
Journal of Mathematical Imaging and Vision 13, 35–56, 2000
c© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

An Analysis of Edge Detection by Using the Jensen-Shannon Divergence

JUAN FRANCISCO ǴOMEZ-LOPERA
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Abstract. This work constitutes a theoretical study of the edge-detection method by means of the Jensen-Shannon
divergence, as proposed by the authors. The overall aim is to establish formally the suitability of the procedure
of edge detection in digital images, as a step prior to segmentation. In specific, an analysis is made not only of
the properties of the divergence used, but also of the method’s sensitivity to the spatial variation, as well as the
detection-error risk associated with the operating conditions due to the randomness of the spatial configuration of
the pixels. Although the paper deals with the procedure based on the Jensen-Shannon divergence, some problems
are also related to other methods based on local detection with a sliding window, and part of the study is focused to
noisy and textured images.
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1. Introduction

1.1. Segmentation and Edge Detection Methods

The scientific technical literature on the treatment of
computer images and vision is copious. Nevertheless,
an unresolved problem is to design a universal method
that can be automated—that is, that can provide good
image segmentation in all cases without human inter-
vention. This objective may in reality be unattainable,
and is being replaced by an endless variety of partial
solutions to specific problems (see any of the worthy
texts available on this material, i.e. [1–3]). The seg-
mentation of a digital image, at a low level, follows two
basically different procedures:

1. Growth of regions. This is begun by seeding candi-
date pixels, then making regions grow within their
surroundings until they meet other adjacent regions,
with some halt criterion at the border. Segmentation
is assured, but not the suitability of the edge.

2. Edge detection. Throughout the image, an exhaus-
tive search is made for points that separate different
regions. Dividing lines are assured but not their
connection and, therefore, not segmentation into
regions.

Examples of local methods can be found in [4, 5]. The
method analysed here is of the second type. It was pro-
posed by the authors [6] as a suitable procedure for
detecting edges in several classes of images, such as
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regular or natural textures, noisy regions, and other
more specific images. The success of the proposed
method has been shown empirically [9, 10] by sim-
ply applying it to cases. Nevertheless, the good results
observed were (up to now) not theoretically sustained.
This is the goal of the present work.

1.2. A Brief Description of the Method

For the sake of self-containing, our edge-detection
method is briefly described here. The search for edge
points is made by a sliding window that passes over
the entire image, giving relative-frequency vectors of
greys observed in two semi-windows and allowing de-
cisions to be made by means of a measurement of
probabilistic differences between the vectors, namely
the Jensen-Shannon divergence. This is zero for equal
vectors (no differences), and it takes higher values for
increasing differences between the relative-eg. 1F fre-
quency vectors. In this way a matrix of divergences is
obtained, and a search for local maximums, which are
finally considered as belonging to edge points, ends the
algorithm.

Thus, the method locally examines histograms of
grey levels in the neighbourhood of each pixel, ignor-
ing prior characteristics of the regions to be compared.
Both the behaviour of Jensen-Shannon divergence and
the suitability of the operating method with regard to
the appropriate choice of parameters explain the good
results that were obtained in most cases.

1.3. Contents

In the present work, we perform a theoretic analysis—
as thoroughly as possible—on the variations of this
function under the operating conditions of the method,
as well as the fate derived from the random spatial con-
figuration of the portions delineated by the window.
Our introductory work on this method [6] provides a
basic description and a preliminary theoretic analysis.
This preparatory work is described here almost in its en-
tirety to facilitate comprehension of the present work.

In principle, the mathematical properties of Jensen-
Shannon divergence can be studied theoretically with
the usual analytical methods, although some of the
properties or meanings—such as that of the probabilis-
tic distance—prove arduous and thus are not presented
here. This work concentrates on the theoretical study of
the usefulness of this measure for edge detection in dig-
ital images. This objective becomes especially difficult

on posing the problem of statistical confidence of the
method while taking into account the random spatial
configuration, compatible with the relative-frequency
data, which are the arguments of the divergence func-
tion. For this, the results of the present work constitute
an approximation that necessarily resorts on occasion
to Monte Carlo simulations when the analytical path-
way proves impractical.

The study starts necessarily with a preliminary anal-
ysis of the behaviour of Jensen-Shannon divergence as
an edge-detecting function under ideal conditions, in
order to examine later what degree of detection remains
successful under real conditions. In addition, the study
contains propositions that are valid in a more general
context than outlined here; for example, the discus-
sion on the objectivity of an edge in a given image is
independent of the detection method, and the problem
of the changes of phase is applicable to any technique
based on the comparison of histograms in a divided
sliding window.

2. Some Properties of the
Jensen-Shannon Divergence

2.1. The Shannon Entropy

This is a classic concept in Information Theory [8], but
for the sake of self-containing it is briefly described
here.

Let P= {pj , j = 1, . . . , K } be a discrete probabil-
ity distribution (0≤ pj ≤ 1∀ j,

∑K
j=1 pj = 1). The

Shannon entropy ofP is defined as

H(P) = −
K∑

j=1

pj log pj ≥ 0,

where 0 log 0= 0 is assumed by continuity. In a cer-
tain sense,H(P) measures the diversity of events dis-
tributed inP. H(P) is zero only for degenerate distribu-
tions (one sure event), and is maximum for the uniform
distribution (equiprobable events). Some basic prop-
erties are:

1. H(P) ≥ 0 ∀P,
2. H(P) = 0 if and only if P is a degenerate distribu-

tion (one sure event),
3. H(p1, . . . , pn, 0) = H(p1, . . . , pn),
4. H(P) ≤ H( 1

n , . . . ,
1
n ) ∀P.

5. (Branching property) Let5 = (πkj), πkj ≥ 0,∑n
k=1

∑m
j=1πkj= 1 be a compound probability
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distribution. Denote byP = (pk), pk =
∑m

j=1πkj

andQ = (qj ), qj =
∑n

k=1πkj the corresponding
side distributions, and byP j = (pjk), pjk = πkj

qj
and

Qk = (qkj),qkj = πkj

pk
the associated distributions of

conditional probabilities. Then

H(5) = H(P)+
m∑

j=1

pj H(Q j )

= H(Q)+
n∑

k=1

qk H(Pk).

As a consequence, if5 comes from two inde-
pendent probabilistic experiments, thenP= P j ∀ j,
Q= Qk ∀k, and thusH(5) = H(P)+ H(Q).

Proofs of all these and other properties can be found
in [8].

2.2. Definitions

The generalised Jensen-Shannon divergenceis a
measure of (inverse) cohesion between probability
distributions:

JSπ (P1,P2, . . . ,Pn)= H

(
n∑

i=1

πi ·Pi

)
−

n∑
i=1

πi · H(Pi )

where P1,P2, . . . ,Pn are probability distributions,
Pi ={pij , j = 1, . . . , K }, i = 1, . . . ,n, π = {π1, π2,

. . . , πn | πi > 0, 6πi = 1} is a set of weights. When
π = {1/n, 1/n, . . . ,1/n}, that is, when all weights are
equal, then JSπ is plainly denoted by JS.

The two terms in the right-hand side of the above
equation are the entropy of theπ -linear convex com-
binationP= 6πi Pi , and the same linear convex com-
bination of the respective entropies. Because of the
concavity of the Shannon entropy, the Jensen-Shannon
divergence has several suitable properties, which are
outlined by Lin [7]. Some of these are non-negativity,
finiteness, boundedness and symmetry. In addition,
JSπ = 0 if and only if the histograms are equal.

As opposed to other measures of Information
Theory, such as relative entropy [8], this has the ben-
efit of being generalised to any number of random
variables. It also presents the advantage over other
measures—such as mutual information [8]—of being
a weighted measure, with the possibility of weighting
its arguments with the relative sizes of samples or sub-
regions of an image. In the rest of this section, some

other properties that serve to explain its application
in edge detection are presented (without mathematical
proofs).

Throughout the present work, some notations and
abbreviations are used, as follows:

K Grey scale of the image under study;K =
{0, 1, . . . , K − 1}, |K | = K .

P(D) Normalised histogram of a region or portion
D in the image:P(D) = {p0, p1, . . . , pK−1},
wherepk indicates the relative frequency of
pixels with a grey level ofk ∈ K within D.
This can be considered either as a set of rel-
ative frequencies or as a probability distribu-
tion. For brevity, the notationPa will be used
instead ofP(a) when dealing with regions.

W Window that slides over the image. Centred at
a given position, it indicates the pixels which
must be included to perform an operation as-
sociated with this position.

W1,W2 The window W is divided into two dis-
joint semi-windowsW1,W2 of equal size and
shape, and with an unchanging relative posi-
tion within W.

N Size of each semi-window. Thus,W is 2N in
size.

H(D) The Shannon entropy of the histogram of a
portion: H(D)= H(P(D)).

JS(W) Jensen-Shannon divergence of the window
W: JS(W)= JS(P(W1),P(W2)). It is evident
that its value varies with the position ofW
over the image.

2.3. Bounds of Jensen-Shannon Divergence

The JSπ divergence is an upper- and lower-bounded
function: 0 ≤ JSπ ≤ C(π). Is has been have pre-
viously demonstrated [11] that JSπ is a convex func-
tion and, therefore, reaches its maximum valueC(π)
for a certain set of distributions, all degenerate. In
addition, for certain cases, the value ofC(π) was
derived: if n≤ K then C(π)= H(π), and if π =
{1/n, 1/n, . . . ,1/n} then

C(π) = log(n)− (r · (q + 1) · log(q + 1)

+ (K − r ) · q · log(q))/n,

with q andr being the quotient and remainder, respec-
tively, on dividingK by n. In any case, it always holds
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that C(π) ≤ min{logn, log K }, and thus JSπ can be
normalised between 0 and 1 with each application.

2.4. Grouping of the Grey Scale

The crucial branching property of Shannon entropy de-
termines a similar divergence property, by which diver-
gences corresponding to two grey scales can be related
when one is a grouping of the other.

When images with a fine grey scale are treated with
small windows, the numberN of pixels in a semi-
window proves much lower than the numberK of grey
levels in the scale. This gives rise to frequency vectors
with many zeros, and, on calculating the divergence be-
tween two histograms under these conditions, we may
find that the zeros of the two histograms do not coin-
cide, or, more properly, that these histograms are or-
thogonal. Then a saturation effect of divergence arises,
towards its upper bound (log 2= 1 in our case), ham-
pering the detection of significant maximums. Fortu-
nately, some results favour a certain robustness of the
divergence against this phenomenon, as we shall see
below.

Let us assume that the original grey scaleK =
{0, 1, . . . , K−1} is branched toK′ = {0, 1, . . . , K ′−1}
in such a way that each levelk ∈ K in the original
scale corresponds to an entire variety or range of con-
secutive levelsRk = {k′k, k′k + 1, . . . , k′k + nk} in the
branched scale, and reciprocally each levelk′ ∈ K′ of
the branched scale comes from a single levelκ(k′) ∈ K
of the original scale. Clearly, so that the branching is
consistent, the set{R0,R1, . . . ,RK−1} of ranges must
be a partition ofK′. LetP1 andP2 be the respective his-
tograms of the semi-windowsW1 andW2 for a fixed po-
sition of the sliding windowW within a given image. If
we now repeat the observation ofW using the branched
scale (without varying the position of the sliding win-
dow), then we obtain two branched histogramsP′1,P

′
2.

These are related toP1 andP2 by means of the relation-
shipsp1,k = p′1,k′k + p′1,k′k+1+ · · · + p′1,k′k+nk

or, recip-
rocally, p′1,k′ = q1,k′ p1,κ(k′) whereq1,k′ = p′1,k′/p1,κ(k′)
is the relative frequency of appearance of thek′ level in
the pixels ofW1 with the original levelκ(k′) ∈ K, and
verifies q1,k′ ∈ [0, 1]∀k′ ∈K′,

∑nk
j=0 q1,k′k+ j = 1∀k∈

K, giving comparable relationships for theP′2
histogram.

Thus, for each original grey levelk, there are two
associated probability distributionsQ1,k,Q2,k with
Q1,k = {q1,k′k ,q1,k′k+1, . . . ,q1,k′k+nk} and analogously
for Q2,k. In terms of information theory, we are

broadening thealphabet—in our case, the grey scale—
for which we know the probability distributions of
the broadened alphabet with respect to the original
alphabet.

Theorem. Under the above-described conditions,

we have:

JS(P′1,P
′
2) = JS(P1,P2)+

K−1∑
k=0

p1,k + p2,k

2

× JSωk(Q1,k,Q2,k)

whereJSωk represents the Jensen-Shannon divergence
between the two probability distributions, weighted
with weightωk = {ω1,k, ω2,k} = { p1,k

p1,k+p2,k
,

p2,k

p1,k+p2,k
}.

Proof: Let P = (P1 + P2)/2 andQk = ω1,kQ1,k +
ω2,kQ2,k. Developing the left member of the equation
and applying the branching property of Shannon en-
tropy, we can write

JS(P′1,P
′
2) = H((P′1+ P′1)/2)− (H(P′1)+ H(P′2))/2

= H(P)+
K−1∑
k=0

pk H(Qk)

− 1

2

(
H(P1)+

K−1∑
k=0

p1,k H(Q1,k)

)

− 1

2

(
H(P2)+

K−1∑
k=0

p2,k H(Q2,k)

)

= JS(P1,P2)+
K−1∑
k=0

pk(H(Qk)

−ω1,k H(Q1,k)− ω2,k H(Q2,k)). 2

Although it is not directly useful in the present context,
this result can be extended immediately to weighted
divergences, as follows:

Theorem. Letπ = {π1, π2} be an arbitrary distribu-
tion of weights, and letJSπ (P1,P2) be the correspond-
ing weighted divergence. Under the same conditions
as in the preceding theorem, we have:

JSπ (P′1,P
′
2) = JSπ (P1,P2)+

K−1∑
k=0

(π1 p1,k + π2 p2,k)

× JSπωk(Q1,k,Q2,k)

where nowπωk = { π1 p1,k

π1 p1,k+π2 p2,k
,

π2 p2,k

π1 p1,k+π2 p2,k
}.
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Proof: This is achieved by direct calculation in the
same way as that of the previous theorem, which now
remains as a particular case of this latter theorem, for
π = {1/2, 1/2}. 2

From these results, it follows that the increase of diver-
gence1JS=∑K−1

k=0 pkJSωk(Q1,k,Q2,k) resulting from
the branching of the grey scale depends on the branch-
ing distributions of the scaleQ1,k,Q2,k and of the his-
tograms. Consequently, this increase is null only in the
case that for each grey levelk we haveQ1,k = Q2,k or
that the weights inωk are degenerate—that is, one is
null and the other is the unity. In our case, the interpre-
tation is that the grey levels appearing simultaneously
in both semi-windows must be expanded to branched
levels following the same common distribution, with-
out concern for the expansion of levels that appear only
in one of the semi-windows but not in the other. If this
condition is fulfilled, then the change of scale does not
trigger variation in the Jensen-Shannon divergence.

Non-fulfilment of this condition may result from var-
ious factors. For example, observation at a poor spatial
resolution would obscure tiny details which otherwise
could add a certain chromatic richness. Another plau-
sible case is that of an image that was acquired with
reduced grey scales and that were stored at a fine scale,
giving rise to a histogram containing skips and gaps
with null frequency. If we now process the image in
some form that slightly alters its brightness by regions,
a secondary effect may arise as a strong increase in
Jensen-Shannon divergence.

In conclusion, we can say that, as a general rule, it is
advisable to take the most reduced grey scales possible,
so long as this does not notably sacrifice detail.

2.5. Rationale for the Use
of Jensen-Shannon Divergence

Certain aspects of Jensen-Shannon divergence make it
the most advantageous measure, compared to other en-
tropic measures of information theory, such as mutual
information I (X,Y) or relative entropy between two
random variables. Some of these aspects are explained
below.

Firstly, we must assume that the images of natural or
artificial scenes are composed of regions which, in rep-
resenting various objects, are different and independent
while internally uniform. However, the presence of a
correlation between samples from the semi-windows
of a window does not indicate in general that both

semi-windows are located in the same region. Con-
sequently, we need not seek a measure of dependence
or correlation (such as mutual information), but rather
a measure of probabilistic distance which indicates
whether or not the samples are plainly different.

The meaning of Jensen-Shannon divergence be-
tween probability distributions of two random variables
JS(P(X),P(Y)) is essentially different from that of the
mutual informationI (X,Y) between the same vari-
ables. The joint random variableX⊗Y is also an argu-
ment of I (X,Y), which implies extra information that
makes the mutual information become a measure of
statistical dependence between random variables. On
the contrary, Jensen-Shannon divergence can be con-
sidered as a measure of pseudo-distance (e.g. it does not
satisfy the triangle inequality). When applied to any
number of distributions, it constitutes a certain measure
of distance between all of them (or reverse cohesion).
The requirement of absolute continuity does not have
to be satisfied by the probability distributions involved,
as it has to be by the relative entropy. On the other
hand, the relative entropy is not symmetrical, has no
upper bound, and does not have an adequate branching
property.

The above set of properties makes the Jensen-
Shannon divergence an especially adequate measure
in edge detection.

3. Edge Detection Under Conditions
of Uniformity

The behaviour of Jensen-Shannon divergence as an
edge-detection tool is analysed initially under the ideal
assumption that each region of an image satisfies the
following statistical-uniformity hypothesis:

“For every sampleD taken from a regionx, we
haveP(D) = Px”.

It might appear that this hypothesis is overly restric-
tive, from the standpoint of rigour, given that it is ful-
filled only in the case of regions having pixels all of the
same grey level. Nevertheless, for textured regions, the
hypothesis grows asymptotically closer to fulfilment as
the size of the sample increases and substantially ex-
ceeds the size of thetexel.1 The foregoing also occurs
for regions originally uniform that undergo noise cor-
ruption, either impulsive or additive. Given that this
approximate fulfilment is feasible and near the ideal
case discussed, the study proceeds under the uniformity
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hypothesis, without diminishing the realistic analysis
of the following section.

A consequence of (but not an equivalent to) the uni-
formity hypothesis is the following property:

“If a window W is moved through the interior of a
region a, then its histogramP(W) remains
constant and equal to the histogramPa of the
region”.

Let us now consider a rectangular windowW, di-
vided into two semi-windowsW1 andW2, which slides
with W1 leading and goes from being completely within
regiona to being completely inside regionb, crossing
the straight border that separates the two regions. At
this point, the idealised analysis is made considering
two cases, depending on the direction of the sliding:
1st, normal to the edge; 2nd, oblique.

3.1. First Case: A Straight Edge Perpendicularly
Crossed by the Window

This case is partially described in [6], although
the essentials are reproduced here for the reader’s
convenience.

While window W occupies a single region, the
histogramsP(W1),P(W2) and P(W) are invariable
and equal, in accordance with the uniformity hypo-
thesis. As a result, the divergence JS(W) is null in this
situation.

If the window is situated in any position on the
edge, at most one of the two semi-windows will be in-
volved in the two regions. Without diminishing gener-
ality, let us assume that we are dealing withW1. Again,
under the uniformity hypothesis, the part ofW1 sit-
uated in regionsa and b contain partial histograms
Pa and Pb respectively, and thereforeP(W1) will be
a certain weighted mean or convex linear combina-
tion of Pa and Pb, with weights quite proportional
to the sizes of the sub-regionsa ∩ W1 and b ∩ W1,
respectively. More specifically, ifβ ∈ [0, 1] repre-
sents the fraction ofW1 included in regionb, then
P(W1) = (1−β)Pa+βPb, consequently giving rise to
a histogram that varies with respect to the position of
W. As W2 lies within regiona, we haveP(W2) = Pa

and thereforeP(W) = (1− 1
2β)Pa+ 1

2βPb. It is helpful
now to useW(β) andW1(β) to denote the particular
compositions ofW andW1 respectively, for the posi-
tionβ. The corresponding Jensen-Shannon divergence

can be expressed as a function ofβ as

JS(W(β)) = H(W(β))− 1

2
(H(W1(β))+ H(W2)),

β ∈ [0, 1].

Theorem. “Under the foregoing conditions, if Pa 6=
Pb then JS(W(β)) reaches its maximum value when
β = 1”.

Proof: If we notePa={pai }K−1
i=0 , Pb={pbi}K−1

i=0 and
di = pbi − pai, some straightforward calculations
enable us to express

JS(W(β)) = −1

2

K−1∑
i=0

2

(
pai + β

2
di

)
log

(
pai + β

2
di

)
− (pai + βdi ) log(pai + βdi )

− pai logpai.

To prove that JS(W(β)) is a strictly increasing function
with respect toβ, it is sufficient to see that its derivative
function

dJS(W(β))

dβ

=−1

2

K−1∑
i=0

di

(
log

(
pai + β

2
di

)
− log(pai + βdi )

)

vanishes forβ = 0, and is strictly increasing (and there-
fore positive) with respect toβ, by virtue of the fact that
its second derivative

d2JS(W(β))

(dβ)2
= 1

2 ln 2

K−1∑
i=0

paid2
i(

pai + β

2 di
)
(pai + βdi )

is strictly positive∀β ∈ [0, 1]; in fact, all the addends
are non-negative—this being the reason for which
d2JS(W(β))/(dβ)2 can become zero only if all the
addends do. Under this assumption, it cannot occur
thatdi = 0 ∀i after assuming two regions of different
histograms. Therefore, for thosedi not equal to 0,pai

would have to equal 0, and this is impossible, given that
we are working with probability distributions. 2

The divergence as a function ofβ is shown graphi-
cally in the zone corresponding to the interval [0, 1] of
the abscissa axis of Fig. 1, forPa = {0.5, 0.5},Pb =
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Figure 1. Jensen-Shannon divergence for a window that crosses a
vertical border.

{0, 1}. The rest of the figure (interval [1, 2]) shows the
divergence when the semi-windowW2 is enteringb,
W1 now lying completely withinb.

It bears emphasising that divergence is not a deriv-
able function with respect to the position ofW in the
centredposition, at which each semi-window lies in a
different region. We can corroborate this fact by means
of the same proof, deducing the impossibility of a null
derivative, as illustrated in Fig. 1, where the maximum
appears clearly at a point where JS is not derivable. It
is noteworthy, furthermore, that the divergence is not
in general symmetrical with respect to the position of
the maximum. Although the figure need not be sym-
metrical, we can affirm that it is more asymmetrical the
greater the differences are among its entropiesH(Pa)

andH(Pb). In the case of Fig. 1, we chose histograms of
strongly differing entropies in order to show the asym-
metry of the divergence.

3.2. Second Case: A Straight Edge Obliquely
Crossed by the Window

The usefulness of studying this second case, with re-
gard to the previous one, lies in the fact that an edge-
detection algorithm cannot generally guarantee that the
window will cross an edge at a perpendicular angle.
Given that, edge-detection algorithms usually use sev-
eral simultaneous orientations of the sliding window
(typically two or four), the worst case being an edge
deviation of±45◦ with respect to the sliding direction.
This forces us to consider, for each semi-window, a
(variable) fraction of incidence in each region. Let
β1 be the fraction of the semi-windowW1 in region
a, andβ2 be the fraction of the semi-windowW2 in

region b (see Fig. 2). In this way, the histograms of
the semi-windowsW1 and W2 are P(W1) = β1Pa+
(1− β1)Pb andP(W2) = (1− β2)Pa + β2Pb, respec-
tively. It is evident thatβ1 andβ2 are not independent
variables, since both depend directly on the position of
W with respect to the edge. To study the variation of
the Jensen-Shannon divergence as a function ofβ1 and
β2, we shall distinguish three cases:

a) W2 has not yet enteredb: 1≥ β1 ≥ β0, β2 = 0;
b) W2 has enteredb, but W1 has not yet lefta:

√
β1

+√β2 =
√
β0;

c) W1 has already lefta: β1 = 0, β0 ≤ β2 ≤ 1;

whereβ0 is the fraction of the area of the semi-window
corresponding the figure of a right-angled triangle, the
sides of the semi-window being the sides of the right
angle, and the hypotenuse coinciding with the edge.

It is evident that a) and c) are parallel, and thus it
is sufficient to study only one of them. For the case
of a), the Jensen-Shannon divergence depends only on
β1, and it strictly decreases withβ1 (increasing with the
movement ofW from left to right), as deduced directly
from the fact that its second derivative

∂2JS

(∂β1)2
(β1, 0) = 1

2 ln 2

K−1∑
i=0

× pai(pbi − pai)
2

(β1 pai + (1− β1)pbi)(pai + β1 pai + (1− β1)pbi)

is strictly positive∀β1∈ [0, 1] and that the value of
its first derivative atβ1= 1 is zero, implying that
∂JS
∂β1
(β1, 0)<0 ∀β1 ∈ [0, 1). Applying reasoning anal-

ogous to that of case c), we find that the divergence
strictly decreases withβ2 and consequently with the
movement ofW. Thus, we conclude that the diver-
gence must reach its absolute maximum at some point
in case b), corresponding to the positions ofW in which
the separation line between semi-windows intersects
with the edge. This maximum is not always reached in
the position of a centred window. A counterexample
can be seen in Fig. 3, which shows the Jensen-Shannon
divergence with respect to the sliding ofW in the case
of respective histogramsPa = {1/3, 1/3, 1/3},Pb =
{0, 0, 1}. However, such a deviation from the maxi-
mum is, in practice, negligible in most cases, as a chain
of circumstances would have to arise to produce poor
results, given that: 1) only two instead of four window
orientations are used; 2) the edge deviates nearly 45◦

from both orientations; 3) the entropies of the regions
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Figure 2. Variation inβ1 andβ2 when the window crosses an oblique border.

Figure 3. The Jensen-Shannon divergence according to the position
of the window, on crossing an oblique edge.

strongly differ from each other (one near the upper
bound and the other almost zero); 4) very large win-
dows are being used. In the worst of cases, the deviation
is always lower than 1/4 (1/2 when using two orianta-
tions) of the length of the side of the semi-window.

3.3. Influence of Impulsive Noise

Here, we examine how edge detection can be influ-
enced when an image is contaminated with impulsive
noise. The problem posed consists of determining how
the JS function is altered on introducing impulsive
noise in variable quantities into the clean image, this
being specified in position, numerical value and acute-
ness of the divergence maximum.

Given that we refer to a type of noise that is not
spatially correlated, it is clear that, ifPa 6= Pb in the
original image, then, although the noise alters the his-
tograms, it cannot make these coincide (on the aver-
age), except that it affects the totality of the pixels.

To illustrate this case, we shall again consider the sit-
uation described in Section 3.1. The maximum value
of the divergence is JS(W(1)) = JS(Pa,Pb) in the ab-
sence of noise. If we now consider that a source of noise
with distributionPr = {r0, r1, . . . , r K−1} is acting on
the image with a probabilityα ∈ [0, 1], then the altered
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histograms are (on the average)P̃a = (1−α)Pa+αPr

andP̃b = (1− α)Pb+ αPr . The disturbed divergence
JS(P̃a, P̃a) will always have a lower value than that
of JS(Pa,Pb), as can easily be deduced on confirming
that ∂

2JS(P̃a,P̃a)

(∂α)2
≥ 0∀α ∈ [0, 1] and ∂JS(P̃a,P̃a)

∂α
|α=1 = 0,

implying that JS(P̃a, P̃a) decreases with respect toα.
The immediate result is that, despite that a maximum

of JS still remains at the same position and the edge is
detected at the correct position (in terms of statistical
mean), the presence of noise decreases the maximum
value of the divergence and consequently attenuates
the slope. The former consequence affects the meth-
ods that use a threshold of the divergence, while the
latter diminishes the robustness of the methods based
on the detection of the divergence maximums, on mak-
ing them more sensitive to the fluctuations to be studied
in the following section.

4. Relaxation of the Uniformity Hypothesis:
Statistical Study

The uniformity hypothesis formulated in the preced-
ing section represents an unattainable ideal situation,
and can be approximated only if certain conditions are
fulfilled. Non-fulfilment of this hypothesis should be
studied, since it implies an approximation to reality, a
connection between continuousness and discreteness.
In an image composed of pixels, a portion clearly does
not generally have to present the same histogram as the
region that contains it.

To make the following analysis, we must at least
assume that there is an edge between regions which
is perfect and objectively determined. Aside from the
problem (troublesome and insurmountable) that all pix-
els marked as belonging to an edge necessarily lie in
one of the regions, thus causing a certain ambiguity,
the position of the edge could be questioned for other
reasons, thereby preparing for the following subsection
prior to the continuation of the analysis.

4.1. Objectively Undetermined Edge

Before studying the consequences of the absence of sta-
tistical uniformity, in this subsection we shall consider
the special situation, generally improbable, in which
the edge is not objectively determined, this occurring
for certain configurations of adjacent texels. This lack
of determination arises when there are two or more
consecutive positions of windowW giving the same

pair of histograms observedP(W1) and P(W2). Any
histogram based method (not only that based on the
Jensen-Shannon divergence) using a sliding window
would detect a multiple edge. To simplify the setting
up of the problem, let us consider the following one-
dimensional signal:

0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1

which admits the three following proposals to position
the border:

0 0 1 0 0 1 0 0 1 0 0 1 0 0| 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1

0 0 1 0 0 1 0 0 1 0 0 1 0 0 1| 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1

0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0| 1 1 0 1 1 0 1 1 0 1 1 0 1 1.

The usefulness of studying these problems of objec-
tive determination is evident because of the following
points:

1. The images chosen as a test to evaluate the edge-
detection methods should be free of undetermined
edges.

2. The presence of an edge of double or greater width
in an image may be due to indetermination, in which
case any procedure of narrowing would produce a
simple edge in an arbitrary position.

Below, we perform a calculation of the appearance
probability of an undetermined edge. For simplifica-
tion, let us assume that there is a straight vertical edge
between regions of regular texture composed of texels
of identical shape and sizem× n (m rows,n columns)
in both regions. Letaij ∈ [0, . . . , K−1] be the ele-
ments of the texelTa of the regiona, and analogously
bij ∈ [0, . . . , K−1] the elements of the texelTb of
the regionb (see Fig. 4). Let us call the corresponding
columnsa1, a2, . . . ,an andb1, b2, . . . ,bn.

In the hypothetical (simplified) situation in which the
pixels of each region are identically and independently
distributed with the probability distribution given by
the histogram appropriate to its region, we have:

Pr{ The edge is objectively indeterminate}
= 1− Pr{a1 6= b1 andan 6= bn}
= 1− Pr{a1 6= b1}Pr{an 6= bn}
= 1− (1− Pr{a1 = b1})(1− Pr{an = bn})
= 1− (1− 〈Pa,Pb〉m

)2
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Figure 4. Positioning of the texels for the analysis of the indeter-
mination.

where〈Pa,Pb〉 =
∑K−1

i=0 pai pbi is the probability that
two randomly chosen pixels, one from the regiona and
the other fromb, have the same grey level.

This expression of the probability of the existence
of objectively indeterminate edges is not completely
exact, given that in addition to all the simplified hy-
potheses (especially that of i.i.d.), the situation may
occur—although the possibility is extremely remote—
that the texels are exactly equal, with the subsequent
absolute absence of an edge. To correct this, the ex-
pression should stand as

Pr{ The edge is objectively indeterminate}
= 1− (1− 〈Pa,Pb〉m

)2− 〈Pa,Pb〉mn

=〈Pa,Pb〉m
(
2− 〈Pa,Pb〉m − 〈Pa,Pb〉m(n−1)

)
.

For the sake of illustration, let us assume that regionsa
andb both have uniform histograms. The probability
of an objectively indeterminate edge is

1

K m

(
2− 1

K m
− 1

K m(n−1)

)
,

which clearly tends to zero when 1/K m does. We can
affirm as a general conclusion that the influence of the
cases of objectively indeterminate edges is negligible
only when the texels are of small size and the inner
product of the histograms is high.

If the assumptions in the idealised study of Section 3
do not hold, then clearly the probability that the max-
imum of JS is not in the edge position is greater than

otherwise. We shall now study the situations that can
bring about this undesirable condition.

Let us restrict our study to images having regularly
textured regions, each represented by its texel. As-
suming that the edge is objectively determined (that
is, its position is statistically distinguishable from
any other), we analyse the possibility that maximum
Jensen-Shannon divergence occurs in a non-centred
position of the window. This may happen for certain
spatial configurations of the two adjacent texels, due
to the fact that, in general, the texel fractions included
in the semi-windows present histograms different from
those of complete texels, and therefore of those of the
regions. This problem has combinatory and statistical
aspects that are difficult to treat, and we shall refer to
this problem as JSfluctuation.

4.2. Change of Phase

Let us consider the following particular case. Let us
assume that an image has been constructed by estab-
lishing first an arbitrary edge and afterwards covering
the two regions with the same texture, but with a rel-
ative arbitrary displacement. The resulting situation,
which we call a change of phase, can objectively show
a given border, even by simple observation, between
two identically textured regions. This determines the
possible appearance of non-null JS values at the shifted
positions, while the divergence is zero at the exact posi-
tion of the edge,2 thereby impeding a correct detection.
The presence of a change of phase would cause two JS
maximums (not necessarily equal), one at each side
of the edge. Therefore, the application of these meth-
ods to a textured image having an edge with a change
of phase should produce a double line containing this
edge. In practice, this is not guaranteed because of other
statistical fluctuations of the spatial configuration. In
addition, the reverse is not assured, either; the presence
of a double line in the result is not a true indication of an
edge with a change of phase, although the probability
that it is may be high. The example shown in Fig. 5 is
the simplest possible to illustrate the JS variations for a
change of phase. This is a one-dimensional binary sig-
nal for which the texel is 01, with the change of phase
displayed.

As shown in the figure, on sliding a window 2N =
2 + 2 in size, we get a null divergence value in all
positions of the window,including the centred position,
except in the positions adjacent to the edge, in which
the value is JS= 0.31128.
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Figure 5. An example of an objectively determined edge for which
the JS divergence produces a double edge.

Despite the simplifications due to the equality of tex-
els, the JS distribution does not become sufficiently
treatable. The complexity of the mathematical treat-
ment involved in an analytical study of the problem
described in order to characterise it or describe its prop-
erties, makes it enormously difficult to obtain the the-
oretic results. Even if the grey scale is binary—which
implies a drastic simplification—the study can hardly
go beyond the calculation of the probability of find-
ing an arbitrary histogram in a semi- window crossed
by an edge. This study is described in the next sec-
tion. Consequently, the only plausible way to obtain
the information about the importance of the problem
is experimentation by a Monte Carlo simulation, the
object of the following section.

4.3. Divergence Fluctuations: The Binary Case

In the general case mentioned above, in which the his-
togram of a texel fraction differs from the histogram
of the entire texel, the problem is that the detection
errors cannot be corrected, since they depend on the
spatial configuration of the texel, which is unknown in
the histogram based methods. Therefore, the aim is to
find the JS distribution, from which the detection-error
probability can be assessed.

According to the hypothesis, it can occur that only
one semi-windowWi (i = 1, 2; it makes no difference

which) overlaps an edge between regionsa andb. In
this way, a semi-windowWi contains a simple-texel
histogram, the other a composite one. Let us study the
latter. The semi-windows of which it is composed has
sizes|Wi ∩ a| = (1− β)N, |Wi ∩ b| = βN, and the
respective histograms

P(Wi ∩a) = {wa, 1− wa},
P(Wi ∩ b) = {wb, 1− wb}

where (and this is precisely the reason for the present
study) it needs not occur that

P(Wi ∩ a) = Pa = (pa0, pa1),

P(Wi ∩ b) = Pb = (pb0, pb1).

Thus, the (composite) histogram of the semi-window
Wi is

P(Wi ) = (1− β)P(Wi ∩ a)+ βP(Wi ∩ b)

= {(1− β)wa + βwb, (1− β)(1− wa)

+β(1− wb)}.

With this, we can express the probability thatP(Wi ) is
equal to an arbitrarily given histogram:

Pr{P(Wi ) = {x, 1− x}}
=
∑
w

Pr{wa = w}Pr

{
wb = x − (1− β)w

β

}

with the sum extended to all the possible values ofw,
which are a finite quantity by virtue of the discrete
nature of the grey scale and the finite number of possible
partitions ofWi .

If we choose the hypergeometric distribution as the
most neutral and unbiased representation of the dif-
ferent configurations of pixels in the regions (all are
equally probable), then we can arrive without difficulty
at

Pr{wa = w} =
(

Npa0
(1− β)Nw

)(
N(1− pa0)

(1− β)N(1− w)
)

(
N

(1− β)N
) ,

Pr{wa = w∗} =
(

Npb0
βNw∗

)(
N(1− pb0)

βN(1− w∗)
)

(
N

βN

) ;
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expressions which can be replaced in the foregoing one
with w∗ = x−(1−β)w

β
.

If the histogram is not binary, the above expres-
sion is given in terms of multivariate hypergeometric
distribution.

The expressions obtained as sums of products of hy-
pergeometric distributions cannot be simplified. The
distribution of the Jensen-Shannon divergence, which
is the objective, proves more complex still, especially
due to the fact that a given value of entropy may cor-
respond to more than one histogram, and therefore
a given value of JS may also correspond to more than
one pair of histograms. This lack of manageability
leads us to the computer results gained by Monte Carlo
simulations.

4.4. Monte Carlo Simulation

Given the breadth of the parameters involved (grey
scale, size and shape of the semi-windows, sizes and
shapes of the texels in each region, orientation of the
edge, correlations between texels, etc.), we have cho-
sen to conduct a series of short experiments which,
though not exhaustive, can be considered representa-
tive of typical cases.

The experiments performed have started with the
construction of two synthetic textures separated by a
vertical rectilinear edge, in order to proceed later with
the detection of this edge. All of these have the same
structure, which consists of the following steps:

1. Choice of parameters of random generation of
samples: shape, size and histogram of each texel.

Table 1. Results of Monte Carlo Experiments A, B and C.

Exp. A Exp. B Exp. C

Parameters

N. valid samples 10,000 10,000 10,000

Texel size 4× 4 4× 4 4× 4

Semi-window size 4× 4 7× 7 4× 4

Texels histograms {0, 0, 0, 1, 13, 0, 1, 1} {0, 0, 0, 1, 13, 0, 1, 1} {2, 1, 1, 2, 3, 2, 3, 2}
{2, 1, 1, 2, 3, 2, 3, 2} {2, 1, 1, 2, 3, 2, 3, 2} {2, 3, 2, 3, 2, 1, 1, 2}

Discards 58,236 57,370 17,957

Results (detection error)

Ends −1,+1 −2,+2 −3,+3

Mean error +0.0252 −0.0618 −0.0283

Standard deviation 0.1804 0.5186 +1.4246

2. Choice of parameters of edge detection: shape and
size of the semi-window.

3. Generation of 10,000 valid samples and edge detec-
tion. Each sample is obtained by randomly gener-
ating the texel of each region with the specified pa-
rameters. For this, we assume the equal probability
of all the possible texels. A sample is considered
valid if it satisfies the following conditions:

a) It has an objectively determined edge; the reason
for this restriction is self-evident.

b) The edge detection produces a single maximum;
cases of multiple maximums hamper the rig-
orous evaluation of the error committed in the
detection.

Otherwise the sample is discarded.
4. Account of the results.

For all the experiments, we chose a scale of 8 grey
levels, which is sufficiently broad to be representative,
and sufficiently simple to allow reasonable computa-
tion time.

4.4.1. Overall Probability of Error. Here, we present
the results of evaluating the probability of error in the
edge detection of textured images. The problem was
formulated as follows: once the parameters are fixed,
to estimate the probability that maximum divergence
occurs at a point on the edge of the original image. We
excluded the case in which the histograms of the texels
were equal, since this is studied afterwards.

Table 1 contains the numeric data of the experi-
ments performed (A, B and C) as well as the numeric



An Analysis of Edge Detection 47

results on the distribution of the edge positions cal-
culated in relation to the correct position. The term
“discards” represent the numbers of samples that had
been discarded for not being valid. Figures 6–8 graph-
ically represent these distributions of the error in esti-
mating the position of the edge. Below, we comment
on these experiments in relation to their layout and
results.

Experiment A. This experiment reveals the proba-
bility of a successful positioning of the edge when the
sizes of the semi-window and texel coincide.

Figure 6 shows graphically the result of Monte Carlo
simulation. In most cases, the divergence detected the
edge in its correct place, and the number of times that
the edge deviated was negligible. In addition, even in
the few cases in which the maximum was not reached
in the theoretic edge, a maximum distance of 1 pixel
from the theoretic one was detected.

Experiment B. This experiment is intended to illus-
trate the importance of the relationship of sizes semi-
window/texel. For this, we repeated Experiment A,
except that now the semi-window and the texel had
coprime sizes.

Figure 6. Results of Experiment A.

The graphic results of the detection can be seen in
Fig. 7. Slightly more errors were made in the edge posi-
tion than in the previous case, although, in general, the
divergence continued to show more-than-acceptable
performance.

Experiment C. This demonstrated the key role played
by histograms, which in this experiment were highly
similar, as opposed to the two previous cases. The
graphic results are given in Fig. 8. The fact that the
histograms were similar caused many more errors in
edge detection than in Experiments A and B. This is
logical, since in the extreme case, in which the two
histograms are equal, the divergence takes a null value
precisely when the window contains a semi-window in
each texture (this situation will be studied in the fol-
lowing Section). However, this does not invalidate the
use of the divergence. In fact, in most cases, the maxi-
mum is 1 or 2 pixels from the theoretic position of the
edge, and in many cases the detection even gives the
correct position.

4.4.2. Probability of an Unexpected Correct Esti-
mation. In this Section, we present the results of
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Figure 7. Results of Experiment B.

Figure 8. Results of Experiment C.
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estimating the probability of a successful divergence
maximum in situations in which a maximum should
normally not occur in the correct position—that is, in
two regions with the same histogram. Two circum-
stances arise: 1) the texels have the same histogram,
without any other condition (fluctuations by residues);
2) the texels are identical except for a permutation in
rows and/or columns (change of phase). The formu-
lation of the problem is the following: after fixing
the window and texel size, and the histogram com-
mon to both, we calculated the probability of a correct
detection.

After performing several preliminary proofs with
different histograms, we formulated the following con-
jecture: for texels larger than 2× 2 with the same
histogram, and using a semi-window size equal to the
texel, no case of a single maximum is detected in the
divergence, nor a case of a double maximum separated
by two pixels. This deduction has been confirmed with
texel sizes of 4×4, 5×5 and 8×8. In the case of the size
2×2, double maximums did appear at a distance of two
pixels. Therefore, to achieve valid samples, the tests

Figure 9. Results of Experiment D.

must be conducted with window sizes coprime with the
size of the texel.

Fluctuations by residuals. In this section, we analyse
the probability that the divergence is correct when the
texels of the two regions have random pixel config-
urations but an equal histogram. If the size of the
semi-window coincides with that of the texels, then
the divergence will certainly have a value of zero when
the window is centred. However, this is not true in
the case of windows greater than the texel and of co-
prime size with it (having no common prime divisors),
since the statistical-uniformity hypothesis is not ful-
filled. To examine the possible cases, we conducted
the Monte Carlo experiments D, E and F. The numeric
data are given in Table 2, and the graphic results in
Figs. 9–11. Below are commentaries on the layouts
and on the results of each experiment.

Experiment D. The graphic results of the detection
are reflected in Fig. 9. In most cases, the edge is
detected at a distance of one pixel from the correct
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Figure 10. Results of Experiment E.

Figure 11. Results of Experiment F.
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Table 2. Results of Monte Carlo Experiments D, E and F.

Exp. D Exp. E Exp. F

Parameters

N. valid samples 10,000 10,000 10,000

Texel size 4× 4 4× 4 4× 4

Semi-window size 7× 7 5× 5 5× 5

Texel histograms {2, 1, 1, 2, 3, 2, 3, 2} {2, 1, 1, 2, 3, 2, 3, 2} {2, 1, 1, 2, 3, 2, 3, 2}
Discards 23,229 72,894 13,561

Results (detection error)

Ends −7,+7 −3,+3 −3,+5

Mean error +0.0035 −0.039 +0.0093

Standard deviation 1.5549 2.95 1.2281

position. The fact that sometimes the edge is detected
in the correct place is due to the size disparity of
texels and semi-windows, or, more precisely, to the
absence of common factors between the two. In fact,
this numeric relationship implies the non-fulfilment
of the hypothesis of statistical uniformity, and there-
fore the histograms observed in the two semi-windows
differ somewhat from each other in the centred win-
dow position, allowing the appearance of divergence
maximums.

Changes of phase.In this section, we study changes
of phase, which comprise a particular case of texels
with identical histograms. In fact, now the texel from
one region is identical to that of the other, except in a
cyclic permutation of the columns (or of the rows) of
the texel.

Experiment E. Here, we show the results from the ex-
periment on the change of phase in a direction perpen-
dicular to the edge. The graphic results are presented
in Fig. 10, in which we see that in most cases the border
is detected at a distance of 3 pixels with respect to the
correct position.

Experiment F. With this experiment, we analyse the
results of the change of phase parallel to the edge. We
used the same parameters as in the previous experiment,
varying only the direction of the change of phase. The
graphic results are shown in Fig. 11. In this experiment,
the edge is correctly detected in most cases, as opposed
to the case of the change perpendicular to the edge.

5. Some Examples

Though not the primary aim of this work, we offer
some examples of application of the method analysed.
We refer the reader to other publications by the same
authors [9, 10].

5.1. Synthetic Noisy Images

In this section, we show the result of using Jensen-
Shannon divergence to segment synthetic images con-
taminated by various types of noise. In Figs. 12 and
13, the two series contain synthetic images, the first
being composed of bands of a uniform grey level, and
the second of perfectly regular textures of texel size
4× 4. All the detections were made with two 15× 15
semi-windows. After this, a simple detection algo-
rithm of local maximums was used to create the binary
image. More precisely, this algorithm centres on each
pixel a set of 1D-windows with the same length and
different direction (typically four) and then marks the
central pixel as belonging to the edge if its associated
divergence is maximum at least in one of the windows.
Length of the windows is a parameter, and it is selected
to be a little greater than the dimensions of the windows
used to calculate divergences.

5.2. Natural Scenes

This experiment, shown in Fig. 11, was performed us-
ing two 3× 3 semi-windows, and applying the same de-
tection algorithm of local maximums as in the previous
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Figure 14. a) Image of a natural scene. b) Detected edges of the original image. c) Output of the Canny filter. d) Output of the Sobel filter.

experiments. Results from other well-known edge de-
tectors have been included to allow comparison.

5.3. Satellite Images

This experiment, shown in Fig. 15, was performed us-
ing two 5× 5 semi-windows, and applying the same
detection algorithm of local maximums as in the pre-
vious experiments.

6. Conclusions

Here, we subject our edge-detection method to a the-
oretic analysis based on Jensen-Shannon divergence

between grey histograms. In particular, we study the
variation of the divergence with the movement of the
window in the border zone between two regions. The
principal results demonstrate that: 1) in general, the
maximum divergence occurs for the position at which
the window is centred on the edge, and the deviation
(error in the position at the edge) is small and improb-
able; 2) the distribution of this error depends on the
characteristics of the regions and of the operational pa-
rameters, appearing for the cases of most interest to
the potential user; 3) the divergence maximum is a
sharp peak and therefore easily detected by the func-
tion JS(x), even for small differences of composition
between the two regions.
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Figure 15. a) Tele-detection image obtained by the sensor AVHRR of the satellite NOAA. b) Detected edges of the original image.
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Notes

1. Term commonly used to designate the repeating pattern that com-
poses a textured region.

2. Here we continue to assume that the semi-window has the same
shape and size as the texel.
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