator Lε acting on the space of functions satisfying (3.20).

Proposition 3.2. There exists ε0 > 0, such that, for all ε ∈ (0, ε0) and for all
f ∈ C0,α

ε (Γ × R) satisfying (3.20), there exists a unique function w ∈ C2,α
ε (Γ × R)

which also satisfies (3.20) and which is a solution of

Lε w = f,

in Γ× R.

Proof. We use the variational structure of the problem and consider the func-
tionnal

F (w) :=

∫
Γ×R

(
ε2(|∂tw|2 + |∇w|2g̊)− w2 + 3u2

ε w
2
)
dvol̊g dt,

acting on the space of functions w ∈ H1
0 (Γ×R) which satisfy (3.20) for a.e. y ∈ Γ.

Thanks to Lemma 3.6, we know that

F (w) ≥ 3

2

∫
Γ×R

w2dt dvol̊g

Now, given f ∈ L2(Γ×R), we can apply Lax-Milgram’s Theorem to obtain a weak
solution of Lε w = f in H1

0 (Γ×R). It is then enough to apply elliptic regularity to
conclude. �

3.4. Study of a strongly coercive operator. This short section is devoted
to the mapping properties of the operator

Lε := ε2 ∆− 2

Certainly this operator satisfies the maximum principle and solvability of the equa-
tion Lw = f and obtention of the estimates boils down to the construction of
appropriate super-solutions. In particular, we have
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Proposition 3.3. There exists a constant C > 0 such that

(3.22) ‖w‖C2,αε (M) ≤ C ‖Lε w‖C0,αε (M),

where Ck,αε (M) is the Hölder space on M using the scaled metric ε2 g.

Proof. This is a consequence of standard elliptic estimates applied on geodesic
balls of radius ε. �

3.5. The nonlinear scheme. We describe in this section the nonlinear scheme
we are going to use to perturb the approximate solution into a genuine solution of
(0.1).

3.5.1. Some useful cutoff functions. We will need various cutoff functions in
our construction. Therefore, for j = 1, . . . , 6, we define the cut-off function χj by

Z∗χj(y, t) :=

 1 when |t| ≤ c∗ (1− 2j−1
100 )

0 when |t| ≥ c∗ (1− 2j−2
100 )

where c∗ > 0 is chosen small enough so that Z is a diffeomorphism from the set
{(y, t) ∈ Γ× R : |t| ≤ 2 c∗ onto its image. We define Ωj to be the support of χj .

3.5.2. A one parameter family of approximate solutions. Building on the anal-
ysis we have done in the previous sections, the approximate solution ũε is defined
by

ũε :=


χ1 ūε when Ω1

±(1− χ1) when Rn+1
± \ Ω1

where ± corresponds to whether the point belongs to Rn+1
± . Here the function ūε

is the one defined in (3.12), namely

Z∗ūε(y, t) := uε(t).

Observe that ūε is exponentially close to ±1 at infinity and hence, it is reasonable
to graft it to the constant functions ±1 away from some neighborhood of Γ.

3.5.3. An infinite dimensional family of diffeomorphisms. Given a function ζ ∈
C2,α(Γ), we define a diffeomorphism Dζ of M as follows.

Z∗Dζ(y, t) = Z(y, t− χ2(y, t) ζ(y))

in Ω2 and

Dζ = Id

in M \Ω0. It is easy to check that this is a diffeomrophism of M provided the norm
of ζ is small.

Also, observe that, the inverse of Dζ can be written as

Z∗D−1
ζ (y, t) = Z(y, t− χ2(y, t) ζ(y) + ζ(y, t, ζ(y)) ζ(y)2)

in Ω2, where (y, t, z) 7−→ ζ(y, t, z) is a smooth function defined for z small (this
follows at once from the inverse function theorem applied to the function

t 7−→ t− χ2(y, t) z,

and details are left to the reader).
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3.5.4. Rewriting the equation. First, given a function ζ ∈ C2,α(Γ), small enough,
we use the diffeomorphism Dζ , we write u = ū ◦Dζ so that the equation

ε2 ∆gu+ u− u3 = 0,

can be rewritten as

ε2 (∆gū ◦Dζ) ◦D−1
ζ + ū− ū3 = 0

Observe that, in the coordinates (y, t), namely when χ2 ≡ 0 and hence Dζ is just
given by Z∗Dζ(y, t) = Z(y, t − ζ(y)), this equation is precisely N(v, ζ) = 0 where
N is given by (3.5). Also observe that this equation is already nonlinear in ζ and
its partial derivatives. But, ζ never appears in the composition of the function ū.

Now, we look for a solution of this equation as a perturbation of ũε, and hence,
we define

ū := ũε + v,

so that the equation we need to solve can now be written as

(3.23) ε2 (∆gv ◦Dζ) ◦D−1
ζ + v − 3 ũ2

ε v = Eε(ζ) +Qε(v),

where

Eε(ζ) := ε2(∆gũε ◦Dζ) ◦D−1
ζ + ũε − ũ3

ε,

is the error corresponding to the fact that ūε is an approximate solution and

Qε(v) := φ3 + 3 ũε v
2,

collects the nonlinear terms in v.
Finally, in order to solve (3.23), we use a very nice trick which was already used

in [17]. This trick amounts to decompose the function v into two equations and,
instead of solving (3.23), solve a coupled system. At first glance this might look
rather counterintuitive but,as we will see, this strategy allows one to use directly
the results we have proven in the previous sections. Therefore, we set

v := χ4 v
] + v[,

where the function v[ solves

(ε2 ∆g − 2) v[ = (1− χ4)
[
ε2
(

∆g(v
[ ◦Dζ) ◦D−1

ζ −∆gv
[
)

+ 3 (ũ2
ε − 1) v[ − Eε(ζ)−Qε(χ4 u

] + v[))
]

+ ε2
(
(∆g((χ4 v

]) ◦Dζ)− χ4∆g(v
] ◦Dζ)

)
◦D−1

ζ

For short, the right hand side will be denoted by Nε(v
[, v], ζ) so that this

equation reads

(3.24) (ε2 ∆g − 2) v[ = Nε(v
[, v], ζ).

Remark 3.3. Observe that the right hand side vanishes when χ4 = 1 and hence
it can be written as the product of a function with (1−χ5). In particular, we know
from Proposition 3.3 that if

(ε2 ∆− 2)w = f,

then

‖w‖C2,αε,ν (Rn+1) ≤ C ‖f‖C0,αε,ν (Rn+1).

In the case where w is a solution of

(ε2 ∆− 2)w = (1− χ5) f,
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we see that (ε2 ∆ − 2)w = 0 wherever χ5 = 1 and it is easy to check that we have
the better estimate

‖χ6 w‖C2,αε,ν (Rn+1) ≤ C ε ‖f‖C0,αε,ν (Rn+1),

provided ε is small enough. This follows easily from the construction of suitable
barrier functions for ε2 ∆ − 2, in a neighborhood of any point x0 ∈ Rn+1, for
example, one can use

x 7−→
n+1∑
i=1

cosh

(√
2

(xi − x0
i )

ε

)
,

as a barrier. We can summarize this discussion by saying that

(3.25) ‖w‖C̃2,αε,ν (Rn+1) ≤ C ε ‖f‖C0,αε,ν (Rn+1),

where, by definition

‖v‖C̃2,αε,ν (Rn+1) := ε−1 ‖χ6 v‖C2,αε,ν (Rn+1) + ‖v‖C2,αε,ν (Rn+1).

Taking the difference between the equation satisfied by v and the equation
satisfied by v[, we find that it is enough that v] solves,

ε2 ∆g(v
] ◦Dζ) ◦D−1

ζ + v] − 3 ū2
ε v

] = Eε(ζ) +Qε(χ4 v
] + v[)− 3 (ū2

ε − 1) v[

+ ε2
(

∆g(v
[ ◦Dζ) ◦D−1

ζ −∆gv
[
)
,

in the support of χ4. Since we only need this equation to be satisfied on the support
of χ4, we can as well solve the equation
(3.26)

Lεv
] − ε JΓ ζ u̇ε = χ3

[
ε2
(

∆g(v
] ◦Dζ) ◦D−1

ζ + v] − 3 ū2
ε v

] − Lε v]
)

+ ε2
(

∆g(v
[ ◦Dζ) ◦D−1

ζ −∆gv
[
)

+ Eε(ζ)− ε JΓ ζ u̇ε +Qε(χ4 v
] + v[)− 3 (ū2

ε − 1) v[
]
,

where the operator Lε is the one defined in (3.13). Here we have implicitly used
the fact that

χ3 ũε = χ3 ūε

For short, the right hand side will be denoted by Mε(v
[, v], ζ) so that this equation

reads

(3.27) ε2 Lεv
] − ε JΓ ζ u

′
ε = Mε(v

[, v], ζ)

This equation can be projected over the space of functions satisfying (3.20) and
the set of functions of the form u′1 times a function defined on Γ. Let us denote by
Π the orthogonal projection on u′1, namely

Π(f) :=
1

ε c

∫
R
f(y, t) u̇ε(t) dt

where

c :=
1

ε

∫
R
u̇2
ε(t) dt =

∫
R

(u′1)2(t) dt,
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and by Π⊥ the orthogonal projection on the orthogonal of u̇ε, namely

Π⊥(f) := f −Π(f) u̇ε

We further assume that v] satisfies (3.20). Then (3.28) is equivalent to the
system

(3.28) Lεv
] = Π⊥

[
Mε(v

[, v], ζ)
]
,

and

(3.29) −ε JΓ ζ = Π
[
Mε(v

[, v], ζ)
]
.

3.6. The proof of Theorem 1.1. We summarize the above discussion by
saying that we are looking for a solution of

ε2 ∆u+ u− u3 = 0,

of the form

u =
(
ũε + χ4 v

] + v[
)
◦Dζ ,

where the function v] is defined on Γ× R, the function v[ is defined in M and the
function ζ defined on Γ, and satisfy

(3.30) (ε2 ∆g − 2) v[ = Nε(v
[, v], ζ)

(3.31) Lεv
] = Π⊥

[
Mε(v

[, v], ζ)
]
,

and

(3.32) −ε JΓ ζ = Π
[
Mε(v

[, v], ζ)
]
,

Closer inspection of the construction of the approximate solution shows that :

Lemma 3.8. The following estimates hold

‖Nε(0, 0, 0)‖C0,αε (M) + ‖Π⊥ (Mε(0, 0, 0))‖C0,αε (Γ×R) ≤ C ε
2.

Moreover

‖Π (Mε(0, 0, 0))‖C0,α(Γ) ≤ C ε3.

Proof. Since v] = 0, v[ = 0 and ζ = 0, the estimate follow from the under-
standing of

Eε(0) = ε2 ∆gũε + ũε − ũ3
ε,

But, we have already seen that

ε2 ∆gūε + ūε − ū3
ε = −εHt u̇ε.

The estimates then follow at once from (3.9). �

We also need the
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Lemma 3.9. There exists δ > 0 such that the following estimates hold

‖Nε(v[2, v
]
2, ζ2)−Nε(v[1, v

]
1, ζ1)‖C0,αε (M)

≤ C εδ
(
‖v[2 − v[1‖C2,αε (M) + ‖v]2 − v

]
1‖C2,αε (Γ×R) + ‖ζ2 − ζ1‖C2,α(Γ)

)
‖Π⊥ (Mε(v

[
2, v

]
2, ζ2)−Mε(v

[
1, v

]
1, ζ1))‖C0,αε (Γ×R)

≤ C εδ
(
‖v[2 − v[1‖C̃2,αε (M) + ‖v]2 − v

]
1‖C2,αε (Γ×R) + ‖ζ2 − ζ1‖C2,α(Γ)

)
and

‖Π (Mε(v
[
2, v

]
2, ζ2)−Mε(v

[
1, v

]
1, ζ1))‖C0,α(Γ)

≤ C εδ
(
‖v[2 − v[1‖C̃2,αε (M) + ‖v]2 − v

]
1‖C2,αε (Γ×R) + ‖ζ2 − ζ1‖C2,α(Γ)

)
.

Proof. The proof is rather technical but does not offer any real difficulty.
Observe that, in the last two estimates, the use of the norm ‖v[‖C̃2,αε,ν (Rn+1) instead

of ‖v[‖C2,αε,ν (Rn+1) is crucial to estimate the term −3 (ū2
ε − 1) v[ in the definition of

Mε(v
[, v], ζ). �

We use the result of Proposition 3.2 and Proposition 3.3, to rephrase the solv-
ability of (3.30)-(3.32) as a fixed point problem.

Theorem 2.10 is now a simple consequence of the application of a fixed point
theorem for contraction mapping which leads to the existence of a unique solution

uε = (ūε + χ4 v
] + v[) ◦Dζ

where
‖v[‖C̃2,αε (M) + ‖v]‖C2,αε (Γ×R) ≤ C ε

3,

and
‖ζ‖C2,α(Γ) ≤ C ε2.

We leave the details for the reader.
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de Mathématiques, 6 (1841), 309-320.

[13] M. del Pino, M. Kowalczyk, F. Pacard and J. Wei, Multiple-end solutions to the Allen-
Cahn equation in R2. J. Funct. Analysis. 258, (2010), 458-503.

[14] M. del Pino, M. Kowalczyk, F. Pacard and J. Wei, The Toda system and multiple-end
solutions of autonomous planar elliptic problems. Adv. Math. 224, No. 4, 1462-1516

(2010)

[15] M. del Pino, M. Kowalczyk and F. Pacard, Moduli space theory for some class of solu-
tions to the Allen-Cahn equation in the plane. Preprint (2010).

[16] M. del Pino, M. Kowalczyk and J. Wei, The Toda system and clustering interfaces in

the Allen-Cahn equation, Arch. Rat. Mech. Anal. 190, (2008), 141-187.
[17] M. del Pino, M. Kowalczyk and J. Wei, A conjecture by de Giorgi in large dimensions.

Preprint (2008).

[18] M. del Pino, M. Kowalczyk, J. Wei and J. Yang Interface foliation of a minimal hy-
persurface in higher dimensional Riemannian manifolds. To appear in Geom. Funct.

Anal.

[19] M. del Pino, M. Kowalczyk and J. Wei Entire solutions of the Allen-Cahn equation and
complete embedded minimal surfaces of finite total curvature.Preprint (2008).

[20] M. del Pino, M. Musso and F. Pacard, Solutions of the Allen-Cahn equation invariant

under screw-motion, Preprint.
[21] A. Farina, Symmetry for solutions of semilinear elliptic equations in RN and related

conjectures, Ricerche Mat. 48 (suppl.) (1999), 129-154.
[22] A. Farina, One-dimensional symmetry for solutions of quasilinear equations in R2, Bol-

lettino UMI, (8), 6-B, (2003), 685-692.

[23] A. Farina and E. Valdinoci, The state of the art for a conjecture of De Giorgi and related
problems, Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, Mai

2008. Edited by H.Ishii, W.-Y.Lin and Y.Du, World Scientific.

[24] D. Fischer-Colbrie and R. Schoen, The structure of complete stable minimal surfaces
in 3-manifolds of nonnegative scalar curvature, Comm. Pure and Applied Maths. 33,

(1980), 199-211.

[25] N. Ghoussoub and C. Gui, On a conjecture of de Giorgi and some related problems,
Math. Ann. Vol. 311 (1998), 481-491.

[26] B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic

equations in RN . Adv. Math. Suppl. Stud. 7A, (1981), 369-402.
[27] C. Gui, Hamiltonian identities for elliptic partial differential equations. J. Funct. Anal.

254, no. 4, (2008),904-933.
[28] C. Gui, Allen Cahn equation and its generalizations. Preprint 2008.

[29] R. Hardt and L. Simon, Area minimizing hypersurfaces with isolated singularities, J.

Reine Angew. Math. 362 (1985), 102-129.
[30] J. E. Hutchinson and Y. Tonegawa, Convergence of phase interfaces in the van der

Waals-Cahn-Hilliard theory, Calc. Var. 10, (2000), 49-84.

[31] N. Kapouleas, Complete constant mean curvature surfaces in Euclidean three-space.
Ann. of Math. (2) 131 (1990), 239-330.

[32] B. Kostant, The solution to a generalized Toda lattice and Representation Theory, Adv.
Math. 34 (1979), 195-338.

[33] M. Kowalczyk, On the existence and Morse index of solutions to the Allen-Cahn equation

in two dimensions, Ann. Mat. Pura Appl. 184, 4, no. 1, (2005), 17-52.

[34] M.K. Kwong, Uniqueness of positive solutions of ∆u−u+up = 0 in Rn. Arch. Rational
Mech. Anal. 105, no. 3, (1989), 243-266.

[35] A. Malchiodi, Some new entire solutions of semilinear elliptic equations on Rn. Adv.
Math. 221, no. 6, (2009), 1843-1909.

[36] R. Mazzeo and F. Pacard, Constant scalar curvature metrics with isolated singularities.

Duke Math. J. 99, no. 3, (1999), 353-418.



THE ROLE OF MINIMAL SURFACES IN THE STUDY OF THE ALLEN-CAHN EQUATION27

[37] R. Mazzeo and F. Pacard, Constant mean curvature surfaces with Delaunay ends.
Comm. Anal. Geom. 9, no. 1, (2001), 169-237.

[38] R. Mazzeo, F. Pacard and D. Pollack, Connected sums of constant mean curvature

surfaces in Euclidean 3 space. J. Reine Angew. Math. 536, (2001), 115-165.
[39] R. Mazzeo and D. Pollack, Gluing and moduli for noncompact geometric problems. 17-51,

Sympos. Math., XXXVIII, Cambridge Univ. Press, Cambridge, 1998.

[40] R. Mazzeo, D. Pollack and K. Uhlenbeck, Connected sum constructions for constant
scalar curvature metrics. Topol. Methods Nonlinear Anal. 6 (1995), 207-233.

[41] L. Modica, Convergence to minimal surfaces problem and global solutions of ∆u =
2(u3 − u). Proceedings of the International Meeting on Recent Methods in Nonlinear

Analysis (Rome, 1978), pp. 223-244, Pitagora, Bologna, (1979).

[42] J. Moser, Finitely many mass points on the line under the influence of an exponential
potential–an integrable system. Dynamical systems, theory and applications (Rencontres,

Battelle Res. Inst., Seattle, Wash., 1974), pp. 467–497. Lecture Notes in Phys., Vol. 38,

Springer, Berlin, 1975.
[43] A. F. Nikiforov and V. B. Uvarov. Special functions of mathematical physics. Birkhauser

Verlag, Basel, 1988.
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