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States and physical systems

• In the previous chapter, with the help of the Stern-Gerlach experiment, we have
shown the failure of Classical Mechanics and the need to introduce a new theory
able to describe all physical phenomena.

• Notice that whatever information we have about a physical system is obtained
through experimentation. It is useful to divide the experiment in two phases

– Preparation: the experimentalist (or nature) submits the system to some
conditions that define its state. For example, the silver atoms in the SGẑ are
prepared to have well defined z-component of the magnetic moment after
crossing an inhomogeneous magnetic field applied along that direction. By
filtering those deflected upward or downward we select a value of the spin.

– Measurement: the experimentalist (or nature) interacts with the preparation to
determine the value of a particular observable (any physical variable that, in
principle, can be measured). For example, one can measure the observables Sz

or Sx of the atoms previously prepared.
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States and physical systems

• A preparation:

– does not necessarily determine the outcome of a subsequent measurement
but the probabilities of the various possible outcomes.

– is independent of the specific measurement that may follow it.

• A state is the specification of a set of probabilities (or probability distributions)
for the measurements of the various observables.

B The concept of state in QM is very subtle and even controversial. Since it has
always been the goal of physics to give an objective realistic description of the
world, we are tempted to interpret the state as an element of reality describing the
attributes of an individual system.

B However such assumptions lead to contradictions and must be abandoned.
The quantum state description may be taken to refer to a collection of similarly
prepared systems.
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States and physical systems

• For the moment we will consider pure states, which are those that give maximal
(though probabilistic) information about the outcome of the measurements.

We will see later, in this chapter, that in general the system is in a mixed state,
specified by a statistical distribution of pure states. For instance, the ensemble of
silver atoms coming directly from the furnace, before going through any SG
device; or a partially polarized (or unpolarized) electron beam.

• To construct the physical theory it is necessary to introduce a few basic postulates.
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States Postulate I

Postulate I
In QM a physical system is associated to a separable, complex Hilbert space and
a pure state of the system at a time t is described by a unit raya represented by a
vector (ket) |ai or |a(t)i of the Hilbert space.

a A unit ray is a unit vector with arbitrary phase.

B Then the superposition principle is guaranteed: if |fi and |yi are states of the
system then |hi = a |fi+ b |yi, with arbitrary a, b 2 C, is also a possible state.

B But not every vector is a pure state (see section on superselection rules).

B The Hilbert space of the system may have just two dimensions, like in the
Stern-Gerlach experiment. Then we may choose an arbitrary basis of two states to
represent any other state. For instance, {|Sz+i , |Sz�i}, {|Sx+i , |Sx�i} and
{
��Sy+

↵
,
��Sy+

↵
} are three bases, and the state |Sx+i in the first basis is given by

|Sx�i =
1
p

2
|Sz+i �

1
p

2
|Sz�i .

28

States Postulate I

B A particularly interesting two-dimensional quantum mechanical system is the
qubit, the quantum computer unit of information. In contrast to the classical bit
that can be in just two states 0 or 1, one can prepare a qubit in any arbitrary
superposition of |0i and |1i.
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Review of Hilbert spaces

• A Hilbert space H is a vector space supplied with an inner or scalar product that
is complete respect to the norm induced by the scalar product.
It is a generalization of the very familiar Euclidean spaces, like R3, to spaces with
any finite or infinite number of dimensions.

B The vectors in a vector space are elements that can be added and multiplied by a
scalar. In a Hilbert space, unlike Euclidean spaces, these scalars are complex
numbers:

f, y 2 H, c1, c2 2 C ) c1f + c2y 2 H (linear combination).

We say that a set of vectors {fi} is linearly independent if

Â
i

cifi = 0 ) ci = 0 8i.
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Review of Hilbert spaces

B The scalar product of any f, y 2 H is a complex number (f, y) 2 C satisfying:

(i) (f, y) = (y, f)⇤ (hermiticity).

(ii) (f, c1y1 + c2y2) = c1(f, y1) + c2(f, y2) (linearity of the second entry).
From (i) and (ii) one gets:
(c1f1 + c2f2, y) = c

⇤

1(f1, y) + c
⇤

2(f2, y) (antilinearity of the first entry).

(iii) (f, f) � 0 and f = 0 when (f, f) = 0.
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Review of Hilbert spaces

B The scalar product induces a norma defined by

kfk =
q
(f, f),

that generalizes the concept of length (modulus) of a vector and defines a metric
(distance between two vectors), given by

d(f, y) = kf � yk.

a The properties of a norm are:
(i) kcfk = |c|kfk (homogeneous).

(ii) kf + yk  kfk+ kyk (triangle inequality).

(iii) kfk � 0 (positive definite).
The property (ii) follows from the Schwarz inequality: |(f, y)|2  (f, f)(y, y).
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Review of Hilbert spaces

B A metric space M is complete if every Cauchy sequence in M converges in M.
That is, if {yn} is a sequence with d(ym, yn) ! 0 when m, n ! • then there exists
a h 2 M such that d(yn, h) ! 0 when n ! •.

Complete normed vector spaces are called Banach spaces. A Hilbert space is a
Banach space with the norm induced by the scalar product.

B One also requires that Hilbert spaces associated to physical sytems must be
separable. This means that they have a countable orthonormal basis.
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Review of Hilbert spaces

• Let us now introduce linear functionals acting on a vector space V as functions
F : V ! C mapping vectors f to complex numbers F(f) satisfying

F(af + by) = aF(f) + bF(y), f, y 2 V, a, b 2 C.

Defining the sum of functionals

(F + G)(f) = F(f) + G(f),

the set of functionals over V defines another vector space, called dual space V
⇤.

These elements of the dual space are the so called covectors or one-forms.

• In a Hilbert space H one can define linear functionals Ff 2 H
⇤ from any f 2 H by

Ff(y) = (f, y).
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Review of Hilbert spaces

B Then the Riesz representation theorem applies stating that for each F 2 H
⇤ there

exists just one vector fF 2 H such that

F(y) = (fF, y) 8y 2 H.

Therefore, there is a bijective mapping between V and V
⇤ given by the scalar

product (H and H
⇤ are isomorphic; in particular, they have the same dimension).

This suggests the Dirac’s notation, extensively used in Quantum Mechanics (QM):

Vector y 2 H ! ket |yi 2 H

Functional Ff 2 H
⇤

! bra hf| 2 H
⇤

Action of functional Ff on y 2 H ! braket hf|yi = (f, y) (scalar product).

In other words, every ket |yi has a corresponding bra hy|, that is unique, and the
scalar product (f, y) of two vectors (kets) |fi and |yi is given by the braket
hf|yi = hy|fi⇤.
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Review of Hilbert spaces

B Note: From now on, until next chapter, we will work in Hilbert spaces of finite
dimension, although many results can be applied to infinite dimensions.

• A basis is a set of linearly independent vectors {|fii} (i = 1, . . . , d = dimH) that
allows us to express any vector |ai 2 H as a linear combination
(summations extend from i = 1 to d unless otherwise stated)

|ai = Â
i

|fii ai =
⇣
|f1i |f2i . . .

⌘

0

BBB@

a1

a2
...

1

CCCA
, ai 2 C or |ai

.
=

0

BBB@

a1

a2
...

1

CCCA

where the ai are the components of |ai in the basis {|fii}.
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Review of Hilbert spaces

B An orthonormal basis {|eii} fulfills

hek |eii = dki (orthonormality relation).

Given a basis {|fii} the Gram-Schmidt process provides an orthornormal basis
{|eii}:

|e1i =
|f1i

k |f1i k
, k |f1i k =

q
hf1 |f1i,

|ek+1i =

|fk+1i �
k

Â
i=1

|eii hei |fk+1i

k |fk+1i �
k

Â
i=1

|eii hei |fk+1i k

.
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Review of Hilbert spaces

B In an orthonormal basis the components of a vector are easy to obtain from the
scalar product or braket:

|ai = Â
i

|eii ai ) hek |ai = Â
i

hek |eii ai = Â
i

dkiai = ak

) |ai = Â
i

|eii hei |ai ) I = Â
i

|eiihei| (completeness or closure relation)

and the scalar product of two vectors reads:

ha|bi = Â
i

ha|eii hei |bi = Â
i

hei |ai
⇤
hei |bi = Â

i

a⇤
i
bi.

In fact, the isomorphism between H and H
⇤ is given by the adjoin or dagger

relation:

H �! H
⇤

{|eii} 7! {hei|} (so called adjoint basis of H⇤)

|ai 7! ha| = |ai† = Â
i

a⇤
i
hei| (by antilinearity of braket’s left entry).
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Review of Hilbert spaces

• An operator A transforms vectors |ai 2 H into other vectors A |ai 2 H.
Linear operators satisfy

A(a |ai+ b |bi) = aA |ai+ bA |bi .

Operators can be added and composed (multiplied),

(A + B) |ai = A |ai+ B |ai

AB |ai = A(B |ai)

and the product of operators is associative,

A(BC) = (AB)C,

but not necessarily commutative.
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Review of Hilbert spaces

B To know how an operator acts on all the vectors in H it is sufficient to know how
it acts on a basis of H. Given an orthonormal basis {|eii},

A
��ej

↵
= Â

i

|eiihei| A
��ej

↵
= Â

i

|eii Aij , Aij = hei| A
��ej

↵
(matrix element)

one obtains |bi = A |ai from

A |ai = A Â
j

��ej

↵
aj = Â

ij

|eii Aijaj

= |bi = Â
i

|eii bi

) bi = Â
j

Aijaj.

* Notice that operators act on kets to the right.
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Review of Hilbert spaces

B On the other hand, operators act on bras to the left:

Aij = hei| (A
��ej

↵
) = (hei| A)

��ej

↵

) hei| A = Â
j

hei| A
��ej

↵⌦
ej

�� = Â
j

Aij

⌦
ej

��

) ha| A = Â
i

a⇤
i
hei| A = Â

ij

a⇤
i

Aij

⌦
ej

��

= hb| = Â
j

b⇤

j

⌦
ej

��

) b⇤

j
= Â

i

a⇤
i

Aij.

B Notice that the vector components are basis-dependent
but the sandwich ha| A |bi and the scalar product ha|bi are basis-independent:

ha| A |bi = Â
ij

ha|eii hei| A
��ej

↵ ⌦
ej

��b
↵
= Â

ij

a⇤
i

Aijb j.
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Review of Hilbert spaces

B The scalar product of A |ai and |bi is not ha| A |bi but ha| A
†
|bi, that defines the

adjoint operator A
†.

This is because the adjoint of A |ai is not ha| A but ha| A
†:

Aij = hei| A
��ej

↵

A
⇤

ij
=
⌦
ej

�� A
†
|eii = A

†
ji

) A
†
ij
= A

⇤

ji
or A

† = A
T⇤.
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Review of Hilbert spaces

B Given |fi, |yi, a useful way to define a linear operator is |fihy| (outer product)
that acting on any |hi 2 H gives a vector proportional to |fi:

(|fihy|) |hi = |fi hy|hi .

It is easy to checka that

(|fihy|)† = |yihf| .

B Taking a unit vector |e1i we obtain a projector,

P1 = |e1ihe1| , P
2
1 = P1 (idempotent), P

†
1 = P1 (self-adjoint),

that projects any vector |ai 2 H along the vector |e1i,

P1 |ai = |e1i he1 |ai = |e1i a1.

a (|fihy|)†
|hi = (hh |fi hy|)† = |yi hh |fi⇤ = |yi hf|hi = (|yihf|) |hi , 8 |hi .
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Review of Hilbert spaces

B A sum of projectors
r

Â
i=1

Pi, with Pi = |eiihei|, is also a projector into the subspace

spanned by the r unit vectors |eiii=1,...,r.

If {|eii} is an orthonormal basis of H then the Pi are orthogonal projectors,

P
2
i
= Pi, PiPj = dijPj.

We have already seen that in fact I =
d

Â
i=1

|eiihei| since

|ai =
d

Â
i

|eii hei |ai , 8 |ai 2 H.
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Review of Hilbert spaces

• Given a linear operator A, if there exist a 2 C and |fi 2 H with |fi 6= 0 such that

A |fi = a |fi

we say that every |fi is an eigenvector of A with eigenvalue a.

B If |fi
i=1,...,r are linearly independent eigenvectors of A with the same eigenvalue a

(degenerate eigenvalue) then obviously any linear combination Âi ci |fii
is also an

eigenvector.

B Therefore, the eigenvectors of each eigenvalue form a vector subspace.

B And, of course, if A |fi = a |fi then

hf| A
† = a

⇤
hf| .
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Review of Hilbert spaces

• An operator A is self-adjoint if A
† = A, namely, if

hf| A |yi = hf| A
†
|yi = hf| A |yi⇤ , 8f, y 2 H

Actually, this is only true in finite dimension, since otherwise the domains of A

and A
† may not coincide. In the latter case, we say that A is Hermitian, but not

self-adjoint. (self-adjoint ) Hermitian)

B In general, if A is self-adjoint then all its eigenvalues are real,a and the
eigenvectors corresponding to different eigenvalues are orthogonal.b

B Furthermore, an important theorem states that the orthonormal set of the
eigenvectors of a self-adjoint operator on a Hilbert space of finite dimension is a
basis of H.

a
A |ai = a |ai ) ha| A |ai = a ha|ai and ha| A

†
|ai = ha| A |ai

⇤ = a
⇤
ha|ai. So A = A

†
) a = a

⇤.
b

A |ai = a |ai, A |a
0
i = a

0
|a

0
i, a, a

0
2 R. Take ha

0
| A |ai = a ha

0
|ai = a

0
ha

0
|ai ) (a � a

0) ha
0
|ai = 0.

Hence, if a 6= a
0 then ha

0
|ai = 0.
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Review of Hilbert spaces

B Consider H of finite dimension, a self-adjoint operator A and an orthonormal
basis {|fii} formed by the eigenvectors of A. And let ai be the corresponding
eigenvalues. We define the othogonal projectors to the subspace of eigenvalue a

(perhaps degenerate) as

Pa = Â
i

|fiihfi| daia
.

Then, one can write A as follows (spectral decomposition):

A = Â
a

aPa = Â
i

ai |fiihfi| ,

a diagonal matrix in the basis of eigenvectors. This may be used to define a
function f of operators from the same function of complex numbers:

f (A) = Â
i

f (ai) |fiihfi| .
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Review of Hilbert spaces

B Consider now A and B two self-adjoint commuting operators,
[A, B] = AB � BA = 0, in finite dimension. Then there exists a complete set of
simultaneous eigenvectors of A and B, that is, A and B can be diagonalized
simultaneously.

If A, B, C, . . . are self-adjoint operators commuting with each other, then the set of
their simultaneous eigenvectors

��ai, bj, ck, . . .
↵
,

A
��ai, bj, ck, . . .

↵
= ai

��ai, bj, ck, . . .
↵

,

B
��ai, bj, ck, . . .

↵
= bj

��ai, bj, ck, . . .
↵

,

C
��ai, bj, ck, . . .

↵
= ck

��ai, bj, ck, . . .
↵

, etc.

may be degenerate.

But if the subspace of eigenvectors for all possible sets of eigenvalues has
dimension one (it is not degenerate) then A, B, C, . . . is a complete set of
commuting (self-adjoint) operators (CSCO).

48

Review of Hilbert spaces

B As a consequence, any operator F commuting with all the members of a CSCO is
a function of these operators and

F
��ai, bj, ck, . . .

↵
= fijk...

��ai, bj, ck, . . .
↵

, fijk... = f (ai, bj, ck, . . . ).
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Review of Hilbert spaces

• Given two orthonormal bases {|eii} and {|ẽii}, we may write
��ẽj

↵
= Â

i

|eii
⌦
ei

��ẽj

↵

and define the change of basis operator from {|eii} to {|ẽii} as

U = Â
i

|ẽiihei| ) U
��ej

↵
=
��ẽj

↵
.

The operator U is unitary, UU
† = U

†
U = 1.
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Review of Hilbert spaces

B Notice that the basis elements and the vector components transform in an
opposite way:

��ẽj

↵
= Â

i

|eii
⌦
ei

��ẽj

↵
)

��ẽj

↵
= Â

i

|eiiUij , Uij =
⌦
ei

��ẽj

↵
= hei|U

��ej

↵

while for any |ai 2 H,

|ai = Â
i

|eii hei |ai = Â
i

|eii ai

= Â
i

|ẽii hẽi |ai = Â
i

|ẽii ãi ,

hẽi |ai = Â
j

⌦
ẽi

��ej

↵ ⌦
ej

��a
↵

) ãi = Â
j

U
†
ij

aj , U
†
ij
= U

⇤

ji
=
⌦
ẽi

��ej

↵

and in fact U is unitary:

dik = hei |eki = Â
j

⌦
ei

��ẽj

↵ ⌦
ẽj

��ek

↵
= Â

j

UijU
⇤

kj
= Â

j

UijU
†
jk

.
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Review of Hilbert spaces

B On the other hand, the matrix elements of a linear operator A transform as:

Ãij = hẽi| A
��ẽj

↵
= hei|U

†
AU

��ej

↵
= Â

kl

hei|U
†
|ekihek| A |elihel|U

��ej

↵

= Â
kl

U
†
ik

AklUlj.

B If A is a linear operator and {|eii} is an orthonormal basis then the trace of A is

Tr(A) = Â
i

hei| A |eii (sum of the diagonal elements).

Notice that the trace is independent of the basis and satisfies the properties:

(i) Tr(AB) = Tr(BA).

(ii) Tr(U†
AU) = Tr(A) if U is unitary.

(iii) Tr(
��ei

↵⌦
ej

��) = dij.

(iv) Tr(|fihy|) = hy|fi.
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Observables Postulate II

Postulate II
Every observable of a physical system is represented by a self-adjoint linear opera-
tor acting on the associated Hilbert space, whose eigenvalues are the only possible
values of the observable.

B This justifies several issues:

– The number of eigenvalues of an operator acting on a space of finite
dimension is denumerable. Hence, the values of the corresponding observable
are quantized.

– A self-adjoint operator has real eigenvalues. The values of physical
observables are always real numbers.

– A linear operator respects the superposition principle.

– It is not possible to measure simultaneously two observables represented by
non-commuting operators because they cannot be diagonalized in the same
basis, they are incompatible.
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Observables Postulate II

B For example, the spin of the silver atom in the z-axis or in the x-axis are
observables represented by the self-adjoint operators Sz and Sx, respectively.
Both of them have eigenvalues ±h̄/2. Using their spectral decomposition:

Sz =
h̄

2
|Sz + ihSz + |�

h̄

2
|Sz � ihSz � |

.
=

h̄

2

0

@1 0

0 �1

1

A ⌘
h̄

2
s3,

Sx =
h̄

2
|Sx + ihSx + |�

h̄

2
|Sx � ihSx � |

.
=

h̄

2

0

@0 1

1 0

1

A ⌘
h̄

2
s1.

C The matrix form of the operators has been given in the basis {|Sz+i , |Sz�i},

|Sz+i
.
=

0

@1

0

1

A, |Sz�i
.
=

0

@0

1

1

A , |Sx+i
.
=

1
p

2

0

@1

1

1

A , |Sx�i
.
=

1
p

2

0

@ 1

�1

1

A .

Notice that we have chosen an arbitrary phase for each of these states.
The observables Sx and Sz are incompatible because [Sx, Sz] 6= 0.
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Measurements Postulate III

Postulate III
If a physical system is in a pure state described by the normalized vector |yi, the
probability of obtaining an eigenvalue a of an observable represented by the oper-
ator A is

pa = hy| PA,a |yi

where PA,a is the projector into the subspace of eigenvalue a.

B If a is a non-degenerate eigenvalue of A and |ai is the corresponding normalized
eigenvector then

PA,a = |aiha| ) pa = | ha|yi |2.

In general, let {|aii} be an orthonormal basis of the subspace of eigenvalue a.
Then

PA,a = Â
i

|aiihai| ) pa = Â
i

| hai |yi |
2.
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Measurements Postulate III

B Notice that:

– If the state of the system was already in the subspace of eigenvalue a,

|yi 2 Ha ) pa = hy| PA,a |yi = hy|yi = 1.

If |yi 2 H
?
a (orthogonal subspace) then pa = hy| PA,a |yi = 0.

The probability is pa 2 (0, 1) otherwise.

– The sum of probabilities to obtain any possible value is one, as it should be,
since the eigenvectors form a complete set,

I = Â
a

PA,a ) Â
a

pa = Â
a

hy| PA,a |yi = hy|yi = 1.

B And what is the state after the measurement?
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Measurements Postulate IV

Postulate IV
If a physical system is in a pure state described by the normalized vector |yi and
one measures A obtaining a, the system is left in the state

��y0
↵
=

PA,a |yi

kPA,a |yi k
.

B In other words, after the measurement, the state of the system is projected into a
particular state of the subspace with eigenvalue a. It is often said that the state |yi

collapses into the eigenstate state |y0
i of A.

B But one can also view it in a different way: There is no measurement without
interaction with the measuring instrument (another system). Hence, we must
always consider our system as a part of a composite system. As we will see later,
the states of the Hilbert space of this composite system are vectors of the tensor
product of the Hilbert spaces of its subsystems.
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Measurements Postulate IV

B Some of these states are entangled, i.e. they cannot be written as the product of a
vector of each space, they are a non separable combination. For instance,

1
p

2
|"i |+i+

1
p

2
|#i |�i .

B Now, assumea that the interaction entangles the measuring instrument with the
system we wish to study.

B Let us take that, after crossing SGẑ, |"i |+i is the state for the atoms deviated
upward with Sz = +h̄/2 and the opposite for |#i |�i.
The entangled state above is none of them but a superposition.b

a Why? How? This view is not a solution of but another way to formulate the measurement problem.
b If you replace the states |"i, |#i by unbroken or broken poisson flask and |+i, |�i by cat alive or

dead, this describes the famous Schrödinger’s cat states:
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Measurements Postulate IV

B The fact is we do not really know whether the atom is in state |+i or |�i, since
we just measure that it leaves the SG as |"i or |#i after experiencing countless
(uncontrolled) interactions with the magnetic field.

B This partial knowledge causes the decoherence.

B Thus the interaction:

– allows for the creation of superpositions (entangled states),

– and at the same time breaks the coherence of its subsystems.
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Measurements Postulate IV

• Let’s apply these postulates to our sequence of Stern-Gerlach experiments:

(a)

|yi = |Sz+i PSz,+ = |Sz + ihSz + | PSz,� = |Sz � ihSz � |

pSz,+ = hSz+| PSz,+ |Sz+i

= | hSz + |Sz + i |
2 = 1 )

��y0
↵
= |Sz+i ,

pSz,� = hSz+| PSz,� |Sz+i

= | hSz + |Sz � i |
2 = 0 )

��y0
↵
= |Sz�i never happens.
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Measurements Postulate IV

• Let’s apply these postulates to our sequence of Stern-Gerlach experiments:

(b)

|yi = |Sz+i PSx,+ = |Sx � ihSx + | PSx,� = |Sx � ihSx � |

pSx,+ = hSz+| PSx,+ |Sz+i

= | hSz + |Sx + i |
2 =

1
2

)
��y0
↵
= |Sx+i ,

pSx,� = hSz+| PSx,� |Sz+i

= | hSz + |Sx � i |
2 =

1
2

)
��y0
↵
= |Sx�i .

61



Measurements Postulate IV

• Let’s apply these postulates to our sequence of Stern-Gerlach experiments:

(c)

|yi = |Sx+i (after filtering one half of the atoms in (b))

pSz,+ = hSx+| PSz,+ |Sx+i

= | hSx + |Sz + i |
2 =

1
2

)
��y0
↵
= |Sz+i ;

pSz,� = hSx+| PSz,� |Sx+i

= | hSx + |Sz � i |
2 =

1
2

)
��y0
↵
= |Sz�i .
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Measurements Expectation value and uncertainty relations

• Consider a macroscopic object, like a bar, whose length L we want to measure.
The procedure consists of taking several measurements and then averaging.
Suppose that, within the precision of the ruler, we obtain

L1 (n1 times), L2 (n2 times), etc.

If the total number of measurements is n then the mean value of the bar length is

hLi = Â
i

Li

ni

n

where ni/n is the relative frequency of every result.

B We expect that hLi approaches the actual value of L for large n.
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Measurements Expectation value and uncertainty relations

• If you want to measure an observable A in a quantum state |yi of a physical
system you must prepare many replicas of the system in the same state and then
measure A. According to the postulates, the result of every measurement is an
eigenvalue ai of A and the mean value of all measurements is

hAiy = Â
a

apa = Â
a

a hy| PA,a |yi = hy|Â
a

aPA,a |yi = hy| A |yi .

This is called the expectation value of the observable A in the pure state |yi.

B We can also define the uncertainty of A in the state |yi as the dispersion
(mean square displacement) of the different measurements around the
expectation value,

Dy A =
h
hy| (A � hAiy)

2
|yi
i 1

2

=
h
hA

2
iy + hAi

2
y � 2hAi

2
y

i 1
2

=
h
hA

2
iy � hAi

2
y

i 1
2 .
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B The uncertainty of an observable in a pure state is zero if it is an eigenvector of
the observable.

This is because A |yi = a |yi ) A
2
|yi = a

2
|yi ) Dy A =

h
hA

2
iy � hAi

2
y

i 1
2
= 0.

B It is easy to show [exercise] that the product of the uncertainties of two
observables A and B in a state |yi is

Dy A DyB �
1
2
|hy| [A, B] |yi| .

These uncertainty relations are a generalization of the position-momentum
uncertainty relations we will find later. They have important consequences:

If two observables do not commute, [A, B] 6= 0, it is impossible to measure
simultaneously both of them with full precission in any state.
That’s why we say they are incompatible.
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Measurements Complete Set of Compatible Observables

• When two observables A and B are compatible their corresponding self-adjoint
operators commute, [A, B] = 0. Then there exists a basis of eigenvectors {|aibii}

of A and B that is common to A and B simultaneously,

A |ai, bii = ai |ai, bii ,

B |ai, bii = bi |ai, bii .

• Two (or more) compatible observables define a complete set (CSCO) if any pair of
eigenvectors in the common basis differs at least in one eigenvalue.

B Then the eigenvalues label unambiguously (up to a complex phase) the vectors of
the basis, i.e. the states of the system that can be measured simultaneously by all
the observables in the CSCO. A characterization of a CSCO is:

(i) They are compatible (commute).

(ii) The basis of common eigenvectors is unique (up to phases).

(iii) The set is minimal. Then the description of the system is not redundant. This
condition was not assumed above but it is often imposed.
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– Example 1:

A
.
=

0

BB@

1

1

�1

1

CCA , B
.
=

0

BB@

1

0

0

1

CCA ) basis {|1, 1i , |1, 0i , |�1, 0i}

A and B are a CSCO.
(The eigenvalues of one of them break the degeneracy of the other.)

– Example 2:

C
.
=

0

BB@

1

0

�1

1

CCA , D
.
=

0

BB@

1

2

2

1

CCA ) basis {|1, 1i , |0, 2i , |�1, 2i}

C and D are not a CSCO because it is not minimal.
(C is enough to label the basis states.)
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Density matrix

• The formalism developed so far applies to pure states. We have seen that the
quantum mechanical predictions are probabilistic, they are understood as the
results of the measurements over a collection of identically prepared physical
systems, all described by the same vector of a Hilbert space |ai.

• We will now consider the most general case, a statistical ensemble of N pure states
{|aii} with frequencies 0  wi  1 (there are Ni = wiN in each pure state) and

Â
i

wi = 1.

The |aii do not need to be orthogonal and N is arbitrary (nothing to do with the
dimension of the Hilbert space). A system chosen randomly from this statistical
ensemble is said to be in a mixed state.

68

Density matrix

• The mixed state is described by a density matrix,

r = Â
i

wi |aiihai|

that gives the expectation value (average) of an observable A measured over the
statistical ensemble. In fact,

hAir =
Âi NihAiai

N
= Â

i

wi hai| A |aii

= Â
a

Â
a0

Â
i

wi

⌦
ai

��a0
↵ ⌦

a
0
�� A |ai ha|aii

= Â
a

Â
a0

Â
i

wi ha|aii
⌦
ai

��a0
↵ ⌦

a
0
�� A |ai

= Â
a

Â
a0

raa0 Aa0a = Tr(rA)

where |ai and |a
0
i are eigenvectors of A, that satisfy Â

a

|aiha| = Â
a0

��a0
↵⌦

a
0
�� = I.
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Density matrix

B Notice that a complex phase of |aii above is, of course, irrelevant.

• The density matrix has the following properties:

(i) r = r† (self-adjoint).

(ii) Tr(r) = 1, since

Tr(r) = Â
i

wi Â
a

ha|aii hai |ai = Â
i

wi Â
a

hai |ai ha|aii = Â
i

wi hai |aii

= Â
i

wi = 1.
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(iii) Tr(r2)  1, since

Tr(r2) = Â
i

Â
j

Â
a

wiwj ha|aii
⌦
ai

��aj

↵ ⌦
aj

��a
↵

= Â
i

Â
j

Â
a

wiwj

⌦
ai

��aj

↵ ⌦
aj

��a
↵
ha|aii

= Â
i

Â
j

wiwj

⌦
ai

��aj

↵ ⌦
aj

��ai

↵

= Â
i

Â
j

wiwj|
⌦
ai

��aj

↵
|
2

 Â
i

Â
j

wiwj =
�
Â

i

wi

�2
= 1.

The equality occurs when wi = 0 8i 6= j and wj = 1 (pure state) ) r =
��aj

↵⌦
aj

��.
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Density matrix

(iv) hy| r |yi � 0, 8 |yi 2 H, since

hy| r |yi = Â
i

wi| hai |yi |
2
� 0.

B On the other hand, the probability to obtain a non-degenerate value a of the
observable A in a random element of the ensemble described by r is

pa = Â
i

wi hai |ai ha|aii = Â
i

wi ha|aii hai |ai = ha| r |ai

since wi is the probability to choose |aii and hai |ai ha|aii is the probability to
obtain a if we have chosen |aii.
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B Using PA,a = |aiha|, another way to write this result is

pa = Â
i

wi hai| PA,a |aii = Â
i

wi hai| P
2
A,a |aii

= Â
a0

Â
i

wi hai| PA,a
��a0
↵⌦

a
0
�� PA,a |aii

= Â
a0

Â
i

wi

⌦
a
0
�� PA,a |aiihai| PA,a

��a0
↵

= Tr(PA,a rPA,a)

= Tr(rPA,a)

This expression is also valid if a is degenerate, with a basis of eigenvectors
{|a(j)i},

PA,a = Â
j

|a(j)iha(j)|

pa = Â
i

wi Â
j

hai| PA,a |aii = Â
j

ha(j)| r |a(j)i = Tr(rPA,a).
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Density matrix

• If we measure A to all the elements of the ensemble and select those with
eigenvalue a, what is the density matrix of the resulting ensemble?

B According to postulate IV, if we pick up |aii and obtain a, the state collapses into��a0
i

↵
, which is an eigenstate of A given by

|aii �!
��a0

i

↵
=

PA,a |aii

kPA,a |aii k

And according to postulate III, the probability to obtain a in the state |aii is

pa,i = hai| PA,a |aii = kPA,a |aii k
2.

(When we measure A on some |aii, this probability may be zero, of course)
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B Then, after the measurement on the ensemble (mixed state) described by r we get:

r = Â
i

wi |aiihai| Â
i

wi

PA,a |aiihai| PA,a
kPA,a |aii k

2 pa,i = PA,a rPA,a

that must be normalized to get a proper density matrix of unit trace:

r �! rA,a =
PA,a rPA,a
Tr(rPA,a)

since Tr(PA,a rPA,a) = Tr(rPA,a). Therefore:

– If the initial r described a mixed state then the resulting rA,a describes another
mixed state.

– If the initial r described a pure state |ai, and the probability to obtain a on |ai is
not zero, then the resulting rA,a describes the pure state |a0i where it will collapse:

r = |aiha| �! rA,a =
��a0
↵⌦

a0
�� ,

��a0
↵
=

PA,a |ai

kPA,a |ai k
.
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Density matrix

B Putting together previous results we get a generalized version of the postulates:

Postulate I’
In QM a physical system is associated to a complex Hilbert space and any
state of the system is described by a linear operator r, called density matrix,
that satisfies

r = r†, Tr(r) = 1, hy| r |yi � 0, 8y 2 H.

Postulate II’ (same as Postulate II)
Every observable of a physical system is represented by a self-adjoint linear
operator acting on the associated Hilbert space, whose eigenvalues are the
only possible values of the observable.
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Postulate III’
If a physical system is in state described by the density matrix r, the probability of
obtaining an eigenvalue a of an observable A is

pa = Tr(rPA,a).

Postulate IV’
If a physical system is in a mixed state described by the density matrix r and
one filters the eigenvalue a of an observable A, the system is left in a mixed state
described by the density matrix

rA,a =
PA,a rPA,a
Tr(rPA,a)

.
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• Pure states are special cases of mixed states.
A state is pure if its density matrix has the form r = |yihy| for some |yi 2 H.
A pure state is characterized by r2 = r () Tr(r2) = 1). Otherwise, it is not pure.

• If the state is not pure, it is specified by the set of frequencies where more than
one wi is different from zero. Then the decomposition is not unique:

B For example, the following density matrices are the same (same hy| r |yi , 8 |yi)
but they are made of a mixture of different pure states:

r = a |uihu|+ (1 � a) |vihv| , 0 < a < 1, {|ui , |vi} orthonormal,

r =
1
2
|xihx|+

1
2
|yihy| ,

with |xi =
p

a |ui �
p

1 � a |vi , |yi =
p

a |ui+
p

1 � a |vi .

B Hence, we do not have a maximal information of the state since we do not know
what the mixture is made of.
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• Let us illustrate with an example the difference between a coherent superposition
of pure states (another pure state) and a incoherent mixture of pure states (mixed
state). Consider the following two states:

– The pure state |Sx+i, that can be written as superposition of eigenstates of Sz,

|Sx+i =
1
p

2
|Sz+i+

1
p

2
|Sz�i

.
=

1
p

2

0

@1

1

1

A

) r1 = |Sx + ihSx + |
.
=

1
2

0

@1 1

1 1

1

A

in the basis {|Sz+i , |Sz�i}. The density matrix r1 is an alternative way of
describing this state. Notice that it corresponds to a pure state because

r2
1 = r1.
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– The mixed state

r2 =
1
2
|Sz + ihSz + |+

1
2
|Sz � ihSz � |

.
=

1
2

0

@1 0

0 1

1

A

(r2
2 6= r2).

B In both states the probability to find either Sz = ±h̄/2 is the same,

PSz,+ = |Sz + ihSz + |
.
=

0

@1 0

0 0

1

A , PSz,� = |Sz � ihSz � |
.
=

0

@0 0

0 1

1

A

r1 : pSz+ = Tr(r1PSz,+) =
1
2

, pSz�
= Tr(r1PSz,�) =

1
2

,

r2 : pSz+ = Tr(r2PSz,+) =
1
2

, pSz�
= Tr(r2PSz,�) =

1
2

.
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B And the expectation value (average) of Sz is also the same,

Sz

.
=

h̄

2

0

@1 0

0 �1

1

A

hSzir1 = Tr(r1Sz) = 0, Dr1Sz =
q
hS2

zir1 � hSzi
2
r1

=
h̄

2

hSzir2 = Tr(r2Sz) = 0, Dr2Sz =
q
hS2

zir2 � hS2
zi

2
r2

=
h̄

2
.

B But in contrast to r2, the state r1 has a well defined spin orientation
(along the x-axis),

PSx,+ = |Sx + ihSx + |
.
=

1
2

0

@1 1

1 1

1

A , PSx,� = |Sx � ihSx � |
.
=

1
2

0

@ 1 �1

�1 1

1

A

r1 : pSx+ = Tr(r1PSx,+) = 1, pSx�
= Tr(r1PSx,�) = 0

r2 : pSx+ = Tr(r2PSx,+) =
1
2

, pSx�
= Tr(r2PSx,�) =

1
2
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B In fact,

Sx

.
=

h̄

2

0

@0 1

1 0

1

A

hSxir1 = Tr(r1Sx) =
h̄

2
, Dr1Sx =

q
hS2

xir1 � hSxi
2
r1

= 0

hSxir2 = Tr(r2Sx) = 0, Dr2Sx =
q
hS2

xir2 � hSxi
2
r2

=
h̄

2
.

B Actually r1 represents a polarized beam (along the x-axis) and r2 an unpolarized
beam. The silver atoms exiting the furnace in the Stern-Gerlach experiment are in
the mixed state r2 (unpolarized), but those filtered by SGx̂ are in the pure state r1

(polarized).

82

Density matrix

• We could also prepare a partially polarized beam along the z-axis,

r3 = w1 |Sz + ihSz + |+ w2 |Sz � ihSz � |
.
=

0

@w1 0

0 w2

1

A

with w1 + w2 = 1 (wi 6= 0, w1 6= w2). This is also a mixed state (r2
3 6= r3) that has

r3 : pSz+ = Tr(r3PSz,+) = w1, pSz�
= Tr(r3PSz,�) = w2

pSx+ = Tr(r3PSx,+) =
1
2

, pSx�
= Tr(r3PSx,�) =

1
2

hSzir3 = Tr(r3Sz) =
h̄

2
(w1 � w2), Dr3Sz =

q
hS2

zir3 � hSzi
2
r3

= h̄
p

w1w2

hSxir3 = Tr(r3Sx) = 0, Dr3Sx =
q
hS2

xir1 � hSxi
2
r3

=
h̄

2
.
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• Of course, |Sz+i,
��Sy+

↵
= 1p

2
(|Sz+i+ i |Sz�i) and in general

|(q, j)i = cos(q/2) |Sz+i+ eij sin(q/2) |Sz�i ,

with q 2 [0, p], j 2 [0, 2p], are other examples of pure states, polarized along the
direction n̂(q, j).

B Check that their corresponding density matrices fulfill r2 = r.

B The spin along n̂ can be determined with full precision: we have maximal
information about them.

B In contrast, the spin cannot be determined along any direction without
uncertainty when measured over the mixed states r2 or r3.
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• A composite system of two subsystems with Hilbert spaces H1 and H2 is
associated the Hilbert space H = H1 ⌦H2 (tensor product). This space consists of
all the ordered pairs |ui ⌦ |vi ⌘ |ui |vi ⌘ |uvi, with |ui 2 H1, |vi 2 H2, and their
linear combinations. By definition, if c 2 C,

c(|ui ⌦ |vi) = (c |ui)⌦ |vi = |ui ⌦ (c |vi)

(|u1i+ |u2i)⌦ |vi = |u1i ⌦ |vi+ |u2i ⌦ |vi

|ui ⌦ (|v1i+ |v2i) = |ui ⌦ |v1i+ |ui ⌦ |v2i .

B The states that can be written as the direct product of one vector |ui 2 H1 and one
vector |vi 2 H2 are called separable states. The linear combination of two or more
separable states are called entangled states.

B If {|uii} and {
��vj

↵
} are bases of H1 and H2, respectively, then {|uii ⌦

��vj

↵
},

i = 1, . . . , n, j = 1, . . . , m, is a basis of H1 ⌦H2 (that has dimension m ⇥ n),

|yi = Â
ij

aij |uii ⌦
��vj

↵
, 8 |yi 2 H1 ⌦H2.
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Composite systems. Entanglement

• The scalar product in H1 ⌦H2 is defined by
 

Â
ij

aij |uii ⌦
��vj

↵
, Â

ij

bij |uii ⌦
��vj

↵
!

= Â
ijkl

a⇤
ij

bkl hui |uki
⌦
vj

��vl

↵

= Â
ij

a⇤
ij

bij (if both are orthonormal bases).

• If A, B are operators acting on H1 and H2, respectively, we define the operator
A ⌦ B acting on H1 ⌦H2 by

(A ⌦ B)(|ui ⌦ |vi) = (A |ui)⌦ (B |vi).

B In fact, every linear operator C on H1 ⌦H2 can be written as

C = Â
ij

cij Ai ⌦ Bj,

with Ai and Bj operators on H1 and H2, respectively.
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• Consider an observable A acting just on the subsystem H1.
Then it is of the form A ⌦ IH2 on H1 ⌦H2 and

A
��uivj

↵
= (A |uii)

��vj

↵
.

B We can write the expected value of A in a state of density matrix r of the
composite system as its expected value in the subsystem H1 with reduced
density matrix rH1 ,

Tr(rA) = Â
ij

⌦
uivj

�� rA
��uivj

↵
= Â

ij

⌦
uivj

�� r
��vj

↵
A |uii

= Â
i

hui|

 

Â
j

⌦
vj

�� r
��vj

↵
!

A |uii = TrH1(r
H1 A)

where we have introduced the partial trace of r (or any other operator) as

rH1 ⌘ TrH2(r) = Â
j

⌦
vj

�� r
��vj

↵
.
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Composite systems. Entanglement

• We see that the reduced density matrix, defined as the partial trace of the density
matrix of a composite system, describes the state of a subsystem when we ignore
the information about the rest of the system.

B Since, in principle, we lose part of the information, the reduced density matrix of
a pure state may be a mixed state.

B This happens in particular when the state of the composite system is an entangled
state.
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B For example, consider a four-dimensional system S = S1 ⌦ S2 composed of two
subsystems of bases {|"i , |#i} and {|+i , |�i}.
Assume the system is in an entangled state

|yi =
1
p

2
|"i |+i+

1
p

2
|#i |�i

⌘
1
p

2
|" +i+

1
p

2
|# �i

.
=

1
p

2

0

BBBBB@

1

0

0

1

1

CCCCCA

that we have expressed for convenience in the basis {|" +i , |" �i , |# +i , |# �i}.
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Composite systems. Entanglement

B The density matrix describing the composite system in that state is

r = |yihy|
.
=

1
2

0

BBBBB@

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

1

CCCCCA

that, of course, fulfills r2 = r, because |yi is a pure state.

B The reduced density matrix of subsystem S1 is the partial trace

rS1 ⌘ TrS2(r) = h+| r |+i+ h�| r |�i

= h+|yi hy|+i+ h�|yi hy|�i =
1
2
|" ih" |+

1
2
|# ih# | .

Notice that rS1 does not describe a pure but a mixed state
(Tr[(rS1)2] < Tr(rS1) = 1): half of the times the subsystem is in the state |"i and
the other half in the state |#i, but never in a coherent superposition.
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B The coherence is lost, just because we ignore (have not measured) all the details of
the complementary system(s).

B In practice, this is always what happens when we measure an observable in a
non-isolated system: the system is entangled with the measuring apparatus,
trillion trillions atoms whose state is impossible to determine.
This inevitable partial knowledge leads to a Schrödinger’s cat that is either dead
or alive, and not in a coherent superposition.

B In general, a bipartite pure state r is entangled if and only if its reduced states are
mixed rather than pure.
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Quantum dynamics: the Schrödinger equation Postulate V

How does a quantum system change with time?

Postulate V
In the time interval between two consecutive measurements (closed system), pure
states remain pure, and time evolution is described by the Schrödinger equation,

ih̄
d
dt

|y(t)i = H(t) |y(t)i ,

where H(t) is an observable called the Hamiltonian of the system.

B The Schrödinger equation is deterministic. Given the quantum state at a time t1 it
is known at any later (or earlier) time t2.

Notice that in QM time is not an observable, it is a parameter. In contrast, the
position is an observable.

This is at odds with the theory of Special Relativity, where space and time are
treated on an equal footing.
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• An important property of the Schrödinger equation is that, during the evolution
between two measurements, the norm of the states does not change,

ih̄
d
dt

hy(t)|y(t)i =


ih̄

d hy(t)|
dt

�
|y(t)i+ hy(t)|


ih̄

d |y(t)i
dt

�

= � hy(t)| H(t) |y(t)i+ hy(t)| H(t) |y(t)i = 0

where we have used that H(t) is self-adjoint.

On the other hand, the Schrödinger equation is linear.

Therefore, the time evolution must be described by a unitary operatora

|y(t)i = U(t, t0) |y(t0)i , U
†
U = UU

† = I.

a If U is unitary and |y0
i = U |yi then the norm is preserved, hy0

|y0
i = hy|U

†
U |yi = hy|yi.
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Quantum dynamics: the Schrödinger equation Postulate V

B From the relations

|y(t3)i = U(t3, t2) |y(t2)i , |y(t2)i = U(t2, t1) |y(t1)i ,

one gets

U(t, t) = I,

U(t3, t1) = U(t3, t2)U(t2, t1),

U(t2, t1) = U
�1(t1, t2) = U

†(t1, t2) ( U(t2, t1)U(t1, t2) = I.

B Notice that, as anticipated above, the time evolution of a state of a closed system
is reversible. If t > t0,

|y(t)i = U(t, t0) |y(t0)i , |y(t0)i = U
†(t, t0) |y(t)i .

There is no loss of information.
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B In contrast, the measurement process (collapse of the state) is a not unitary,
not reversible process. Since this is produced by the interaction with an external
apparatus, the system will be no longer closed.
However, as we have seen, one can include the measuring apparatus as a part of
the (composite) system. Then the time evolution will be unitary and reversible
and there is no need to introduce the bizarre collapse.

• The evolution of a mixed state r(t) = Â
i

wi |ai(t)ihai(t)| also follows from the

Schrödinger equation,

ih̄
dr(t)

dt
= Â

i

wi

⇢
ih̄


d |ai(t)i
dt

�
hai(t)|+ |ai(t)i


ih̄

d hai(t)|
dt

��

= Â
i

wi {H(t) |ai(t)i hai(t)|� |ai(t)i hai(t)| H(t)} ,

assuming time-independence of the frequencies, and hence

dr(t)
dt

=
i
h̄
[r(t), H(t)].
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Quantum dynamics: the Schrödinger equation Postulate V

• In general, the expectation values change with time,

d
dt

hy(t)| A |y(t)i =


d hy(t)|

dt

�
A |y(t)i+ hy(t)| A


d |y(t)i

dt

�
+ hy(t)|

∂A

∂t
|y(t)i

= �
i
h̄
hy| [A, H] |yi+ hy|

∂A

∂t
|yi .

B The self-adjoint operator H is called Hamiltonian, but in QM there is no
prescription to obtain it. It has clearly the dimensions of energy, thanks to the
introduction of the dimensionful constant h̄ in the Schrödinger equation.

In systems with a quantum analog one can usually (not always) infer its form
from the corresponding classical Hamiltonian (see Postulate VI).
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Quantum dynamics Time evolution operator

• Substituting |y(t)i = U(t, t0) |y(t0)i we get the Schrödinger equation for U

(the time evolution operator),

ih̄
d
dt

U(t, t0) = H(t)U(t, t0)

where we have used that

d
dt

{U(t, t0) |y(t0)i} =
d
dt

U(t, t0) |y(t0)i

because |y(t0)i does not depend on t.
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Quantum dynamics Time evolution operator

B Then, using the properties of U,

dU(t, t0) = �
i
h̄

H(t)U(t, t0)dt

) U(t + dt, t0)� U(t, t0) = �
i
h̄

H(t)U(t, t0)dt

and taking t0 = t, we obtain

U(t + dt, t) = I �
i
h̄

H(t)dt.

B This is the expression for an infinitesimal time evolution. It reveals that H/h̄ is
the generator of time translations.
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Quantum dynamics Time evolution operator

• Let us find the evolution operator for an arbitrary time interval.

– If H 6= H(t), the Schrödinger equation for U(t, t0), with U(t0, t0) = I, is easy to
solve,

U(t, t0) = exp
⇢
�

i
h̄

H(t � t0)

�
.

– If H = H(t) one can check that the solution is the Dyson series,

U(t, t0) = I +
•

Â
n=1

✓
�

i
h̄

◆n ˆ t

t0

dt1

ˆ
t1

t0

dt2 . . .
ˆ

tn�1

t0

dtn H(t1)H(t2) . . . H(tn).

(t0 < t1 < t2 < · · · < tn�1 < tn)

If [H(t), H(t0)] = 0 it simplifies to

U(t, t0) = I +
•

Â
n=1

1
n!

✓
�

i
h̄

◆ ˆ
t

t0

dt
0
H(t0)

�n

= exp
⇢
�

i
h̄

ˆ
t

t0

dt H(t)

�
.
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Quantum dynamics Stationary states and constants of motion

• Consider a time-independent Hamiltonian H 6= H(t).
Since H is self-adjoint it can be diagonalized,

H |Eni = En |Eni , En 2 R.

B The eigenvalues En are the allowed energies or energy levels and the |Eni the
energy eigenstates of the system.

The time evolution of the energy eigenstates is trivial,

U(t, t0) |Eni = e�
i
h̄

H(t�t0) |Eni = e�
i
h̄

En(t�t0) |Eni .

The only change is an irrelevant global phase, so the state remains the same.
Hence, the energy eigenstates are stationary.
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• One can write the time evolution operator in the basis of energy eigenstates
(spectral resolution of U) as

U(t, t0) = Â
m

Â
n

|EmihEm| e�
i
h̄

H(t�t0) |EnihEn| = Â
n

e�
i
h̄

En(t�t0) |EnihEn| .

B The time evolution of a generic state |yi = Â
i

ci |Eii is

|y(t)i = U(t, t0) |yi = Â
i

Â
n

ci e�
i
h̄

En(t�t0) |Eni hEn |Eii = Â
i

ci e�
i
h̄

Ei(t�t0) |Eii .

B Since the components change by different phases,

ci �! ci e�
i
h̄

Ei(t�t0),

the state |yi is not stationary unless it is an energy eigenstate.
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Quantum dynamics Stationary states and constants of motion

• On the other hand, according to

d
dt

hy(t)| A |y(t)i = �
i
h̄
hy| [A, H] |yi+ hy|

∂A

∂t
|yi

we say that a time-independent observable A that commutes with H is a constant
of motion since its expectation value in any state |yi does not change with time,

∂A

∂t
= 0, [A, H] = 0 ) ih̄

d
dt

hAiy = 0.

B In particular, since [H, H] = 0, a time-independent Hamiltonian is a constant of
motion, and the average energy hHiy does not change with time even if |yi is not
a stationary state.
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Quantum dynamics Time evolution pictures

• So far, we have considered that states evolve with time
and observables (unless explicitly dependent on time) stay constant,

|ai
t

��! U |ai , A
t

��! A.

This is called the Schrödinger picture.

B However, since after all we just deal with the results of our observations
(measurements), we could view things in an alternative way.

• The time evolution of the expected value

ha| A |bi
t

��! ha|U
†
AU |bi

can also be interpreted as if the states do not evolve but the observable does,

|ai
t

��! |ai , |bi
t

��! |bi , A
t

��! U
†
AU.

This is the Heisenberg picture.
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Quantum dynamics Time evolution pictures

• To distinguish both pictures, when necessary, we denote

|ai
H
= |a(t0)iS

= U
†
|a(t)i

S

A
(H)(t) = U

†
A
(S)

U, A
(H)(t0) = A

(S).

B The predictions are identical:

H
ha| A

(H)(t) |bi
H
=

S
ha(t)| A

(S)
|b(t)i

S

and the hamiltonian H has the same form in both pictures,

H = U
†
HU.
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Quantum dynamics Time evolution pictures

• An observable A in the Heisenberg picture may change with time because of the
dynamics of the system or because of its explicit dependence with time.
Then, using

ih̄
d
dt

U(t, t0) = H(t)U(t, t0)

we obtain the Heisenberg equation of motion,

dA
(H)

dt
=


dU

†

dt

�
A
(S)

U + U
†
A
(S)


dU

dt

�
+ U

† ∂A
(S)

∂t
U

= �
i
h̄

U
†[A(S), H]U + U

† ∂A
(S)

∂t
U

= �
i
h̄
[A(H), H] +

✓
∂A

∂t

◆(H)

where one usually writes
✓

∂A

∂t

◆(H)

⌘ U
† ∂A

(S)

∂t
U.
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Quantum dynamics Time evolution pictures

• The density matrix changes with time in the Schrödinger picture according to

dr(S)(t)
dt

=
i
h̄
[r(S)(t), H(t)]

but it is constant in the Heisenberg picture,

r(S)(t0) = Â
i

wi |ai(t0)ihai(t0)|

) r(S)(t) = U(t, t0)r(t0)U
†(t, t0)

) r(H)(t) = U
†(t, t0)r

(S)(t)U(t, t0) = r(S)(t0) = r(H)(t0)

)
dr(H)(t)

dt
= 0.
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Quantum dynamics Time evolution pictures

• The Heisenberg picture is more similar to the usual description in Classical
Mechanics, where the observables (position, momentum, . . . ) change with time.
Actually, the Heisenberg equation of motion has the same form as the Hamilton’s
equation for a classical variable A = A(x1, . . . , xN, p1, . . . , pN; t),

dA

dt
= [A, H]P +

∂A

∂t

replacing the Poisson bracket,

[A, B]P ⌘ Â
i

✓
∂A

∂xi

∂B

∂pi

�
∂A

∂pi

∂B

∂xi

◆

by a commutator, namely

(classical) [·, ·]P �! �
i
h̄
[·, ·] (quantum).

B This analogy reinforces the idea that the operator H introduced in the
Schrödinger equation is in fact the Hamiltonian of the system.
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Quantization rules Postulate VI

How to build quantum operators that represent the physical observables?
Next, we will discuss the canonical quantization rules.

Postulate VI
For a physical system in which the Cartesian coordinates are x1, x2, . . . , xN, with
corresponding momenta p1, p2, . . . , pN, the operators Xr and Ps, which represent
these observables in QM, must satisfy the commutation relations

[Xr, Xs] = 0, [Pr, Ps] = 0, [Xr, Ps] = ih̄drs I.

If the system has an observable with classical expression A(x1, . . . , xN, p1, . . . , pN; t)

then the corresponding operator can be obtained by “conveniently” substituting he
variables xr and ps by the operators Xr and Ps, respectively.

B Here, “conveniently” means the following:
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Quantization rules Postulate VI

• Since X and P are noncommuting observables, one should write classical
variables like xp as an equivalent combination whose quantum analog is a
self-adjoint operator.

B In fact, the product XP is not self-adjoint, since X = X
†, P = P

† and

[X, P] = XP � PX = ih̄I ) (XP)† = (PX)†
� ih̄I = XP � ih̄I 6= XP.

However,

xp =
1
2
(xp + px) 1

2
(XP + PX)

is a self-adjoint operator with the same classical expression.

B This postulate will look less bizarre when we see in next chapter that identifying
the momentum with an operator P that satisfies the commutation relations above
is the right way to understand P/h̄ as the generator of spatial translations.
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Superselection rules

• Suppose we have an observable whose operator Q commutes (is compatible) with
all other operators associated to observables in H, [Q, A] = 0, 8A.

Then for any pair of eigenstates of Q with different eigenvalues,

Q |y1i = q1 |y1i , Q |y2i = q2 |y2i ,

we have that

8A 0 = hy1| [Q, A] |y2i = hy1| QA |y2i � hy1| AQ |y2i = (q1 � q2) hy1| A |y2i

) hy1| A |y2i = 0 if q1 6= q2.

B This means there are no transitions between whatever two eigenstates with
different eigenvalues of Q.

B As a consequence, let us see that in H

there is no pure state that is a superposition of states with different values of Q.
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Superselection rules

• Suppose that such a pure state |yi exists. Then, since the eigenvectors of Q are a
basis of H,

|yi = Â
i

ci |yii with Q |yii = qi |yii .

• Using that hyi| A
��yj

↵
= 0 if yi 6= yj, the expectation of any observable A in |yi is

hy| A |yi = Â
i

|ci|
2
hyi| A |yii = Tr(rA) with r = Â

i

|ci|
2
|yiihyi| .

B We see that unless |yi has a well-defined value of Q (there is just one ci 6= 0)
r describes a mixed state (incoherent superposition of pure states) despite
|yi 2 H.

• Any observable Q with these properties is called a superselection observable and
gives rise to superselection rules: one can prepare only states with well defined
values of Q. States with different values of Q live in separate Hilbert spaces Hq.
For example, the electric charge, the parity, the baryon and lepton number, . . .
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No-cloning theorem

• We have already emphasized that a quantum state can not be understood as an
element of reality but as a collection of similarly prepared systems.

• But how to make identical state preparations of a state?
Notice that the state, in principle, might be even unknown.

B Sometimes things are easy: it is possible to prepare the lowest energy state of a
system by simply waiting for the system to decay to its ground state.
Another way is filtering, the technique used in the Stern-Gerlach experiment.

B But we would really like to have a procedure to make exact replicas or clones of a
prototype of the state, provided it exists. This is a common method in classical
physics: the duplication of a key or the copying of a computer file.

B However, surprisingly, let us see that cloning quantum states is impossible.
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No-cloning theorem

• Suppose we want to build a machine to copy a quantum state.

There are only two permissible quantum operations with which we may
manipulate the composite system:

– If we perform an observation, the original state will irreversibly collapse into
some eigenstate of the observable, corrupting the information contained in the
qubit(s). This is obviously not what we want.

– Instead, we should use unitary operations, as the following:

B Given |yi and a “blank piece of paper” |bi,

|yi ⌦ |bi �! U(|yi ⌦ |bi) = |yi ⌦ |yi .

(Imagine we are so wise as to control the Hamiltonian to make the state evolve
this way.) And the same wih another state |fi,

|fi ⌦ |bi �! U(|fi ⌦ |bi) = |fi ⌦ |fi .
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No-cloning theorem

B This looks perfect but, if we take the scalar product of both resulting states,

(hf|⌦ hb|)U†
U(|yi ⌦ |bi) = hf|yi

= (hf|⌦ hf|)(|yi ⌦ |yi) = hf|yi2 ,

we see that this is only possible if

hf|yi = 0 or ± 1,

namely, if |yi and |fi are either the same state or they are orthogonal.

B Therefore, a single universal U cannot clone a general quantum state
(arbitrary superpositions of the orthogonal qubits |0i and |1i).

• Notice that states which are classically different will certainly be orthogonal, so
the no-cloning theorem for quantum states is not in conflict with the well-known
possibility of copying classical states.
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