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Abstract

Using the Jensen-Shannon divergence of grey level his-
tograms obtained by sliding a double window over an im-
age, an edge-detector is presented. A new technique for
linking unconnected edge points, based on estimated di-
rections, is also described. The method is suitable for tex-
tured images and has proved to be fairly robust in the pres-
ence of impulsive noise or spurious patterns. An applica-
tion to images of Diesel spray injection is shown, that may
be used to improve combustion in Diesel motors.

1. Introduction

Segmentation can play a major role in image processing,
and is used to divide the original image into a set of disjoint
parts by means of internal characteristics such as grey scale
and texture [1,2]. It usually gives as output a binary image in
which the edge points have been highlighted. Segmentation
is a mandatory step in many image analysis procedures, and
the quality of segmentation is a crucial characteristic [3].
Quality is assessed in two different ways: accuracy of edge
detection, and level of connectivity in continuous edges. If
some edges are still unconnected after edge detection, then
an additional edge linking process is required [4,5]. The au-



thors present a new method for detection, thinning and link-
ing of edges; this is a development of their earlier edge-de-
tection method and is based on the Jensen-Shannon diver-
gence between histograms provided by a sliding window
over an image [6].

The method proposed here is successfully applied to im-
ages of Diesel spray injection, which are affected by noise
and spurious spatial patterns. The analysis of this kind of
images may be used to achieve the combustion in automo-
biles [7,8,9].

2. Image segmentation by Jensen-Shannon diver-
gence

Jensen-Shannon divergence, as proposed by Lin [10], has
proved to be a powerful tool in digital images segmentation
[6,11]. It is a measure of the inverse cohesion of a set of
probability distributions having the same number of possi-
ble realisations:
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Divergence grows as differences between its arguments

(the probability distributions involved) increase. The appli-
cation of divergence to edge detection is based on a struc-
tured two-step procedure, as follows:

Step 1: calculation of the divergence matrix
Let us consider a window made up of two identical

subwindows and sliding down over a straight edge between
two different textures (Fig.1). It has been shown [11] that in
such conditions, the Jensen-Shannon divergence between
the normalised histograms of the subwindows reaches its
maximum value when each subwindow lies completely within
one texture (central case in Fig. 1).

If the window-to-edge direction is not perpendicular, the
JS maximum reaches lower values that may make it
undetectable: it may be close to zero or to the base value for
a given texture. This then means trying several window
orientations for each pixel. Only four orientations are, how-
ever, technically possible: vertical, horizontal, and two di-
agonals. In this study, the maximum of these four was taken

as the final divergence value to be assigned to each pixel. A
matrix of real numbers  the divergence matrix2   was
then built, and pixels displaying high values became edge-
point candidate.

Figure 1: A window sliding across a perfect edge.

Step 2: obtaining the edge points.
We have to decide which pixels from the divergence ma-

trix are edge pixels. Thresholding of the divergence matrix
[6,11] is not always useful, since maximum divergence values
depend on the composition of adjacent textures and will thus
vary according to texture. Thus it would seem more appropri-
ate to use a local criterion. Accordingly, each edge-pixel can-
didate is the centre of an odd-length monodimensional win-
dow, for each of the four possible orientations. For that pixel
to be qualified as an edge pixel it has to satisfy, in at a least
one direction, that

JS JScentral j− ≤T
d

      (1)

for any other pixel j in that particular monodimensional win-
dow, where T

d
  is a user-defined parameter. In other words,

the pixels marked as edge points are local maxima of the di-
vergence matrix, in at least one of the four basic directions.
Detection results will depend directly on the parameter T

d
.

However, small fluctuations, often due to noise in the origi-
nal image or to texture regularity, may introduce a great
number of false maxima, although these are usually fairly low.
Thus repeteadly applying a mean filter before looking for the
maxima smoothes the divergence matrix out.

Selection of a local maximum is, in sense, a thinning proce-
dure since just one pixel will usually be detected as an edge
point within the neighbourhood, as determined by the size of
the window. In fact, rarely more than one pixel would share
the same maximum divergence. Nevertheless, a thinning proc-
ess is achieved for being sure of it.

2 The use of window (rectangular in the present study) imposes an
exclusion frame comprising pixels near the outside borders of the
image and whose divergence cannot be calculated.
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Given this result, the value of the angle α may be esti-
mated, knowing the JS values for each of the four window
orientation.  Two real numbers may thus be assigned to each
point in the image: the maximum divergence value and the
value of the direction producing the maximum. This set of
real numbers can be stored in a matrix, called direction ma-
trix3.

The information contained in the direction matrix may be
used for extracting edge-pixels from those which have not
been marked since they did not satisfy the condition (1), but
were close to doing so. Not all the pixels in the image are
candidates for filling the gaps, only those classified as end
points. The definition of end point in [12] includes several
variants that may influence the result of the prolongation
process. The present paper uses the definition of end point

as that having one or two joint marked pixels in a 3×3 centered

window. For a pixel to be selected as a continuation of the
edge, it must satisfy two conditions:

1. Its associated divergence must be reasonably high,
such that

where τ
d
  is a user defined parameter, and has at first no

relation with the parameter Td of the step 2.
2. The mean of the edge direction at the end point and

that of the neighbouring pixel under examination must
not differ by more than a specified amount from the direc-
tion of the physical line joining them.

where τθ is a user defined parameter.
The two foregoing conditions are used in an attempt to

select as edge pixels those lying next to end points and whose
divergence and direction are sufficiently close to those of
the end point to be extended. It should be borne in mind that
when a new pixel is marked as an edge, other adjacent pixels
may then become end points, so the algorithm must foresee
this event in order to continue the procedure.

4. Linking edges

The two steps above, maximums detection and prolonga-
tion, may have spurious effects. Although the method is
very robust against noise [11] some pixels can satisfy condi-
tion (1) because of statistical fluctuations. Then the output
of the present algorithm could present some groups of indi-
vidual pixels as edge ones.

On the other hand, the prolongation procedure tries to

3. Edge prolongation

The two steps described above enable us to extract the
edge pixels from an image. It is not always possible, however,
to establish a good compromise between the quality of the
binary image obtained and the desired connectivity of the
edge pixels. One reason for edge connection to be difficult
might be the presence of noise in the original image.

In order to deal with these problems, a third step may be
added: edge pixel prolongation. It attempts to join the vari-
ous sets of edge pixels, using information from the diver-
gence matrix associated with the image, together with knowl-
edge of the direction in which maximum divergence is pro-
duced.

In fact it is possible to label each pixel with an estimation
of the edge direction as it passes through that pixel. This
direction is written as α∈[0,π) and is estimated from the JS

1
,

JS2, JS3 and JS4 divergences calculated from the four win-
dows, which are oriented according to the angle formed by
the window axis (the line dividing the two subwindows) and
the horizontal. These angles are {0, π/4, π/2, 3π/4}, respec-
tively. The problem is solved by individually analysing each
of the intervals [0, π/4], [π/4, π/2], [π/2, 3π/4] and [3π/4,

π). For each interval we calculate, by least squares, a sec-

ond-degree polynomial in α which attempts to find the best

fit for the values of JS
1 
(α=0), JS

2
 (α=π/4), JS

3
 (α=π/2) and

JS
4
 (α=3π/4). Continuity and derivability are required for

each interval bound, bearing in mind that the orientations
α=0 and α=π are identical in this study. Finally, an esti-

mated expression for divergence as a function of α is ob-
tained for each interval.

Yet the problem that really interests us is quite the oppo-
site: given {JS

1
,JS

2
,JS

3
,JS

4
}, which direction produces the

maximum JS? It is thus a matter of calculating for each inter-
val the value of α that maximises JS. Results obtained from
the foregoing polynomial are shown below, and may be
grouped by differences in divergence, hence:

It has been shown empirically that the error between the
estimated value of α and its actual value is never greater
than 0.004. It was impossible to perform the theoretical calcu-
lation due to its difficulty. However, the exact value can be
obtained in cases where the edge is oriented in any direction
of the type α=kπ/8, k={0,1,...,7}.
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3 As in the case of the divergence matrix (see footnote 2), the use of
a rectangular sliding window imposes an exclusion frame.



connect the end points of an edge to those adjacent pixels of
highest divergence and with the appropriate direction. But it
may occur that these adjacent pixels all have similar charac-
teristics, so the algorithm may join one to another and reach
the initial end point at last, giving a loop as a result. This
prevent the edge to be closed.

In order to deal with these problems, a final step is per-
formed. It is an iterative process that consists in four phases.
First of all, detect and delete all groups of isolated pixels;
then it detects and cut the loops of a certain user-dependent
size. Finally it tries to link again the end points in a more
forced way than in Section 3. If the linking is definitively not
possible, all not closed lines are removed. The iterations end
when no more loops and isolated pixels are found.

The detection and deletion of groups of individual pixels
is made locally. A window of certain user-defined size is cen-
tred on each edge pixel: if no other edge pixel is found, it is
considered as isolated and then it is eliminated. The forced
linking is made now by connecting each end point to the
closer one inside an user-defined interval. This interval has
semicircle size and is oriented in the direction of the edge. If
no other edge-pixel is detected in that interval, then the cor-
responding line will not be closed, so it is removed until an
edge-crossing is found.

5   Results

The present algorithm has been proven with Diesel spray
injection images, in order to show the behaviour of the edge
detector in an industrial, non-ideal, application. The need for
minimising fuel use and emissions (noise and contaminants)
in automotive motors requires an exhaustive investigation of
injection systems. It is possible to make Diesel spray com-
bustion models from the knowledge of some macroscopic
parameters such as aperture angle, penetration, or volume.
These values may be measured automatically from images,
such as Fig 2. However, this kind of images are affected by
noise and spatial patterns due to CCD characteristics, vibra-
tions... So, the edge-detection methods used are not very
simple, because they need hard preprocessing. In addition,
output images may require some postprocessing [7,8,9]. The
detector used in this application is based on gradient opera-
tors or thresholding [7,8,9]. Here we have used Canny filter
and a threshold method [9] that makes use of the mean and
standard deviation of the two distributions (background and
spray) found in the histogram of the image.

As may be seen, gradient based detectors fail in the de-
tection of the borders, although noise suppression (5×5
median filter) is achieved. The patterns present in the back-
ground makes such an edge-detector to give good results.
This is true too for our algorithm, although it is minimised
because of the characteristics of the Jensen-Shannon diver-
gence. Thresholding method shows good performance, but

Fig. 2a: original image

Fig. 2b: segmented image (threshold method [9])

Fig. 2c: segmented image with the proposed algorithm.

Fig. 2d: segmented image using Canny�s method



no edge image is the output (it must be bear in mind that the
parameters that are going to measure does not need binary
edge image), so the comparison is more difficult. However, it
must be said that to obtain the result preprocessing and
postprocessing have to be made (suppression of the injector
in the image, noise reduction, threshold determination, skel-
eton [1] detection and selection of the greatest one [9]).

6. Conclusions

This paper has presented a new method for the extraction
of edge pixels, using information provided by the Jensen-
Shannon divergence of the histograms of two subwindows,
which together form a sliding window. The process consists
of selecting local divergence maxima as edge pixels. Addi-
tionally, a new algorithm is presented for edge linking us-
ing the same entropic technique. Results are provided, which
show that a combination of the two procedures allows the
segmentation of even very noisy and “background-pat-
terned” images to a much higher standard than that of other
methods based on the gaussian gradient operator, such as
the Canny filter[13], or a thresholding method used in the
specialised literature[1][2].
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