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Abstract

To remove impulsive noise, several variants of median-type filters are presented. They use some prior information provided by the
probabilistic composition model of the class of the image being processed. This information is doubly applied; first, in elaborating a
noise-estimation mask for the preselection of the pixels which must be filtered; and second, in the filtering process itself. The aim is to
avoid the side-effect damage that median-type filters produce in processing the non-contaminated pixels. Experimental results are

better than in the conventional median filter.

Keywords: Median filter; Noisy pixels detection; Composition matrix; Prefiltering mask

1. Introduction

Within the spatial non-linear filters, order statistic
filters are receiving increasing attention, mainly because
of their efficiency in removing impulsive noise [1]. The
theoretical basis for their study is the Robust-Statistics
Theory [2], thus these filter show the outstanding
property of robustness, as given by the breakpoint.

Among the wide variety of statistic filters, the simple
median filter (see Refs. [3,4] and references therein)
occupies a prominent place, due to its computational
simplicity, its robustness and its thresholding property,
which allows this filter to be included in the stack-filter
category [5]. A broad theoretical study has been made,
particularly with respect to the roots, that is to say, the
images that remain invariant in the filtering.

The most distinguished feature of the median filters is
their ability to remove the impulsive noise while pre-
serving the edges in the image. To improve this
performance, a number of modified median filters have
been developed, like the separable median filter, the
mean o-trimmed filter, the max/med filters and the
L-filters.
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In this paper new median-type filters, called Mask-
Model Filters, are introduced. The starting point is
that a spatial filter damages some good pixels by itself,
and this must be avoided. This problem is addressed by:

1. The use of some prior information by means of the
probabilistic composition model for the class of
images worked on [6]. This is a stochastic model
revealing the typical histogram of a window in any
image of the class. It is referred to as the model or
the composition matrix.

2. The selection of the subset of noisy pixels which must
be filtered, the others being unaltered [7]. This
selection is performed before the filtering process, by
preparing a mask with the pixels estimated as
corrupted, according to the information provided by
the composition matrix. The mask is referred to as the
noise-estimation mask (NEM). Both concepts are
studied in the following section.

As derived from the general class of median filters, the
Mask-Model filters are in the same category and have the
same field of application: they provide enhancement pro-
cesses for removing impulsive noise. However, resorting
to some information related to the image somewhat
approximates the enhancement process to a restoration
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one. This is more pronounced in the fourth filter pre-
sented, the model-restoration filter, in which the criterion
of maximum closeness to the class is used.

2. Operational features
2.1. Basics

Impulsive noise affects only a fraction of the pixels in
an image. Thus, an original image O is affected by
impulsive noise in this way:

S=O0M+N(1-M)

where N is a noise-image coming from an i.i.d. source of
noise, M is a mask indicating which pixels are to be
changed, and S, the noisy image, is the input of any filter.
All images appearing in this expression are of the same
size, and arithmetic operations between them are per-
formed pixel by pixel. The filtering process S — R~ O
gives as a result an image R as close as possible to the
original.

The four filters proposed here are based on two con-
cepts: (1) the preselection mask (NEM) to reduce the
processing to the pixels estimated as corrupted; (2) the
composition matrix, which provides some information
about the image. Both are discussed below for self-
contained work.

2.2. Composition models

In our approach, each image belongs to a class %
(radiographs, echographs, ...) represented by a com-
position matrix [6]. This is a bidimensional array describ-
ing the histograms provided by a sliding window
covering all images in the class. By defining the window
grey level k' as the sum of grey levels of the pixels in the
window, every column Q. in the composition matrix is
the average histogram of all windows with the same k'.
There are as many columns as window grey levels, i.e.
from 0 to G - w, where G is the maximum grey level of the
pixels, and w is the size of the window:

Q(%) = (QoQ: --- Caw)-

Thus, the kth element in Q. is the relative frequency
of grey level & for pixels inside sliding windows with grey
level k'. If there were no windows with grey level £ then
Q' could not be calculated. In this case, we should con-
sider that the grey level &’ does not exist in €, and the
composition matrix would have an empty column in Q.

It is obvious that we cannot handle all the images of
the same class. However, a composition matrix can be
obtained in two ways: first, by theoretical means, formu-
lating hypotheses about the internal structure of the
regions [8], for example, the hypergeometrical model:
second, by empirical means, computing the matrix

columns Q. by averaging the histograms of all the
regions in a selected sample, from an appropriate set of
images of the same class . By doing the same for each
k', the matrix Q(%) is obtained [9]. This estimated com-
position model may be used for filtering any image
belonging to the class it represents.

When the composition model is applied for either con-
structing the preselection mask or filtering, a prediction
about the grey level & of a pixel is made. The reliability of
this prediction depends on the quality of the composition
model, which in turn relies on the sample size and on the
compositional homogeneity of the windows in the
sample. This homogeneity should be specified in terms
of some appropriate measure of cohesion between the
histograms (i.e. probability distributions) of the observed
windows in the training sample. For this purpose we use
the Jensen—Shannon divergence (JS) [10] for each
column Q@ in the composition model:

Ny

IS(Qu) = H(Qu) - -3 H)
i=1

where every #; stands for the histogram obtained from a
window with grey level &’; and H(-) = Xplog p is the
Shannon entropy of the argument probability distribu-
tion. For our purposes, here it suffices to bear in mind
that the lower JS is, the more cohesion the sample has,
the better defined is the class of images, and the better the
composition model Q(%) should behave. A more detailed
description of the usage of IS to qualify classes of images
1s given in Ref. [9].

2.3. The noise-estimation mask (NEM )

We now have information about the probability of
finding a grey level k inside a region with window grey-
level k’; therefore, it may be decided whether or not a
certain grey level is noisy. We define selection as the pro-
cess of deciding whether a pixel has a likely grey level,
according to the composition matrix. This selection is
determined by means of the choice of a threshold «* in
the ordered histogram of the column Q ./, (Q-);.)- Every
grey level k verifying (Q )y > (Q«) ) i considered to
be probable, and thus the corresponding pixel is not
filtered. This threshold can be characterized by a certain
selection ratio p € [0,1], as follows: given p, then a
unique &* exists, such that

K K'+1
> (@) <p< D Qi)
k=0 =0
and thus the grey levels [0], [1],. . ., [&"] will be considered

as noisy if they are found in windows with grey level k'.
This selected subset of grey levels is better determined in
practice by having constructed the ordered column
(Qk')i) beforehand in a look-up-table fashion. Thus,
the entry of this look-up table (LUT) is the window



L. Garcia-Cabrera et al./Image and Vision Computing 14 (1996) 741-752 743

grey level k', and the output is the set of grey levels not to
be filtered.

Extreme values for p means: (1) 0 < p < (Qy/)(q), nO
pixels are to be filtered; (2) p = T(Qy/) = 1, all pixels are
to be filtered (no selection at all). The full theoretical
analyses of the parameter p in relation to the filter per-
formance seems to be quite untractable. While some
approach is in progress, heuristic settings should be
made.

Since the window grey level is altered by noise in the
source image, then the use of the LUT is somewhat
wrong. This can be avoided by implementing an iterative
procedure that shows good convergence properties.
More details about the construction of the NEM are
not needed here, and will be found in future work [7].

Despite the building process itself for the NEM, its
quality should be considered. Two measures of quality
are defined next, which represent the degree of success in
the noise estimation in the image. They are the propor-
tions of good and bad pixels found with no error:

defined by
undamaged pixel, udr = S(MM)/S(M)

detection ratio in

damaged pixel, ddr = Z[(1 — M)(1 — M)]/Z(1 — M),

where M is the NEM and M is the real mask. Notice that
ddr is more relevant than udr, since an error in respect
to the first means that a noisy pixel will not be filtered,
but in the second it means that a good pixel will be.
Numerical values of ddr and udr are usually above 95%
after 5, 6 iterations, as can be seen in the given examples.
The measures are next used to show the influence of the
composition matrix and the selection ratio on the quality
of the mask.

2.4. Influence of the quality of the composition matrix on
the mask

The composition matrix Q(%) plays an important role
in the construction of the NEM. It is expected that the
better the quality of Q(%), the more adjusted the NEM is,
as given by its udr and ddr values. This behavior is shown
in Table 1. The NEM is built from a source image with
20% uniformly distributed impulsive noise and a

Table 1
Experimental results showing the influence of the model quality on the
mask fitness

JS udr ddr window size
Q(text) 1.65 99.28 49.76 3x3
Q(eco) 0.75 100.00 79.82 Ix3
Q(rad) 0.03 96.91 96.68 Ix3
Q(text) 0.80 99.93 46.59 5x5
Q(eco) 0.48 99.97 77.54 5x5

Q(rad) 0.05 96.72 96.58 5x5

Tabie 2
A strange model leads to a wrong mask

udr ddr
Q(% = radiograph) 90.62 95.77
Q(%' = echograph) 51.78 75.23

selection ratio of 0% (the reason for this is discussed
later). The quality of Q(%) is evaluated by means of the
JS divergence measure. It is apparent that when the
divergence measure is lower, the NEM obtained is better
adjusted.

The influence of the model on the quality of A/ may be
studied from another point of view. By using the model
of another class Q(%"), a different NEM M’ is obtained
from the same source image S. It is expected that M was
much better than M’, because of the adequacy between S
and Q(%). This is illustrated in Table 2, where the source
S is a radiograph corrupted with 30% uniformly distri-
buted impulsive noise, and the size of the window is
5x 5.

2.5. Influence of the selection ratio on the mask

Another feature that may determine the reliability of
the NEM is the selection ratio, p. If it has small values,
only pixels whose grey level has a low probability will be
taken as bad ones. As p grows, more pixels are chosen as
noisy. Thus, the quality of the NEM may be improved by
suitably changing the value of the selection ratio, as can
be seen in Table 3. This was made from a text source
image with 20% uniformly distributed impulsive noise,
and 5 x 5 window size.

Making a note on the choosing of the selection ratio p
is worthwhile. When estimating the window grey level,
an error is introduced due to the noise, and then a wrong
(but fairly close) entry of the LUT is consulted; thus, the
decision about which pixels are good or bad is somewhat
altered. If a low value for p is set, then all the pixels
marked as bad will have a very small probability accord-
ing to the wrong entry of the LUT, so they probably will
still be bad according to entries in a neighbourhood. As a
consequence, a low value for p makes the marking of bad
pixels robust against noise. Perhaps the convergence of
the mask is slower, but it is preferable because the
growing quality of successive iterations is guaranteed.

Table 3
Influence of the selection ratio

p (%) udr ddr

0 99.93 46.55
1 99.54 61.41
2 98.85 67.96
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Original Source
(30 % salt & pepper noise)

5 x 5 Median Filter 5 x 5 Central Weighted Median Filter

Adaptive Filter 5 x 5 Mask-Median Filter
(Sun & Venetsanopoulos) (selection ratio p= 0%)
Fig. 1. Median and central weighted median filtering, Sun & Venetsanopoulos’ adaptive filtering and mask-median filtering example for a radiograph

image. (a) Original, (b) source (30% salt & pepper noise), () 5 x 5 Median filter, (d) 5 x 5 Central Weighted Median filter, (¢) Adaptive filter (Sun &
Venetsanopoulos), (f) 5 x 5 Mask-Median filter (selection ratio p = 0%).
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3. Filters

Four Mask-Model filters are described next. The first
three calculate the median of: (1) the window; (2) the
model; (3) the window weighted by the model. The
fourth uses the max operator on a probabilistic model-
belonging table. For each filter, an example is carried out
with an image belonging to a known class Q(%); except of
that for the Model Restoration filter, which uses a
theoretical model based on the hypergeometric distribu-
tion. The results are shown visually, and compared with
those obtained from the well-known conventional
median, central weighted median and adaptive (Sun &
Venetsanopoulos) [11] filters. Numerical results are given
at large.

The reasons for choosing that filters for comparison
are the following. First, one of them is a nonadaptive
filter, having the advantage of not requiring prior infor-
mation about the image, nor needing to compute local
statistics inside the (fixed) window, leading to a faster
and simpler algorithm. The other is an adaptive one,
with a fixed window, that needs to calculate expectation
and variance inside to estimate noise and then to get the
minimum mean square error result. Thus the proposed
filters can be compared with well-known filters that
improve the median, one of them using prior information
like ours. Other kinds of filter, like FIR-Hybrid or
Multistage-Median, have been rejected in our compari-
son, because they preserve noise structures instead of
attenuating them when impulsive noise is high (20%,
30%) [12,13]). The Multistage-Median also has break-
down probabilities greater than the conventional
median, so it performs worse than the latter when
noise is high. Therefore, our filters work much better
than the Multistage-Median, as is verified, because they
are better than the conventional median in noise
attenuation and detail preserving.

As regards the kind of noise used in our experiments, it
should be noticed that only impulsive noise (salt &
pepper and uniformly distributed) has been studied.
This is because the Gaussian noise affects all pixels in
the image, that is, all the pixels are noisy. Therefore,
the NEM cannot be properly calculated, and the results
of filtering are thus erroneous. Only impulsive noise,
affecting the image partially, can be used for building a
NEM with good performance.

3.1. Mask-median filter

Operation. This simple filter is the conventional
median filter operating with the preselection mask. The
model Q(%) is used here only for building the NEM, and
not in the filtering process. The working operation is
easy: for each position (i,j) marked as bad (Mi,j =0),
the median of the centered window W;; is computed.

This filter is described as:

As an example, a radiograph image corrupted by 30%
of salt & pepper noise is filtered. The results are shown in
Fig. 1, using the parameters as indicated. While noise is
well removed by all filters, the original is better preserved
by the Mask-Median filter.

3.2. Mask-matrix filter

Operation. This filter substitutes the corrupted grey
level by the median, not of the window, but of the appro-
priate Q. Since this is a probability distribution, its
median is the grey level of the accumulated probability
0.5. The filtering steps are:

1. Window grey level estimation. For each proper window
position, (i,) such as M; ; = 0 the partial window
grey level X[(W;;(SM)] is computed as the sum of
the grey level of all the mask-good pixels included.
Then, the total window grey level is estimated as
that of a noise-clear window with the same average
grey level:

k' = S[Ww,(S), M]
i ey 20 1) X (20, + 1)
= S[W,;(SM)] S[W,(M)]

2. The median of the matrix column. The matrix Q(%)
provides the probability distribution for k. The
median of the column k' is taken, given an estimate:
ke = mCd(le).

The filter operation with the median is described as

R = SijMij + med(Q)(1 - Mij):

(1)

where k' is obtained in (1)

Comparative results of filtering a text image with 10%
uniform noise are given in Fig. 2. The best performance
is obtained by the Mask-Matrix filter. The original
detail preservation and the absence of blotches in the
background is easily observed.

3.3. Mask-model weighted filter

Operation. As a refinement of the above, this filter also
takes into account the histogram of the window and
weighs it with the matrix column. It operates as follows:
the window histogram ?[WU(SM )] is weighed by the
column distribution W/, k’ obtained as in Eq. (1), giving
the (G + 1) vector

P(2,Q) = PIW;(SM)] - Q-

and the median of the weighted window histogram is
taken.
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Original Source
(10% uniformly distributed noise)

5x5 Median Filter 5x5 Central Weighted Median Filter

Adaptive Filter 5x5 Mask-Matrix Filter
(Sun & Venetsanopoulos) (selection ratio p= 1%)

Fig. 2. Median and center weighted median filtering, Sun & Venetsanopoulos adaptive filtering and mask-matrix filtering example for a text image. (a)
Original, (b) source (10% uniformly distributed noise), (c) 5 x 5 Median filter, (d) 5 x 5 Central Weighted Median filter, (¢) Adaptive filter (Sun &
Venetsanopoulos), (f) § x 5 Mask-Matrix filter (selection ratio p = 1%).



L. Garcia-Cabrera et al./Image and Vision Computing 14 (1996) 741-752 747

The operation of this filter is
Rij = S,'jM[j + med(?")(l — Mij)'

As an example, an echograph image affected by 20%
uniform noise is filtered. Comparative results are given in
Fig. 3, with parameters as indicated. The noise is better
removed by the Mask-Model Weighted filter than by the
reference filters. Details are also better preserved.

3.4. Model-restoration filter

Operation. In this more elaborate procedure, a
criterion of closeness of the filtered image to its model
is implemented. The final grey level of the processed pixel
is taken to maximize the probability for the window to
resemble the model. The operation steps for this filter
are:

1. Window grey level estimation. This is the same as step 1
of the mask-median filter, but this time a quasi-total
grey level is estimated, for a reduced window of size
(v, + 1) x 2k, +1) - 1:

(2v, +1)x (2h,+1) -1

Z[W,(M)]

ko = (W, (SM)]

2. k-testing. Adding each possible grey level
k=0,1,2,...,G of the central pixel to the above
estimated grey level, produces the corresponding
window grey level, k' = kg + k (this would have been
obtained if £ had been correct).

3. Diagonal probabilities. For each k, the probability of
containing the tested grey level k is computed from the
corresponding Qko’ +x- This set of probabilities is
placed in a diagonal of Q with heading k{. These do
not constitute a distribution, since they all belong to
different columns.

4. Maximum. From all the probabilities in the diagonal,
the maximum is determined, its grey level £* being the
filtering result.

This filter operation is described as:
Rij = S;;M;; + k(1 - My),
> (Qk(;+k)k Vk=0,1,...,G.

This procedure is easily implemented by constructing a
Diagonal-Look-Up-Table (DLUT) from the composi-
tion matrix Q(0). For each kg, the diagonal hanging to
the right is taken, and its maximum element determined.
The corresponding k value is assigned to the entry kg in
the LUT.

Fig. 4 shows the comparative results of filtering Lena
with 30% salt & pepper noise. Since no training set of
images are defined for the class of Lena, a theoretical
model (the hypergeometrical one) has been used as
default. The result for the Model Restoration filter is
the only one that removes all the noise.

where (Q i e

4. Results and discussion

Besides the examples given above to illustrate the pro-
posed filters, more complete experimental results for the
same original images are presented now, along with some
general comments. Experiments have been carried out
under the following settings:

1. Sliding window. A square window is always used, the
size being either 3 x 3 or 5 x 5.

2. Image scanning and grey scale. All images have been
captured by scanning with 8-bits grey scale, all using
the same settings. They were stored in TIFF, and then
the grey scale was linearly reduced to 6 bits (0—63) for
easier handling.

3. Quality measures. Although visual estimation remains
the main way to assess the enhancement results, a
more reliable comparative study of our filters would
require a quantitative measure. From those proposed
and used [l14], the mean absolute error
MAE = X|I, - L|/(V x H) was chosen, I} and [,
being the images to be compared, and V' x H being
their common size.

4. Iterations. As frequently happens, the filtered image
improves through successive passes of the filter
algorithm. The results offered here correspond to
five iterations, unless indicated. It should be borne in
mind that the iteration in the filtering passes implies
that some modification must be made in the used
mask.

Numerical results are summarized in Table 4.

4.1. Discussion

Mask-Model filters have proven to be much better than
those used for comparison. The MAE reduction reaches
up to nine times. The conventional median and the
weighted-median filters work better than the new filters
in only one case throughout the table, namely for a radio-
graph strongly corrupted with G-noise. Nevertheless,
visual results are very close in this case (see Fig. 1).

The numerical results for a given source are very simi-
lar, in general, for the different filters used. However, the
following remarks are in order:

1. It can be said that the mask-matrix filter has revealed
itself as surprisingly good, bearing in mind that one
the mask has been obtained, the filter pass takes into
account only the whole-window grey level. This
emphasizes the strong role played by the mask.

2. Some cases are favorable for the mask-model
weighted filter. This filter has been designed to
mutually reinforce the fairly good quality of the
mask-median and the mask-matrix. However,
although truly comparable, the results are better in
only a few cases, such as in the echograph corrupted
with dense noise.
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Original Source
(20% uniformly distributed notse)

3 x 3 Median Filter 3 x 3 Central Weighted Median Filter

Adaptive Filter 3 x 3 Mask-Model Weighted Filter
(Sun & Venetsanopoulos) (selection ratio p = 10%)

Fig. 3. Median and central weighted median filtering, Sun & Venetsanopoulos’ adaptive filtering and mask-model weighted filtering example for
a echograph image. (a) Original, (b) source (20% uniformly distributed noise), (¢) 3 x 3 Median filter, (d) 3 x 3 Central Weighted Median filter,
(¢) Adaptive filter (Sun & Venetsanopoulos), (f) 3 x 3 Mask-Model Weighted filter (selection ratio p = 10%)
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Original Source
(30% salt & pepper noise)

3 x 3 Median Filter 3 x 3 Central Weighted Median Filter

Adaptive Filter 3 x 3 Model Restoration Filter
(Sun & Venetsanopoulos) (selection ratio p = 0%)

Fig. 4. Median and central weighted median filtering, Sun & Venetsanopoulos’ adaptive filtering and model-restoration filtering example for Lenna.
(a) Original, (b) source (30% salt & pepper noise), (c) 3 x 3 Median filter, (d) 3 x 3 Central Weighted Median filter, (¢) Adaptive filter (Sun &
Venetsanopoulos), (f) 3 x 3 Model Restoration filter (selection ratio p = 0%).



750

. Very good results can be obtained for the restoration-

model filter, the only one differently designed. Its best
performance in filtering Lenna deserves particular
interest, since a theoretical model has been used.

4.2. Remarks and properties

1.

3.

Low noise. For low noise levels, these four median-
type filters are more advantageous than others. This
is because the main rationale is not to filter the good
pixels. Thus, a noise-free, good-model image is
probably a root.

. Roots. The problem of finding the roots [14] in the

mask-median filter is complex, and depends on the
composition matrix. However, it is strongly simplified
for the assumption of an ideal mask M = M, what-
ever the model may be. Then the non-filtered sub-
image is clearly a subroot, while the complementary
subimage is median-filtered, thus having the same root
behavior as the conventional median filter. Roughly
speaking, the mask-median filter has the root proper-
ties of the median filter, but with an expected faster
convergence. This is fully achieved, as can be checked
throughout Table 1.

Stacking. Because of the composition model, these

Table 4
Experimental results for comparing the new Mask-Model filters with three known ones as reference and four classes of images. Best results are in bold.
The ! symbol means that the filter did not converge after five iterations, so the MAE could decrease even more; the + sign means the filter gave the best
result after the fifth iteration and then MAE increases until convergence. §w/n/s: w x w window size/kind of noise (sp = salt & pepper; g = uniformly
distributed) 7% of noise/s% of selection ratio

L. Garcia-Cabrera et al./Image and Vision Computing 14 (1996) 741-752

filters do not have the threshold decomposition
property, thus they are not stack filters. If so, a set
of binary (two-row) composition matrices would
have to be derived, one for each stack level. However,
this set would either represent an inconsistent model,
or be a universal model, independent of the class of
images.

. Blotches. The known, undesirable property of the

median-type filters of generating patches or blotches
as an artifact of the procedure, is attenuated in the
mask-median filter. Pitas [3] discusses this, and pro-
poses a measurement of the blotch effect by means of
the probability of giving the same output for two
pixels, under certain assumption, as a function of the
distance between them. These or any other analyses
are applicable to the filtered pixels in the Mask-Model
filters, but the difference is that not all the pixels are
filtered. Any measurement valid for two pixels in the
median filter should be reduced by the probability of
these two pixels to be filtered, as a factor. This prob-
ability is calculated in a straightforward manner under
the simplifying assumption M = M. Since the
impulsive noise is spatially independent, if p is the
probability of filtering a given pixel, the probability
for two is p®. This is, therefore, the approximate

Config} MAE median wei-med ada-sun mod-rest mask-med mod-wei mask-matrix
(S-0) MAE MAE MAE MAE MAE MAE MAE
Radiograph
3/SP10/0 3.11 0.11 0.08 0.23 0.0201 0.0207 0.021 0.0207
5/SP10/0 3.11 0.15 0.11 0.23 0.019 0.018 0.019 0.02
3/SP20/0 6.31 0.13 0.16 0.43 0.0401 0.043 0.042 0.0404
5/SP20/0 6.31 0.16 0.12 0.43 0.044 0.043 0.044 0.045
3/SP30/0 9.56 0.15 0.35 0.59 0.064 0.068 0.068 0.065
5/SP30/0 9.56 0.18 0.16 0.59 0.088 0.087 0.088 0.089
3/G10/1 275 0.12 0.09 0.01 0.030 0.027 0.031 0.030
5/G10/1 275 0.15 0.11 1.01 0.025 0.023 0.024 0.026
3/G20/1 547 0.16 0.24 3.09 0.14 0.10 0.15 0.14
5/G20/1 5.47 0.20 0.15 3.09 0.084 0.082 0.083 0.085
3/G30/1 8.06 0.23 0.76 5.76 0.418 0.298 0.457 0.422
5/G30/1 8.06 0.25 0.20 5.76 1.254 1.218 1.278 1.257
Text
5/0/0 0.00 3.31 2.19 1.63 0.0029 0.0028 0.0029 0.0029
3/SP10/0 3.18 1.77 1.03 2.07 0.35 0.25 0.29 0.24
5/SP10/0 3.18 331 2.28 2.07 0.49 0.39 0.45 0.40
3/SP20/0 6.29 2.09 1.56 2.65 0.67 0.50 0.56 0.47
5/SP20/0 6.29 337 2.41 2.65 0.89 0.71 0.82 0.73
3/SP30/0 9.28 248 2.06 334 1.01 0.81 0.87 0.75
5/SP30/0 9.28 344 2.59 334 1.34 1.08 1.27 1.12
3/G10/1 2.57 1.78 1.06 3.00 0.88 0.68 0.80 0.66
5/G10/1 2.57 3.28 231 3.00 0.71 0.66 0.69 0.67
3/G20/1 5.10 2.19 1.70 5.04 1.43 1.26 1.42 1.24
5/G20/1 5.10 3.34 249 5.04 1.603 1.3%6 1.551 1.405
/G30/1 7.59 2.76 248 7.32 2.53 2.56 2.70 2.43
1G30/1 7.59 354 2.96 7.32 2.29 2.05 2.21 2.09
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reduction factor of the blotch effect. The reduction
may be observed in the filtered text image in Fig. 2.
5. Robustness. As a measure of the robustness, the break-
point has been defined as the number of aberrant
pixels in the window that cause the output to be
aberrant [15]. This measurement is difficult to calcu-
late because of the inherent statistic. However, the
breakpoint is easy to estimate if M = M is assumed
again, since an ideal mask detects all aberrant pixels
for filtering, and neither of them in the window is used
for substituting a bad pixel. The only possible aber-
rant output happens when all pixels in the window are
aberrants, since the filter cannot proceed. In this case

Table 4 Continued

the breakpoint is 100%. The robustness of these filters
can be visually observed in Figs. 1-4.

4.3. Influence of the filter parameters

1. The window. The four proposed filters work better

with windows of 3 x 3 than 5 x 5, with respect to
the results of the other filters. However, the difference
decreases as the noise increases. Obviously, the larger
the window, the fewer the details detected.

. The noise. The general behavior with respect to the

noise is highlighted in the noise-free experiment
shown in the first row in Table 1 (text). The MAE

Config} MAE median wei-med ada-sun mod-rest mask-med mod-wei mask-matrix
(S-0) MAE MAE MAE MAE MAE MAE MAE
Echograph
3/SP10/0 324 0.52 0.32 0.93 0.070 0.0725 0.0716 0.0677
5/SP10/0 3.24 0.85 0.61 0.93 0.113 0.097 0.0988 0.104
3/SP20/0 6.26 0.63 0.46 1.22 0.141 0.147 0.143 0.135
5/SP20/0 6.26 0.89 0.66 1.22 0.223 0.193 0.197 0.205
3/SP30/0 9.56 0.74 0.74 1.60 0.225 0.250 0.240 0.222
5/SP30/0 9.56 095 0.73 1.60 0.336 0.303 0.303 0.313
3/G10/1 2.27 0.51 0.31 1.38 0.127 0.128 0.126 0.125
3/G10/S 2.27 0.51 0.31 1.38 0.096 0.098 0.095 0.094
3/G10/10 2.27 0.51 0.31 1.38 0.100 0.100 0.0989 0.0977
5/G10/1 2.27 0.85 0.61 1.38 0.18 0.17 0.171 © 0175
5/G10/5 2.27 0.85 0.61 1.38 0.163 0.151 0.154 0.157
5/G10/10 2.27 0.85 0.61 1.38 0.201 0.184 0.187 0.191
3/G20/1 4.68 0.68 0.53 3.08 0.256 0.256 0.255 . 0.254
3/G20/5 4.68 0.68 0.53 3.08 0.207 0.209 0.207 0.205
3/G20/10 4.68 0.68 0.53 3.08 0.211 0.208 0.207 0.207
5/G20/1 4.68 0.931 0.69 3.08 0.346 0.326 0.329 10.334
5/G20/S 4.68 0.931 0.69 3.08 0.302 0.28 0.283 0.289
5/G20/10 4.68 0.931 0.69 3.08 0.328 0.304 0.309 0.313
3/G30/1 7.12 0.934 0.99 5.21 0.461 10.445 0.449 0.459
3/G30/S 7.12 0.934 0.99 5.21 0.497 10.428 10.446 0.472
3/G30/10 7.12 0.934 0.99 5.21 0.497 10.434 10.453 0.489
5/G30/1 7.12 1.12 0.89 5.21 0.535 0.502 0.504 0.520
5/G30/5 7.12 1.12 0.89 5.21 0.461 0.425 0.428 0.440
5/G30/10 7.12 1.12 0.89 5.21 0.462 0.428 0.432 0.442
Lenna
3/SP10/0 12.66 2.35 1.51 4.69 0.747 10.765 10.770 +0.747
3/SP20/0 22.58 2.74 2.23 6.85 1.091 1.144 11.149 +1.091
3/SP30/0 38.17 3.19 3.42 9.18 1.429 11.525 11.533 +1.429
3/G10/0.1 7.05 2.38 1.48 4.50 0.897 10.909 10.914 +0.897
3/G10/0.5 7.05 2.38 1.48 4,50 1.029 11.05 11.058 +1.028
3/G10/1 7.05 2.38 1.48 4.50 1.029 11.052 11.058 +1.028
3/G10/5 7.05 2.38 1.48 4.50 1.310 11.34 11,349 +1.310
3/G10/10 7.05 2.38 1.48 4.50 1.509 11.56 11.563 +1.509
3/G20/0.1 14.21 2.84 221 7.18 +1.450 11.469 11.475 +1.453
3/G20/0.5 14.21 2.84 2.21 7.18 +1.518 11.549 11.554 +1.519
3/G20/1 14.21 2.84 2.21 7.18 +1.518 11.549 11.554 +1.519
3/G20/5 14.21 2.84 221 7.18 +1.706 11.766 11.761 +1.707
3/G20/10 14.21 284 2.21 7.18 +1.905 11.971 11.970 +1.905
3/G30/0.1 21.4 3.33 3.06 10.52 2.080 12.088 12.099 2.081
3/G30/0.5 214 3.33 3.06 10.52 2.103 12.128 12.141 2.114
3/G30/1 214 3.33 3.06 10.52 2.103 12.128 12.141 2.114
3/G30/5 21.4 3.33 3.06 10.52 +2.288 12.322 12.340 +2.290
3/G30/10 21.4 3.33 3.06 10.52 +2.440 12.484 12.491 +2.442
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shows the improvement compared to other filters. In
Mask-Model filters, only a few pixels (16) have been
processed, against the high number of pixels (40,000)
in the image. This number shows the success of Mask-
Model filters.

3. The selection factor. The more the cohesion in a
model, the more its reliability, in the sense that the
grey levels the model considers as probable prove to
be possible in reality. On the other hand, a low-
cohesion model may assign some probability to grey
levels that actually never appear in any window, Thus,
the less cohesion a model has, the higher a selection
ratio p must be chosen, because the aim is to recognize
the noise.

4. The model. Very subtle, local differences can be
appreciated with respect to the model used. As an
example, the radiograph is better filtered (with respect
to the reference filters again) than other images. The
theoretical analysis needs a more complex study of the
model quality in relation to the operations involved in
masking and filtering.

5. Iterations. Only the results obtained with the Lena
image show different convergence behavior, depend-
ing on the filter, because the hypergeometric model is
not the ad hoc one for Lena. Model-restoration and
mask-matrix filters reach the root because their
operation is more determined by the model.

5. Conclusions

Four new variants of the median-type filter, called
Mask-Model filters, have been developed with the aim
of reducing the usual damaging side-effects due to the
processing of the good, non-corrupted pixels in the
image. This is achieved by means of a noise-estimation
mask, which preselects the pixels that must be processed.
The mask is obtained from the information provided
beforehand by a suitable composition model. The
behavior of these filters has been examined with respect
to the different configuration operations.

The results have proven these new filters to be must
more efficient in removing impulsive noise than the other
known median-type filters. Also, they show good root-
finding, blotch effect and robustness, although they are
not stack filters. Theoretical analyses of the performance
and properties of the filters are currently being

investigated by the authors, as well as the promising
application of these filters in cases where the empirical
model is available with a good enough quality.
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