
Pattern Recognition 34 (2001) 969}980

A measure of quality for evaluating methods of segmentation
and edge detectionq

RamoH n RomaH n-RoldaH n!,*, Juan Francisco GoH mez-Lopera!, Chakir Atae-Allah!,
JoseH MartmHnez-Aroza", Pedro Luis Luque-Escamilla#

!Dept. Fn&sica Aplicada, Universidad de Granada, Campus Fuente Nueva, 18071 Granada, Spain
"Dept. Matema& tica Aplicada, Universidad de Granada, Campus Fuente Nueva, 18071 Granada, Spain

#Dept. Ingeniern&a Meca& nica y Minera, Universidad de Jae&n, Alfonso X el Sabio, 28. 23700, Linares, Jae&n, Spain

Received 7 August 1998; received in revised form 27 January 2000; accepted 27 January 2000

Abstract

A new measure of quality is proposed for evaluating the performance of available methods of image segmentation and
edge detection. The technique is intended for the evaluation of low error results and features an objective assessment of
discrepancy with respect to the theoretical edge, in tandem with subjective visual evaluation using both the neighbour-
hood and error-interaction criteria. The proposed mathematical model is extremely simple, even from the perspective of
computational execution. A training of the measure has been put in practice, which uses visual evaluation of a set of error
patterns by a team of observers. Encouraging results were obtained for a selection of test images, especially in relation to
other recently proposed and/or currently employed quality measures. ( 2001 Pattern Recognition Society. Published
by Elsevier Science Ltd. All rights reserved.
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1. Introduction

1.1. Quality measures for edge detection and segmentation
methods

Authors currently working in the "eld of low-level
image segmentation frequently point to the need for a
standard quality measure that would allow the evalu-
ation and comparison of the variety of procedures avail-
able [1,2]. Some researchers [3}6] have even stepped
outside their usual sphere of interest in an e!ort to satisfy
this demand by proposing new quality measures, as
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indeed is true of the present authors. Several recent
review articles have also revealed the lack of agreement
about such a measure.

Take, for instance, the Dialogue published in CVGIP:
Image Understanding, pp. 245}265, a review of papers
carried out by Haralyck [7]. Above all, this study ex-
posed the need for a uni"ed, protocolised assessment of
the performance of computer vision procedures, along
with a "nal judgement of results. The dialogue encour-
ages the scienti"c community working in the "eld of
computer vision to agree to a "xed measure of perfor-
mance so that the algorithms may be compared both by
task-e!ectiveness and human appreciation. We share the
opinion of these authors that in a low-level procedure
(e.g., for edge detection) noise immunity is the main feature
to be considered for performance characterisation.

Due to subjectivity inherent to the quality concept
itself, human intervention is needed to establish certain
criteria and/or assessments. There are recent precedents
of this practice, like the work of Chalana et al. [8], in
which the shape and position of the boundary in medical
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images is de"ned by means of a consensual agreement of
observers.

Although the problem is often referred to as one of
determining the quality of a segmentation method, most
of the algorithms for computing the proposed measures
work within a window sliding across the image, thus
whether or not the image has been e!ectively segmented
is not taken into account. Only a few methods actually
explore the obtained segments [9], most measures being
best suited to edge detection. Yet in the design of segmen-
tation quality measures, e!ective edge detection can
prove to be highly useful. The present proposal is based
on this low-level framework.

1.2. On existing quality measures

Recent surveys [4}6,9] have revealed the shortcomings
of currently available measures. Here we brie#y describe
the four most frequently used and point out their draw-
backs.

The discrepancy between a binary image of estimated
borders and the ideal one can be stated by means of some
kind of account of individual di!erences, pixel by pixel,
between these two binary images. The following termin-
ology and notations are used:

Mistake the discrepancy between the detected edge and
the real edge is due to individual discrepancies
arising from pixel to pixel, which are here refer-
red to as mistakes. These may be of two kinds:

Bit a mistake due to excess, when a pixel is erron-
eously de"ned as an edge pixel.

Hole a mistake due to failure of the method to recog-
nise an edge pixel as such.

N
b

no. of bits in the real segmented image.
N

h
no. of holes in the real segmented image.

N
e

no. of edge pixels in the ideal segmented image.
N no. of pixels in the image.

Once the notation is established, the analysis of common
measures is clearer.

1.2.1. Error probability, P
e

P
e
"

N
b

N
e

.

This measure was proposed by Peli [10]. P
e

varies in-
versely with respect to the quality of the result and is not
very useful because holes errors are not accounted for.

1.2.2. Discrepancy D
A discrepancy measure has recently been proposed by

Lee [11] for the evaluation of segmentation. For the
classic object-background problem* classi"cation into

two unique categories * the measure is de"ned as

D"P(O)P(BDO)#P(B)P(ODB),

where P(O) is the prior probability of a pixel being
classi"ed as belonging to an object, P(ODB) the probabil-
ity of a background pixel being classi"ed as belonging to
an object, P(B) the prior probability of a pixel being
classi"ed as belonging to the background, and P(BDO) the
probability of a pixel from an object being considered as
belonging to the background.

According to Zhang [4], this quality measure is one of
the best. In the present case, the objects are the edges of
the image, and the remaining pixels belong to the back-
ground. Thus,

P(O)"
N

e
N

, P(BDO)"
N

h
N

e

,

P(B)"
N!N

e
N

, P(ODB)"
N

b
N!N

e

and the discrepancy is

D"

N
e

N

N
h

N
e

#

N!N
e

N

N
b

N!N
e

"

N
b
#N

h
N

.

This measure is clearly better than P
e
, since both types of

error do appear in the numerator. However, its response
is poor, since the measure of an isolated error is indepen-
dent of its distance from the theoretical edge.

1.2.3. Merit factor, f
This measure was proposed by Pratt [2], and has been

greatly utilised for comparing di!erent segmentation
methods. It is de"ned as follows:

f"
1

M

Ne~Nh`Nb

+
i/1

1

1#a d(i)2
,

M"max(N
e
, N

e
!N

h
#N

b
),

where a is a scale factor (normally a"1), and d(i) is the
distance of each of the pixels marked as edge to the
theoretical edge. The measure is normalised ( f3[0, 1])
and increases with the quality of the segmentation, thus
f"1 means a perfect segmentation. Although better than
the preceding measure, this does not give a good re-
sponse in general. Indeed, let us suppose N

h
'N

b
'0. In

this case

M"max(N
e
, N

e
!N

h
#N

b
)"N

e
,

Nf"
1

N
e

Ne~Nh`Nb

+
i/1

1

1#a d(i)2

and in these conditions an increase in N
h

implies a rise
in f.
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1.2.4. Expanded merit factor, f
e

It is an improved version of f for dealing with low error
segmented images. It is de"ned as [4]

f
e
"G

1

N
b

Nb

+
i/1

1

1#a d(i)2
if N

b
'0,

1 if N
b
"0.

This measure is normalised in [0, 1] and its increasing
rises with the quality. It has the disadvantages of not
being additive and taking into account positive errors
only.

1.3. The framework of the proposed measure

The proposed measure is a hybrid of the so-called
`empirical discrepancya and `empirical goodnessa by
Zhang [4]. It combines the pixel-by-pixel objective dis-
crepancy between the obtained edges and the theoretical
ones with an evaluation of each mistake as assessed by
human observers.

The measure belongs to a class that may be called the
low error model of quality measures, not intended for
excessive or aberrant (not usually found in edge images)
errors. In other words, the measure should be properly
applied to edge images with no too many mistakes, and
most of these should be close to the theoretical edge.

2. Characterizing the measure

In order to implement the initial statement (discrep-
ancy, empirical goodness and low error) in a mathemat-
ical expression for a quality measure R, the following
bases are established.

2.1. Discrepancy

The theoretical edge must be known so that the mis-
takes produced can be detected and evaluated one by
one. However, the edge must be de"ned by convention.
When two homogeneous regions are in touch and the
boundary has to be de"ned as a one-pixel-thick dividing
line, the newly de"ned edge pixels clearly must be placed
in one of the two areas. Two di!erent methods might
perfectly locate the desired boundary within an image,
but while one method will draw the edge on the darker
side, the other will always place it in the lowermost
region. The binary images of the edges obtained by the
two methods will obviously be di!erent, but both should
be classi"ed as error-free since the actual detection was
perfect. To prevent this ambiguity in edge de"nition
from in#uencing the number of mistakes, the theoretical
edge may be assumed to lie on the side with the fewest
mistakes.

The measure R should be expressed as the sum of the
values assigned to all mistakes in the edge image. These

values must take into account the presence (or not) of
other mistakes produced close to the one being evalu-
ated. Therefore, a sum expression for R does not imply
that it be a merely additive function of single mistakes,
nor even an increasing function with respect to the num-
ber of mistakes.

2.2. Empirical goodness

This feature is based on two criteria for the appearance
of a mistake in the edge image.

2.2.1. Neighbourhood
The way a human observer appreciates an edge image

depends on the distance of each mistake from what is
perceived to be the true edge. However, this is true only
for very short distances. In fact, a mistake (bit) produced
just next to the edge is assumed to be linked to it, while
bits located only two or three pixels away from the edge
are no longer perceived thus. Hence in the proposed
measure, by contrast with some quality measures which
include the distance to the edge as a variable, a mistake
value will not depend on distance if this is greater than
one or two pixels. The fact that only strict closeness to the
edge will be taken into account is then an essential and
novel criterion that introduces a notable simpli"cation in
the mathematical expression for R.

2.2.2. Mistake interaction
Also, human appreciation of closely clustered mistakes

is more acute than when the same mistakes are scattered
throughout the image. An observer assessing a group of
mistakes lying within a small neighbourhood (a window
=) will allot them di!erent values (interaction), and these
may be extenuating or aggravating.

For = centred on a given mistake, if there is one or
more mistakes of the same type then visual appreciation
is generally more severe. Conversely, if the accompanying
mistakes are not of the same type and are placed horizon-
tally or vertically, not obliquely, it will appear that the
true edge pixels have been only slightly shifted, and the
connectivity of the edge is preserved. Hence, the evalu-
ation must be extenuating for mistakes of di!erent type
in =, but aggravating for the same type. The window
=must be chosen small, since visual appreciation claims
for short-range aggravating and extenuating interac-
tions.

2.3. A low-error model

The low error nature of the proposed method means
that the evaluation of empirical goodness will be per-
formed within a small window centred on each mistake.
This, jointly with the short-range interactions, leads us
to choose the simplest solution: a 3]3 square window
for individual error evaluation. In practice, the results
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justi"ed this decision and any improvement gained using
larger window sizes would not appear to merit the extra
e!ort required.

The low error model assumed for this method only
exclude very bad, aberrant detection edge algorithms.
However, some results are given for a few extra noisy, out
of model segmented images included in the series of
Fig. 5 (the sixth of each).

3. The measure of quality

Following these premises, the construction of the
mixed measure of quality R is now summarised by intro-
ducing an adjustable parameter accompanying to each
feature to be taken into account.

1. Because of the focusing of R for low error rate, it is
primarily de"ned as the number of (independent) mis-
takes in the image. In order to allow for di!erent
assessment of holes and bits and to scale the measure,
two coe$cients are introduced: R"aN

b
#cN

h
.

2. The number of mistakes are spanned in sums for
assessing each mistake individually: R"a+

bits

e
b
#

c +
hole4

e
h
, where the bit and hole errors are given the

plain values e
b
"e

h
"1 initially.

3. Aggravating interaction between same type mistakes
is now taken into account by developing the error
summands as e

b
"1#bn

b
, e

h
"1#hn

h
, where b, h

are coe$cients to be adjusted, and n
b

is the no. of bits
in=, minus the central mistake, n

h
the no. of holes in

=, minus the central mistake.
4. Extenuating interaction between di!erent type mis-

takes is introduced by means of a dividing factor

e
b
"

1#bn
b

1#i
bh

n@
h

, e
h
"

1#hn
h

1#i
hb

n@
b

,

where i
bh

, i
hb

are new coe$cients to be adjusted, and
n@
b

the no. of bits in direct contact with the central
mistake, n@

h
the no. of holes in direct contact with the

central mistake.
The quotient format has been selected to get e

b
,

e
h

positive and decreasingly sensible with n@
h
, n@

b
, re-

spectively. (Obviously, multiplicative factors like
(1!i

bh
n@
h
) do not have these desirable properties.)

5. Finally, the neighbourhood criterion for bits (no place
for holes neighbourhood) is now taken into account
by adding a new term in the denominator of e

b
(the

same rationale than the extenuating interaction ap-
ply). Being p the proximity to the edge coe$cient and
n
e

the number of real edge pixels in=, the de"nitive
expression for R is

R"a+
bits

(1#bn
b
)

1#pn
e
#i

bh
n@
h

#c +
holes

(1#hn
h
)

1#i
hb

n@
b

4. Determining parameters

In order to determine accurately the coe$cients of R,
a training procedure has been established, consisting of:

1. Selecting a set of error patterns.
2. Assigning them numerical values, based on subjective

human assessment provided by a team of observers.
3. Approximating R as close as possible to the agreed

values by adjusting the coe$cients involved in the
formula for R, based on the reasonable assumption
that R will henceforth produce acceptable values for
real segmented images.

4.1. The set of training error patterns

A set of individual and small groups of errors were
selected, according to the following criteria:

f They should be viewed as typical for edge detection, in
accordance with the initial speci"cation, which ex-
cludes application of R to aberrant errors.

f The size and shape of the patterns were to be selected
from a linear edge, taking into account the previous
requisite.

f Patterns were to be varied as possible, while not ex-
cessively numerous, for obvious reasons.

Fig. 1 shows the set of patterns used to adjust the coe$-
cients. Series A is for certain non-straight con"gurations,
series B contains only holes, series C only bits, and series
D is mixed.

4.2. Subjective assessment of error patterns

Each pattern was assigned a value representing the
visual impression of the observer. This is, in fact, the only
possible way to achieve a good quality measure in ac-
cordance with the empirical-goodness criterion. Never-
theless, it should be borne in mind that observers were
image processing experts and could not contract out of
evaluating factors such as ease of restoration, edge con-
nectivity, or absence of bits far from the theoretic edge.
Of course, the aforementioned criteria for constructing
the quality measure were employed at the time of assess-
ment, since such a measure should not behave other than
as proposed. Great care was thus taken* as the success
of adjustment depends on it * over dissociating visual
impressions obtained while gazing at a pattern from the
mathematical expression with which the pattern would
then be assessed.

The team of observers performing the subjective as-
sessment included the eight members of the research
group to which the present authors belong. The following
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Fig. 1. Set of patterns for subjective evaluation.

Table 1
Numerical values of coe$cients in R

R R modi"ed by
Euler's characteristic

a 2.02189276 1.94447565
c 1.70510940 1.73564803
b 0.015966617 0.01311035
p 0.166866567 0.14738691
i
bh

12.38602179 4.51205205
h 0.414879829 0.37368425
i
hb

0.144839388 0.08645188
c
Euler

* 8.92970173

assumptions were made as a starting point:

f The quality scale begins at zero, representing absence
of error, and increases with severity of error. Thus it is
really a scale of badness rather than of quality.

f By convention, the unit of the scale represents a single
hole (see pattern B

1
).

f No upper bound is stated for badness (the scale is not
normalised). This is because the measure is designed to
compare the performance of di!erent segmentation
methods on the same set of images, thus obviating
normalisation.

f The value assigned to a pattern should correspond to
a subjective impression. However, since each study
includes a great number of successive comparisons
between only two or three patterns at any one time, it
is again important to rationalise the set of values in
order to prevent the occurrence of inconsistent or even
contradictory pairs.

Finally, an overall value is agreed upon, or an average is
taken in case of disparity. The "nal subjective values thus
obtained are given in Fig. 2(a) after proper adjustment.

4.3. Adjusting coezcients of R

The adjustment of coe$cients of R has been carried
out by the least-squares method with respect to the
subjective values. The mean square error (RMSE) is to be
minimised for the optimum adjusted R; besides, it permit
to compare di!erent quality measures for the same set of
patterns. No further normalisation of R is needed for this
purpose. The adjusted coe$cients by the above proced-
ure are shown in Table 1.

Results are plotted in Fig. 2. The X-axis shows the
training patterns, while the >-axis represents the subjec-
tive values assigned to errors (curve a) and values ob-
tained by R (curve b). They have been ordered by their
increasing subjective values. Due to the number of coe$-
cients in the expression, the measure R is a very versatile
one, widely adaptable to other reference patterns.

4.4. Response of other quality measures to the training
patterns

Although error patterns were selected and assessed
with the aim of determining R, a comparison of the
present results with those of other quality measures
allows us to obtain a preliminary estimation of the char-
acteristics of the compared measures, always from the
point of view of the initial approach to the problem
* discrepancy, empirical goodness and low error. To
perform this comparison, the following measures from
the literature were applied to the same error patterns:
merit factor f, expanded merit factor f

e
, discrepancy D,

and error probability P
e
.

To facilitate comparison, results for D, P
e
, f and f

e
are

shown in Fig. 3, set out similarly to Fig. 2. Measures f and
f
e
have been inverted, and all of them have been adjusted

by minimum square with respect to the subjective values.
Some comments are worthy:

f Measures P
e
, f and f

e
give non-sensical results with

respect to the agreed values.
f Measure D has a relatively good behaviour due to its

additivity, which is coincident with the additivity in-
herent to the subjective assignations.
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Fig. 2. Normalised pattern values for (a) subjective, (b) R, (c) R modi"ed by Euler's characteristic.

Fig. 3. Normalised pattern values for (a) subjective, (b) P
e
, (c) D, (d) 1!f, (e) 1!f

e
.

It may be observed that the proposed quality mea-
sure R "ts especially well to the subjective values,
when compared against other measures. There are
three patterns which produce a not-so-good "t: D

12
,

D
16

and D
18

. These are patterns deliberately intended
to produce a failure of R, and are not very typical * as

was indeed intended from the outset. In accordance
with basic premises, a highly displaced edge is
penalised but without further attenuation even when
there are holes nearby. To deal with these special
cases, R is corrected by means of Euler's charac-
teristic.
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Table 2
Numerical results of RMSE obtained for several quality
measures with respect to the subjective values

Quality measure RMSE

R 1.084958236
R#Euler's 1.014406947
P
e

3.789961359
D 2.064971497
1!f 3.994423645
1!f

e
3.023500544

Fig. 4. (a) Edges and vertices of a pixel, (b) connected set of pixels, (c) unconnected set of pixels, (d) unconnected hole with G"1.

The RMSE values capture the global di!erent behav-
iour of the compared measures. They also con"rm the
better performance of R, as shown in Table 2.

4.5. A further improvement: Euler's characteristic
for connectivity

Some patterns are not so well assessed by R, probably
due to a lack of connectivity not explicitly included in the
mathematical expression (see patterns D

12
, D

16
and

D
18

). This de"ciency can be partially repaired by intro-
ducing a new coe$cient in R, which takes this fact into
account. The topological coe$cient of Euler (G) was
chosen here, resulting in the enhanced performance
shown in Fig. 2, curve (c).

Given a pattern of pixels in a binary image, it is
possible to de"ne its characteristic of Euler. This is
a topological invariant including information about the
connectivity of the pattern [12]. It is de"ned as

G"<!E#P

where G
<"no. of vertices

E"no. of edges

P"no. of pixels H in the pattern.

Objects shared by more than one pixel are accounted for
only once in the above expression. Fig. 4(a) shows a pixel
(in grey) with its four vertices and its four edges.

G has the property of being 1 if the pattern is connec-
ted, that is, if every pixel in the pattern has a neighbour
(by an edge or by a vertex) in the pattern. However, the
converse is not always true. As an example, Fig. 4(b)}(d)
shows three patterns. The corresponding values of the
Euler's characteristic are G

4(b)
"8!10#3"1 (con-

nected), G
4(c)

"8!8#2"2O1 (not connected) and,
G

4(d)
"4!4#1"1 (not connected). The in#uence of

G in R takes place in the denominator of the part of
R which evaluates holes, since the lack of connectivity
comes from holes. For it, a new coe$cient c

Euler
is intro-

duced in such a way that, for holes keeping edge connect-
ivity, R is decreased (c

Euler
'1). The connectivity close

to a hole pattern in= is considered as preserved if there
is a bit in touch with each hole within =:

R"a+
bits

(1#bn
b
)

1#pn
e
#i

bh
n@
h

#c +
holes

(1#hn
h
)

1#c
Euler

i
hb

n@
b

,

c
Euler

'1 if G"1 and ∀ hole in= the central pixel has
a bit in direct contact, c

Euler
"1 in other case

The enhancement obtained through G can be seen by
comparing D

11
and D

12
. Before making the correction,

D
12

was evaluated better than D
11

, against visual im-
pression. This is because D

11
has an additional interac-

tion between bits that D
12

does not have. After making
the correction with G, D

12
has a value higher than D

11
,

thus agreeing with the visual impression. Although pat-
tern a

2
(very seldom in practice) is contrarily valued, the

inclusion of G generally improves the performance or R,
as can be seen in Fig. 2. Table 1 shows numerical values
of the parameters in R modi"ed by Euler characteristic
obtained by least-squares adjustment. The RMSE value
for the G-modi"ed R is therefore lower than for the
unmodi"ed R (see Table 2).

4.6. Sensitivity of R with respect to the coezcients

To assess the con"dence in the adjustment of the
coe$cients, the sensitivity of R with respect to them must
be considered. Since a theoretical treatment is cumber-
some, some representative, numerical results have been
obtained.
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Table 3
Sensitivity of R to variations of coe$cients. Error (%) in RMSE
provoked by several variations (%) of each coe$cient from its
optimal value

#10% !10% #50% !50%

= 2.65 2.65 53.1 53.1
B 5.27]10~4 5.27]10~4 1.32]10~2 1.32]10~2

P 0.160 0.181 3.16 5.77
i
bh

3.64]10~2 5.02]10~2 0.540 2.91
h 1.04 1.04 23.4 23.4
i
hb

6.77]10~2 7.81]10~2 1.31 2.71
c
Euler

5.00]10~2 5.95]10~2 0.914 2.20

Table 4
Exact and rounded "nal values of the R coe$cients and their
RMSE

Original value Rounded value

K 1.73564803 1.7
w 1.1203168 1.1
b 0.01311035 0.013
p 0.14738691 0.15
i
bh

4.51205205 4.5
h 0.37368425 0.37
i
hb

0.08645188 0.086
c
Euler

8.929701731 8.9
RMSE 1.0144069 1.0276189

For this purpose, the above expression of R is conve-
niently modi"ed to the following by substituting the
coe$cients a"Kw and c"K:

R"KCw+
bits

(1#bn
b
)

1#pn
e
#i

bh
n@
h

# +
holes

(1#hn
h
)

1#c
Euler

i
hb

n@
b
D.

Now, K is a scale factor, irrelevant for the sensitivity
analysis, and w is a bit-hole balance factor. Table 3 shows
the RMSE obtained for R when each coe$cient has been
changed separately #50, #10, !10 and !50% from
their original, optimum settings, as well as the corre-
sponding variations (in %) of RMSE.

All relative variations in RMSE are no greater than
that of the provoking variations in the coe$cients. These
results say that the adjusted values of the coe$cients are
reliable for using R con"dently.

A generally symmetric response of the RMSE errors
makes evident for 10% coe$cient variations, as well as
for some (w, b, h) at higher variations.

Some RMSE errors should be noticed. As expected, the
highest values appear for strong variations (50%) in
w and h, the bit-hole balance and the aggravating hole
interaction, respectively. On the other hand, the errors
for b result extremely low. This has the meaning that the
aggravating bit interaction is almost irrelevant. It may be
due to the fact that the training patterns do not include
clusters of bits not close to the edge. For speci"c applica-
tions, such that comparing edge detectors for very noisy
images, it could be convenient to use a di!erent set of
training patterns, leading to higher values for b and the
corresponding sensitivity.

Table 4 contains "nal values of the coe$cients as
determined by the least-squares adjustment. The round-
o! to the nearest two digits value has been made accord-
ing to the sensitivity results: being 5% the maximum
relative error in the coe$cients, a little error in RMSE,
only 1.3%, is produced.

5. Results and comparison with other quality measures

The proposed measure and other available measures
were applied to a selected set of edge images provided by
segmentation procedures and results were compared in
order to assess the behaviour of R.

5.1. Test images

In order to achieve comparative results about di!erent
methods, four series of test edge images were selected. By
visual comparison between them, each series was ordered
according to quality by consensus of the observers. The
images (see Fig. 5) were selected in such a way that, in the
opinion of the members of the team, there was no doubt
about the correct arrangement. That is, the di!erence in
quality between each two consecutive images in a series
was great enough to expect any other quali"ed observer
to agree.

These were the criteria used in selecting the test images:

f They were synthetic images, this being a requirement
for the application of the quality measures proposed
for this comparison, and most were of the `discrep-
ancya, or mixed, type.

f They were of the same type as those utilised by other
published studies on this subject [13] (new proposed
measures, or surveys of measures), in order that the
reader may more easily assess the results.

f Bearing in mind that R is designed as a hybrid
measure, the prior assessment of test images must also
be performed using the two criteria, empirical good-
ness and discrepancy. Since combining both in a
subjective appreciation is di$cult, they were applied
separately. Thus, the "rst three series contain scattered
and grouped mistakes, but no systematic error, where-
as part (d) in Table 4 refers to images with only
continuous errors * displacements, duplications, etc.
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Fig. 5. Series of segmented images.

The fourth series has not been shown in Fig. 5 owing to
obviousness. The real edge is a straight vertical line, and
the test edges are as follows: (1) a two-pixel-thick vertical
line over the edge; (2) a one-pixel-thick vertical line dis-
placed one pixel to the right with respect to the real edge;
(3) a three-pixel-thick vertical line centred on the edge; (4)
same as (3) but shifted one pixel to the right; (5) same as
(1) but shifted one pixel to the right, thus not covering the
real edge; and (6) same as (5) but shifted again to the right.

5.2. Order deviation

Besides R, the quality measures P
e
, f, D, f

e
were ap-

plied to the test images. The unnormalised numerical

results are given in Table 5. At the right of each set of
numerical values, a corresponding set of ordinals indi-
cates how the measure has ordered the test images. The
comparison of the results was performed not directly
from the numerical values, but from these resulting or-
dered sequences instead.

In order to assess the level of success on each one of the
above-mentioned sequences, it must be stated some kind
of distance measure of a sequence s"(s

1
, s

2
,2, s

n
) from

the ideal (1, 2,2, n by construction). This measure, ¹(s),
is de"ned as the number of relative disorders between
each two elements of s. For example in the sequence
(4, 2, 6, 3, 1, 5) there are nine relative disorders. This is
what we wish to determine, instead of the mere deviation
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Table 5
Numerical results, ordered sequences and order deviations

Serial S
c

10P
e

S
pe

102D S
D

10 f S
f

10 f
e

S
fe

10~2R S
R

1 1.54 3 0.58 1 9.23 1 5.00 1! 1.30 1
2 2.49 4! 0.90 2 8.72 2 4.72 4 2.07 2
3 1.16 2 1.03 3 6.30 5 5.00 2! 5.07 3

A 4 2.51 5! 1.28 4 6.74 4 3.82 5 5.77 4
5 4.54 6 1.66 6 6.92 3 2.99 6 6.57 5
6 0.27 1 1.51 5 2.44 6 5.00 3! 10.40 6
¹(s) 7.5 1 3 5.5 0

1 3.45 1 0.78 1 8.29 1 5.00 1 2.42 1
2 7.28 5 1.43 3 6.91 2 4.83 2! 5.42 2
3 5.45 3 1.46 4 5.43 5 4.80 3! 9.11 3

B 4 6.92 4 1.56 5 5.82 4 3.75 6 9.75 4
5 3.77 2 1.37 2 3.69 6 4.66 4 12.23 5
6 12.49 6 1.86 6 5.89 3 3.80 5 13.12 6
¹(s) 5 3 4 2.5 0

1 5.41 2 1.51 2 7.27 1 4.86 1 46.26 1
2 8.12 4 1.60 3 7.17 2 4.80 2! 56.39 2
3 10.65 6 2.04 6 6.43 4 4.34 5 79.10 3

C 4 6.06 3 1.68 4 6.81 3 4.59 4 80.56 4
5 8.31 5 2.00 5 5.94 5 3.88 6 99.43 5
6 1.72 1 1.43 1 2.41 6 4.79 3! 108.80 6
T(s) 8 7 1 4.5 0

1 10.0 1! 1.52 1 7.50 1 5.00 1! 7.86 1
2 10.0 2! 3.03 2! 5.00 4 5.00 2! 12.02 2
3 20.0 3" 3.03 3! 6.67 2 5.00 3! 15.72 3

D 4 20.0 4" 3.03 4! 5.67 3 3.50 4" 19.99 5
5 20.0 5" 4.55 5" 3.50 5 3.50 5" 23.93 4
6 20.0 6" 4.55 6" 1.50 6 1.50 6 41.23 6
¹(s) 3.67 2 2 2 0

!,"The values in the series are di!erent less than the 1% of the series' range.

of each element from its correct location in the sequence.
As a consequence of this de"nition, ¹(s) is an integer
number between 0 and (n

2
). In addition, ¹(s) can be

alternatively de"ned by any of the following equivalent
statements:

1.
n
+

k/2

¸(k), where ¸(k)"no. of Ms
i
3s, s

i
's

k
, i(kN is

the number of elements greater than the one occupy-
ing location k and found to the left.

2.
n~1
+

k/1

R(k), where R(k)"no. of Ms
j
3s, s

k
's

j
, k(jN is

the number of elements smaller than the one occupy-
ing location k and found to the right.

3. The minimum number of transpositions between two
adjacent elements needed to order the sequence.

This last characterisation for ¹(s) is a consequence of
two facts: "rst, that the permutations group S

n
can be

generated by transpositions between adjacent elements

(1 2), (2 3),2, (n!1 n), where (i j) stands for a transposi-
tion between positions i and j [14]; and second, that
every sequence can be ordered by only making transposi-
tions between adjacent elements in relative disorder, as
can be seen from an analysis of the well-known bubble
sorting algorithm.

Very close values of quality must be considered as
equal. So, for each measure, an inequality tolerance of
1% of the range was established. If, according to this, an
ordered sequence s contains equalities, then its deviation
¹(s) is obtained as the average of ¹(s

p
) for all the se-

quences s
p

di!ering from the standard only in a permuta-
tion of equal-valued elements.

5.3. Results

Below each order sequence s, Table 5 also shows the
corresponding order deviation ¹(s). The correct sequence
s
c

is given in the second column as a reference for easy
checking.
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The results reported show an excellent behaviour for
the proposed measure R. In particular, R is the only that
gives the correct order for all the series.

It can be seen that measures D, P
e
, f and f

e
have

relatively good behaviour in certain series, but not in all,
being f the best of them. This corroborates the argument
given in the criticism at the beginning of this paper.

6. Conclusions

A new measure of quality for evaluating the perfor-
mance of edge segmentation methods has been proposed.
It is a hybrid of empirical discrepancy and empirical
goodness, which appears to be the type of measure the
best suited to the general problem. Its mathematical
expression is simple and intuitive, also having a high
computational e$ciency. The parameters have been set
up by means of a least-squares training process, in order
to obtain a measure having a similar behaviour of the
human perception. Once the parameters have been ad-
justed, the measure has been applied to a select set of
edge-images. Then, the results have been compared to
those obtained by applying other quality measures in
literature to the same set of images. The proposed
measure shows a noticeable better behaviour than any of
the others.

7. Summary

Authors currently working in the "eld of low-level
image segmentation frequently point to the need for a
standard quality measure that would allow the evalu-
ation and comparison of the variety of procedures avail-
able. Some researchers have even stepped outside their
usual sphere of interest in an e!ort to satisfy this demand
by proposing new quality measures, as indeed is true of
the present authors. Several recent review articles have
also revealed the lack of agreement about such a
measure.

Although the problem is often referred to as one of
determining the quality of a segmentation method, most
of the algorithms for computing the proposed measures
work within a window sliding across the image, thus
whether or not the image has been e!ectively segmented
is not taken into account. Only a few methods actually
explore the obtained segments, most measures being best
suited to edge detection. Yet in the design of segmenta-
tion quality measures, e!ective edge detection can prove
to be highly useful. The present proposal is based on this
low-level framework.

The discrepancy between a binary image of estimated
borders and the ideal one can be stated by means of some
kind of account of individual di!erences, pixel by pixel,
between these two binary images. The proposed measure

is a hybrid of the so-called `empirical discrepancya
and `empirical goodnessa by Zhang. It combines the
pixel-by-pixel objective discrepancy between the
obtained edges and the theoretical ones with an evalu-
ation of each mistake as assessed by human observers.
The measure belongs to a class that may be called
the low-error model of quality measures, not intended
for excessive or aberrant (not usually found in edge
images) errors. In other words, the measure should
be properly applied to edge images with no too
many mistakes, and most of these should be close to the
theoretical edge.

In order to implement these statements in a mathemat-
ical expression, the following bases are established: "rst,
the theoretical edge must be known (or de"ned by con-
vention) so that the mistakes produced can be detected
and evaluated one by one; second, only strict closeness to
the ideal edge is relevant; and third, interactions between
closely clustered mistakes should be involved in the as-
sessment of the quality.

By following these premises, a new measure of quality
is proposed for evaluating the performance of available
methods of image segmentation and edge detection. The
technique is intended for the evaluation of low-error
results and features an objective assessment of discrep-
ancy with respect to the theoretical edge, in tandem with
subjective visual evaluation using both the neighbour-
hood and error-interaction criteria. The proposed math-
ematical model is extremely simple, even from the
perspective of computational execution. A training of
the measure has been put in practice, which uses visual
evaluation of a set of error patterns by a team of
observers. Encouraging results were obtained for a
selection of test images, especially in relation to other
recently proposed and/or currently employed quality
measures.
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des Exercices, Premiere Partie. Gauthier-Villars, Paris,
section 6, sample 13, 1972, pp. 99.

About the Author*R. ROMAD N-ROLDAD N is Professor of Applied Physics at the University of Granada (Spain). He is currently
researching in two interrelated subjects, both based on the use of an information-theoretic measure, the Jensen-Shannon divergence.
Entropic edge detection in digital images, and Complexity analysis in DNA sequences through entropic segmentation.

About the Author*P.L. LUQUE ESCAMILLA received the B.Sc. and Ph.D. degrees in Physics from the Universidad Complutense
(Madrid) and Universidad de Granada, in 1992 and 1996 respectively. He is currently professor in the Dpt. IngeniermHas MecaH nica
y Minera in Universidad de JaeH n. His research interests include digital image "ltering and segmentation, particularly in practical
applications (i.e. #uid dynamics).

About the Author*JUAN FRANCISCO GOD MEZ-LOPERA was born in Granada, Spain, on 3 June 1968. He received the M.S. and
Ph.D. degrees in Physic from Granada University, in 1991 and 1995, respectively. He joined the faculty of Experimental Sciences of the
Department of Applied Physic in 1992, at the University of AlmermHa. Now he is professor at the University of Granada, since 1996. His
research interest includes image "ltering, image segmentation and its applications.

About the Author*JOSED MARTIDNEZ AROZA was born in Archidona, Spain and received his M.S. and Ph.D. degrees in Universidad
de Granada. He teaches numerical analysis in this University, in the Dept. MatemaH tica Aplicada. He is interested in image processing
and mathematics, as well as in women, of course.

About the Author*CHAKIR ATAE-ALLAH was born in Tangier, Morocco, on 10 September 1970. He received the M.S. in Physic
from Tetuan University, Morocco. Since 1994 he is investigator at Department of Applied Physic in the University of Granada, Spain.
His research interest includes edge detection, thinning, linking and its applications.

980 R. Roma& n-Rolda& n et al. / Pattern Recognition 34 (2001) 969}980


