Complete surfaces with negative extrinsic curvature

in $\mathbb{M}^2 \times \mathbb{R}$

José A. Gálvez^{*a* 1}, José L. Teruel^{*a*}

Mathematics Subject Classification: 58J05, 53C42.

^{*a*} Departamento de Geometría y Topología, Universidad de Granada, E-18071 Granada, Spain; e-mails: jagalvez@ugr.es, jlteruel@ugr.es

Abstract

We prove that there exist no complete vertical graphs in $\mathbb{M}^2 \times \mathbb{R}$ with extrinsic curvature bounded from above by a negative constant, when \mathbb{M}^2 is a Riemannian surface with a pole and non negative curvature.

1 Introduction.

In 1964, Efimov proved that no complete surface can be C^2 -immersed in the Euclidean 3-space \mathbb{R}^3 if its extrinsic curvature K_{ext} is bounded from above by a negative constant (see [3], [8]). This generalized Hilbert's classical result which stated that no complete smooth immersion exists with negative constant extrinsic curvature in \mathbb{R}^3 .

Efimov's theorem has been tried to extend in several ways (see [4], [10], [9]). In this sense, not much is known about the behaviour of the extrinsic curvature of a complete surface in product spaces $\mathbb{M}^2 \times \mathbb{R}$ (see [1], [5]).

In this paper we prove that there exist no entire vertical graphs with extrinsic curvature bounded from above by a negative constant in $\mathbb{M}^2 \times \mathbb{R}$, where \mathbb{M}^2 is a Riemannian surface with a pole and with non negative curvature $K_{\mathbb{M}}$. In our arguments we use Heinz's ideas, who showed this result when \mathbb{R}^3 is the ambient space (see [7]).

¹Corresponding author.

Both authors are partially supported by MICINN-FEDER, Grant No. MTM2010-19821 and by Junta de Andalucía Grant No. FQM325 and P09-FQM-5088.

As a consequence of a result in [6] we obtain that, if \mathbb{M}^2 is a Riemannian surface with $K_{\mathbb{M}} \geq 0$ and with a pole, then every entire vertical graph Σ in $\mathbb{M}^2 \times \mathbb{R}$ satisfies

$$\inf_{\Sigma} |K_{ext}| = 0,$$

where K_{ext} denotes the extrinsic curvature of Σ .

Moreover, we construct examples of the existence of complete surfaces with constant negative extrinsic curvature in certain product spaces $\mathbb{M}^2 \times \mathbb{R}$.

2 Graphs with negative extrinsic curvature.

Let \mathbb{M}^2 be a Riemmanian surface and (r, θ) local geodesic polar coordinates around a point $p_0 \in \mathbb{M}^2$ which are well defined for r < R, for a certain R > 0. The induced metric is given by

$$\langle \cdot, \cdot \rangle = dr^2 + G(r, \theta)d\theta^2$$

We consider $\mathbb{M}^2 \times \mathbb{R}$ endowed with the product metric and a vertical graph Σ in $\mathbb{M}^2 \times \mathbb{R}$ over the geodesic disk $B(p_0, R)$ centered at p_0 and with radius R, given in local coordinates as

$$\psi(r,\theta) = \left(exp_{p_0}(rcos(\theta), rsin(\theta)), z(r,\theta)\right),$$

which we identify with $(r, \theta, z(r, \theta))$ in order to simplify notation.

We denote by $\{\partial_r, \partial_\theta\}$ and $\{\overline{\partial_r}, \overline{\partial_\theta}\}$ the partial derivatives with respect to r and θ on \mathbb{M}^2 and Σ respectively, where, for instance, $\partial_r \equiv \frac{\partial}{\partial r}$ and $\partial_\theta \equiv \frac{\partial}{\partial \theta}$. Then

$$\overline{\partial_r} = \partial_r + z_r \partial_t \overline{\partial_\theta} = \partial_\theta + z_\theta \partial_t$$

Thus, the induced metric on Σ is given by

$$ds^{2} = \left(1 + z_{r}^{2}\right)dr^{2} + 2z_{r}z_{\theta}drd\theta + \left(G + z_{\theta}^{2}\right)d\theta^{2}$$

and its second fundamental form is given by

$$\begin{split} \left\langle \nabla_{\overline{\partial_r}} \overline{\partial_r}, N \right\rangle &= \frac{z_{rr}}{\sqrt{1 + z_r^2 + \frac{z_\theta^2}{G}}} \\ \left\langle \nabla_{\overline{\partial_\theta}} \overline{\partial_r}, N \right\rangle &= \frac{1}{\sqrt{1 + z_r^2 + \frac{z_\theta^2}{G}}} \left(-\frac{z_\theta G_r}{2G} + z_{r\theta} \right) \\ \left\langle \nabla_{\overline{\partial_\theta}} \overline{\partial_\theta}, N \right\rangle &= \frac{1}{\sqrt{1 + z_r^2 + \frac{z_\theta^2}{G}}} \left(\frac{z_r G_r}{2} - \frac{z_\theta G_\theta}{2} + z_{\theta\theta} \right), \end{split}$$

where ∇ is the Levi-Civita connection on $\mathbb{M}^2\times\mathbb{R}$ and

$$N = \frac{-1}{\sqrt{1 + z_r^2 + \frac{z_\theta^2}{G}}} \left(z_r \partial_r + \frac{z_\theta}{G} \partial_\theta - \partial_t \right)$$

is the pointing upwards unit normal vector of the graph.

By using the above formulae, a straightforward computation gives

$$\left(\sqrt{G}\right)_{r} d\left(\left(z_{r}^{2} + \frac{z_{\theta}^{2}}{G}\right) d\theta\right) + d\left(z_{r} d\left(\frac{z_{\theta}}{\sqrt{G}}\right) - \frac{z_{\theta}}{\sqrt{G}} dz_{r}\right)$$
$$= 2\sqrt{G} \left(1 + z_{r}^{2} + \frac{z_{\theta}^{2}}{G}\right)^{2} K_{ext} \left(dr \wedge d\theta\right), \tag{1}$$

where K_{ext} denotes the extrinsic curvature of Σ .

Now we define the following auxiliar function which will be useful for our purposes

$$f(r) = \int_{B_r} \sqrt{G} \left(1 + \frac{z_{\theta}^2}{G}\right), \quad r > 0$$

where B_r denotes the ball centered at the origin of \mathbb{R}^2 and radius r, with r < R. Here, we are identifying \mathbb{R}^2 and the tangent plane of \mathbb{M}^2 at p_0 , $T_{p_0}\mathbb{M}^2$, in the usual way. We observe that along this section we will work with functions of type $\int_{B_r} h(\rho, \theta)$, where

We observe that along this section we will work with functions of type $\int_{B_r} h(\rho, \theta)$, where $h(\rho, \theta)$ is well defined in $B_r \setminus \{(0,0)\}$. However all these functions $h(\rho, \theta)$ can be continuously extended to the origin as it happens for the previous f(r). This is due to the facts that $\lim_{p \to p_0} \sqrt{G(p)} = 0$, $\lim_{p \to p_0} \left(\sqrt{G}\right)_{\rho} (p) = 1$ (see [2]) and the functions $\left|\frac{z_{\theta}}{\sqrt{G}}\right|$ and $|z_{\rho}|$ are bounded in a neighbourhood of the origin.

Lemma 1. Under these conditions, we have

$$|B_r| \le f(r) \le \sqrt{|B_r|} \left(\int_{B_r} \sqrt{G} \left(1 + z_\rho^2 + \frac{z_\theta^2}{G} \right)^2 \right)^{\frac{1}{2}}.$$

where $|B_r|$ denotes the area of the geodesic disk $B(p_0, r)$ in \mathbb{M}^2 .

Proof. Since $\frac{z_{\theta}^2}{G} \ge 0$, the first inequality is clear. Moreover, by using the Cauchy-Schwarz inequality, one has

$$f(r) \le \left(\int_{B_r} \sqrt{G}\right)^{\frac{1}{2}} \left(\int_{B_r} \sqrt{G} \left(1 + z_{\rho}^2 + \frac{z_{\theta}^2}{G}\right)^2\right)^{\frac{1}{2}} = \sqrt{|B_r|} \left(\int_{B_r} \sqrt{G} \left(1 + z_{\rho}^2 + \frac{z_{\theta}^2}{G}\right)^2\right)^{\frac{1}{2}}.$$

Lemma 2. Let us denote by $K_{\mathbb{M}}$ the Gauss curvature of \mathbb{M}^2 . Then in the previous conditions we have,

$$\frac{d}{dr} \int_0^{2\pi} \left(\frac{z_\theta^2}{\sqrt{G}}\right) d\theta = \int_0^{2\pi} \left(\sqrt{G}\right)_r z_r^2 d\theta + \int_{B_r} \left(z_\rho^2 + \frac{z_\theta^2}{G}\right) K_{\mathbb{M}} \sqrt{G}$$
$$- 2 \int_{B_r} \sqrt{G} \left(1 + z_\rho^2 + \frac{z_\theta^2}{G}\right)^2 K_{ext}.$$

Proof. From (1) we can write

$$2\int_{B_{r}}\sqrt{G}\left(1+z_{\rho}^{2}+\frac{z_{\theta}^{2}}{G}\right)^{2}K_{ext}$$

$$=\int_{B_{r}}\left[\left(\sqrt{G}\right)_{\rho}d\left(\left(z_{\rho}^{2}+\frac{z_{\theta}^{2}}{G}\right)d\theta\right)+d\left(z_{\rho}d\left(\frac{z_{\theta}}{\sqrt{G}}\right)-\frac{z_{\theta}}{\sqrt{G}}dz_{\rho}\right)\right]$$

$$=\int_{B_{r}}\left(\left(\sqrt{G}\right)_{\rho}-1\right)d\left(\left(z_{\rho}^{2}+\frac{z_{\theta}^{2}}{G}\right)d\theta\right)$$

$$+\int_{B_{r}}\left[d\left(\left(z_{\rho}^{2}+\frac{z_{\theta}^{2}}{G}\right)d\theta\right)+d\left(z_{\rho}d\left(\frac{z_{\theta}}{\sqrt{G}}\right)-\frac{z_{\theta}}{\sqrt{G}}dz_{\rho}\right)\right].$$
(2)

Using the Green theorem and integrating by parts one gets

$$\int_{B_r} \left(\left(\sqrt{G} \right)_{\rho} - 1 \right) d \left(\left(z_{\rho}^2 + \frac{z_{\theta}^2}{G} \right) d\theta \right) \\
= \int_{B_r} d \left(\left(\left(\sqrt{G} \right)_{\rho} - 1 \right) \left(z_{\rho}^2 + \frac{z_{\theta}^2}{G} \right) d\theta \right) - \int_{B_r} \left(z_{\rho}^2 + \frac{z_{\theta}^2}{G} \right) d \left(\left(\left(\sqrt{G} \right)_{\rho} - 1 \right) d\theta \right) \\
= \int_{0}^{2\pi} \left(\left(\sqrt{G} \right)_r - 1 \right) \left(z_r^2 + \frac{z_{\theta}^2}{G} \right) d\theta - \int_{B_r} \left(z_{\rho}^2 + \frac{z_{\theta}^2}{G} \right) \left(\left(\sqrt{G} \right)_{\rho\rho} \right) \\
= \int_{0}^{2\pi} \left(\sqrt{G} \right)_r z_r^2 d\theta - \int_{0}^{2\pi} z_r^2 d\theta + \int_{0}^{2\pi} \left(\left(\sqrt{G} \right)_r - 1 \right) \frac{z_{\theta}^2}{G} d\theta \\
+ \int_{B_r} \left(z_r^2 + \frac{z_{\theta}^2}{G} \right) K_{\mathbb{M}} \sqrt{G},$$
(3)

where we have used that $K_{\mathbb{M}} = \frac{-(\sqrt{G})_{rr}}{\sqrt{G}}$. On the other hand, using again the Green theorem one obtains

$$\int_{B_r} \left[d\left(\left(z_{\rho}^2 + \frac{z_{\theta}^2}{G} \right) d\theta \right) + d\left(z_{\rho} d\left(\frac{z_{\theta}}{\sqrt{G}} \right) - \frac{z_{\theta}}{\sqrt{G}} dz_{\rho} \right) \right] \\
= \int_0^{2\pi} z_r^2 + \frac{z_{\theta}^2}{G} d\theta + \int_0^{2\pi} z_r d\left(\frac{z_{\theta}}{\sqrt{G}} \right) - \frac{z_{\theta}}{\sqrt{G}} dz_r d\theta \\
= \int_0^{2\pi} z_r^2 + \frac{z_{\theta}^2}{G} + \frac{z_r z_{\theta\theta}}{\sqrt{G}} - \frac{z_r z_{\theta} G_{\theta}}{2G\sqrt{G}} - \frac{z_{\theta} z_{r\theta}}{\sqrt{G}} d\theta.$$
(4)

We observe that

$$\int_{0}^{2\pi} \frac{z_r z_{\theta\theta}}{\sqrt{G}} - \frac{z_r z_{\theta} G_{\theta}}{2G\sqrt{G}} + \frac{z_{\theta} z_{r\theta}}{\sqrt{G}} d\theta = \int_{0}^{2\pi} \frac{\partial}{\partial \theta} \left(\frac{z_r z_{\theta}}{\sqrt{G}}\right) d\theta = 0.$$
(5)

Moreover, it is easy to check

$$2\int_{0}^{2\pi} \frac{z_{\theta} z_{r\theta}}{\sqrt{G}} d\theta = \frac{d}{dr} \int_{0}^{2\pi} \frac{z_{\theta}^{2}}{\sqrt{G}} d\theta + \int_{0}^{2\pi} \left(\sqrt{G}\right)_{r} \frac{z_{\theta}^{2}}{G} d\theta.$$
(6)

Using formulae (4)-(6) we have

$$\int_{B_r} \left[d\left(\left(z_{\rho}^2 + \frac{z_{\theta}^2}{G} \right) d\theta \right) + d\left(z_{\rho} d\left(\frac{z_{\theta}}{\sqrt{G}} \right) - \frac{z_{\theta}}{\sqrt{G}} dz_{\rho} \right) \right]$$

=
$$\int_0^{2\pi} z_r^2 d\theta + \int_0^{2\pi} \left(1 - \left(\sqrt{G} \right)_r \right) \frac{z_{\theta}^2}{G} d\theta - \frac{d}{dr} \int_0^{2\pi} \frac{z_{\theta}^2}{\sqrt{G}} d\theta.$$
(7)
and (3) and (7), we obtain (2).

Finally, by adding (3) and (7), we obtain (2).

Recall that a point p_0 in a manifold \mathbb{M}^2 is said to be a pole if the exponential map is a diffeomorphism from the tangent plane at p_0 onto \mathbb{M}^2 . In such a case, \mathbb{M}^2 is complete.

Remark 2.1. Let \mathbb{M}^2 be a Riemannian surface as above with a pole at p_0 . Let us observe that, in these conditions, $\left(\sqrt{G}\right)_{m}$ is a non-negative function if the Gauss curvature $K_{\mathbb{M}}$ of \mathbb{M}^{2} is non negative. Since

$$\left(\sqrt{G}\right)_{rr} = -K_{\mathbb{M}}\sqrt{G} \le 0,$$

one has that \sqrt{G} is concave as a function of r. Fixed an arbitrary θ_0 , if there existed a point $r_0 > 0$ such that $\left(\sqrt{G}\right)_r$ $(r_0, \theta_0) < 0$ then, from the concavity of $\sqrt{G}(\cdot, \theta_0)$ we would have that $\sqrt{G}(r, \theta_0) = 0$ for a certain $r > r_0$.

Now, we can establish the main Theorem of this section.

Theorem 1. Let \mathbb{M}^2 be a Riemannian surface with a pole. If the Gaussian curvature of \mathbb{M}^2 is non negative then there is no entire vertical graph Σ in $\mathbb{M}^2 \times \mathbb{R}$ with extrinsic curvature bounded from above by a negative constant.

Proof. Differentiating f twice and using Lemma 2 one has

$$f''(r) = \frac{d}{dr} \int_0^{2\pi} \sqrt{G} \left(1 + \frac{z_\theta^2}{G} \right) d\theta = \int_0^{2\pi} \left(\sqrt{G} \right)_r d\theta + \frac{d}{dr} \int_0^{2\pi} \frac{z_\theta^2}{\sqrt{G}} d\theta$$
$$= \int_0^{2\pi} \left(\sqrt{G} \right)_r \left(1 + z_r^2 \right) d\theta + \int_{B_r} \left(z_\rho^2 + \frac{z_\theta^2}{G} \right) K_{\mathbb{M}} \sqrt{G}$$
$$- 2 \int_{B_r} \sqrt{G} \left(1 + z_\rho^2 + \frac{z_\theta^2}{G} \right)^2 K_{ext}.$$

Since $K_{\mathbb{M}} \ge 0$, it is clear from Remark 2.1 that the following inequality holds

$$\int_{0}^{2\pi} \left(\sqrt{G}\right)_{r} \left(1+z_{r}^{2}\right) d\theta + \int_{B_{r}} \left(z_{\rho}^{2}+\frac{z_{\theta}^{2}}{G}\right) K_{\mathbb{M}}\sqrt{G} \ge 0.$$

Thus, using that $K_{ext} \leq -\alpha$ for a certain positive constant α

$$f''(r) \ge -2\int_{B_r} \sqrt{G} \left(1 + z_{\rho}^2 + \frac{z_{\theta}^2}{G}\right)^2 K_{ext} \ge 2\alpha \int_{B_r} \sqrt{G} \left(1 + z_{\rho}^2 + \frac{z_{\theta}^2}{G}\right)^2 \ge \frac{2\alpha}{|B_r|} f(r)^2$$

by Lemma 1.

From the last inequality

$$\frac{d}{d\rho}\left(f'(\rho)^2\right) = 2f'(\rho)f''(\rho) \ge 2f'(\rho)\frac{2\alpha}{|B_{\rho}|}f(\rho)^2 \ge f'(\rho)\frac{4\alpha}{|B_{r}|}f(\rho)^2 = \frac{4\alpha}{3|B_{r}|}\frac{d}{d\rho}\left(f(\rho)^3\right)$$

By integrating both sides of the above inequality one gets

$$\int_{\epsilon}^{r} \frac{d}{d\rho} \left(f'(\rho)^{2} \right) \geq \int_{\epsilon}^{r} \frac{4\alpha}{3 |B_{r}|} \frac{d}{d\rho} \left(f(\rho)^{3} \right)$$

where $0 < \epsilon < r$. Thus,

$$f'(r)^2 \ge \frac{4\alpha}{3|B_r|} \left(f(r)^3 - f(\epsilon)^3 \right) + f'(\epsilon)^2 \ge \frac{4\alpha}{3|B_r|} \left(f(r)^3 - f(\epsilon)^3 \right)$$

It is clear from the definition of f that $f(\epsilon) \to 0$ when $\epsilon \to 0,$ hence

$$f'(r)^2 \ge \frac{4\alpha}{3|B_r|} f(r)^3$$

and so

$$-\frac{d}{dr}\left(f(r)^{-\frac{1}{2}}\right) = \frac{1}{2}f(r)^{-\frac{3}{2}}f'(r) \ge \frac{1}{2}f(r)^{-\frac{3}{2}}\sqrt{\frac{4\alpha}{3|B_r|}}f(r)^{\frac{3}{2}} = \sqrt{\frac{\alpha}{3|B_r|}}$$

Let R_1 and R_2 be real numbers such that $0 < R_1 < R_2$. By integrating we have on one hand

$$\int_{R_1}^{R_2} -\frac{d}{dr} \left(f(r)^{-\frac{1}{2}} \right) dr = -f(R_2)^{-\frac{1}{2}} + f(R_1)^{-\frac{1}{2}}.$$

On the other hand, since $K_{\mathbb{M}} \ge 0$, from the volume comparison theorem we have $|B_r| \le \pi r^2$, and one has from the above inequality

$$\int_{R_1}^{R_2} -\frac{d}{dr} \left(f(r)^{-\frac{1}{2}} \right) dr \ge \int_{R_1}^{R_2} \sqrt{\frac{\alpha}{3|B_r|}} dr = \sqrt{\frac{\alpha}{3}} \int_{R_1}^{R_2} \frac{1}{\sqrt{|B_r|}} dr$$
$$\ge \sqrt{\frac{\alpha}{3}} \int_{R_1}^{R_2} \frac{1}{r\sqrt{\pi}} dr = \sqrt{\frac{\alpha}{3\pi}} \log\left(\frac{R_2}{R_1}\right).$$

So, by Lemma 1

$$|B_{R_1}|^{-\frac{1}{2}} \ge f(R_1)^{-\frac{1}{2}} \ge f(R_1)^{-\frac{1}{2}} - f(R_2)^{-\frac{1}{2}} \ge \sqrt{\frac{\alpha}{3\pi}} \log\left(\frac{R_2}{R_1}\right).$$

Hence

$$\sqrt{\frac{3\pi}{\alpha}} |B_{R_1}|^{-\frac{1}{2}} \ge \log\left(\frac{R_2}{R_1}\right),$$

that is,

$$R_2 \le R_1 \exp\left(\sqrt{\frac{3\pi}{\alpha}} \frac{1}{\sqrt{|B_{R_1}|}}\right)$$

for every $0 < R_1 < R_2$, with R_2 an arbitrary real value.

We observe that if \mathbb{M}^2 is compact then, for any entire vertical graph Σ in $\mathbb{M}^2 \times \mathbb{R}$ there exist points in Σ with non negative extrinsic curvature. This happens at the points where the height function achieves a local maximum or a local minimum.

Finally, as a consequence of Theorem 1 and [6, Theorem 1] we have

Corollary 1. Let \mathbb{M}^2 be a Riemannian surface with a pole and non negative Gauss curvature. If Σ is an entire vertical graph in $\mathbb{M}^2 \times \mathbb{R}$ with extrinsic curvature K_{ext} then

$$\inf_{\Sigma} |K_{ext}| = 0.$$

3 Complete surfaces with constant negative extrinsic curvature.

In this section we will give an example of existence of complete surfaces with strictly negative extrinsic curvature in product manifolds.

Consider \mathbb{M}^2 as the surface \mathbb{R}^2 with the induced metric

$$\langle \cdot, \cdot \rangle = d\rho^2 + G(\rho)d\theta^2$$

which is well defined in $\mathbb{R}^2 \setminus \{(0,0)\}$, where (ρ, θ) are the usual polar coordinates of \mathbb{R}^2 . Here, the function $G(\rho)$ will be defined later.

Let Σ be a rotation surface in $\mathbb{M}^2 \times \mathbb{R}$ parametrized by

$$\Psi(r,\theta) = \left(k(r)\cos(\theta), k(r)\sin(\theta), z(r)\right) \equiv \left(k(r), \theta, z(r)\right)$$

where k(r) > 0 and z(r) are smooth functions, and r denotes the arc length parameter of the curve $\beta(r) = \Psi(r, 0)$. Thus

$$k'(r)^2 + z'(r)^2 = 1.$$
(8)

If we denote by $\{\overline{\partial_r}, \overline{\partial_\theta}\}$ and $\{\partial_\rho, \partial_\theta\}$ the respective partial derivatives of Σ and \mathbb{M}^2 we have

$$\overline{\partial_r}(r,\theta) = k'(r)\partial_\rho \big(k(r),\theta\big) + z'(r)\partial_t \big(k(r),\theta\big) \overline{\partial_\theta}(r,\theta) = \partial_\theta \big(k(r),\theta\big).$$

So from (8), the induced metric in our surface is given by

$$ds^2 = dr^2 + G(k(r))d\theta^2,$$

and its second fundamental form is

$$II(r,\theta) = \left(-k''(r)z'(r) + k'(r)z''(r)\right)dr^{2} + \left(\frac{z'(r)G_{\rho}(k(r))}{2}\right)d\theta^{2}.$$

Hence, the principal curvatures of Σ can be written as

$$\lambda_{1} = -k''(r)z'(r) + k'(r)z''(r) \lambda_{2} = z'(r)\frac{G_{\rho}(k(r))}{2G(k(r))},$$

and the extrinsic curvature of the graph is

$$K_{ext} = -z'(r) \frac{G_{\rho}(k(r))}{2G(k(r))} \left(k''(r)z'(r) - k'(r)z''(r)\right).$$
(9)

By differentiating (8) we have

$$k'(r)k''(r) + z'(r)z''(r) = 0,$$

and so (9) becomes the following ODE for k

$$k''(r) = -\frac{2G(k(r))}{G_{\rho}(k(r))}K_{ext}.$$
(10)

Now we take, for instance, the function $G(\rho) = \rho^4 e^{\rho^4}$ and impose that the extrinsic curvature of Σ is constant -1.

Under these conditions, (10) becomes

$$k''(r) = \frac{k(r)}{2\left(1 + k(r)^4\right)} \tag{11}$$

Now, let k(r) be a solution of the previous ODE with initial conditions $k(0) = k_0 > 0$, k'(0) = 0, where k_0 is a positive value which will be determined later.

It is well known that the solution k(r) to the previous problem is uniquely determined in a neighbourhood of the origin. Let us see in fact that k(r) is well defined for every $r \in \mathbb{R}$.

First, we observe that, from the uniqueness to the previous problem, k(r) = k(-r) since k(-r) is also a solution to (11) satisfying the same initial conditions. Thus, in order to study the behaviour of k(r), we will only work for $r \ge 0$.

From (11) we have

$$\frac{d}{dr} \left(k'(r)\right)^2 = \frac{d}{dr} \left(\frac{1}{2} \arctan\left(k(r)^2\right)\right)$$

$$k'(r)^2 = c_0 + \frac{1}{2} \arctan\left(k(r)^2\right).$$
(12)

and so

Hence there exists a constant c_1 such that $|k'(r)| \le c_1$, that is k(r) is globally defined as we required.

Since $k(0) = k_0 > 0$ and k'(0) = 0, if we take $k_0 > 0$ small enough we would have $c_0 \in (\frac{\pi}{4} - 1, 0)$. Thus, from (12) one gets |k'(r)| < 1 for every $r \in \mathbb{R}$. Therefore, from (8), z(r) is a well defined smooth function in \mathbb{R} .

Let us see that $k(r) \ge k(0) = k_0 > 0$ for every $r \in \mathbb{R}$. In such a case, Σ is a regular surface due to the generatrix curve $\beta(r) = \Psi(r, 0)$ does not touch the rotation axis. For that purpose, let us first observe that k(r) > 0, for every r > 0.

Let us assume that there exists a first point $\epsilon > 0$ such that $k(\epsilon) = 0$. Since k(r) is a positive function in the interval $[0, \epsilon)$, from (11) we obtain that k(r) is a convex function in that interval. Moreover, k'(0) = 0, thus $k(\epsilon) \ge k(0) = k_0 > 0$, and it is contradiction with $k(\epsilon) = 0$.

On the other hand, since from (11) the function k(r) is a global convex function in \mathbb{R} and k'(0) = 0, then $k(r) \ge k(0) = k_0$ for every $r \in \mathbb{R}$ and

$$\lim_{r \to \pm \infty} k(r) = +\infty.$$

In particular, this shows that Σ is properly immersed in $\mathbb{M}^2 \times \mathbb{R}$.

One can easily check that our metric $\langle \cdot, \cdot \rangle$ is not well defined at the origin. Since $k(r) \ge k_0 > 0$ for every $r \in \mathbb{R}$, we can perturb the metric $\langle \cdot, \cdot \rangle$ for instance for $0 \le \rho < \frac{k_0}{2}$, and have a complete metric in \mathbb{M}^2 well defined at the origin and such that Σ preserves the same induced metric. As Σ is properly immersed in $\mathbb{M}^2 \times \mathbb{R}$, then Σ is a complete surface with negative constant extrinsic curvature as we claimed.

References

- [1] ALEDO, J. A.; ESPINAR, J. M.; GÁLVEZ, J. A., Complete surfaces of constant curvature in $\mathbb{M}^2 \times \mathbb{R}$ and $\mathbb{S}^2 \times \mathbb{R}$, *Cal. Var. Partial Differential Equations* **29** (2007) 347-363
- [2] DO CARMO, M. P., Riemannian geometry, Birkhäuser Boston Inc., Boston, MA (1992)

- [3] EFIMOV, N. V., Generation of singularites on surfaces of negative curvature, *Mat. Sb.* (*N.S.*) 64 (1964) 286-320
- [4] EFIMOV, N. V., Differential homeomorphism tests of certain mappings with an application in surface theory, *Mat. Sb. (N.S.)* **76** (1968) 499-512
- [5] ESPINAR, J. M.; GÁLVEZ, J. A.; ROSENBERG, H., Complete surfaces with positive extrinsic curvature in product spaces, *Comment. Math. Helv.* 84 (2009) 351-386
- [6] GÁLVEZ, J. A.; LOZANO, V., Existence of barriers for surfaces with prescribed curvatures in $\mathbb{M}^2 \times \mathbb{R}$, *preprint*
- [7] HEINZ, E., Über Flächen mit eineindeutiger Projektion auf eine Ebene, deren Krümmungen durch Ungleichungen eingenschränkt sind, Math. Ann. 129 (1955) 451-454
- [8] KLOTZ-MILNOR, T., Efimov's theorem about complete immersed surfaces of negative curvature, *Advances in Math.* 8 (1972) 474-543
- [9] SCHLENKER, J. M., Surfaces à courbure extrinsèque négative dans l'espace hyperbolique, Ann. Sci. École Norm. Sup. 34 (2001) 79-130
- [10] SMYTH, B.; XAVIER, F., Efimov's theorem in dimension greater than two, *Invent. Math.* 90 (1987) 443-450