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Dept. de Ingenieŕıa Mećanica y Minera, Universidad de Jaen, Spain
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Abstract. In this paper, a median based filter calledrelaxed median filteris proposed. The filter is obtained by
relaxing the order statistic for pixel substitution. Noise attenuation properties as well as edge and line preservation
are analyzed statistically. The trade-off between noise elimination and detail preservation is widely analyzed. It is
shown that relaxed median filters preserve details better than the standard median filter, and remove noise better
than other median type filters.
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1. Introduction

The median filter has been proven to be very useful
in many image processing applications. In a median
filter, a window slides across the data and the median
value of the samples inside the window is chosen to be
the output of the filter. This nonlinear filter, compared
to linear ones, shows certain advantages: edge preser-
vation and efficient noise attenuation with robustness
against impulsive-type noise [1, 2].

In spite of this, the median filter is far from being a
perfect filtering method since it may remove fine de-
tails, sharp corners and thin lines. The main reason is
that the ordering process destroys any structural and
spatial neighborhood information [1].

Recently, several versions of the median filter, such
as multilevel and multistage filters [3, 4], weighted me-
dian filters [5–9], stack filters [10, 11], nested median
filters [13], rank conditioned rank selection filters [14]
and other median based filters [1], which allow more

flexible trade-off between the image detail preservation
and the noise removing, have been developed. In this
paper a median based filter calledrelaxed median filter
is introduced, having similar properties as the above
mentioned filters, while being simpler and easier to
implement than them.

The paper is organized as follows. In Section 2, we
define the relaxed median filter. In Section 3, the sta-
tistical behavior of the relaxed median filter is studied.
Some experimental results are presented in Section 4
and, finally, Section 5 gives some conclusions.

2. Relaxed Median Filters

Let{Xi} be am-dimensional sequence, where the index
i ∈ Zm. A sliding window is defined as a subsetW ⊂
Zm of odd size 2N + 1. Given a sliding windowW,
defineWi = {Xi+r : r ∈ W} to be the window located
at positioni.
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If we let Xi and Yi be the input and the output at
location i, respectively, of the filter, then we have for
the standard median (SM) filter:

Yi = med{Wi} = med{Xi+r : r ∈ W},

where med{.} denotes the median operator.
Denote by [Wi ](r ), r = 1, . . . ,2N+1, ther th order

statisticof the samples inside the windowWi :

[Wi ](1) ≤ [Wi ](2) ≤ · · · ≤ [Wi ](2N+1).

The relaxed median filter works as follows: two bounds
` andu—lower and upper, respectively—define a sub-
list inside the [Wi ](.), which contains the gray levels
that we assume to be good enough not to be filtered.

If the input belongs to the sublist, then it remains un-
filtered, otherwise the standard median filter is output.

Definition 1. Let m = N + 1 and`, u such that 1≤
` ≤ m ≤ u ≤ 2N + 1. The relaxed median filter with
bounds̀ andu is defined as

Yi = RM`u{Wi} =
{

Xi if Xi ∈
[
[Wi ](`), [Wi ](u)

]
[Wi ](m) otherwise

where [Wi ](m) is the median value of the samples inside
the windowWi .

As it can be easily seen, this new filter is at least as fast
as the center weighted median filter, but slightly slower
than the standard median filter.

It is worth noticing that the symmetric relaxed me-
dian filter (i.e. in the case wherè= 2N+2−u) is the
same as the rank conditioned median filter which is a
subclass of RCRS filters [14]. In this paper, the output
distribution of the relaxed median filter is given for a
more generalized form, and the statistical properties of
detail preservation are also presented and illustrated.

3. Statistical Properties of Relaxed
Median Filters

The performance of the relaxed median filter should
be described by using some statistics of the output.
However, this is not possible in general since accurate
statistical descriptions of input images are difficult to
obtain. But it is still possible to obtain the probabil-
ity distribution function of the output by making sim-
ple assumptions about the original image (before being

corrupted by noise). In this sense, the noise attenuation
can be well assessed from homogeneous originals and
the detail preservation can be assessed from pure edges
and lines.

3.1. Output Distribution

In this section, the output distribution of relaxed median
filters is derived from an homogeneous original.

Theorem 1. Let the input of a relaxed median filter,
with window size2N + 1, be i.i.d. with a distribution
function8(t). The distribution function9(t) of the
output is given by

9(t) =
2N∑

k=m−1

(
2N

k

)
8(t)k+1(1−8(t))2N−k

+
m−2∑

k=`−1

k− `+ 2

k+ 1

(
2N

k

)
×8(t)k+1(1−8(t))2N−k

+
2N∑
k=u

k∑
k′=m

1

2N + 1− k′

(
2N

k′

)
×8(t)k′(1−8(t))2N+1−k′ (1)

wherè and u are such that1≤ ` ≤ m≤ u ≤ 2N+1.

Proof: See the Appendix. 2

3.2. Output Moments

From the output distribution of relaxed median filters,
we can derive the moments of relaxed median filters.

Let the input valuesXi be independent, identically
distributed random variables having a distribution func-
tion8(t).

For r ≤ s andα ∈ N, define

Vr (s,8, α) =
∫ +∞
−∞

tα
d

dt
(8(t)r (1−8(t))s−r ) dt.

It is straightforward to obtain the following theorem
according to the definition of the moments.

Theorem 2. Given a relaxed median filter with win-
dow size2N + 1, for i.i.d. input with distribution
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function8(t), theα-order moments, denoted by mα,
of the output are given by

mα =
2N∑

k=m−1

(
2N

k

)
Vk+1(2N + 1,8, α)

+
m−2∑

k=`−1

k− `+ 2

k+ 1

(
2N

k

)
×Vk+1(2N + 1,8, α)

+
2N∑
k=u

k∑
k′=m

1

2N + 1− k′

(
2N

k′

)
×Vk′(2N + 1,8, α). (2)

Furthermore, if for r ≤ s andα ∈ N we define

Wr (s,8, α)

=
∫ +∞
−∞

(t −m1)α
d

dt
(8(t)r (1−8(t))s−r ) dt,

then theα-order central moments, denoted byµα, of
the output can be expressed as

µα =
2N∑

k=m−1

(
2N

k

)
Wk+1(2N + 1,8, α)

+
m−2∑

k=`−1

k− `+ 2

k+ 1

(
2N

k

)
×Wk+1(2N + 1,8, α)

+
2N∑
k=u

k∑
k′=m

1

2N + 1− k′

×
(

2N

k′

)
Wk′(2N + 1,8, α). (3)

3.3. Additive White Noise Suppression

Using Theorem 2, we can compute the variance
(2-order output central moment) of relaxed median fil-
ters, for various values of̀ andu, through numerical
integration for i.i.d. inputs with a given distribution
function8(t).

In order to compare the performance of relaxed me-
dian filters with some other median based filters in elim-
inating Gaussian white noise, here we briefly review

some statistical properties of weighted median (WM)
filters.

The outputYi of the WM filter with weight setÄ =
(ω r ) is given by

Yi = med{ωr 3 Xi+r : r ∈ W}

where3 denotes duplication:

ω3 x =
ω times︷ ︸︸ ︷

x, . . . , x .

Here a theorem from [9] is given for self-containment.

Theorem 3. Let the inputs of a WM filter, with win-
dow size2N + 1, be i.i.d. with a distribution function
8(t). The output distribution of the WM filter9wm has
the following form:

9wm(t) = 9med(t)+
N∑

k=1

Mk
[
8(t)k(1−8(t))2N+1−k

−8(t)2N+1−k(1−8(t))k] (4)

where9med(t) is the output distribution of the standard
median filter with the same window size and Mk’s rep-
resent the number of different weight combinations, in
which there are k weights and the sum of these k weights
is larger than or equal to a threshold T .

Furthermore, the output variance of this window size
2N + 1 WM filter can be expressed as:

σ 2
wm = σ 2

med+
N∑

k=1

MkLk(2N + 1,8) (5)

whereσ 2
med is the output variance of the window size

2N + 1 standard median filter and

Lk(2N + 1,8) =
∫ +∞
−∞

Gk(2N + 1,8)t2 d8(t)

being

Gk(2N + 1,8)

= (k− (2N + 1)8(t))8(t)k−1(1−8(t))2N−k

+ (k− (2N + 1)(1−8(t)))8(t)2N−k

× (1−8(t))k−1.
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Based on the above result, let us study the following
WM filter

W =

ω ω ω

ω ω0 ω

ω ω ω

 ,
with ω ≥ 2 and such that 8ω + ω0 is an odd number.
Its threshold isT = 1

2 (8ω + ω0+ 1). Two cases are
distinguished:

(1) 3ω + ω0 < T i.e.ω0 < 2ω + 1. Denote this WM
filter by WM(1)

3×3. It is obvious to find that

Mk = 0 k = 1, . . . ,4.

Hence,σ 2
wm= σ 2

med≈ 0.166 when the input is i.i.d.
N (0, 1). That is, this weighted median filter and the
standard median filter, with the same window size
3× 3, perform equal in removing additive white
Gaussian noise, and better than a relaxed median
filter RM4,6 with the same window size.

(2) 3ω + ω0 ≥ T i.e.ω0 ≥ 2ω + 1. Denote this WM
filter by WM(2)

3×3. It is easy to find that

Mk = 0 k = 1, . . . ,3 and M4 = 56.

Then,σ 2
wm = σ 2

med+ M4L4(9,8) ≈ 0.237 when
the input is i.i.d.N (0, 1). That is, this weighted
median filter performs worse than a relaxed me-
dian filter RM4,6, with the same window size, in
suppressing additive white Gaussian noise.

Table 1 shows the output variances of relaxed median
filters and the weighted median filter WM(2)3×3 for i.i.d
inputs of the three commonly used noise distributions,

Table 1. Output variances of relaxed median and WM(2)
3×3 filters for

i.i.d. inputsN (0, 1),L(0, 1) andU (0, 1) with window size 3× 3.

Variance

Filter type (3× 3) N (0, 1) L(0, 1) U (0, 1)
RM2,8 0.467 0.341 0.612

RM3,7 0.261 0.157 0.393

WM(2)
3×3 0.237 0.135 0.369

RM4,6 0.183 0.099 0.296

RM5,5 = SM 0.166 0.087 0.272

Normal, Laplace and Uniform with zero mean and unit
variance, denoted byN (0, 1), L(0, 1) andU(0, 1), re-
spectively. With the aid of this table, one can easily
compare the noise attenuation capability of different
relaxed median filters. It can be see that the variance
of the relaxed median filter is greater than that of the
standard median filter. Furthermore, we observe that
the RM4,6 filter performs better than the WM(2)3×3 filter
in eliminating the additive white noise.

3.4. Impulsive Noise Filtering

In impulsive noise environments, if there are several
noisy samples clustered together, impulses may not be
removed from the image. It is very helpful to quantify
the probability of such an event. As defined in [4], the
breakdown probabilityis the probability of an impulse
occurring at the output of the filter, and relating it to the
corresponding probabilityp of impulses at the input, is
useful to assess the robustness of the filter. The break-
down probability, in homogeneous originals, follows
from Theorem 1.

Theorem 4. Given a relaxed median filter with win-
dow size2N + 1, the breakdown probability, denoted
by B(p), of the relaxed median filter is given by

B(p) =
2N∑

k=m−1

(
2N

k

)
pk+1(1− p)2N−k

+
m−2∑

k=`−1

k− `+ 2

k+ 1

(
2N

k

)
pk+1(1− p)2N−k

+
2N∑
k=u

k∑
k′=m

1

2N + 1− k′

(
2N

k′

)
× pk′(1− p)2N+1−k′ . (6)

Figure 1 shows plots of breakdown probabilities of
(a) a relaxed median filter RM4,6 with the window size
3× 3, (b) a standard median filter (SM) with the same
window size and (c) a weighted median filter WM(2)3×3.
In Fig. 1(d) the solid curve plots the difference between
breakdown probabilities of RM4,6 and RM5,5 while the
dashed curve is corresponding to the difference be-
tween breakdown probabilities of WM(2)3×3 and RM4,6.
From this figure, we deduce that for small probabilities
of impulses the RM4,6 filter occupies an intermediate
position in attenuating the impulsive noise.
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(a) (b)

(c) (d)

Figure 1. Breakdown probabilities of (a) a relaxed median filter RM4,6 with the window size 3× 3, (b) standard median filter RM5,5 = SM
with the same window size and (c) a weighted median filter WM(2)

3×3. In (d) the solid (resp. the dashed) curve corresponds to the difference

between breakdown probabilities of RM4,6 and RM5,5 (resp. of WM(2)3×3 and RM4,6).

3.5. Edge Preservation in the Presence of Additive
White Noise

The effects of relaxed median filters on noisy step edges
are considered now. Start by defining the noisy step
edge imageXi j given by

Xi j =
{
νi j if (i, j ) ∈ A

h+ νi j if (i, j ) ∈ B,
(7)

where A = {(i, j ) | j > 0} and B = {(i, j ) | j ≤ 0}
denote, respectively, the upper and the lower part of the
step edge,h is a constant representing the step height,
andνi j is i.i.d. noise.

Denote by8A(t) and8B(t) = 8A(t − h) the dis-
tribution functions of the samples located inA andB
respectively.

The filter behavior in the vicinity of the noisy edge
is going to be examined by computingE(Yi j ),Var(Yi j )

and the root mean square error rmse(i, j )=

√
E(Yi j − Si j )2 whereYi j is the filtered image andSi j is

given bySi j = {0 if (i, j )∈A
h if (i, j )∈B. Denote bymi j the number

of samples of the window located inA. This number
depends on the location of the windowWi j , and the
number of samples located inB is 2N + 1−mi j .

The next result will allow us to assess the edge
preservation.

Theorem 5. For the noisy step edge input in(7), the
output distribution function9Yi j (t) of the relaxed me-
dian filter with window size2N + 1 is given by

9Yi j (t) =
2N∑

k=m−1

min{k,di j }∑
n0=max{0,k−(2N−di j )}

(
di j

n0

)(
2N − di j

k− n0

)
×8A(t)

n0(1−8A(t))
di j−n0 ×8B(t)

k−n0

× (1−8B(t))
2N−di j−k+n0 ×8i j (t)
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+
m−2∑

k=`−1

min{k,di j }∑
n0=max{0,k−(2N−di j )}

(
di j

n0

)

×
(

2N − di j

k− n0

)
k− `+ 2

k+ 1

×8A(t)
n0(1−8A(t))

di j−n0 ×8B(t)
k−n0

× (1−8B(t))
2N−di j−k+n0 ×8i j (t)

+
2N∑
k=u

k∑
k′=m

min{k′,di j }∑
n0=max{0,k′−(2N−di j )}

(
di j

n0

)

×
(

2N − di j

k′ − n0

)
1

2N + 1− k′

×8A(t)
n0(1−8A(t))

di j−n0 ×8B(t)
k′−n0

× (1−8B(t))
2N−di j−k′+n0 × (1−8i j (t))

(8)

(a) (b)

(c)

Figure 2. Results of relaxed median filters and a CWM(2K + 1= 3) filter, with 3× 3 square window, for the noisy step edgeh = 4. (a) The
mean. (b) The variance. (c) The rmse.

where

8i j (t) =
{
8A(t) if (i, j ) ∈ A

8B(t) if (i, j ) ∈ B

and

di j =
{

mi j − 1 if (i, j ) ∈ A
mi j if (i, j ) ∈ B.

Proof: See the Appendix. 2

Using Theorem 5, we can computeE(Yi j ), Var(Yi j )

and the root mean square error rmse(i, j ) of relaxed
median filters with a given distribution function8A(t)
through numerical integration withi fixed, j variable
and a given value ofh. As an example of application,
we suppose that8A isN (0, 1).

Figure 2 shows plots of mean, variance and rmse
for relaxed median filters and center weighted median
filter with a 3× 3 square window, when a step edge
with h = 4 is degraded by a Gaussian noiseN (0, 1).
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(a) (b)

(c)

Figure 3. Results of relaxed median filters and a CWM(2K + 2= 3) filter, with 3× 3 square window, for the one pixel wide noisy lineh = 4.
(a) The mean. (b) The variance. (c) The rmse.

The results show that relaxed median filters do preserve
edges better than standard median filter, as expected.

3.6. Line Preservation in the Presence of Additive
White Noise

Consider thek-pixel wide noisy line imageXi j ex-
pressed as

Xi j =
{
νi j if (i, j ) ∈ A

h+ νi j if (i, j ) ∈ B
(9)

where A={(i, j ) | j 6= 0, 1, . . . , k− 1} and B= {(i ,
j ) | j = 0, 1, . . . , k − 1} denote, respectively, the lo-
cations outside the line and inside it,h is a constant
representing the line height, andνi j is i.i.d. noise with
distribution function8A(t).

Theorem 6. For the noisy line input in(9), the output
distribution function9Yi j (t)of the relaxed median filter
with window size2N + 1 has the same expression(8)

as in the case of the step edge(Theorem5) except for
the definitions of A and B.

Theorem 6 is applied to computeE(Yi j ), Var(Yi j )

and the root mean square error rmse(i, j ) of relaxed
median filters with a given distribution function8A(t)
through numerical integration withi fixed, j variable
and a given value ofh. Suppose that the lines are cor-
rupted by Gaussian noise i.e.8A isN (0, 1).

Figures 3 and 4 show plots of mean, variance and
rmse for relaxed median filters and a CWM(2K +1=
3) filter with a 3×3 for the 1-pixel wide noisy line and
2-pixel wide noisy line respectively, withh = 4. It is
clear to see that relaxed median filters show a good line
preservation.

4. Experimental Results

This section presents experimental results where re-
laxed median filters are applied to enhance images cor-
rupted by additive white noise or impulsive noise.
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(a) (b)

(c)

Figure 4. Results of relaxed median filters and a CWM(2K + 1= 3) filter, with 3× 3 square window, for the two pixel wide noisy lineh = 4.
(a) The mean. (b) The variance. (c) The rmse.

Normalized mean absolute error (NMAE) between
the original image and the filtered image is evaluated to
quantitatively compare the performance of the relaxed
median filters presented in this paper to that of other
filters [7, 8]. The NMAE is defined as

NMAE =
∑

i

∑
j |Yi j − Si j |∑

i

∑
j |Xi j − Si j |

whereSi j , Xi j andYi j are the original, noisy and filtered
images, respectively.

4.1. Additive White Noise Attenuation

Figure 5(a) shows the original image which consists
of 256× 256 pixels with 8-bit of resolution. Three
noisy images were generated by adding zero mean i.i.d.
Gaussian noise of variance 200, 400 and 625 to the orig-
inal image, and were then filtered by various median

based filters with a 3× 3 square window. The noisy
image with noise variance 200 is shown in Fig. 5(b).

Table 2 shows the NMAE’s of a standard median
(SM), a relaxed median (RM4,6) and a center weighted
median CWM(2K + 1= 3) [7, 8].

Figure 6 shows the results of filtering the noisy image
in Fig. 5(b) by a standard median filter (SM), a relaxed
median filter (RM4,6) and a center weighted median
filter CWM(2K + 1= 3). As shown in the images, a
RM4,6 filter preserves more details than a SM filter,

Table 2. NMAE’s results for additive white Gaussian noise.

NMAE

Filter type (3× 3) σ 2 = 200 σ 2 = 400 σ 2 = 625

CWM(2K + 1= 3) 0.671385 0.622358 0.604413

RM4,6 0.661933 0.616405 0.591093

RM5,5 = SM 0.660175 0.602671 0.574727
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(a)

(b)

Figure 5. (a) Original image. (b) Noisy image corrupted by
Gaussian noise (σ 2 = 200).

and still gives a good noise attenuation with respect to
a CWM(2K + 1= 3) filter.

4.2. Impulsive Noise Filtering

It is well known that median based filters are effective
and better than linear filters, in general, in removing im-

Table 3. NMAE’s results for impulsive noise.

NMAE

Filter type (3× 3) p = 0.1 p = 0.15 p = 0.3

CWM(2K + 1= 3) 0.152806 0.129732 0.189396

RM4,6 0.145936 0.128888 0.180551

RM5,5 = SM 0.201959 0.157360 0.139182

Table 4. NMAE’s results for impulsive noise.

NMAE

Filter type (3× 3) p = 0.1 p = 0.15 p = 0.3

CWM(2K + 1= 3) 0.262925 0.209358 0.229586

RM4,6 0.315791 0.239451 0.246328

RM5,5 = SM 0.412596 0.293025 0.210835

pulsive noise. The noisy image in Fig. 7(b) is corrupted
by both positive and negative impulses having values
255 and 0. Three images were generated by considering
three probabilities of impulsesp = 0.1 , 0.15, and 0.3.
Figure 7(b) shows a noisy image corrupted by impul-
sive noise (p = 0.1).

The NMAE’s results of the filters are shown in
Table 3. Figure 8 shows the results of filtering the noisy
image in Fig. 7(b) by a standard median filter, a relaxed
median filter (RM4,6) and a center weighted median
filter CWM(2K + 1= 3). Comparison of these images
clearly indicates that a RM4,6 filter preserves details
while also supressing impulses.

Figure 9(b) shows a noisy image corrupted by impul-
sive noise (p = 0.15). The NMAE’s results of the filters
are shown in Table 4. Figure 10 shows the results of
filtering the noisy image in Fig. 9(b) by a standard me-
dian filter, a relaxed median filter (RM4,6) and a center
weighted median filter CWM(2K + 1= 3). Compari-
son of these images clearly indicates that a RM4,6 filter
preserves details while also supressing impulses.

5. Conclusions

In this paper, relaxed median filters were proposed.
The behavior and performance of relaxed median fil-
ters are assessed using their statistical properties. Both
noise elimination and detail preservation have been
discussed.

By using the expression of the output distribution of
relaxed median filters, other statistical properties have
been derived.
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(a) (b)

(c)

Figure 6. The results of the filtered noisy image in Fig. 5(b) with a 3×3 square window by (a) a median filter (SM), (b) a relaxed median filter
(RM4,6) and (c) a center weighted median filter CWM(2K + 1= 3).

It was shown that there exists a clear trade-off be-
tween detail preservation and noise suppression prop-
erties of the relaxed median filter, and the longer the
upper bound of this filter, the better noise attenuation
ability the filter has.

The main properties of the filters and simulation re-
sults are given, showing the improvement in preserving
details with respect to the standard median filter, and

in removing noise with respect to other median based
filters.

Appendix

In this appendix, proofs of theorems are given. First, we
briefly review some properties of order statistics [12]
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(a)

(b)

Figure 7. (a) Original image. (b) Noisy image corrupted by impul-
sive noise 10%.

that will be used in the statistical analysis of relaxed
median filters.

Theorem 7. Suppose that Xi are independent and
identically distributed(i.i.d.) random variables, each
with distribution function8(t). Let 8r (t) denote
the distribution function of the rth order statistic

[Wi ](r ), r = 1, . . . ,2N + 1. Then

8r (t) = Pr
[
[Wi ](r ) ≤ t

]
=

2N+1∑
k=r

(
2N + 1

k

)
8(t)k(1−8(t))2N+1−k.

Theorem 8. For t ′ < t, the joint distribution function
8r,s(t ′, t) of [Wi ](r ) and[Wi ](s) is given by

8r,s(t
′, t) = Pr

[
[Wi ](r ) ≤ t ′, [Wi ](s) ≤ t

]
=

2N+1∑
k=s

k∑
k′=r

(
2N + 1

k

)(
k

k′

)
×8(t ′)k′ [8(t)−8(t ′)]k−k′

× [1−8(t)]2N+1−k

where r and s are such that1≤ r < s ≤ 2N + 1.

Remark. Although Theorem 8 is given in [12] only
whenr < s andt ′ < t , the result is still valid fort ′ ≤ t
and 1≤ r ≤ s ≤ 2N + 1.

Denote byW̃i = Wi−{Xi} a subwindow of size 2N,
which consists of the same samples as in the windows
Wi , except for the center sampleXi .

Now, let us define

8̃r (t) = Pr
[
[W̃i ](r ) ≤ t

]
= Pr[at leastr samples inW̃i are≤ t ]

=
2N∑
k=r

(
2N

k

)
8(t)k(1−8(t))2N−k.

And for t ′ ≤ t , with 1≤ r ≤ s ≤ 2N, let us define

8̃r,s(t
′, t) = Pr

[
[W̃i ](r ) ≤ t ′, [W̃i ](s) ≤ t

]
=

2N∑
k=s

k∑
k′=r

(
2N

k

)(
k

k′

)
×8(t ′)k′ [8(t)−8(t ′)]k−k′

× [1−8(t)]2N−k.

It is worth noticing that fort ′ ≤ t and r = s the
inequality [W̃i ](r ) ≤ t ′ implies [W̃i ](r ) ≤ t , so that

8̃r,r (t
′, t) = Pr

[
[W̃i ](r ) ≤ t ′

] = 8̃r (t
′). (10)

In order to derive the output distribution function of the
relaxed median filter, we need the following lemma and
corollary.
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(a) (b)

(c)

Figure 8. The results of the filtered noisy image in Fig. 7(b) with a 3× 3 square window by (a) a standard median filter (SM), (b) a relaxed
median filter (RM4,6) and (c) a center weighted median filter CWM(2K + 1= 3).

Lemma 1. For r ≤ s, let us denote Ir,s(t) =∫ t
−∞ 8̃r,s(τ, t) d8(τ). Then we have

Ir,s(t) =
2N∑
k=s

k+ 1− r

k+ 1

(
2N

k

)
8(t)k+1(1−8(t))2N−k.

Proof:

Ir,s(t) =
∫ t

−∞
8r,s(τ, t) d8(τ)

=
2N∑
k=s

k∑
k′=r

(
2N

k

)(
k

k′

)∫ t

−∞
8(τ)k

′
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(a)

(b)

Figure 9. (a) Original image. (b) Noisy image corrupted by impul-
sive noise 15%.

× [8(t)−8(τ)]k−k′ [1−8(t)]2N−k d8(τ)

=
2N∑
k=s

k∑
k′=r

(
2N

k

)
[1−8(t)]2N−k

×
∫ t

−∞

(
k

k′

)
8(τ)k

′
[8(t)−8(τ)]k−k′ d8(τ)

By making the substitution8(τ) = x8(t), and apply-
ing the formula

∫ 1

0

(
n

k

)
xk(1− x)n−k dx = 1

n+ 1

which is easy to prove, we obtain

Ir,s(t) =
2N∑
k=s

k∑
k′=r

(
2N

k

)
8(t)k+1[1−8(t)]2N−k

×
∫ 1

0

(
k

k′

)
xk′(1− x)k−k′ dx

=
2N∑
k=s

k∑
k′=r

(
2N

k

)
×8(t)k+1(1−8(t))2N−k × 1

k+ 1

=
2N∑
k=s

k+ 1− r

k+ 1

(
2N

k

)
×8(t)k+1(1−8(t))2N−k.

This completes the proof. 2

Corollary 1. Let us denote Jr (t) =
∫ t
−∞ 8̃r (τ )

d8(τ). Then we have

Jr (t) =
2N∑
k=r

k+ 1− r

k+ 1

(
2N

k

)
×8(t)k+1(1−8(t))2N−k.

Proof: From (10) we have8̃r,r (τ, t) = 8̃r (τ ) for
τ ≤ t , then we obtain

Jr (t) = Ir,r (t)

which concludes the proof. 2

Proof of Theorem 1: Let9(t) = Pr[Yi ≤ t ] be the
output distribution function of the relaxed median filter.
To facilitate the computation of9(t), we consider two
cases depending on the inputXi .

(a) (See Fig. 11)Xi ≤ t . In this case, the two mutually
exclusive possibilities that the outputYi ≤ t are:

(a1) [Wi ](m) ≤ t
(a2) [Wi ](`) ≤ Xi and [Wi ](m) > t
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(a) (b)

(c)

Figure 10. The results of the filtered noisy image in Fig. 9(b) with a 3× 3 square window by (a) a standard median filter (SM), (b) a relaxed
median filter (RM4,6) and (c) a center weighted median filter CWM(2K + 1= 3).

Pr
[
Yi ≤ t, Xi ≤ t

]
= Pr

[
Xi ≤ t, [Wi ](m) ≤ t

]
+Pr

[
Xi ≤ t, [Wi ](m) > t, [Wi ](`) ≤ Xi

]
.

(b) (See Fig. 11)Xi > t . In this case, the unique pos-
sibility thatYi ≤ t is Xi > [Wi ](u) and [Wi ](m) ≤ t .

Pr[Yi ≤ t, Xi > t ]

= Pr
[
[Wi ](m) ≤ t, Xi > t, [Wi ](u) < Xi

]
.

Then,

9(t) = Pr[Yi ≤ t ]

= Pr[Yi ≤ t, Xi ≤ t ] + Pr[Yi ≤ t, Xi > t ]

= 91(t)+92(t)+93(t)
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Figure 11. Illustration of the cases (a) and (b). Labelled areas cor-
respond to each case.

where

91(t) = Pr
[
Xi ≤ t, [Wi ](m) ≤ t

]
92(t) = Pr

[
Xi ≤ t, [Wi ](m) > t, [Wi ](`) ≤ Xi

]
93(t) = Pr

[
[Wi ](m) ≤ t, Xi > t, [Wi ](u) < Xi

]
.

The explicit expression of91(t) is the following

91(t) = Pr
[
[Wi ](m) ≤ t/Xi ≤ t

]× Pr[Xi ≤ t ]

= Pr
[
[W̃i ](m−1) ≤ t

]× Pr[Xi ≤ t ]

= 8̃m−1(t)8(t).

Applying the theorem of total probabilities for the con-
tinuous case, we have

92(t) =
∫ t

−∞
[8̃`−1(τ )− 8̃`−1,m−1(τ, t)] d8(τ)

In fact,

92(t) =
∫ t

−∞
Pr
[
[Wi ](m) > t, [Wi ](`) ≤ Xi/Xi = τ

]
× d8(τ)

=
∫ t

−∞
Pr
[
[W̃i ](m−1) > t, [W̃i ](`−1) ≤ τ

]
d8(τ)

=
∫ t

−∞

(
Pr
[
[W̃i ](`−1) ≤ τ

]− Pr
[
[W̃i ](m−1) ≤ t,

[W̃i ](`−1) ≤ τ
])

d8(τ)

=
∫ t

−∞
[8̃`−1(τ )− 8̃`−1,m−1(τ, t)] d8(τ).

Similarly, we have

93(t) =
∫ +∞

t
8̃m,u(t, τ )d8(τ)

In fact,

93(t) =
∫ +∞

t
Pr
[
[Wi ](m) ≤ t, [Wi ](u) < Xi/Xi = τ

]
× d8(τ)

=
∫ +∞

t
Pr
[
[W̃i ](m) ≤ t, [W̃i ](u) < τ

]
d8(τ)

=
∫ +∞

t
Pr
[
[W̃i ](m) ≤ t, [W̃i ](u) < τ

]
d8(τ)

=
∫ +∞

t
8̃m,u(t, τ )d8(τ).

Then, the expression of9(t) is the following

9(t) = 8̃m−1(t)8(t)

+
∫ t

−∞
[8̃`−1(τ )− 8̃`−1,m−1(τ, t)] d8(τ)

+
∫ +∞

t
8̃m,u(t, τ )d8(τ).

Now, we establish the explicit expressions of92(t) and
93(t).

From Lemma 1 and Corollary 1, it holds

92(t) = J̀ −1(t)− I`−1,m−1(t)

=
2N∑

k=`−1

k− `+ 2

k+ 1

(
2N

k

)
8(t)k+1

× (1−8(t))2N−k −
2N∑

k=m−1

k− `+ 2

k+ 1

×
(

2N

k

)
8(t)k+1(1−8(t))2N−k

=
m−2∑

k=`−1

k− `+ 2

k+ 1

(
2N

k

)
8(t)k+1

× (1−8(t))2N−k
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Similarly, we have

93(t) =
∫ +∞

t
8̃m,u(t, τ )d8(τ)

=
2N∑
k=u

k∑
k′=m

(
2N

k

)(
k

k′

)∫ +∞
t

8(t)k
′

× [8(τ)−8(t)]k−k′

× [1−8(τ)]2N−k d8(τ)

=
2N∑
k=u

k∑
k′=m

(
2N

k

)(
k

k′

)
8(t)k

′
∫ +∞

t
[8(τ)

−8(t)]k−k′ [1−8(τ)]2N−k d8(τ)

By making the substitution8(τ) = x (1− 8(t)) +
8(t), we obtain

93(t) =
2N∑
k=u

k∑
k′=m

(
2N

k

)(
k

k′

)
8(t)k

′
[1−8(t)]2N+1−k′

×
∫ 1

0
xk−k′(1− x)2N−k dx

=
2N∑
k=u

k∑
k′=m

(
2N

k

)(
k

k′

)
8(t)k

′
(1−8(t))2N+1−k′

× 0(k− k′ + 1)0(2N + 1− k)

0(2N + 2− k′)

=
2N∑
k=u

k∑
k′=m

(2N)!

k!(2N − k)!
× k!

k′!(k− k′)!

×8(t)k′(1−8(t))2N+1−k′

× (k− k′)!(2N − k)!

(2N + 1− k′)!

=
2N∑
k=u

k∑
k′=m

1

2N + 1− k′

(
2N

k′

)
×8(t)k′(1−8(t))2N+1−k′

then Eq. (1) follows. 2

Proof of Theorem 5: From Theorem 1,9Yi j (t) can
be expressed as

9Yi j (t) = Pr[Xi j ≤ t ]

×
2N∑

k=m−1

Pr[exactlyk samples inW̃i j are≤ t ]

+Pr[Xi j ≤ t ]

×
m−2∑

k=`−1

k− `+ 2

k+ 1

×Pr[exactlyk samples iñWi j are≤ t ]

+Pr[Xi j > t ]

×
2N∑
k=u

k∑
k′=m

1

2N + 1− k′

×Pr[exactlyk′ samples inW̃i j are≤ t ]

(11)

And, from (7), we have

Pr[exactlyk samples inW̃i j are≤ t ]

=
min{k,di j }∑

n0=max{0,k−(2N−di j )}
Pr[exactlyn0 samples inA

are≤ t , exactlyk− n0

samples inB are≤ t ]

=
min{k,di j }∑

n0=max{0,k−(2N−di j )}

(
di j

n0

)(
2N − di j

k− n0

)
×8A(t)

n0(1−8A(t))
di j−n0 ×8B(t)

k−n0

× (1−8B(t))
2N−di j−k+n0 (12)

wheredi j is the number of samples with distribution
function8A in W̃i j .

On the other hand, we have Pr[Xi j ≤ t ] = 8i j (t)
and Pr[Xi j > t ] = 1−8i j (t).

Then the expression of9Yi j (t) follows directly by
combining (11) and (12). 2
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