Complete surfaces with negative extrinsic curvature

in $\mathbb{M}^{2} \times \mathbb{R}$

José A. Gálvez ${ }^{a}{ }^{1}$, José L. Teruel ${ }^{a}$

Mathematics Subject Classification: 58J05, 53C42.
${ }^{a}$ Departamento de Geometría y Topología, Universidad de Granada, E-18071 Granada, Spain;
e-mails: jagalvez@ugr.es, jlteruel@ugr.es

Abstract

We prove that there exist no complete vertical graphs in $\mathbb{M}^{2} \times \mathbb{R}$ with extrinsic curvature bounded from above by a negative constant, when \mathbb{M}^{2} is a Riemannian surface with a pole and non negative curvature.

1 Introduction.

In 1964, Efimov proved that no complete surface can be \mathcal{C}^{2}-immersed in the Euclidean 3-space \mathbb{R}^{3} if its extrinsic curvature $K_{\text {ext }}$ is bounded from above by a negative constant (see [3], [8]). This generalized Hilbert's classical result which stated that no complete smooth immersion exists with negative constant extrinsic curvature in \mathbb{R}^{3}.

Efimov's theorem has been tried to extend in several ways (see [4], [10], [9]). In this sense, not much is known about the behaviour of the extrinsic curvature of a complete surface in product spaces $\mathbb{M}^{2} \times \mathbb{R}$ (see [1], [5]).

In this paper we prove that there exist no entire vertical graphs with extrinsic curvature bounded from above by a negative constant in $\mathbb{M}^{2} \times \mathbb{R}$, where \mathbb{M}^{2} is a Riemannian surface with a pole and with non negative curvature $K_{\mathbb{M}}$. In our arguments we use Heinz's ideas, who showed this result when \mathbb{R}^{3} is the ambient space (see [7]).

[^0]As a consequence of a result in [6] we obtain that, if \mathbb{M}^{2} is a Riemannian surface with $K_{\mathbb{M}} \geq 0$ and with a pole, then every entire vertical graph Σ in $\mathbb{M}^{2} \times \mathbb{R}$ satisfies

$$
\inf _{\Sigma}\left|K_{e x t}\right|=0,
$$

where $K_{\text {ext }}$ denotes the extrinsic curvature of Σ.
Moreover, we construct examples of the existence of complete surfaces with constant negative extrinsic curvature in certain product spaces $\mathbb{M}^{2} \times \mathbb{R}$.

2 Graphs with negative extrinsic curvature.

Let \mathbb{M}^{2} be a Riemmanian surface and (r, θ) local geodesic polar coordinates around a point $p_{0} \in \mathbb{M}^{2}$ which are well defined for $r<R$, for a certain $R>0$. The induced metric is given by

$$
\langle\cdot, \cdot\rangle=d r^{2}+G(r, \theta) d \theta^{2}
$$

We consider $\mathbb{M}^{2} \times \mathbb{R}$ endowed with the product metric and a vertical graph Σ in $\mathbb{M}^{2} \times \mathbb{R}$ over the geodesic disk $B\left(p_{0}, R\right)$ centered at p_{0} and with radius R, given in local coordinates as

$$
\psi(r, \theta)=\left(\exp _{p_{0}}(r \cos (\theta), r \sin (\theta)), z(r, \theta)\right)
$$

which we identify with $(r, \theta, z(r, \theta))$ in order to simplify notation.
We denote by $\left\{\partial_{r}, \partial_{\theta}\right\}$ and $\left\{\overline{\partial_{r}}, \overline{\partial_{\theta}}\right\}$ the partial derivatives with respect to r and θ on \mathbb{M}^{2} and Σ respectively, where, for instance, $\partial_{r} \equiv \frac{\partial}{\partial r}$ and $\partial_{\theta} \equiv \frac{\partial}{\partial \theta}$. Then

$$
\begin{aligned}
\overline{\partial_{r}} & =\partial_{r}+z_{r} \partial_{t} \\
\overline{\partial_{\theta}} & =\partial_{\theta}+z_{\theta} \partial_{t}
\end{aligned}
$$

Thus, the induced metric on Σ is given by

$$
d s^{2}=\left(1+z_{r}^{2}\right) d r^{2}+2 z_{r} z_{\theta} d r d \theta+\left(G+z_{\theta}^{2}\right) d \theta^{2}
$$

and its second fundamental form is given by

$$
\begin{aligned}
\left\langle\nabla_{\bar{\partial}_{r}} \overline{\partial_{r}}, N\right\rangle & =\frac{z_{r r}}{\sqrt{1+z_{r}^{2}+\frac{z_{\theta}^{2}}{G}}} \\
\left\langle\nabla_{\bar{\partial}_{\theta}} \overline{\partial_{r}}, N\right\rangle & =\frac{1}{\sqrt{1+z_{r}^{2}+\frac{z_{\theta}^{2}}{G}}}\left(-\frac{z_{\theta} G_{r}}{2 G}+z_{r \theta}\right) \\
\left\langle\nabla_{\bar{\partial}_{\theta}} \overline{\bar{\partial}_{\theta}}, N\right\rangle & =\frac{1}{\sqrt{1+z_{r}^{2}+\frac{z_{\theta}^{2}}{G}}}\left(\frac{z_{r} G_{r}}{2}-\frac{z_{\theta} G_{\theta}}{2}+z_{\theta \theta}\right),
\end{aligned}
$$

where ∇ is the Levi-Civita connection on $\mathbb{M}^{2} \times \mathbb{R}$ and

$$
N=\frac{-1}{\sqrt{1+z_{r}^{2}+\frac{z_{\theta}^{2}}{G}}}\left(z_{r} \partial_{r}+\frac{z_{\theta}}{G} \partial_{\theta}-\partial_{t}\right)
$$

is the pointing upwards unit normal vector of the graph.
By using the above formulae, a straightforward computation gives

$$
\begin{align*}
& (\sqrt{G})_{r} d\left(\left(z_{r}^{2}+\frac{z_{\theta}^{2}}{G}\right) d \theta\right)+d\left(z_{r} d\left(\frac{z_{\theta}}{\sqrt{G}}\right)-\frac{z_{\theta}}{\sqrt{G}} d z_{r}\right) \\
& =2 \sqrt{G}\left(1+z_{r}^{2}+\frac{z_{\theta}^{2}}{G}\right)^{2} K_{e x t}(d r \wedge d \theta) \tag{1}
\end{align*}
$$

where $K_{e x t}$ denotes the extrinsic curvature of Σ.
Now we define the following auxiliar function which will be useful for our purposes

$$
f(r)=\int_{B_{r}} \sqrt{G}\left(1+\frac{z_{\theta}^{2}}{G}\right), \quad r>0
$$

where B_{r} denotes the ball centered at the origin of \mathbb{R}^{2} and radius r, with $r<R$. Here, we are identifying \mathbb{R}^{2} and the tangent plane of \mathbb{M}^{2} at $p_{0}, T_{p_{0}} \mathbb{M}^{2}$, in the usual way.

We observe that along this section we will work with functions of type $\int_{B_{r}} h(\rho, \theta)$, where $h(\rho, \theta)$ is well defined in $B_{r} \backslash\{(0,0)\}$. However all these functions $h(\rho, \theta)$ can be continuously extended to the origin as it happens for the previous $f(r)$. This is due to the facts that $\lim _{p \rightarrow p_{0}} \sqrt{G}(p)=0, \lim _{p \rightarrow p_{0}}(\sqrt{G})_{\rho}(p)=1$ (see [2]) and the functions $\left|\frac{z_{\theta}}{\sqrt{G}}\right|$ and $\left|z_{\rho}\right|$ are bounded in a neighbourhood of the origin.

Lemma 1. Under these conditions, we have

$$
\left|B_{r}\right| \leq f(r) \leq \sqrt{\left|B_{r}\right|}\left(\int_{B_{r}} \sqrt{G}\left(1+z_{\rho}^{2}+\frac{z_{\theta}^{2}}{G}\right)^{2}\right)^{\frac{1}{2}}
$$

where $\left|B_{r}\right|$ denotes the area of the geodesic disk $B\left(p_{0}, r\right)$ in \mathbb{M}^{2}.
Proof. Since $\frac{z_{\theta}^{2}}{G} \geq 0$, the first inequality is clear. Moreover, by using the Cauchy-Schwarz inequality, one has

$$
f(r) \leq\left(\int_{B_{r}} \sqrt{G}\right)^{\frac{1}{2}}\left(\int_{B_{r}} \sqrt{G}\left(1+z_{\rho}^{2}+\frac{z_{\theta}^{2}}{G}\right)^{2}\right)^{\frac{1}{2}}=\sqrt{\left|B_{r}\right|}\left(\int_{B_{r}} \sqrt{G}\left(1+z_{\rho}^{2}+\frac{z_{\theta}^{2}}{G}\right)^{2}\right)^{\frac{1}{2}}
$$

Lemma 2. Let us denote by $K_{\mathbb{M}}$ the Gauss curvature of \mathbb{M}^{2}. Then in the previous conditions we have,

$$
\begin{aligned}
\frac{d}{d r} \int_{0}^{2 \pi}\left(\frac{z_{\theta}^{2}}{\sqrt{G}}\right) d \theta & =\int_{0}^{2 \pi}(\sqrt{G})_{r} z_{r}^{2} d \theta+\int_{B_{r}}\left(z_{\rho}^{2}+\frac{z_{\theta}^{2}}{G}\right) K_{\mathbb{M}} \sqrt{G} \\
& -2 \int_{B_{r}} \sqrt{G}\left(1+z_{\rho}^{2}+\frac{z_{\theta}^{2}}{G}\right)^{2} K_{e x t}
\end{aligned}
$$

Proof. From (1) we can write

$$
\begin{align*}
& 2 \int_{B_{r}} \sqrt{G}\left(1+z_{\rho}^{2}+\frac{z_{\theta}^{2}}{G}\right)^{2} K_{e x t} \\
& =\int_{B_{r}}\left[(\sqrt{G})_{\rho} d\left(\left(z_{\rho}^{2}+\frac{z_{\theta}^{2}}{G}\right) d \theta\right)+d\left(z_{\rho} d\left(\frac{z_{\theta}}{\sqrt{G}}\right)-\frac{z_{\theta}}{\sqrt{G}} d z_{\rho}\right)\right] \\
& =\int_{B_{r}}\left((\sqrt{G})_{\rho}-1\right) d\left(\left(z_{\rho}^{2}+\frac{z_{\theta}^{2}}{G}\right) d \theta\right) \\
& +\int_{B_{r}}\left[d\left(\left(z_{\rho}^{2}+\frac{z_{\theta}^{2}}{G}\right) d \theta\right)+d\left(z_{\rho} d\left(\frac{z_{\theta}}{\sqrt{G}}\right)-\frac{z_{\theta}}{\sqrt{G}} d z_{\rho}\right)\right] \tag{2}
\end{align*}
$$

Using the Green theorem and integrating by parts one gets

$$
\begin{align*}
& \int_{B_{r}}\left((\sqrt{G})_{\rho}-1\right)^{2} d\left(\left(z_{\rho}^{2}+\frac{z_{\theta}^{2}}{G}\right) d \theta\right) \\
& =\int_{B_{r}} d\left(\left((\sqrt{G})_{\rho}-1\right)\left(z_{\rho}^{2}+\frac{z_{\theta}^{2}}{G}\right) d \theta\right)-\int_{B_{r}}\left(z_{\rho}^{2}+\frac{z_{\theta}^{2}}{G}\right) d\left(\left((\sqrt{G})_{\rho}-1\right) d \theta\right) \\
& =\int_{0}^{2 \pi}\left((\sqrt{G})_{r}-1\right)\left(z_{r}^{2}+\frac{z_{\theta}^{2}}{G}\right) d \theta-\int_{B_{r}}\left(z_{\rho}^{2}+\frac{z_{\theta}^{2}}{G}\right)\left((\sqrt{G})_{\rho \rho}\right) \\
& =\int_{0}^{2 \pi}(\sqrt{G})_{r} z_{r}^{2} d \theta-\int_{0}^{2 \pi} z_{r}^{2} d \theta+\int_{0}^{2 \pi}\left((\sqrt{G})_{r}-1\right) \frac{z_{\theta}^{2}}{G} d \theta \\
& +\int_{B_{r}}\left(z_{r}^{2}+\frac{z_{\theta}^{2}}{G}\right) K_{\mathbb{M}} \sqrt{G} \tag{3}
\end{align*}
$$

where we have used that $K_{\mathbb{M}}=\frac{-(\sqrt{G})_{r r}}{\sqrt{G}}$.
On the other hand, using again the Green theorem one obtains

$$
\begin{align*}
& \int_{B_{r}}\left[d\left(\left(z_{\rho}^{2}+\frac{z_{\theta}^{2}}{G}\right) d \theta\right)+d\left(z_{\rho} d\left(\frac{z_{\theta}}{\sqrt{G}}\right)-\frac{z_{\theta}}{\sqrt{G}} d z_{\rho}\right)\right] \\
& =\int_{0}^{2 \pi} z_{r}^{2}+\frac{z_{\theta}^{2}}{G} d \theta+\int_{0}^{2 \pi} z_{r} d\left(\frac{z_{\theta}}{\sqrt{G}}\right)-\frac{z_{\theta}}{\sqrt{G}} d z_{r} d \theta \\
& =\int_{0}^{2 \pi} z_{r}^{2}+\frac{z_{\theta}^{2}}{G}+\frac{z_{r} z_{\theta \theta}}{\sqrt{G}}-\frac{z_{r} z_{\theta} G_{\theta}}{2 G \sqrt{G}}-\frac{z_{\theta} z_{r \theta}}{\sqrt{G}} d \theta . \tag{4}
\end{align*}
$$

We observe that

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{z_{r} z_{\theta \theta}}{\sqrt{G}}-\frac{z_{r} z_{\theta} G_{\theta}}{2 G \sqrt{G}}+\frac{z_{\theta} z_{r \theta}}{\sqrt{G}} d \theta=\int_{0}^{2 \pi} \frac{\partial}{\partial \theta}\left(\frac{z_{r} z_{\theta}}{\sqrt{G}}\right) d \theta=0 \tag{5}
\end{equation*}
$$

Moreover, it is easy to check

$$
\begin{equation*}
2 \int_{0}^{2 \pi} \frac{z_{\theta} z_{r \theta}}{\sqrt{G}} d \theta=\frac{d}{d r} \int_{0}^{2 \pi} \frac{z_{\theta}^{2}}{\sqrt{G}} d \theta+\int_{0}^{2 \pi}(\sqrt{G})_{r} \frac{z_{\theta}^{2}}{G} d \theta \tag{6}
\end{equation*}
$$

Using formulae (4)-(6) we have

$$
\begin{align*}
& \int_{B_{r}}\left[d\left(\left(z_{\rho}^{2}+\frac{z_{\theta}^{2}}{G}\right) d \theta\right)+d\left(z_{\rho} d\left(\frac{z_{\theta}}{\sqrt{G}}\right)-\frac{z_{\theta}}{\sqrt{G}} d z_{\rho}\right)\right] \\
& =\int_{0}^{2 \pi} z_{r}^{2} d \theta+\int_{0}^{2 \pi}\left(1-(\sqrt{G})_{r}\right) \frac{z_{\theta}^{2}}{G} d \theta-\frac{d}{d r} \int_{0}^{2 \pi} \frac{z_{\theta}^{2}}{\sqrt{G}} d \theta \tag{7}
\end{align*}
$$

Finally, by adding (3) and (7), we obtain (2).
Recall that a point p_{0} in a manifold \mathbb{M}^{2} is said to be a pole if the exponential map is a diffeomorphism from the tangent plane at p_{0} onto \mathbb{M}^{2}. In such a case, \mathbb{M}^{2} is complete.

Remark 2.1. Let \mathbb{M}^{2} be a Riemannian surface as above with a pole at p_{0}. Let us observe that, in these conditions, $(\sqrt{G})_{r}$ is a non-negative function if the Gauss curvature $K_{\mathbb{M}}$ of \mathbb{M}^{2} is non negative. Since

$$
(\sqrt{G})_{r r}=-K_{\mathbb{M}} \sqrt{G} \leq 0
$$

one has that \sqrt{G} is concave as a function of r. Fixed an arbitrary θ_{0}, if there existed a point $r_{0}>0$ such that $(\sqrt{G})_{r}\left(r_{0}, \theta_{0}\right)<0$ then, from the concavity of $\sqrt{G}\left(\cdot, \theta_{0}\right)$ we would have that $\sqrt{G}\left(r, \theta_{0}\right)=0$ for a certain $r>r_{0}$.

Now, we can establish the main Theorem of this section.
Theorem 1. Let \mathbb{M}^{2} be a Riemannian surface with a pole. If the Gaussian curvature of \mathbb{M}^{2} is non negative then there is no entire vertical graph Σ in $\mathbb{M}^{2} \times \mathbb{R}$ with extrinsic curvature bounded from above by a negative constant.

Proof. Differentiating f twice and using Lemma 2 one has

$$
\begin{aligned}
f^{\prime \prime}(r) & =\frac{d}{d r} \int_{0}^{2 \pi} \sqrt{G}\left(1+\frac{z_{\theta}^{2}}{G}\right) d \theta=\int_{0}^{2 \pi}(\sqrt{G})_{r} d \theta+\frac{d}{d r} \int_{0}^{2 \pi} \frac{z_{\theta}^{2}}{\sqrt{G}} d \theta \\
& =\int_{0}^{2 \pi}(\sqrt{G})_{r}\left(1+z_{r}^{2}\right) d \theta+\int_{B_{r}}\left(z_{\rho}^{2}+\frac{z_{\theta}^{2}}{G}\right) K_{\mathbb{M}} \sqrt{G} \\
& -2 \int_{B_{r}} \sqrt{G}\left(1+z_{\rho}^{2}+\frac{z_{\theta}^{2}}{G}\right)^{2} K_{e x t} .
\end{aligned}
$$

Since $K_{\mathbb{M}} \geq 0$, it is clear from Remark 2.1 that the following inequality holds

$$
\int_{0}^{2 \pi}(\sqrt{G})_{r}\left(1+z_{r}^{2}\right) d \theta+\int_{B_{r}}\left(z_{\rho}^{2}+\frac{z_{\theta}^{2}}{G}\right) K_{\mathbb{M}} \sqrt{G} \geq 0
$$

Thus, using that $K_{e x t} \leq-\alpha$ for a certain positive constant α
$f^{\prime \prime}(r) \geq-2 \int_{B_{r}} \sqrt{G}\left(1+z_{\rho}^{2}+\frac{z_{\theta}^{2}}{G}\right)^{2} K_{e x t} \geq 2 \alpha \int_{B_{r}} \sqrt{G}\left(1+z_{\rho}^{2}+\frac{z_{\theta}^{2}}{G}\right)^{2} \geq \frac{2 \alpha}{\left|B_{r}\right|} f(r)^{2}$
by Lemma 1 .
From the last inequality

$$
\frac{d}{d \rho}\left(f^{\prime}(\rho)^{2}\right)=2 f^{\prime}(\rho) f^{\prime \prime}(\rho) \geq 2 f^{\prime}(\rho) \frac{2 \alpha}{\left|B_{\rho}\right|} f(\rho)^{2} \geq f^{\prime}(\rho) \frac{4 \alpha}{\left|B_{r}\right|} f(\rho)^{2}=\frac{4 \alpha}{3\left|B_{r}\right|} \frac{d}{d \rho}\left(f(\rho)^{3}\right)
$$

By integrating both sides of the above inequality one gets

$$
\int_{\epsilon}^{r} \frac{d}{d \rho}\left(f^{\prime}(\rho)^{2}\right) \geq \int_{\epsilon}^{r} \frac{4 \alpha}{3\left|B_{r}\right|} \frac{d}{d \rho}\left(f(\rho)^{3}\right)
$$

where $0<\epsilon<r$. Thus,

$$
f^{\prime}(r)^{2} \geq \frac{4 \alpha}{3\left|B_{r}\right|}\left(f(r)^{3}-f(\epsilon)^{3}\right)+f^{\prime}(\epsilon)^{2} \geq \frac{4 \alpha}{3\left|B_{r}\right|}\left(f(r)^{3}-f(\epsilon)^{3}\right) .
$$

It is clear from the definition of f that $f(\epsilon) \rightarrow 0$ when $\epsilon \rightarrow 0$, hence

$$
f^{\prime}(r)^{2} \geq \frac{4 \alpha}{3\left|B_{r}\right|} f(r)^{3}
$$

and so

$$
-\frac{d}{d r}\left(f(r)^{-\frac{1}{2}}\right)=\frac{1}{2} f(r)^{-\frac{3}{2}} f^{\prime}(r) \geq \frac{1}{2} f(r)^{-\frac{3}{2}} \sqrt{\frac{4 \alpha}{3\left|B_{r}\right|}} f(r)^{\frac{3}{2}}=\sqrt{\frac{\alpha}{3\left|B_{r}\right|}}
$$

Let R_{1} and R_{2} be real numbers such that $0<R_{1}<R_{2}$. By integrating we have on one hand

$$
\int_{R_{1}}^{R_{2}}-\frac{d}{d r}\left(f(r)^{-\frac{1}{2}}\right) d r=-f\left(R_{2}\right)^{-\frac{1}{2}}+f\left(R_{1}\right)^{-\frac{1}{2}}
$$

On the other hand, since $K_{\mathbb{M}} \geq 0$, from the volume comparison theorem we have $\left|B_{r}\right| \leq$ πr^{2}, and one has from the above inequality

$$
\begin{aligned}
& \int_{R_{1}}^{R_{2}}-\frac{d}{d r}\left(f(r)^{-\frac{1}{2}}\right) d r \geq \int_{R_{1}}^{R_{2}} \sqrt{\frac{\alpha}{3\left|B_{r}\right|}} d r=\sqrt{\frac{\alpha}{3}} \int_{R_{1}}^{R_{2}} \frac{1}{\sqrt{\left|B_{r}\right|}} d r \\
& \geq \sqrt{\frac{\alpha}{3}} \int_{R_{1}}^{R_{2}} \frac{1}{r \sqrt{\pi}} d r=\sqrt{\frac{\alpha}{3 \pi}} \log \left(\frac{R_{2}}{R_{1}}\right) .
\end{aligned}
$$

So, by Lemma 1

$$
\left|B_{R_{1}}\right|^{-\frac{1}{2}} \geq f\left(R_{1}\right)^{-\frac{1}{2}} \geq f\left(R_{1}\right)^{-\frac{1}{2}}-f\left(R_{2}\right)^{-\frac{1}{2}} \geq \sqrt{\frac{\alpha}{3 \pi}} \log \left(\frac{R_{2}}{R_{1}}\right)
$$

Hence

$$
\sqrt{\frac{3 \pi}{\alpha}}\left|B_{R_{1}}\right|^{-\frac{1}{2}} \geq \log \left(\frac{R_{2}}{R_{1}}\right)
$$

that is,

$$
R_{2} \leq R_{1} \exp \left(\sqrt{\frac{3 \pi}{\alpha}} \frac{1}{\sqrt{\left|B_{R_{1} \mid}\right|}}\right)
$$

for every $0<R_{1}<R_{2}$, with R_{2} an arbitrary real value.
We observe that if \mathbb{M}^{2} is compact then, for any entire vertical graph Σ in $\mathbb{M}^{2} \times \mathbb{R}$ there exist points in Σ with non negative extrinsic curvature. This happens at the points where the height function achieves a local maximum or a local minimum.

Finally, as a consequence of Theorem 1 and [6, Theorem 1] we have
Corollary 1. Let \mathbb{M}^{2} be a Riemannian surface with a pole and non negative Gauss curvature. If Σ is an entire vertical graph in $\mathbb{M}^{2} \times \mathbb{R}$ with extrinsic curvature $K_{\text {ext }}$ then

$$
\inf _{\Sigma}\left|K_{e x t}\right|=0 .
$$

3 Complete surfaces with constant negative extrinsic curvature.

In this section we will give an example of existence of complete surfaces with strictly negative extrinsic curvature in product manifolds.

Consider \mathbb{M}^{2} as the surface \mathbb{R}^{2} with the induced metric

$$
\langle\cdot, \cdot\rangle=d \rho^{2}+G(\rho) d \theta^{2}
$$

which is well defined in $\mathbb{R}^{2} \backslash\{(0,0)\}$, where (ρ, θ) are the usual polar coordinates of \mathbb{R}^{2}. Here, the function $G(\rho)$ will be defined later.

Let Σ be a rotation surface in $\mathbb{M}^{2} \times \mathbb{R}$ parametrized by

$$
\Psi(r, \theta)=(k(r) \cos (\theta), k(r) \sin (\theta), z(r)) \equiv(k(r), \theta, z(r))
$$

where $k(r)>0$ and $z(r)$ are smooth functions, and r denotes the arc length parameter of the curve $\beta(r)=\Psi(r, 0)$. Thus

$$
\begin{equation*}
k^{\prime}(r)^{2}+z^{\prime}(r)^{2}=1 . \tag{8}
\end{equation*}
$$

If we denote by $\left\{\overline{\partial_{r}}, \overline{\partial_{\theta}}\right\}$ and $\left\{\partial_{\rho}, \partial_{\theta}\right\}$ the respective partial derivatives of Σ and \mathbb{M}^{2} we have

$$
\begin{aligned}
\overline{\partial_{r}}(r, \theta) & =k^{\prime}(r) \partial_{\rho}(k(r), \theta)+z^{\prime}(r) \partial_{t}(k(r), \theta) \\
\overline{\partial_{\theta}}(r, \theta) & =\partial_{\theta}(k(r), \theta)
\end{aligned}
$$

So from (8), the induced metric in our surface is given by

$$
d s^{2}=d r^{2}+G(k(r)) d \theta^{2}
$$

and its second fundamental form is

$$
I I(r, \theta)=\left(-k^{\prime \prime}(r) z^{\prime}(r)+k^{\prime}(r) z^{\prime \prime}(r)\right) d r^{2}+\left(\frac{z^{\prime}(r) G_{\rho}(k(r))}{2}\right) d \theta^{2}
$$

Hence, the principal curvatures of Σ can be written as

$$
\begin{aligned}
& \lambda_{1}=-k^{\prime \prime}(r) z^{\prime}(r)+k^{\prime}(r) z^{\prime \prime}(r) \\
& \lambda_{2}=z^{\prime}(r) \frac{G_{\rho}(k(r))}{2 G(k(r))}
\end{aligned}
$$

and the extrinsic curvature of the graph is

$$
\begin{equation*}
K_{e x t}=-z^{\prime}(r) \frac{G_{\rho}(k(r))}{2 G(k(r))}\left(k^{\prime \prime}(r) z^{\prime}(r)-k^{\prime}(r) z^{\prime \prime}(r)\right) . \tag{9}
\end{equation*}
$$

By differentiating (8) we have

$$
k^{\prime}(r) k^{\prime \prime}(r)+z^{\prime}(r) z^{\prime \prime}(r)=0,
$$

and so (9) becomes the following ODE for k

$$
\begin{equation*}
k^{\prime \prime}(r)=-\frac{2 G(k(r))}{G_{\rho}(k(r))} K_{e x t} \tag{10}
\end{equation*}
$$

Now we take, for instance, the function $G(\rho)=\rho^{4} e^{\rho^{4}}$ and impose that the extrinsic curvature of Σ is constant -1 .

Under these conditions, (10) becomes

$$
\begin{equation*}
k^{\prime \prime}(r)=\frac{k(r)}{2\left(1+k(r)^{4}\right)} \tag{11}
\end{equation*}
$$

Now, let $k(r)$ be a solution of the previous ODE with initial conditions $k(0)=k_{0}>0$, $k^{\prime}(0)=0$, where k_{0} is a positive value which will be determined later.

It is well known that the solution $k(r)$ to the previous problem is uniquely determined in a neighbourhood of the origin. Let us see in fact that $k(r)$ is well defined for every $r \in \mathbb{R}$.

First, we observe that, from the uniqueness to the previous problem, $k(r)=k(-r)$ since $k(-r)$ is also a solution to (11) satisfying the same initial conditions. Thus, in order to study the behaviour of $k(r)$, we will only work for $r \geq 0$.

From (11) we have

$$
\frac{d}{d r}\left(k^{\prime}(r)\right)^{2}=\frac{d}{d r}\left(\frac{1}{2} \arctan \left(k(r)^{2}\right)\right)
$$

and so

$$
\begin{equation*}
k^{\prime}(r)^{2}=c_{0}+\frac{1}{2} \arctan \left(k(r)^{2}\right) \tag{12}
\end{equation*}
$$

Hence there exists a constant c_{1} such that $\left|k^{\prime}(r)\right| \leq c_{1}$, that is $k(r)$ is globally defined as we required.

Since $k(0)=k_{0}>0$ and $k^{\prime}(0)=0$, if we take $k_{0}>0$ small enough we would have $c_{0} \in\left(\frac{\pi}{4}-1,0\right)$. Thus, from (12) one gets $\left|k^{\prime}(r)\right|<1$ for every $r \in \mathbb{R}$. Therefore, from (8), $z(r)$ is a well defined smooth function in \mathbb{R}.

Let us see that $k(r) \geq k(0)=k_{0}>0$ for every $r \in \mathbb{R}$. In such a case, Σ is a regular surface due to the generatrix curve $\beta(r)=\Psi(r, 0)$ does not touch the rotation axis. For that purpose, let us first observe that $k(r)>0$, for every $r>0$.

Let us assume that there exists a first point $\epsilon>0$ such that $k(\epsilon)=0$. Since $k(r)$ is a positive function in the interval $[0, \epsilon)$, from (11) we obtain that $k(r)$ is a convex function in that interval. Moreover, $k^{\prime}(0)=0$, thus $k(\epsilon) \geq k(0)=k_{0}>0$, and it is contradiction with $k(\epsilon)=0$.

On the other hand, since from (11) the function $k(r)$ is a global convex function in \mathbb{R} and $k^{\prime}(0)=0$, then $k(r) \geq k(0)=k_{0}$ for every $r \in \mathbb{R}$ and

$$
\lim _{r \rightarrow \pm \infty} k(r)=+\infty .
$$

In particular, this shows that Σ is properly immersed in $\mathbb{M}^{2} \times \mathbb{R}$.
One can easily check that our metric $\langle\cdot, \cdot\rangle$ is not well defined at the origin. Since $k(r) \geq$ $k_{0}>0$ for every $r \in \mathbb{R}$, we can perturb the metric $\langle\cdot, \cdot\rangle$ for instance for $0 \leq \rho<\frac{k_{0}}{2}$, and have a complete metric in \mathbb{M}^{2} well defined at the origin and such that Σ preserves the same induced metric. As Σ is properly immersed in $\mathbb{M}^{2} \times \mathbb{R}$, then Σ is a complete surface with negative constant extrinsic curvature as we claimed.

References

[1] Aledo, J. A.; Espinar, J. M.; Gálvez, J. A., Complete surfaces of constant curvature in $\mathbb{M}^{2} \times \mathbb{R}$ and $\mathbb{S}^{2} \times \mathbb{R}$, Cal. Var. Partial Differential Equations 29 (2007) 347-363
[2] Do Carmo, M. P., Riemannian geometry, Birkhäuser Boston Inc., Boston, MA (1992)
[3] Efimov, N. V., Generation of singularites on surfaces of negative curvature, Mat. Sb. (N.S.) 64 (1964) 286-320
[4] Efimov, N. V., Differential homeomorphism tests of certain mappings with an application in surface theory, Mat. Sb. (N.S.) 76 (1968) 499-512
[5] Espinar, J. M.; Gálvez, J. A.; Rosenberg, H., Complete surfaces with positive extrinsic curvature in product spaces, Comment. Math. Helv. 84 (2009) 351-386
[6] Gálvez, J. A.; Lozano, V., Existence of barriers for surfaces with prescribed curvatures in $\mathbb{M}^{2} \times \mathbb{R}$, preprint
[7] HEINZ, E., Über Flächen mit eineindeutiger Projektion auf eine Ebene, deren Krümmungen durch Ungleichungen eingenschränkt sind, Math. Ann. 129 (1955) 451454
[8] Klotz-Milnor, T., Efimov's theorem about complete immersed surfaces of negative curvature, Advances in Math. 8 (1972) 474-543
[9] Schlenker, J. M., Surfaces à courbure extrinsèque négative dans l'espace hyperbolique, Ann. Sci. École Norm. Sup. 34 (2001) 79-130
[10] Smyth, B.; Xavier, F., Efimov's theorem in dimension greater than two, Invent. Math. 90 (1987) 443-450

[^0]: ${ }^{1}$ Corresponding author.
 Both authors are partially supported by MICINN-FEDER, Grant No. MTM2010-19821 and by Junta de Andalucía Grant No. FQM325 and P09-FQM-5088.

