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Abstract. An algorithm to suppress Gaussian noise is presented, based on clustering (grouping) gray levels. The

histogram of a window sliding across the image is divided into clusters, and the algorithm outputs the mean level of

the group containing the central pixel of the window. This filter restores well the majority of noisy pixels, leaving

only few of them very deviated, that can be finally restored with a common filter for impulsive noise, such as a

median filter. In this paper the clustering filter CF is described, analysed and compared with other similar filters.
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1. Introduction

Digital images suffer during acquisition or transmis-

sion diverse types of distortions, standing out for its

incidence and interest the additive Gaussian noise,

which appears usually when transmitting images by

means of communication channels like a vidicom or a

radar. Also, in the field of medical imaging, magnetic

resonance blurred images are considered as corrupted

by Gaussian noise. Mostly, noise is characterised by

statistical parameters; in particular, Gaussian noise is

typified by a Gaussian distribution function. Given an

original image I , the image X resulting from I by

adding Gaussian noise is given by

Xi � Ii � �i;

where the subscript i runs over all locations (pixels) in

I , and �i � N (0; �2) are independent and identically

distributed random variables.

Many algorithmsÐcalled filtersÐare used to

minimize the effect of this noise. A filter can be

viewed as an operator F that transforms an image X

into another image Y more adequate for interpretation

or later processing, Y � F(X ).

In the sequel, the following notations are used.

Original Image I � (Ii); it represents the real image

in an ideal form, with no distortion; for each i, Ii

stands for the gray level of the pixel located at

position i in the image I .

Input Image X � (Xi); this is the image coming from

the original, but altered by some kind of noise; in

practice, this is the only image at hand, and it is the

input of the filter.

Output Image Y � (Yi); this is the image resulting

from the filtering process; if restoring is desired, then it

should be as close as possible to the original I .

To evaluate the quality of a filter is not a trivial

task. It is difficult to find a good method besides the

mere visual inspection. Nevertheless, there are some

measures used by numerous authors. The most

popular (and used in this paper) are the following.

� The mean absolute error MAE, defined as

MAE �
P

i (Ii ÿ Yi)

S

� The mean square error MSE, given by* To whom correspondence should be addressed.
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MSE �
P

i (Ii ÿ Yi)
2

S

where S is the size of the image in pixels.

There exist plenty of filters intended to elliminate

noise in images. They can be classified into two

groups: linear and non linear filters.

Linear Filters

A filter F is said to be linear if for all a; b 2 R it

verifies the property

F(aX � bX 0) � aF(X )� bF(X 0):

The most simple linear filter is the mean filter. The

standard mean filter with a window V of odd size

2N � 1 is defined as [4]

Yi � 1

2N � 1

X
r2V

Xi�r:

One of the properties of the mean filter is its great

efficiency to elliminate impulsive noise; but when

dealing with Gaussian noise it does not show good

results, since it tends to blur edges and lose details.

Linear filters in general show a weakness in restoring

images with Gaussian noise, and are seldom used to

elliminate this kind of noise.

Non-linear Filters

Filters not having the linearity property above are

said to be non-linear [12]. Many of them have

proven to be adequate for Gaussian noise;

among them, the classical median filter [3] stands

out because of its simplicity. The median filter is

defined by

Yi � medfXi�r : r 2 Vg
where med means the median of the set. This filter is

a robust smoother and its results for Gaussian noise

are reasonably good.

Non-linear filters specialized in Gaussian

noise ellimination have appeared in recent papers

[6,10,14]. One is the sigma filter [10], described as

follows.

Suppose that the standard deviation � of Gaussian

noise is known, then center a window V on each

position i in the image X and define

Ei � f j 2 Vi : jXi ÿ Xjj � 2�g;
where Vi is the set of pixels belonging to the window

centered in pixel i. Then the output of the filter is

Yi �
P

j L(Xi ÿ Xj)XjP
j L(Xi ÿ Xj)

;

where

L(Xi ÿ Xj) � 1 if j 2 Ei;
0 if not:

n
Based on the same idea, but with a continuous

approach, the non-linear gaussian filter [6,14], is

given by

Yi �
P

j L(Xi ÿ Xj) exp (ÿ (Xi ÿ Xj)
2=(2g2)XjP

j L(Xi ÿ Xj) exp (ÿ (Xi ÿ Xj)
2=(2g2)

:

where g is a parameter to be determined depending on

the intensity � of noise. The aim of this filter is to

reduce noise and to preserve edges and details at the

same time. It can be shown that this filter gives good

results in regions containing edges, but when dealing

with homogeneous regions it shows a certain weak-

ness and produces blotches.

The filter presented in this paper is based on two

main concepts: grouping and separation. Scattered

gray levels of a homogeneous region should be joined

into a unique color1 as close as possible to the

original, while gray levels of different regions should

remain separated. This procedure is known as

clustering.

Cluster Analysis

Cluster analysis is a major task within statistical data

analysis, that tries to evaluate the interaction between

elements of a set of data and to organize them into a

certain number of natural and homogenous groups

1 Although this paper deals only with gray level images, for brevity

the term `color' will be used sometimes instead of `gray level'.
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(clusters), where each element shows a high degree of

similarity with other elements in the same cluster, and

differs as much as possible with respect to elements in

other clusters [2,13].

Cluster analysis gives the researcher prior informa-

tion about the data at hand. Its results can be used to

make hypotheses about the data, to classify new data,

to check the homogeneity of the set of data, or even to

compress the data for transmission or storage [5,11].

The most important requirement to make a good

cluster analysis is to stablish an adequate criterion to

obtain the subsets. More precisely, we have to define

what mathematical properties of the elements of the

set should be used, and in what manner the clusters

should be identified.

There exist several methods for clustering [8], the

most remarkable being of a hierarchical type. This

group of methods impose to the data a hierarchical

structure which consists in a sequence of groupings.

Hierarchical methods can be classified into two

groups.

Agglomerative Techniques. They begin with one

cluster for each element, and the grouping sequence

evolves by fusion until a stopping criterion is reached.

Division Techniques. The procedure begins with a

unique cluster containing all elements, and the

sequence evolves by succesive division until a

stopping criterion is reached.

In both cases, new clusters are formed by means of

relocation of old clusters, based on some measure of

similarity or difference.

Clustering techniques are widely utilized in pattern

recognition and image analysis. Many approaches to

image segmentation carry out clustering of image

pixels, based on their similarity or attributes such as

gray level, color, texture, or gradient [7].

In the present paper, clustering methods are utilized

for grouping local histograms, with a technique based on

searching the best separation point between gray levels.

2. Clustering Gray Levels by Local Separation

In most cases, dividing strategies with binary data are

used and the procedure utilized to divide into

subgroups is based on the identification of a feature

that maximizes the difference between the resulting

groups.

2.1. Basic Definitions

Let P � f f0; f1; f2; . . . ; fKg be a histogram of a region

with a scale of gray levels K � f0; 1; . . . ;Kg. By

convention, this scale will be broadened up to Z, by

enlarging P with null frequencies.

Definition 1. A gray level k is said to be proper in P

iff fk > 0.

Definition 2. The range r(P) is defined as the

maximum (chromatic) distance between proper gray

levels in P,

r(P) � max
fi>0; fj>0

j jÿ ij:

Definition 3. The local mean �r;s(P) of P is defined

as

�r;s(P) �
P

r� i�s ifiP
r� i�s fi

8s � r:

Definition 4. The separation measure �d
i (P) of P at

level i is defined as

�d
i (P) � j�i�1;i�d(P)ÿ �iÿd�1;i(P)j if both exist

2d ÿ 1

�
otherwise, where d 2 R� is an adjustable parameter

called scattering limit.

One of the immediate properties of this separa-
tion measure is that

1 � �d
i (P) � 2d ÿ 1 8i 2 Z; 8d 2 R�:

2.2. The CLOSE Algorithm

Color scattering can be represented by clustering a

histogram. This will be applied in real images in order

to reduce the effect of the gaussian noise. The filter

presented in this paper is based on a clustering of the

local histogram. A simple description of the clustering
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algorithm called CLOSE (Clustering by Local Separa-

tion) follows.

� Let P be a local histogram (supposed broadened to

an infinite scale of gray levels by means of null

frequencies).

� If r (P) � d, then the algorithm ends with no

separation.

� Let J � f j : �d
j (P) � max

i
�d

i g and j0 � min J . If

J � ; or �d
j0
< d, then the algorithm ends with no

separation. Otherwise, P is divided into two parts,

f f0; . . . ; fj0g and f fj0�1; . . . ; fKg and the algorithm

is recursively applied to each part (see Fig. 1).

This algorithm outputs the histogram P divided

into a series of subhistograms called clusters. Each

cluster corresponds to a cohesionated set of gray

levels.

The scattering of the original level can be more or

less severe, depending on diverse factors. Hence, a

parameter to regulate the clustering is needed, this

being the scattering limit d. This parameter fulfills

perfectly the requirements, and it also gives to the

CLOSE method a depth level to cut the tree that

represents the hierarchical structure of every dividing

method used to obtain the proper number of groups.

2.3. Breakdown Probability

Although histogram clustering can be an adequate tool

to process images with scattered colors, it is necessary

to assess the success of the algorithm in assigning

separate clusters to distinct colors. In order to evalute

this aspect, we use the so-called breakdown prob-

ability. It is the probability that the clustering

algorithm produces incorrect clusters depending on

the used parameters. Since this study is mathemati-

cally complex, firstly the particular and simple case

and thereinafter the general case will be studied.

2.3.1. Breakdown Probability in a Window with

two Pixels. Let I be a homogeneous image with a

unique level k corrupted with gaussian noise

N (0; �2), and let V be a window with two pixels

arbitrary located in the image. The gray level of the

pixels is represented by two independent random

variables X1 and X2 such that:

X1 � N (k; �2) X2 � N (k; �2):

Let P be the observed histogram of the window V.

The objective is to calculate the probability of the fact

that the CLOSE algorithm gives from P more than one

cluster depending on the d=� ratio.

Theorem 1. The probability Qd of more than one

cluster in the histogram of the window V (breakdown

probability) is

Qd(X1;X2) � 1ÿ 1���
�
p

�

Z d

0

exp ÿ x2

4�2

� �
dx

Proof: The probability density functions of the

pixels 1 and 2 respectively are given by

f (x1) � 1������
2�
p

�
exp ÿ (x1 ÿ k)2

2�2

� �
;

f (x2) � 1������
2�
p

�
exp ÿ (x2 ÿ k)2

2�2

� �
:

The independence of the two random variables results

from the degradation process suffered by the image.

Figure 1. An illustration of the clustering process.
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The clustering algorithm acts on the histogram of

the window V, and there will be an unique group if the

difference between means is less than the scattering

limit. By supposing X2 � X1 without lose of general-

ity, the breakdown probability is

Qd(X1;X2) � P(X2 ÿ X1 � d j X2 � X1)

� P(0 � X2 ÿ X1 � d)

P(X2 � X1)
:

Due to the properties of the linear combinations of

normally distributed random variables, we have

X2 ÿ X1 � N (0; 2�2)

and therefore,

P(X2 � X1) � 1

2
; and P(0 � X2 ÿ X1 � d)

� 1

2
���
�
p

�

Z d

0

exp ÿ x2

4�2

� �
dx;

that gives the desired result. Figure 2 represents the

breakdown probability of a two-pixel window de-

pending on the d=� ratio.

2.3.2. Breakdown Probability of a Window with any

size. Now let V be a window of size n; there are n

random variables X1;X2; . . . ;Xn independent and

identically distributed, each one with a normal

distribution with mean k and variance �2. The joined

distribution has the probability density function

f (x1; x2; . . . ; xn) � 1

(
������
2�
p

�)n
exp

ÿPn
i�1 (xi ÿ k)2

2�2

� �
:

Theorem 2. Under the described conditions, the

breakdown probability Qd is given by

Qd (X1;X2; . . . ;Xn) �

1ÿ n

(
������
2�
p

�)n

Z �1
ÿ1

Z �1
x1

� � �
Z �1

xnÿ2

Z M

xnÿ1

exp ÿ
Xn

i�1

(xi ÿ k)2

2�2

 !
dxndxnÿ1 � � � dx1;

where

M � min
r�1;2;...;nÿ1

(nÿ r) d �
Xr

i�1

Xi

r

 !
ÿ
Xnÿ1

i�r�1

Xi

( )
:

Figure 2. Breakdown probability of a window with two pixels.
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Proof: The histogram of the window V has a unique

cluster if there is no cut point, this is, that every

difference between local means is less than the

scattering limit d. For this, the following conditions

must be satisfied (by supposing without losing

generality that X1 � X2 � . . . � Xn)Pn
i� r�1 Xi

nÿ r
ÿ
Pr

i�1 Xi

r
< d 8r � 1; 2; . . . ; nÿ 1;

that is Xn < (nÿ r) d �
Xr

i�1

Xi

r

 !
ÿ
Xnÿ1

i� r� 1

Xi;

which means that Xn must verify

Xn < min
r� 1; 2 ;...; nÿ1

(nÿ r) d �
Xr

i�1

Xi

r

 !
ÿ
Xnÿ1

i� r�1

Xi

( )
� M ;

and finally an integration on the set

B � f(X1;X2; . . . ;Xn) 2 R :ÿ1 < X1 < �1;
X1 < X2 < �1; . . . ;Xnÿ1 < Xn < Mg

allows to obtain the desired result.

Figure 3 shows the breakdown probability for several

typical window sizes, depending on the d=� ratio.

Given the little handiness of an expression with

multiple integrals that can be nested up to 225 levels

of depth for a 15� 15 window, numerical values have

been estimated by means of the Monte-Carlo method,

using 1:000:000 of samples in all cases.

From the breakdown probabilities shown in Fig. 3,

we can deduce that the larger the window, the more

failures appear, and that there exists a point in each

graph that can be considered as the optimal for the

d=� ratio.

Finally, the value of the scattering limit depends on

the size of the used window and the intensity of the

noise, and this value should be chosen so that the

breakdown probability is as low as possible.

3. The Clustering Filter CF

In this section we present a new method to remove

gaussian noise based on the clustering of the gray

levels of local histograms.

Figure 3. Breakdown probabilities obtained using the Monte-Carlo algorithm.

(a) window 3�3

(c) window 7�7

(b) window 5�5

(d) window 15�15
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3.1. Definition of the CF Filter

The cluster filter CFd is defined as follows.

Let i be a pixel in the source image, and let Vi be a

sliding window centered on pixel i. The histogram of

Vi is clustered by means of the CLOSE algorithm and

the index set Ei is defined as

Ei �f j 2 Vi : j belongs to the same cluster than i

in the clustered histogram:g
Then the output of the filter is

Yi �
P

j L(Xi ÿ Xj)XjP
j L(Xi ÿ Xj)

where

L(Xi ÿ Xj) � 1 if j 2 Ei

0 otherwise:

n
In other words, on each pixel i is centered a

window Vi whose histogram is divided into clusters,

and the output of the filter is the mean level of the

cluster containing the central pixel. This procedure is

illustrated in Fig. 4.

Since all this context is developed in a discrete

domain, the final estimation of the mean of every

cluster must be done by rounding off the computed

average level:

R(Yi) � E(Yi � 0:5)

where E stands for the integer part.

This filter has several properties that back it. We

can emphasize in particular its invariance for both

resolution and intensity.

3.2. Properties

Definition 5. The normalized histogram of

P � f f0; . . . ; fkg is

�P � f0

n
;
f2

n
; . . . ;

fk

n

� �
; where n �

Xk

i�0

fi:

It is evident that the relationship between histograms

defined as

P1 � P2() �P1 � �P2

is an equivalence relationship. If P1 � P2 we will say

that they are equivalent.

Clustering based on mean differences gives the

same result for equivalent histograms.

Lemma 1. If P1 � P2 and the same scattering limit

d is used, then both give the same clustering.

Proof. If P1 � f f0; . . . ; fKg and P2 � fg0; . . . ; gKg
are two equivalent histograms, then the corresponding

local means are equal,

�r;s(P1) � �r;s(P2) 8r � s;

since

�r;s(P1) �
P

r�i� s ifiP
r� i� s fi

�
P

r� i� s igi

PK

i� 0
fiPK

i� 0
giP

r� i� s gi

PK

i� 0
fiPK

i� 0
gi

� �r;s(P2);

and therefore

�d
i (P1) � j�i�1;i�d(P1)ÿ �iÿd�1;i(P1)j

� j�i�1;i�d(P2)ÿ �iÿd�1;i(P2)j
� �d

i (P2);

and also if �r;s(P1) does not exist then neither �r;s(P2)

exists.

Of course, r (P1) � r (P2), and because of the

equality for the separation measure we deduce that

Figure 4. An illustration of the CF filter. The local histogram of

the sliding window has been divided into two clusters. The gray

level of the central pixel of the window lies in Cluster 2, so the

output of the CF filter is the mean of Cluster 2. Both median and

mean filters give outputs in the range of Cluster 1.
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both histograms have the same cut points, hence the

same clusters.

Theorem 3. (invariance with respect to the resolu-

tion) The cluster filter CFd is invariant with respect to

the resolution. If an image is resampled under a

different resolution with no gain or loss of details,

then the filter CFd gives the same output.

Proof: A resampling of any window in the image

with no gain or loss of details will give equivalent

histograms, and then CFd will give the same output.

Intensity changes are one of the possible

perturbations that an image can undergo during

its acquisition. The effect on the histogram is a

displacement of frequencies. This phenomenon

does not affect to edges and other details. Therefore,

a clustering algorithm should be invariant against

bright changes.

The translated histogram P � h of P � f f0; . . . ; fKg
by means of a translation h 2 Z is defined as

P � h � fgig, where gi � fiÿh 8i 2 Z.

As a property of the CLOSE algorithm we have

that cut points in P � h are the corresponding

translated of that of P.

This is a trivial result, if we take into account that

�d
i (P � h) � �d

iÿh(P) 8i; d 2 Z.

Theorem 4. (invariance with respect to intensity)

Let X be an image. Then

CFd(X � h) � CFd(X )� h 8h 2 Z.

Other derived properties are:

d � 1�)CFd(Xi) � Xi 8i (identity filter):

d � K�)CFd(Xi) � 1

n
Rr2V Xi�r 8i (mean filter):

These two extremes of the parameter d provide

information about the behavior of the filter: when

d � 1 it is the identity filter, and when d is greater

than the range of the scale it is the mean filter.

Intermediate values of d, depending on the intensity

of noise and the window size, will eventually enable

us to obtain optimal outputs.

4. Experimental Results

4.1. Choosing Parameters

In Table 1, theoretical breakdown probabilities

depending on the ratio d/� and on the size of the

window are exposed.

From this one can derive an appropriate size of

window and an appropriate value of the scattering

limit d depending on the intensity � of the noise.

Values providing a breakdown probability less than

5% can be considered as acceptable. For example, if a

5� 5 window is advisable to use (due to nature of the

image and resolution), then a ratio d=� ' 3:2 will

give a reasonably low breakdown probability.

4.2. Comparison

In this section, some simulation results applying the

CF filter on images corrupted by gaussian noise are

presented.

The images under consideration are made of

256� 256 pixels. The mean absolute error MAE and

the mean square error MSE between the original

image and the filtered image are evaluated to compare

the quality of the filter with other present filters in the

literature.

The image chosen for comparison has very

scattered local histograms. The background is a shade

Table 1. Breakdown probabilities of several sets of parameters.

3� 3 5� 5 7� 7 9� 9 15� 15

d=� � 2:6 0.12558 0.24018 0.39274 0.54936 0.88267

d=� � 2:8 0.07487 0.14213 0.23983 0.35467 0.69215

d=� � 3 0.04202 0.07977 0.13676 0.20754 0.46286

d=� � 3:2 0.02327 0.04190 0.07327 0.11204 0.27163

d=� � 3:4 0.01233 0.02142 0.03674 0.05709 0.14472

Atae-Allah and Aroza22



going from black to white, and there are little details

such as letters one pixel wide, corners of the star, and

other meaningful details easy to lose when filtered.

As it has been commented MAE and MSE are

relative measures of quality of a filter. In our case, a

minimum value of MAE or MSE does not mean that

the corresponding image is visually better. The

experiments have been carried out with three noise

intensities: � � 15; � � 20; � � 25, and the values of

the parameters that gave the best results in each case

were selected.

Figure 5 shows the original image, and the same

image corrupted with gaussian noise of mean 0 and

standard deviations � � 15, 20 and 25 respectively.

4.2.1. Gaussian Noise with � � 15: The graphs in

Fig. 6 show for the CF filter the variation of the MAE

(left) and the variation of the MSE (right) with respect

to the scattering limit d, by using a 5� 5 window, and

a comparison with the median, the sigma and the non-

linear gaussian filters.

In the two graphs it is clear that the MAE and MSE

for the CF are lower than for the other filters for a

wide range of scattering limits; this range corresponds

to optimal values of d. The optimal value given in

paragraph 4.1 from the breakdown probability lies

within this range.

On the other hand the non-linear gaussian filter in

the two cases lies near to the CF filter, on both the

MAE and the MSE; but visually (see Fig. 7) CF filter

is a little better. Note that some degradation appears in

the middle of the image; this happens when local

histograms do not have separate clusters, that is, all

colors in the sliding window are close each other.

Figure 5. The test images.

(a) original image (b) noise � � 15

(c) Noise � � 20 (d) Noise � � 25

Figure 6. Evolution of MAE and MSE in function of the scattering

limit for � � 15.

Figure 7. The image 5 (b) filtered with CF45 (left) and NL30

(right) with a 5� 5 window.
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4.2.2. Gaussian Noise with � � 20 The graphs of

Fig. 8 provide the same results that in the previous

section, but in this situation the image is corrupted

with gaussian noise of � � 20 and a 7� 7 window is

used.

Together with output of CF60, the result for the

sigma filter is shown for visual comparison (see

Fig. 9).

4.2.3. Gaussian Noise with � � 25: The graphs of

the Fig. 10 provide the variation of MAE and MSE

for the CF filter depending on the scattering limit,

using a 5� 5 window, and a comparison with the

median filter, the sigma filter and the non-linear

gaussian filter.

It is clear that MAE and MSE for the CF filter are

lower than that of the other filters, and also we

emphasize the presence of the stability zone for MAE

and MSE with respect to the scattering limit.

On the other hand, a visual comparison with the

median filter (see Fig. 11) shows that CF filter is

much better than the classic median filter MF in

removing gaussian noise.

The CF filter reduces the dispersion of the

original color in images and also emphasizes

the different colors that have been disturbed.

This provides good results in removing the

gaussian noise.

Figure 8. Evolution of MAE and MSE with respect to the

scattering limit for � � 20:

Figure 9. The image 5 (c) filtered with CF60 (left) and SF40 (right)

with a 7� 7 window.

Figure 10. Evolution of MAE and MSE with respect to the

scattering limit for � � 25.
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5. Conclusions

Local histograms with a large gray scale tend to be

very scattered, causing difficulties to process the

corresponding images.

In this work the dispersion of the histograms has

been reduced, by means of a clustering algorithm

based on seeking the best cut points to separate colors

into clusters.

This technique is used to filter images corrupted

with gaussian noise by centering on each pixel a

window whose histogram is clustered, and the output

of the filter is the mean level of the cluster in which

the central pixel is found.

The idea has provided some very good results in

comparison with the existing filters in the literature.
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Figure 11. The image 5(d) filtered with CF75 (left) and MF (right)

with a 5� 5 window.
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