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A bstract

A multiresolution analysis of digital gray-level images is presented.
A gray-level multi-scale framework is determined from two main as-
sumptions: the gray scale is binary at the nest spatial resolution, and
the gray levels of composed regions are obtained additively. In order
to interrelate the gray-level histograms of the same image at di®erent
resolutions, probabilistic linear models are developed, which are then
applied for estimation. Linear-optimization theory is used as a way of
constructing such models. A general procedure for image processing
is sketched, based on gray-level estimation. A versatile algorithm for
nonlinear Itering is derived. Some examples of prospective applica-
tions are given.
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| INTRODUCTION
.. BACKGROUND

During the lastdecade there hasbeen a considerable surge of interest in m ul-
tireso lution analysis for im age processing. Pyram id m ethods, for exam ple,
have com m anded considerable attention [1,2,3,5,6,7,8,20]. Themul-
tiresolution concept itself has been worked out from several points of view
[, 10, 22].

The present authors have been working for a few years in a particular
line of research within the eld of m ultiresolution analysis of digital in ages
[L2,18,19]. A pplications in in age processing,nam ely nonlinear ltering, are
beginning to be developed [15]. For the sake of convenience the m ain body
of these ideas is included w ithin the paper.

D igital gray-level im ages are generally described and processed w ith the
sam e gray scale, typically 256-ranged, for all resolutions. This is because
both theoretic and com putational treatm ents are easier and the description
ismoreuntform ,while in practice there isno need to change the scale. Som e-
tin es, how ever, the original scene has already a discrete, even binary, set of
gray levels. For exam ple, coherently-imn aged rough surfaces w ith speckles, as
well as printed im ages, are cases in which the im age is binary at a spatial
resolution ne enough. But, because of either the equipm ent being used, or
the adjusting param eters, or any other conditions of observation, an in age
at a coarser spatial resolution is obtained. M any dierent gray levels can
then be distinguished, depending on the num ber of black and white pixels
included in the m inimum region observed. Thus, the original binary gray
scale must be expanded up to a level determ ined by the spatial resolution
used to observe the scene.

T he basic concern of the present paper is to derive relationships for digi-
tal gray-level in ages described at di®erent spatial resolutions w ith di®erent
corresponding discrete gray scales. In other words, a fram ework of spatial
resolutions near from that of the binary gray scale is selected, whereas the
com m on fram ework is far from it. The presentauthorshave already explored
thissub ject. C ertain relationshipsbetween the entropiesofthe gray-levelhis-
togram s of a given im age at di®erent resolutions have already been studied
[L19]- The interest of this study lies in the fact that the Shannon entropy
of the histogram 1is a m easure of the inform ation conveyed by the im age



(when considered as a m essage) under certain assum ptions. A Iso, the prob-
lem s concerning the estin ation of the histogram at a given resolution from
the histogram ata coarser resolution have been addressed previously by the
present authors [L3, 14].

1.2 CONTENT OF THE PAPER

In Section Il we rst introduce the interdependence between the gray-level
histogram satdi®erent resolutions. T hen, the probabilistic histogram estin a-
tion is form alized by m eans of linear m odels, w hich are speci ¢ to classes of
in ages. B oth elem entaland com posed linearm odels are estab lished . Section
111 shows how linear m odels can be obtained by solving linear optim ization
problem s, using appropriate constraints. Solutions for som e general prob-
lem s are illustrated. Two interesting cases in particular are posed: one for
a non-elem ental m odel leading to the hypergeom etric m odel; another for a
nonlinear optim ization problem | thatofm axim izing the resulkting entropy.
Section IV dealsw ith the sub ject ofnonlinear processing from those m odels
of estim ation and applies the theory to design algorithm s for im age process-
ing. Finally, exam ples of Itering and superresolution operations are o®ered.

I3 DEFINITIONS AND NOTATIONS

W hen a surface is observed, an im age is obtained. The spatial resolution
of this im age is given by the size of the sm allest observable region on the
surface. If a second in age of the sam e surface can he obtained with a ner
resolution, then theold m inim um detailscan be decom posed into new sm aller
observable regions. 0 bviously this decom position may not always be done
w ithin an exactnum berofregions,butthiscan bem ade possible by selecting
the appropriate resolutions. T hus,we select these resolutions in order to have
a sequence ofsizes in powersoftwo.

The term pixel is used here as the unit for m easuring the size of the
regions. A Ithough the actual size is m erely a m atter of suitability in xing
a unit, it is better to think of the pixelas the m inim um region at the nest
reso lu tion .

T he notation concerning spatial resolution is:

m = 0;1;2;::: the resolution index (from ne to coarse)



m -region the m inim um observable region at resolution m .

Ry = 27 the size in pixels ofevery m -region.

R,o0
Rm

quotient either ofsizesor totalnum ber ofregions for the pair
(m;m 9.

Because pixelsarede ned asblack orwhite, the gray-level scale isbinary
at this nest resolution. Since regions are com posed of p ixels, the gray level
of a region is its num ber of black pixels. This actually is equivalent to
the naturalassum ption ofgray-level additivity when com posing regions, as it
happensin the physicaldom ain for the intensity in a noncoherent integration.
T herefore both the gray scale and the gray-level resolution depend on the
spatial resolution, so that a non-norm alized gray scale is used.

T he notation concerning the gray-level resolution is:

Mpmo=

Knp = f0;1;:::;R g the gray scale at resolution m .

k2K, the gray levelofan m -region, given by the num ber of black
pixels included.

(m ;k)-region an m -region w ith a gray level equal to k.

Figure 1 illustrates all these concepts.
B ecause of the gray-level additivity, for all m @regions com posed of a
partition consisting of r, ,, o disjoint m -regions®, with gray levels k;; i =

I O
k O= % ki mo n:
i=1
By counting the num ber ofm -regions for each gray level throughout the
in age, reltive frequencies of gray levels result. They constitute the m -
histogram of the im age. W e shall represent it by a probability distribution.
Related notations are:

N Ny num ber of (m ;k)-regions, m -regions, in the whole im age.

Ponwx= Lok relative frequency ofgray level k, taken as a probability.

Pn = TPy «0Ok2k, the gray-levelm -histogram .

! The notation about resolutions and gray levels has been slightly changed in this paper
with respect to others from the same authors, to improve the readability.
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Il HISTOGRAM ESTIM ATION

The two sub jects presented here | the interdependence between histogram s
of the sam e image at di®erent resolutions and the estin ation of one his-
togram from the other| , are conceptually distinct, but form alized by the
sam e relationship.

1.1 HISTOGRAM INTERDEPENDENCE

Let us consider two ~xed resolutionsm ;m Cwith m < m S LetP,obe the
n Chistogram ofany in age given at resolution m © Even ifwe cannot obtain
the sam e im age at the ner resolution m , it may be still possible to infer
som ething about itsm -histogram . T he average gray levelof the im age m ust
obviously be an invariant value in order to achieve com patibility between
the corresponding histogram s when we change the resolution. This is not
suz cient, however, for determ ining uniquely the m -histogram . Thus, the
interdependence betw een histogram satdi@erent resolutions isofkey interest.
In particular, the relationships [11]

Pm;k: . Q(m ;kjm ch)PmO;ko; (k2 Km) (1)

kOZKm 0

answer in a certain way the interdependence question. Here,Q (n ;kjn k9
stands for the proportion of the (m ;k)-regions w ith respect to the num -
ber of m -regions, all within the (m $k9-regions. Each term in the sum of
(1) clearly represents the proportion of the (m ;k)-regions com ing from the
(m Sk9-regions. In m atrix notation:

Pn = QqpapoPpo (2)
where Q 4 ,ostands for the R, + 1)£ (R, ot 1) matrix
0 . . . 1
0 (;0jm 30) Q(m;0jm 1) ¢e¢ Q (m;0jm OR ;o)

:1jn G0 1jn G1) ¢ae 1jn GR ;o
000 lQ fm AU fm ) ¢ Jm: ) @)
Q(m ;ijm 0’0) Q(m ;ijm C:l) ¢¢¢Q(m ;ijm OsRmO)

TheproportionsQ can beused tode neaclassofin ages asheing the set
of im ages w ith the sam e m atrix Q , , o. The setofall in ages can be divided
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into classes in this way. T his classi cation procedure of im ages perm its us
to state thatwhen we have a m atrix Q , ,, o arising from a given real m age,
then we have a representation fora speci c classofim ages, including the one
given, and all those thatdi®er in only certain spatial perm utations of pixels
and regions.

1.2 THE LINEAR M ODEL OF ESTIM ATI0N

Ifonly Ppoand Q , ,o0fan im age are known, then ftsunknown m -histogram
can be obtained from the relationships (2), where the Q *s take on a w ider
probabilistic m eaning than m erely being thought of as frequencies. In fact
they can be obtained [L8]w ithout counting regions in the m age | that is,
from certain prior inform ation abouteither the m age or, hetter still, its class.
A ccording to (2),Q  »oexpressesour know ledge abouta classofim ages from
the standpoint of the histogram interdependence. In this sense, the m atrix
Qpnapowillbe called a linear m odel of dependence | due to the linearity of
)] ,ofwhich the elem ents Q (n ;kjn k9 are conditional probab ilities.

The class to which a given im age belongsmay be unknown (the im age
can be obtainable only at resolution m © notm ). Nevertheless, if it can be
assigned to a certain m odelQ , , o, then them -histogram can he estim ated by
(2),where Q y noisnow considered as a linear m odel of estim ation. A good
estin ation relies exclusively on a good m odel, ie. a good approxim ation of
the actual set of conditional probabilities for the proper class of im ages.

Criteria for setting up m odels

A key m atter ishow to nd the properm odel fora speci ¢ kind ofproblen ,
not for a particular image. Two di@erent approachesm ay be followed, the
theoretical and the em pirical one. In the rst, the m odelis detern ined from
the problem athand by the generaland appropriate features, w hich usually
refer to the class of im ages for the m odel to be applied. In the em pirical
approach, a set of im ages are considered as a class based on their look or
other inform ation; then, they are taken as a training set and processed to
get the corresponding em pirical m odel. Som e work has been published by
the present authors [19] about the theoretical approach; the em pirical one,
while being stilla m atter ofan ongoing research,w illnot be treated here.



The theoretical criterion to be satis ed by a desired m odelm ay he spec-
i ed at three di®erent levels:

Thecolumn level: A criterion is stablished separately for each colum n of
each m atrix (k%m ;m Ogiven).

Thematrix level: A criterion is tablished for each m atrix (n ;m Cgiven),
the sam e for all its colum ns.

The general level: A unique criterion should be satis ed forallcolum nsat
allpairsofresolution. 0 ne exam plew illbe shown in Section 11.2.1
as the hypergeom etric m odel, w hich satis es the equiprobab ilistic
com position assum ption. At this level, the transitivity between
matrices Q , 5 o IS a desirable property.

Exceptfor the follow ing paragraph, the rest of this section and the m ain
body of the next refer to the colum n level.

I1.2.1 Non-consistentm odels.

It is possible to consider non-consistent m odels as a extension of the the-
ory of linear m odels, the m ain use for which m ight be to design processing
algorithm s, instead ofm erely estim ating histogram s. Here we lay outa gen-
eralized theory.

A general linear m odel takes the form (2), in which P, o is the histogran
ofan input mage, I, ,while P, isthe histogram ofan output im age, I,y .
Thecasem = m Oisallowed as well as the case m > m © A general linear
model is intended to estin ate P, from P, o.

In this context, if the constraint I,, = 1,,; IS in posed, then we have
consistent m odels just as they are studied in this paper. D epending on the
in posed relationship between I, and l,,;, di®erent theories w ill em erge
concerning linear m odels.

Elem entalm odels

Fora given pair ofresolutions (n ;m 9;m < m 9and fora "xed k2 K, o, the
corresponding kN colum n of the (n ;m 9-m atrix in (3) expresses the average
proportions of the (n ;k)-regions w ithin the (n Sk9-regions, w hich can be



com posed ofm -regions in allpossible ways. Letan im age be thoughtas hav-
ing all the (n ©k9-regions divided into (n ;k)-regions in the sam e way. T he
sinple model associated w ith this special im age will be called an elm ental
model. W e shall study these, keeping in m ind that the general situation is
actually am ixture ofelem entalm odels. M ore speci cally,weshallprove that
the probability distribution fQ (n ;kjn Sk9g,,,. in the general case is a lin-
ear convex com bination of all the probability distributions, each associated
to a xed com position.

The number of di®erent com positions, given by com binatorial relation-
ships, has been referred to as com positions w ith constraints [21]; this is the
number of ways a positive integer kOcan be obtained as the sum ofr, ;o

integers of the form k 2 K, :
h o, i
Rwt

L
8(n;n k9 oy o T AR D
j= 0 J rm;mol1

A

Let us consider a particu lar com position
kO= kit kot o060+ ke o3 (Kj2 Ky 8); 4)

ofwhich the associated probability distribution is

0 (m :kjn ©k9 = r”k C k2 K.):

mmo

where ny denotes the num ber of occurrences of integer k in (4). Al the
probabilities are m uftiples of 1=r, ,, o, and the m odel thus constructed is an
elem entalm odel.

Composed models

Returning to the general case, assum e that all the (n Sk9-regions in the
given m age have been exam ined, and that the ways in which these regions
are com posed by m -regions have been ordered from 1 to © (n ;m Ck9. Let ;
be the proportion of (n ©k9-regionsdivided according to the ith con position,
and let fQ ;(n ;kjn Sk9g be the associated probability distribution. T hen, for
the subset of (n Sk9-regionsofthe in age and the class of in ages represented



by this subset,we nd the follow ing com posed m odel:

O (mp %0
Q0 (m ;kjn k9= ,iQi(m skjn Sk9; k2Ky)
i= 1
that is
0 (nya %% 0 (nya %%
Q = LiQ s ©- ,i- 1) it L ®)
i= 1 i= 1

which is a linear convex com bination of the elem entalm odels Q ;.

Because © (m ;m Sk isa “nite num ber, we have the follow ing property:
\for any linear m odel, the probability distribution fQ (n ;kjn Sk9g is a point
belonging to the convex polyhedron generated in the space R *» *! by the ek
en ental probability distributions £Q ;(n ;kjn 2k9ge® ™ ™ each one associ-
ated to a xed com position (4)".

The neutralm odel

Aswe have seen above (Section 11.2), com posed m odels can be built up as
linear convex com binations from elem ental m odels. A lthough these m odels
donotproperly optim ize any linear ob jective function, they can be ofinterest
for certain situations. An exam ple is shown below .

Taking into account that m any di®erent arrangem ents of binary pixels
may lead to the sam e com position of an (m Sk9-region with m -regions, it
Is natural to cgoose the set of weights f, ;g In (5) as the set of norm alized
numbers fC ;= Cig of arrangem ents possible for each com position i. This
com binatorial problem is easy to solve. Let Q ; be the ith elen ental n odel
(L- i- 0 :n%k9),which corresponds to the ith con position k= k; +
ko + ¢¢¢+ k.. Let C;be the number of pixel arrangem ents m aking up this
com position. Thisnum ber is

Ci= M Y R, T

Nikleok, K

k 2Kpn

where ny stands for the num ber of occurrences of tern k in the ith con po-
sition .



Thus, by comeosing amodelvia a linear convex com bination w ith coef-
~cients, ;= C;= C;,weobtain the m odel [11]

3 3 -

kO Rmoik0 0
JQoam Q - k Ron-ik . m<m .
Q(m lk.lm 1kc)_ 3R . ] 0 ; 0. ) (6)
no0 max®Rpy iR, ot k°’g-k-ninf&°Rpn g
Rm

which is the well-know n hypergeom etric distribution.
The follow ing com m ents are relevant to the hypergeom etric solution:

1. The hypergeom etric m odel (Fig. 3e) is sim ilar to the low -contrast one
in Fig. 3a, although the rst one is not as closely grouped. Thus, it
Is another conservative m odel. Its m atrix has the same sum (R o+
1)=R, + 1) in all rows, and therefore leads to a uniform m -histogranm
starting from a uniforn m Zhistogram .

2.Such a solution is obtained by assigning a weight to each elem ental
distribution as given by the number of arrangem ents providing the
corresponding com position. Hence, we are assum ing that all the ar-
rangen ents of the pixek in the (n Sk9-regions are equally probable.
This is the most unbiased hypothesis when nothing is known about
the m -histogram (except that it m ust also coexist w ith the inputnm @
histogram ), in accordance w ith the M axim um -E ntropy P rincip le.

11 LINEAR M ODELS ASSOLUTION
OF OPTIM IZATION PROBLEM S

T his section developes a m ethod to obtain linear m odels verifying certain
ideal conditions. T hese theoretic m odels can be applied when dealing w ith
in ages satisfying the sam e conditions (or near from them ). In the sequel
we consider a given environm ent (n ;m 9, that is, a ~xed pair of resolutions
(m:m9withm <n?C

Para muchas aplicaciones practicas, no hay que tragarse esto, pero para
clertos analisis teoricos, esta seccion tiene un interes intrinseco,y su im por-
tancia reside en que sim pli canotablem ente labusqueda dem odelos teoricos.

A's dem onstrated above, every colum n of a linear m odel (3) is a point
belonging to a certain convex polyhedron. This suggests the possibility of

10



searching for such a column by optim izing a given linear function of the
probability distribution £Q (n ;kjn Sk9g, . , for the proper k°2 K ;0. In
other words, we are solving linear optim ization problem s (LOP ) in order
to nd linear m odels to m atch som e kind of criterion of optim ality. This
problem can be posed as follow s:

Linear O ptin ization P roblem (LOP):Letm 9m and k©he “xed. G iven
a linear function of the m -probability distribution

o= '(po;p1;:::;pRm): Bopgt Oyp, + CCCH ®RmpRm; (M)

to the (linear) constraints given by the convex polyhedron associated to the
environm ent (n ;m k9.

Tobelong to the convex polyhedron im pliesa setofconstraints, including
being a probability distribution, avoiding certain m possibilities (p, = 0 if
k > kOor ifR, i k> Ryoi k9, and preserving the average gray level
in (mn k9-regions ( kp, = kOFfmmo); these constraints, how ever, are not

k 2K
enough to determ ine the polyhedron (a study of consistency can be seen in

[11]D).

Since the solution for thisLO P will in any case he a proper vertex of the
polyhedron, thatis, an elem entalm odel, it ispossible to put forward another
property: all the px in the solution are rational num bers such as

Ny

Pp =

Fnpmo

wheretheny are integers. Thiscom esfrom considering thatelem entalm odels
arise from ~xed com positions of (n Sk 9-regions w ith m -regions.

B ecause som e ob jective functions * can have helpfulm eanings, itisuseful
to study unisolvency (existence and uniqueness ofa solution) ofthe LO P for
som e kinds ofob jective functions.

.l UNISOLVENCY OF THE LOP FOR
SOMEOBJECTIVE FUNCTIONS

G iven an ob jective function ", the associated LO P does not generally have
a single solution, since this may be a full edge, face or hyperface of the
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polyhedron. It m ay seem necessary to study each separate ob jective function
to reach a conclusion concerning the unisolency ofthe LOP. It is possible,
how ever, to state som e theoretic results forunisolvency,w hich hold for certain
sets of ob jective functions w ith a com m on characteristic.

Letm Oand m be two “xed resolution levels (n < m 9 and ket k®2 K, o
be a given gray level (0 - k©- R,0). Let " be an objective function given
by its coet cients according to (7).

Sequences. " hasa [-convex, plane or \ -convex sequence in its kKt tern
(- k- Rypi 1),when thequantity ®y;1j 20+ @, IS positive, zero, or
negative, respectively.

Let us say that an ob jective function is totally [ -convex, plane or \ -
convex when it has [ -convex, plane or \ -convex sequences, respectively, in
all its term sfrom k= 1tok=R, j 1 (seeFig.2ahb.).

Interchanges. Let us consider an (m Sk9-region com posed of ry 5o m -
regions, and having a given distribution of (elem ental) black and white pix-
els. An interchange consists of selecting two pixels, a black one and a w hite
one, in the (n Sk9-region, and interchanging their positions. W e study in-
terchanges involving di®erent m -regions inside the sam e m region, because
such interchangesm odify the gray levels of these m -regions. B elow ,we shall
speak only about this kind of interchange.

An interchangew illbe known asa sm oothing interchange (SM I) when the
absolute di®erence of gray levels of the involved m -regions is sn aller after
the interchange, and 1t w ill be called a sharpening interchange (SH 1) when
this di®erence is greater.

Any interchange w ithin an (n Sk9-region w ill leave its gray level (and
thus the m Zhistogram of the in age) unchanged, but the m -histogram m ay
di®er. Now we shall analyze the e®ects ofan interchange on the value ofan
0b jective function.

1.2 RESULTS FOR TOTALLY CONVEX
OBJECTIVE FUNCTIONS

Theorem 1 Letus consider an interchange within an (m %k9-region from

a given image. Let " be an objective function, the vaklies of which on the

n -histogram of the m Zregion are *, and ", , respectively, before and after
interchanging. Thus we have the follow ing results (see Fig. 2,a,b and c):
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If" is and the interchange is then
Totally plane any aT g
Totally \ -convex SM 1 > e
Totally \ -convex SHI < T
Totally [ -convex SH <,
Totally [ -convex SH I >N,

m -histogram of the m region | considered itself as an in age| before inter-
changing. W e have "5 = @qopy+ @p,+ €0C+ Op, py . Letk;and ky (ky < ky)
be the gray levelsofthem -regions involved in the interchange. A SM lispos-
sible only ifk,+ 1 - k,j 1.After interchanging, k,; has increased by 1, and

som e alterations w ith respect to the previous one:

Ok, = Py, i !
qk1+1 = pk1+1 t !
qk2i1 = pk2i1 * !
qu = pkz I '
when k{+ 1< ky,j 1;and
Ok, = Py, i !
qk1+1 = qk2i1 = pk1+1 t 2!
Ok, = Py, i !
when ky+ 1= kyj 1,where! = 2

Then we have ", = 0,0, + ¢¢¢m+:m®quRm. Ifwe subtract and sim p lify,
then
'Ai 'B: !(i®k1+®k1+1+®k2i1i ®k2);

w hich isa strictly positive quantity. In fact, thecase k;+ 1 = k,j listrivial,
since ifk = ky+ 1=k, i 1 then we have

PG Oggat 204§ Byiq)> 0;
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and the rem aining cases are solved by twice adding and subtracting all the
interm ediate coet cients
h
i g ! GO+ 204,410 Brye2)

+ (i®k1+1+2®k1+2i ®k1+3)

(i Okt 204,52 ®k2i1)i
+ (i®k2i2+ 2®k2i1i ®k2)

where all quantities in parentheses are strictly positive. m

The follow ing theoretic resu It estab lishes the unisolvency of LOP for to-
tally [ -and \ -convex ob jective functions. Totally plane functions are not of
interest because they do not vary when m aking interchanges, and therefore
cannothe optin ized (allpointsin the polyhedron are a solution ofthe LOP).

Theorem 2 If" is a totally [ - or \ -convex objective function, then the
LOP hasonly one solution. M ore explicitly:

A If" istotally \ -convex, the solution ofthe LO P is the elem entalm odel
corresponding t a ~xed com position for all (n Sk9-regions in such a
way thatallm -regions have the sam e gray lvelor, atm ost, wo con-
secutive gray levek.

B: If" istotally [ -convex, the solution ofthe LO P is the elem entalm odel
corresponding to a ~xed com position of all (n Sk 9-regions in such a
way thatallm -regions have an extrem e gray level (k = 0 ork = Ry ),
except for, atm ost, one m -region in each (m Sk 9-region.

Proof.

A : According to theorem 1,every SM I causesan increase in any \ -convex
ob jective function. The optimum solution m ust therefore correspond
to a com position which allowsno SM 1 whatsoever. Every com position
di®erent from the one expressed m usthave at least two m -regions w ith
non-consecutive gray levels, and this situation alvays enables us to
m ake SM I%.
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B: Similarly,every com position di®erent from the one expressed m usthave
at least two m -regions w ith non-extrem e gray levels (between 1 and
Ry i 1),and thissituation always enablesus to m ake SH I'S. =

Exam ples of linear m odels for totally \ -convex and [ -convex ob jective
functions can be seen in Section I11.5.

The above results indicate that the solution obtained upon optin izing a
totally \ -convex or [ -convex ob jective function * does not change when we
add any totally plane function to *. This is true despite the fact that this
addition can easily m ove the position of the greatest coet cientof " . Our
conclusion is thatthe solutionsofthese two LO P *sdepend on only the shape
(convexity) of the sequences of coet cients of the ob jective function and not
on the slope ofthem . Both solutionsw illbe studied in m ore detail in Section
Hi5.

I3 RESULTS FOR PARTIALLY CONVEX
OBJECTIVE FUNCTIONS

W hen we consider non-totally \ - or [ -convex ob jective functions we nd
that it is still possible to establish som e resu lts concerning the unisolvency
of LOP,as shown below .

Theorem 3 Let" bean objective function w ith [ -convex sequences in term s

2-d). Then, the LOP is unisolvent, its solution corresponding to one of the
follbwing m utually incom patible com positions:

A : the gray kvelofalln -regions in the sam e (n Sk 9-region is equalto 0 or
ko, except, at m ost, one with an interm ediate gray level (0 < k < ky),
or

B : the gray levelofallm -regions in the sam e (n Sk 9-region is equal to k
or R, , except, atm ost, one with an interm ediate gray level (ko < k <
Rm )-
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Proof. Cases A and B are mutually incom patible (except for the trivial
case of all gray levels being equal to ky) because the average gray level of
m -regions is strictly sm aller than ko in case A ,while it is strictly greater than
ko In case B .

A ny com position other than the above two must ful lat least one of the
follow ing conditions:

2 1t must have at least two m -regions w ith gray levels between 1 and
ko i 1. In this case it is possible to m ake a SH I, thus increasing the
value of " .

2 itmusthave at least two m -regions w ith gray levels between ko+ 1 and
Rn i 1,with same resultasabove.

2 it must have at least one m -region with a gray level between 0 and
koj 1,and anotherone with a gray level between kot 1 and R, . This
case allows us to m ake a SM I, thus again increasing * . m

An example of a linear m odel for this problem can be seen in Section
Hi5.
Curiously, a sim ilar result for twice \ -convex functions (\ -convex se-

inform ation aboutthe coet cients®, ofthe ob jective function. 0 ne optim um
solution for this case m ust ful lall of the follow ing conditions:

2 allm -regions (inside (m Sk 9-regions) w ith gray levels between 0 and kg
must have the sam e gray levelor,atm ost, two consecutive gray levels.

2 the sam e condition for all m -regions w ith gray levels between ko and
Ron-

2 one (m Sk9-region cannot sin ultaneously have an m -region w ith a gray
level between 1 and ko, and another with a gray level between k, and
Rnil.(Consequently,thiscondition excludes the possibility ofhaving
two ormorenm -regions w ith a gray level equal to ko).
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Reasoning sim ilar to that for the previous result leads us to conclude
that these three conditions are needed; the failure ofone or m ore m akes an
interchange possible (SM I for the rst and second conditions, SH I for the
third one), allow ing an increase of * .

H owever, the conditions expressed do not lead us to a single m odel but
rather to two m odels, which are generally di®erent and notm utually exclu-
sive:

Az only gray levels appear 0; k and k + 1,with k > ko.

B:only gray levels appearR, ; k and k j 1,with k < ko.

Forexam ple, et us “x the valuesm = 3;m ©= 5; kO= 5; ko= 4 R, =
8); Rno= 32;r, 50= 4)sothatevery m @region is com posed of4 m -regions.
Solution A corresponds to the com position 0+ 0+ 0+ 5, i.e. threewhiten -
regions and one w ith gray level5. Solution B corresponds to the com position
1+ 1+ 1+ 2,1e.threenm -regionsw ith gray level 1 and one w ith gray level
2 (no black m -region). T he respective m -histogram s are
n (0]
3030;030;450;0;0

0:2:1-0:0:0:0:0:0

141740

Pa
Pg

Now letusconsider the follow ing three ob jective functions:

"= 10pgt 9pyt T:0p, t dpyt Opyt dpst T:0pg t 9p, + 10pg
", = 10pg+ 9pyt Tidpy+ dpyt Opyt+ dpg+ Tilpgt+ 9p, + 10p,
3= 10pg+ 9p, + 69p, + 4py+ Opy + 4ps+ 69ps + 9p, + 10pg:

B oth functions verify the speci ed conditions. Thuswe have :

"1(Pa)= 85= "y (Pe);
",(Pa)= 85< ",(Py)= 8525
"3(Pa)= 85> ",(Pg)= 8475

For™, the LOP doesnothavea single solution,whereas the only solution
for ", isd®erent from that for * ;.
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14 OVERALLOPTIM IZATION

In practice,to nd linearm odelsasa solution oflinear optim ization problem s,
wem ustrealize thatone such problem appears in each colum n ofthe m odel.
T herefore an ob jective function m ust be given for each gray level kS thus

the m atrix ofa linear m odel by a degenerate m @histogram in the kAN tern
Ppo= 10;0;:::;0;1;0;:::;0g, then the resulting P, 1is a copy of the kah
colum n ofthe m atrix. T hus, optim izing a given ob jective function * ,, on the
kN colum n of the m odel is equivalent to optim izing it on the m -histogranm
corresponding to a kdegenerate m histogram .

Every m Chistogram P, o is clearly a linear convex com bination of degen-
erate m histogram s. A s a result of the linearity of (1), the m -histogran P, ,
produced by a given P,o, is therefore the sam e linear convex com bination
of the respective m -histogram s produced by degenerate m ©histogram s. In

serve linear convex com binations, the resulting m -histogram is the one that
optim izes the com bined ob jective function:
X
= Pm O;kO' ko:
k02K, o

A naturalassum ption is thatallm @regions in a given im age (obeying the
m odel) are com posed ofm -regions, always follow ing a com m on criterion, as
stated by Level 2 on Section I11.2. T herefore, at its own gray level k© every
"o Mmustconvey the sam e characteristic of the histogram .

Let us consider the particular case in which all the ob jective functions
in the set are identically equal. The com bined ob jective function is also the
sam e, and therefore P, optim izes an ob jective function ", which does not
depend on P, o. In other words, it is possib le, regard less of the incom ing m
histogram ,to x an overallcriterion, or ob jective function, for m -histogram s
resufting from them odel. In thiscase allcolum nsofthem odelsin ultaneously
and independently optim ize the ob jective function.

W e shall speak generally about partial optim ization when the ", values
are not all equal. In this case, every resulting m -histogram optim izes an
ob jective function which dependson the incom ing m Zhistogram . T he inter-
pretation of the com bined ob jective function isnot always straightforward.
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s EXAMPLESOF OPTIM IZATION

A Il of the exam ples in this section were solved for valuesm = 4; m °= 6.
Thus every m region is com posed of four m -regions.

Example 1: Totally \-convex ob jective function

Thisexam ple shows amodelmatching the idea of low contrast in an im age
obtained at resolution m .

W e can understand that an m -histogram indicates low contrast when
its probability distribution fp,g,,. is very closely grouped. An ob jective
function in line w ith this idea m ust outweigh the closely grouped gray levels
against the sparse ones,asistrue ofevery totally \ -convex ob jective function.

The com position of each m @region with m -regions obeys the follow ing
behavior (by gray levels):

0=0+0+0+0 4=1+1+1+1 8=2+2+2+2
1=0+0+0+1 5=1+1+1+2 9=2+2+2+3
2=0+0+1+1 6=1+1+2+2 10=2+ 2+ 3+ 3
3=0+1+1+1 7=1+4+2+2+2 11=2+ 3+ 3+ 3 etc.

Thishappensin such a way thateither only one gray levelor two consec-
utive gray levelsappear in every com position. W e callitm odelB arbitrarily.
Figure 3a shows a 3D -graph of the m odel m atrix. In this gure and the
follow ing ones, depth represents the gray levelk and lines from left to right
correspond to the colum ns of the m odel.

In this exam ple the solution doesnotdepend upon the xed valuesofthe
coet cientsofeach ob jective function,butonly on itstotal\ -convexity. This
fact assures that the solution for this problem is exactly the sam e, whether
we pose an overall problem (w ith a maximum coet cient on m iddle level
R,=2forallcases) or a partial problem (with a m axim um coet cient on an
average gray level k® , o=R , for each case). An attem pt to re ne the overall
optim ization problem by giving speci cob jective functions for each gray level
kOdid not lead us to any solution dierent from that of the overallcase. T he
only determ ining factor in both problem shasbeen thatallcoet cients in the
ob jective functions are in \ -convex sequences.
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Example 2: Totally [-convex ob jective function.

This case is com pletely analogous to the previous one. The com position
of every m @region with m -regions is m ade in such a way that only black
and white m -regions appear except, at m ost, one in each m @region. Som e
com positions are

0=0+0+0+0 3=0+0+0+3 32=0+0+ 16+ 16

1=0+0+0+1 : 33=0+ 1+ 16+ 16
2=0+0+0+2 31=0+0+ 15+ 16 etc.

Wecall it modelZ . Figure 3b shows a 3D -graph of the m atrix of the
model.

A llcom mentsin the previous exam ple hold good for this one; partialand
overall problem s are equivalent and the solution is the sam e.

Example 3:Double [-convex ob jective function.

Figure 3c shows them atrix for the solution of the overallproblem ,where the
maximum coet cientisatthem iddle gray levelko = R, =2. W ecallitm odel
Y.

Figure 3d shows the m atrix corresponding to the solution for the partial
problem , where the m aximum coet cient for each kCis at the average gray
level kg = hki= k®, =R,o Wecallitmodell.

Comn ents.

The graphic representation in the above gures and the m athem atical com -
putation (not given) of the m atrix elem ents for all the exam ples give som e
inform ation about the features of the estim ated P, histogram s.

For exam ple, the graph for m odel B appears to be diagonal-like. T hus,
the estim ated k gray levelis sim ilar (upon norm alization) to that ofthe pre-
vious kOgray level; thism odelcan be called \conservative" in the sense that
it preserves the pattern of the inputm histogram | for exam ple, it provides
approxim ately the uniform n -histogram from the uniform m Zhistogram . 0 n
the other hand, since each of its k4N colum nsproduces, atm ost, two consec-
utive k gray levels, it can also be considered being a low -contrast m odel.
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M odelY leads to m -histogram s w ith basically three k values: 0,R, and
Rp=2. This model should be appropriate for estim ations in low -contrast
and m iddle-gray-level im ages, since the m -histogram has an overestim ated
m iddle-gray level.

Finally, extrem e gray levels are favored asmuch as possible in m odel Z,
and thus should e@ectively m odel high-contrast im ages.

T he term \contrast” asused above refersto them -region, signifying som e-
thing quite d®erent from contrast in signal processing, which also i p lies
changes in k°gray level.

IV. APPLICATIONS IN IM AGE
PROCESSING

A Ithough the presentwork ism ainly focused on the theoreticalanalysisofthe
probabilistic m odels of estim ation, we shall now exam ine som e applications
of these m odels in im age processing. The gray-value estim ation (not the
histogram ) for the regions in the im age at a certain resolution is perforn ed
on the basis of the observations of the gray values of the sam e im age at a
coarserresolution. U sefulalgorithm sare obtained for preprocessing ( Itering,
sm oothing, enhancem ent, etc.), which are adaptable to the class of im ages
at hand. A Il of these m ulktiresolution m ethods clearly have two features in
common:1,the imagetoprocessisnotwellde ned,because it iseither noise
degraded, ornotobtainable at the desired resolution in the physical systen ;
2,these m ethods involve techniques based on m anipulating w indow s around
the region to be estin ated.

Iv.1 METHODSAND ALGORITHMS

Now weshallexam ine a processing m ethod w ith linearm odels. LetB jbe the
num berofobserved m @regions containing the ith p -region,and letusdenote
their gray levels by kij; 1 - j - B (ifallthe possible translationsofm odule
R, have been done, then B = r, 5o for every i). For each one of these B ;
m 2regions, a new gray level ky; is assigned to the ith p -region, given by a
central value (typically the m ean, the m ode or the m edian) of the probabil-
ity distribution £Q (n ;kjn Ckij)gxak, ,according to the properly used m odel
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Qnpo. This com putation constitutes the ~rst stage in the process. The
second stage consists of taking again a central value, this tim e for the set
fkijg}*;1 of central values obtained in the ~rst stage from the observed m @
regions. In thisway up to nine cross-strategy options for com putation shou ld
have been obtained. W e can use an order statistic, apart from the m edian,
for an even greater variety of strategies in order to achieve a given goal.

The above procedures can generally be viewed as nonlinear Iters. T he
particular application to a given im age m ay be preprocessing, restoration,
gray-level sm oothing, edge sharpening, and others. W hen Itering out noise
from im ages, the particular strategy m ean+ m edian resem bles the well-known
median lters, since both use window and estim ation by the median. The
general procedure o®ers m any options and param eters, depending on the
operation: m ainly the two-stage strategy, the pair (n ;m 9 of resolutions,
and the m odelcan be setup. The particular properties of these new  lters
are currently investigated by the present authors.

The Iteroperation described above can be applied for two practical situ-
ationswhich di@er from each other in the way they lack reliable inform ation.
In the ~rst situation, the im age can be obtained just at resolution m S while
it is required at resolution m . T hus, the gray level of the m -regions should
be estim ated. The idea is to supply the lack of inform ation w ith an extra
num ber of observations at resolution m © The procedure m ust result in an
m -in age from a set ofm Zim ages com ing from the original one by diderent,
slightly-scrolled views. Thism ethod may be calld superresolution. In the
second practical situation, the lack of inform ation com es from the presence
of noise in the im age,which isobtained at the desired resolution. The ~ lter
operation now m aps an im age into another one at the sam e resolution w ith
in proved quality.

Iv..2 EXAMPLES

The rst exam ple concerns the superresolution operation. The algorithm
works on 16 views of the picture at resolution m ©= 12, obtained by shifting
the observation system by R, o-shaped jum ps in each step.

Figure 4 showsa com puter-sim ulated exam ple. The \view s" are obtained
by adding the gray levelsofthe m -regionsw ithin the (sin ulated) m @w indow s
of the im age. A single sam ple of this set of views is presented in part a.
Parts b;c show the results after 1 and 2 processing iterations, respectively.
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M ediant m edian strategy and m odel B have been used. The second itera-
tion doesnot im prove the result in this exam ple,while the blurring e@ect is
increased .

Itisworthy ofnote that the above algorithm can also work by random ly
shifting the observation window , instead ofregularly, keeping the jum p size in
the average. T he resultcan be som ew hatworse,although itm ay be balanced
w ith a greater am ount ofviews.

The second exam ple show s som e cases of Itering a synthetic in age, cor-
rupted by m pulsive noise in order to display the ability of the m odel-based
algorithm s to rem ove it. The Iter operation is illustrated in Figure 5. Parts
a;b show theoriginaland noisy (15% ofim pulsive noise) im ages. Partsc;d;e
presents the results obtained with m odels B ;Y;Z . Parts f;g;h show the
resu lts after three passes of the Itering algorithm w ith the sam e m odels as
before. Finally, partsi;j;k show a di®erentoriginal,noisy and Itered in age
by using m odelB . M edian+ m edian strategy has been used throughout.

The third exam ple is another case of rem oving im pulsive noise. The I-
ter operation is shown in Figure 6, in which the original, the noisy source
to process and the results w ith the strategies and m odels as indicated, are
presented in parts a;b;c;d. Large di®erences can be appreciated, depend-
ing on the strategy used; only the two strategies w ith the best results have
been carried out. O n the other hand, the m odel strongly determ ines the
perform ance;the given picture calls form odelZ because of its high contrast.

Som e rem arks about applications should he m ade about the described
exanm p les.

1. The results are strongly depending upon the used m odel, as expected
from their theoretical construction. W hilem odelB (conservative) pre-
serves the gray levels, m odel Z increases the contrast and m odel Y
biases toward the m iddle gray.

2. M odelZ perform s the best in rem oving the im pulsive noise in im ages
w ith high contrast, since edges between sim ilar light (or dark) levels
are lost.

3. Although median+ m edian strategy is the m ost useful, m ode+ m ode
has shown to achieve better results for [Itering a binary yet strongly
corrupted im age (Figure 6).
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4.W hen using m odelB ,a few iterations Heroutthe in pulsive noise fur-
ther,but increase the blurring e®ect in the superresolution operation.

CONCLUSIONS

Theinterdependence ofgray-level histogram s in a m u kiresolution fram ew ork
hasbeen studied for digital im ages, in which gray-value additivity is involved
when com posing regions. P robabilistic linearm odels for this interdependence
have been developed, which are applied to estim ate histogram s. By de ning
the elem entalm odels and taking them asa basis, the space of the consistent
models is generated. L inear-optim ization m ethods are then used for design-
ing m odels, according to the prior inform ation available about the proper
class of im ages.

A pplications of these m odels in im age processing are presented in the
general fram ework of nonlinear Itering, show ing the high versatility of the
procedures. The two-stage, m odel-based, order-statistic Iter has received
particular attention, especially the m edian type. Som e exam ples are shown.

Finally, this analysis can he extended to signals other than 2-D im ages,
provided that the additivity of the signalvaluesism aintained throughout the
m ultireso lution relationships. A pplications could also be extended to m any
other elds, such as texture analysis, segm entation, feature extraction and
statistical pattern recogn ition.
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Figure 1: (a) a black pixel; (b) a 4-region in which the gray levelis12,1i.e.,a
(4,12)-region); (c)a 4-region partitioned into four 2-regions; (d)a (4,0)-region
partitioned into two (3,0)-regions.

Figure 2: Sequence of coet cients @ for an ob jective function * : (a), totally
plane; (b), totally [ -convex; (c), totally \ -convex; (d), double [ -convex; (e),
double \ -convex.
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Figure 3: 3-D representation of the m atrix elem ents for m odel: (a), con-
servative B ; (b), high-contrast Z; (c), overall low -contrast Y ; (d), partial
low -contrast L ; (e), hypergeom etric H .

Figure 4: An exam ple ofsuperresolution from m ©= 12 tom = 8,w ith m odel
B and median+ m edian strategy. (a), a sam ple am ong 16 of the original
in age; (b), result after 1 iteration; (c), resu It after 2 iterations.

Figure 5: Exam ples of “Itering out in pulsive noise from m ©= 8 tom = 4.
(), original picture (for com parison only); (b), dam aged picture w ith 15%
in pulsive noise (the source); (c;d;e), results after 1 iteration w ith strategy
mediant m edian,using m odelsB ,Y Z,respectively; (f;g;h),sam eas (c;d;e),
after 3 iterations; (i), original picture (for com parison only); (j), dam aged
picture with 15% i pulsive noise (the source); (k), result after 1 iteration
W ith strategy m edian+ m edian, using m odel B .
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Figure 6: An exam ple of “Itering out im pulsive noise from m = § tom = 2.
(@), original picture; (b), dam aged picture with 90% im pulsive noise (the
source). (c), result by using m odel Z, m odet+ m ode strategy; (d), result by
using m odelZ, median+ m edian strategy.
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