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Abstract

We prove that there exist no complete vertical graphs inM2×Rwith extrinsic curvature
bounded from above by a negative constant, whenM2 is a Riemannian surface with a pole
and non negative curvature.

1 Introduction.
In 1964, Efimov proved that no complete surface can be C2-immersed in the Euclidean 3-space
R3 if its extrinsic curvature Kext is bounded from above by a negative constant (see [3], [8]).
This generalized Hilbert’s classical result which stated that no complete smooth immersion
exists with negative constant extrinsic curvature in R3.

Efimov’s theorem has been tried to extend in several ways (see [4], [10], [9]). In this sense,
not much is known about the behaviour of the extrinsic curvature of a complete surface in
product spacesM2 × R (see [1], [5]).

In this paper we prove that there exist no entire vertical graphs with extrinsic curvature
bounded from above by a negative constant in M2 × R, where M2 is a Riemannian surface
with a pole and with non negative curvature KM. In our arguments we use Heinz’s ideas, who
showed this result when R3 is the ambient space (see [7]).
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As a consequence of a result in [6] we obtain that, if M2 is a Riemannian surface with
KM ≥ 0 and with a pole, then every entire vertical graph Σ inM2 × R satisfies

inf
Σ
|Kext| = 0,

where Kext denotes the extrinsic curvature of Σ.
Moreover, we construct examples of the existence of complete surfaces with constant nega-

tive extrinsic curvature in certain product spacesM2 × R.

2 Graphs with negative extrinsic curvature.
Let M2 be a Riemmanian surface and (r, θ) local geodesic polar coordinates around a point
p0 ∈M2 which are well defined for r < R, for a certain R > 0. The induced metric is given by

〈·, ·〉 = dr2 + G(r, θ)dθ2.

We consider M2 × R endowed with the product metric and a vertical graph Σ in M2 × R
over the geodesic disk B(p0, R) centered at p0 and with radius R, given in local coordinates as

ψ(r, θ) =
(
expp0

(
rcos(θ), rsin(θ)

)
, z(r, θ)

)
,

which we identify with (r, θ, z(r, θ)) in order to simplify notation.
We denote by {∂r, ∂θ} and

{
∂r, ∂θ

}
the partial derivatives with respect to r and θ onM2 and

Σ respectively, where, for instance, ∂r ≡ ∂
∂r

and ∂θ ≡ ∂
∂θ

. Then

∂r = ∂r + zr∂t

∂θ = ∂θ + zθ∂t.

Thus, the induced metric on Σ is given by

ds2 =
(
1 + z2

r

)
dr2 + 2zrzθdrdθ +

(
G + z2

θ

)
dθ2

and its second fundamental form is given by
〈∇∂r

∂r, N
〉

=
zrr√

1 + z2
r +

z2
θ

G

〈∇∂θ
∂r, N

〉
=

1√
1 + z2

r +
z2
θ

G

(
−zθGr

2G
+ zrθ

)

〈∇∂θ
∂θ, N

〉
=

1√
1 + z2

r +
z2
θ

G

(
zrGr

2
− zθGθ

2
+ zθθ

)
,
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where ∇ is the Levi-Civita connection onM2 × R and

N =
−1√

1 + z2
r +

z2
θ

G

(
zr∂r +

zθ

G
∂θ − ∂t

)

is the pointing upwards unit normal vector of the graph.
By using the above formulae, a straightforward computation gives

(√
G

)
r
d

((
z2

r +
z2

θ

G

)
dθ

)
+ d

(
zrd

(
zθ√
G

)
− zθ√

G
dzr

)

= 2
√

G

(
1 + z2

r +
z2

θ

G

)2

Kext (dr ∧ dθ) , (1)

where Kext denotes the extrinsic curvature of Σ.
Now we define the following auxiliar function which will be useful for our purposes

f(r) =

∫

Br

√
G

(
1 +

z2
θ

G

)
, r > 0

where Br denotes the ball centered at the origin of R2 and radius r, with r < R. Here, we are
identifying R2 and the tangent plane ofM2 at p0, Tp0M2, in the usual way.

We observe that along this section we will work with functions of type
∫

Br
h(ρ, θ), where

h(ρ, θ) is well defined in Br \ {(0, 0)}. However all these functions h(ρ, θ) can be continu-
ously extended to the origin as it happens for the previous f(r). This is due to the facts that
lim
p→p0

√
G(p) = 0, lim

p→p0

(√
G

)
ρ
(p) = 1 (see [2]) and the functions

∣∣∣ zθ√
G

∣∣∣ and |zρ| are bounded in

a neighbourhood of the origin.

Lemma 1. Under these conditions, we have

|Br| ≤ f(r) ≤
√
|Br|

(∫

Br

√
G

(
1 + z2

ρ +
z2

θ

G

)2
) 1

2

.

where |Br| denotes the area of the geodesic disk B(p0, r) inM2.

Proof. Since z2
θ

G
≥ 0, the first inequality is clear. Moreover, by using the Cauchy-Schwarz

inequality, one has

f(r) ≤
(∫

Br

√
G

) 1
2

(∫

Br

√
G

(
1 + z2

ρ +
z2

θ

G

)2
) 1

2

=
√
|Br|

(∫

Br

√
G

(
1 + z2

ρ +
z2

θ

G

)2
) 1

2

.
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Lemma 2. Let us denote by KM the Gauss curvature of M2. Then in the previous conditions
we have,

d

dr

∫ 2π

0

(
z2

θ√
G

)
dθ =

∫ 2π

0

(√
G

)
r
z2

rdθ +

∫

Br

(
z2

ρ +
z2

θ

G

)
KM

√
G

− 2

∫

Br

√
G

(
1 + z2

ρ +
z2

θ

G

)2

Kext.

Proof. From (1) we can write

2

∫

Br

√
G

(
1 + z2

ρ +
z2

θ

G

)2

Kext

=

∫

Br

[(√
G

)
ρ
d

((
z2

ρ +
z2

θ

G

)
dθ

)
+ d

(
zρd

(
zθ√
G

)
− zθ√

G
dzρ

)]

=

∫

Br

((√
G

)
ρ
− 1

)
d

((
z2

ρ +
z2

θ

G

)
dθ

)

+

∫

Br

[
d

((
z2

ρ +
z2

θ

G

)
dθ

)
+ d

(
zρd

(
zθ√
G

)
− zθ√

G
dzρ

)]
. (2)

Using the Green theorem and integrating by parts one gets
∫

Br

((√
G

)
ρ
− 1

)
d

((
z2

ρ +
z2

θ

G

)
dθ

)

=

∫

Br

d

(((√
G

)
ρ
− 1

)(
z2

ρ +
z2

θ

G

)
dθ

)
−

∫

Br

(
z2

ρ +
z2

θ

G

)
d

(((√
G

)
ρ
− 1

)
dθ

)

=

∫ 2π

0

((√
G

)
r
− 1

) (
z2

r +
z2

θ

G

)
dθ −

∫

Br

(
z2

ρ +
z2

θ

G

)((√
G

)
ρρ

)

=

∫ 2π

0

(√
G

)
r
z2

rdθ −
∫ 2π

0

z2
rdθ +

∫ 2π

0

((√
G

)
r
− 1

) z2
θ

G
dθ

+

∫

Br

(
z2

r +
z2

θ

G

)
KM

√
G, (3)

where we have used that KM =
−(
√

G)
rr√

G
.

On the other hand, using again the Green theorem one obtains
∫

Br

[
d

((
z2

ρ +
z2

θ

G

)
dθ

)
+ d

(
zρd

(
zθ√
G

)
− zθ√

G
dzρ

)]

=

∫ 2π

0

z2
r +

z2
θ

G
dθ +

∫ 2π

0

zrd

(
zθ√
G

)
− zθ√

G
dzrdθ

=

∫ 2π

0

z2
r +

z2
θ

G
+

zrzθθ√
G
− zrzθGθ

2G
√

G
− zθzrθ√

G
dθ. (4)
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We observe that
∫ 2π

0

zrzθθ√
G
− zrzθGθ

2G
√

G
+

zθzrθ√
G

dθ =

∫ 2π

0

∂

∂θ

(
zrzθ√

G

)
dθ = 0. (5)

Moreover, it is easy to check

2

∫ 2π

0

zθzrθ√
G

dθ =
d

dr

∫ 2π

0

z2
θ√
G

dθ +

∫ 2π

0

(√
G

)
r

z2
θ

G
dθ. (6)

Using formulae (4)-(6) we have
∫

Br

[
d

((
z2

ρ +
z2

θ

G

)
dθ

)
+ d

(
zρd

(
zθ√
G

)
− zθ√

G
dzρ

)]

=

∫ 2π

0

z2
rdθ +

∫ 2π

0

(
1−

(√
G

)
r

) z2
θ

G
dθ − d

dr

∫ 2π

0

z2
θ√
G

dθ. (7)

Finally, by adding (3) and (7), we obtain (2).

Recall that a point p0 in a manifold M2 is said to be a pole if the exponential map is a
diffeomorphism from the tangent plane at p0 ontoM2. In such a case,M2 is complete.

Remark 2.1. Let M2 be a Riemannian surface as above with a pole at p0. Let us observe that,
in these conditions,

(√
G

)
r

is a non-negative function if the Gauss curvature KM ofM2 is non
negative. Since (√

G
)

rr
= −KM

√
G ≤ 0,

one has that
√

G is concave as a function of r. Fixed an arbitrary θ0, if there existed a point
r0 > 0 such that

(√
G

)
r
(r0, θ0) < 0 then, from the concavity of

√
G(·, θ0) we would have that

√
G(r, θ0) = 0 for a certain r > r0.

Now, we can establish the main Theorem of this section.

Theorem 1. Let M2 be a Riemannian surface with a pole. If the Gaussian curvature of M2 is
non negative then there is no entire vertical graph Σ inM2×R with extrinsic curvature bounded
from above by a negative constant.

Proof. Differentiating f twice and using Lemma 2 one has

f ′′(r) =
d

dr

∫ 2π

0

√
G

(
1 +

z2
θ

G

)
dθ =

∫ 2π

0

(√
G

)
r
dθ +

d

dr

∫ 2π

0

z2
θ√
G

dθ

=

∫ 2π

0

(√
G

)
r

(
1 + z2

r

)
dθ +

∫

Br

(
z2

ρ +
z2

θ

G

)
KM

√
G

− 2

∫

Br

√
G

(
1 + z2

ρ +
z2

θ

G

)2

Kext.
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Since KM ≥ 0, it is clear from Remark 2.1 that the following inequality holds
∫ 2π

0

(√
G

)
r

(
1 + z2

r

)
dθ +

∫

Br

(
z2

ρ +
z2

θ

G

)
KM

√
G ≥ 0.

Thus, using that Kext ≤ −α for a certain positive constant α

f ′′(r) ≥ −2

∫

Br

√
G

(
1 + z2

ρ +
z2

θ

G

)2

Kext ≥ 2α

∫

Br

√
G

(
1 + z2

ρ +
z2

θ

G

)2

≥ 2α

|Br|f(r)2

by Lemma 1.
From the last inequality

d

dρ

(
f ′(ρ)2

)
= 2f ′(ρ)f ′′(ρ) ≥ 2f ′(ρ)

2α

|Bρ|f(ρ)2 ≥ f ′(ρ)
4α

|Br|f(ρ)2 =
4α

3 |Br|
d

dρ

(
f(ρ)3

)
.

By integrating both sides of the above inequality one gets
∫ r

ε

d

dρ

(
f ′(ρ)2

) ≥
∫ r

ε

4α

3 |Br|
d

dρ

(
f(ρ)3

)
,

where 0 < ε < r. Thus,

f ′(r)2 ≥ 4α

3 |Br|
(
f(r)3 − f(ε)3

)
+ f ′(ε)2 ≥ 4α

3 |Br|
(
f(r)3 − f(ε)3

)
.

It is clear from the definition of f that f(ε) → 0 when ε → 0, hence

f ′(r)2 ≥ 4α

3 |Br|f(r)3

and so

− d

dr

(
f(r)−

1
2

)
=

1

2
f(r)−

3
2 f ′(r) ≥ 1

2
f(r)−

3
2

√
4α

3 |Br|f(r)
3
2 =

√
α

3 |Br| .

Let R1 and R2 be real numbers such that 0 < R1 < R2. By integrating we have on one hand
∫ R2

R1

− d

dr

(
f(r)−

1
2

)
dr = −f(R2)

− 1
2 + f(R1)

− 1
2 .

On the other hand, since KM ≥ 0, from the volume comparison theorem we have |Br| ≤
πr2, and one has from the above inequality

∫ R2

R1

− d

dr

(
f(r)−

1
2

)
dr ≥

∫ R2

R1

√
α

3 |Br|dr =

√
α

3

∫ R2

R1

1√
|Br|

dr

≥
√

α

3

∫ R2

R1

1

r
√

π
dr =

√
α

3π
log

(
R2

R1

)
.
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So, by Lemma 1

|BR1|−
1
2 ≥ f(R1)

− 1
2 ≥ f(R1)

− 1
2 − f(R2)

− 1
2 ≥

√
α

3π
log

(
R2

R1

)
.

Hence √
3π

α
|BR1|−

1
2 ≥ log

(
R2

R1

)
,

that is,

R2 ≤ R1 exp

(√
3π

α

1√
|BR1|

)

for every 0 < R1 < R2, with R2 an arbitrary real value.

We observe that ifM2 is compact then, for any entire vertical graph Σ inM2×R there exist
points in Σ with non negative extrinsic curvature. This happens at the points where the height
function achieves a local maximum or a local minimum.

Finally, as a consequence of Theorem 1 and [6, Theorem 1] we have

Corollary 1. Let M2 be a Riemannian surface with a pole and non negative Gauss curvature.
If Σ is an entire vertical graph inM2 × R with extrinsic curvature Kext then

inf
Σ
|Kext| = 0.

3 Complete surfaces with constant negative extrinsic curva-
ture.

In this section we will give an example of existence of complete surfaces with strictly negative
extrinsic curvature in product manifolds.

ConsiderM2 as the surface R2 with the induced metric

〈·, ·〉 = dρ2 + G(ρ)dθ2

which is well defined in R2 \ {(0, 0)}, where (ρ, θ) are the usual polar coordinates of R2. Here,
the function G(ρ) will be defined later.

Let Σ be a rotation surface inM2 × R parametrized by

Ψ(r, θ) =
(
k(r) cos(θ), k(r) sin(θ), z(r)

)
≡

(
k(r), θ, z(r)

)

where k(r) > 0 and z(r) are smooth functions, and r denotes the arc length parameter of the
curve β(r) = Ψ(r, 0). Thus

k′(r)2 + z′(r)2 = 1. (8)
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If we denote by {∂r, ∂θ} and {∂ρ, ∂θ} the respective partial derivatives of Σ andM2 we have

∂r(r, θ) = k′(r)∂ρ

(
k(r), θ

)
+ z′(r)∂t

(
k(r), θ

)

∂θ(r, θ) = ∂θ

(
k(r), θ

)
.

So from (8), the induced metric in our surface is given by

ds2 = dr2 + G
(
k(r)

)
dθ2,

and its second fundamental form is

II(r, θ) =
(
− k′′(r)z′(r) + k′(r)z′′(r)

)
dr2 +

(
z′(r)Gρ

(
k(r)

)

2

)
dθ2.

Hence, the principal curvatures of Σ can be written as

λ1 = −k′′(r)z′(r) + k′(r)z′′(r)

λ2 = z′(r)
Gρ

(
k(r)

)

2G
(
k(r)

) ,

and the extrinsic curvature of the graph is

Kext = −z′(r)
Gρ

(
k(r)

)

2G
(
k(r)

)(
k′′(r)z′(r)− k′(r)z′′(r)

)
. (9)

By differentiating (8) we have

k′(r)k′′(r) + z′(r)z′′(r) = 0,

and so (9) becomes the following ODE for k

k′′(r) = −2G
(
k(r)

)

Gρ

(
k(r)

)Kext. (10)

Now we take, for instance, the function G(ρ) = ρ4eρ4 and impose that the extrinsic curvature
of Σ is constant −1.

Under these conditions, (10) becomes

k′′(r) =
k(r)

2 (1 + k(r)4)
(11)

Now, let k(r) be a solution of the previous ODE with initial conditions k(0) = k0 > 0,
k′(0) = 0, where k0 is a positive value which will be determined later.
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It is well known that the solution k(r) to the previous problem is uniquely determined in a
neighbourhood of the origin. Let us see in fact that k(r) is well defined for every r ∈ R.

First, we observe that, from the uniqueness to the previous problem, k(r) = k(−r) since
k(−r) is also a solution to (11) satisfying the same initial conditions. Thus, in order to study
the behaviour of k(r), we will only work for r ≥ 0.

From (11) we have
d

dr
(k′(r))2

=
d

dr

(
1

2
arctan

(
k(r)2

))

and so
k′(r)2 = c0 +

1

2
arctan

(
k(r)2

)
. (12)

Hence there exists a constant c1 such that |k′(r)| ≤ c1, that is k(r) is globally defined as we
required.

Since k(0) = k0 > 0 and k′(0) = 0, if we take k0 > 0 small enough we would have
c0 ∈

(
π
4
− 1, 0

)
. Thus, from (12) one gets |k′(r)| < 1 for every r ∈ R. Therefore, from (8),

z(r) is a well defined smooth function in R.
Let us see that k(r) ≥ k(0) = k0 > 0 for every r ∈ R. In such a case, Σ is a regular surface

due to the generatrix curve β(r) = Ψ(r, 0) does not touch the rotation axis. For that purpose,
let us first observe that k(r) > 0, for every r > 0.

Let us assume that there exists a first point ε > 0 such that k(ε) = 0. Since k(r) is a positive
function in the interval [0, ε), from (11) we obtain that k(r) is a convex function in that interval.
Moreover, k′(0) = 0, thus k(ε) ≥ k(0) = k0 > 0, and it is contradiction with k(ε) = 0.

On the other hand, since from (11) the function k(r) is a global convex function in R and
k′(0) = 0, then k(r) ≥ k(0) = k0 for every r ∈ R and

lim
r→±∞

k(r) = +∞.

In particular, this shows that Σ is properly immersed inM2 × R.
One can easily check that our metric 〈·, ·〉 is not well defined at the origin. Since k(r) ≥

k0 > 0 for every r ∈ R, we can perturb the metric 〈·, ·〉 for instance for 0 ≤ ρ < k0

2
, and have

a complete metric in M2 well defined at the origin and such that Σ preserves the same induced
metric. As Σ is properly immersed in M2 × R, then Σ is a complete surface with negative
constant extrinsic curvature as we claimed.
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