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José A. Gálveza 1, Victorino Lozanob

Mathematics Subject Classification: 58J05, 53A10.

a Departamento de Geometrı́a y Topologı́a, Universidad de Granada, E-18071 Granada, Spain;
e-mail: jagalvez@ugr.es
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Abstract

We present a deformation process of surfaces from a product spaceM1×R into another
product space M2 × R such that the relation of the principal curvatures of the deformed
surfaces can be controlled in terms of the curvatures of M1 and M2. Thus, we obtain
subsolutions for the existence or barriers for the non existence of surfaces with prescribed
curvatures in a general product spaceM× R.

1 Introduction.
The study of barriers for a class of surfaces S in an ambient space is used for giving results of
existence or non existence of surfaces in S satisfying certain desired properties.

When possible, the rotational surfaces (or surfaces invariant under a 1-parametric group of
isometries) in the class S are the most simple barriers if a maximum principle holds in S . A
classical example of this fact is the halfspace theorem for minimal surfaces in R3 [HM], where
the catenoids are used as barriers in order to show that there is no properly immersed minimal
surface in a halfspace of R3 different from a plane.

Our objective will be to describe a simple method for obtaining barriers in a product space
M× R, or more generally, in a warped space. For that, given two ambient spaces M1 × R and
M2 ×R, we will start with a surface S inM1 ×R and obtain a new surface S∗ inM2 ×R such
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that the principal curvatures of S and S∗ can be related in terms of the curvatures of M1 and
M2.

Thus, for instance, if we start with the well known rotational surfaces of constant mean
curvature H in a homogeneous space R3, H2 × R or S2 × R then we can obtain barriers for
the existence or non existence of surfaces with constant mean curvature H in a general product
spaceM× R. Observe that the group of isometries ofM× R could be very small.

The paper is organized as follows. Section 2 will be devoted to explain the deformation pro-
cess for obtaining these barriers. In Section 3 we give some examples of how this construction
can be used.

First, we extend in Theorem 1 a result by Espinar and Rosenberg [ER]. We prove that given
a closed geodesic disk D ⊆ M then there is an explicit constant k0, which only depends on the
radius of D and the minimum of its curvature, such that there exists no graph over D inM×R
with minimum of its mean curvature greater than or equal to k0.

We also prove in Theorem 2 that under certain restrictions on the ambient spaceM×R, for
every properly embedded surface Σ ⊆ M × R with mean curvature H ≥ H0 > 0, its mean
convex component can not contain a certain geodesic ball of radius r, where r only depends on
H0 and the infimum of the curvature ofM.

We show a halfspace type theorem for properly immersed surfaces with mean curvature
satisfying |H| ≤ 1/2 in M × R, with curvature of M satisfying K ≤ −1 (Theorem 3). This
result is the extension to the corresponding one by Nelli and Sa Earp in H2 × R [NS].

We also study in Theorem 4 some properties about the behavior at infinity of a minimal
surface inM×R, whereM is a Hadamard surface with pinched curvature between two negative
constants. This gives us a generalization of some results by Sa Earp and Toubiana in H2 × R
[ST].

Moreover, we show in Theorem 5 that, under some conditions, a compact surface with
constant mean curvature and boundary in a slice of M × R must be a graph, when M is a
Hadamard surface with pinched curvature between two negative constants. This extends the
corresponding result in [NSST] for the homogeneous space H2 × R.

Finally we give in Theorem 6 a result of existence for graphs with positive constant extrinsic
curvature in M × R which solves the Dirichlet problem for the associated Monge-Ampère
equation with zero boundary conditions.

2 A comparison result.
Let (M, g) be a Riemannian surface, Ω ⊂ R2 an open set and ϕ : Ω −→M a local parametriza-
tion such that the metric is locally written as

g = du2 + G(u, v) dv2, (u, v) ∈ Ω.
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This basically means that the coordinate curves α(u) = ϕ(u, v0), for a constant v0, are geodesics
on M (parameterized by the arc length) which intersect orthogonally the coordinate curves
β(v) = ϕ(u0, v), for a constant u0.

Observe that there exist many coordinates of this form in any Riemannian surface. Geodesic
polar coordinates ϕ(u, v) = expp(u cos v, u sin v) around a point p ∈ M are examples of these
local coordinates.

Now, let us consider the generalized warped metric in ϕ(Ω)× R ⊆M× R given by

〈, 〉 = f(u, t) (du2 + G(u, v) dv2) + dt2, f(u, t) > 0.

Here, t is the coordinate inR and u can be understood as a distance function along the geodesics
α(u). We remark that product metrics or, more generally, warped metrics f(t) g +dt2 inM×R
can be locally written in the previous way.

If we denote by ∇ the Levi-Civita connection in (M × R, 〈, 〉) then a direct computation
gives us

〈∇∂u∂u, ∂u〉 = fu/2, 〈∇∂u∂u, ∂v〉 = 0, 〈∇∂u∂u, ∂t〉 = −ft/2,
〈∇∂u∂v, ∂u〉 = 0, 〈∇∂u∂v, ∂v〉 = (fG)u/2, 〈∇∂u∂v, ∂t〉 = 0,
〈∇∂u∂t, ∂u〉 = ft/2, 〈∇∂u∂t, ∂v〉 = 0, 〈∇∂u∂t, ∂t〉 = 0,
〈∇∂v∂v, ∂u〉 = −(fG)u/2, 〈∇∂v∂v, ∂v〉 = fGv/2, 〈∇∂v∂v, ∂t〉 = −ftG/2,
〈∇∂v∂t, ∂u〉 = 0, 〈∇∂v∂t, ∂v〉 = ftG/2, 〈∇∂v∂t, ∂t〉 = 0,
〈∇∂t∂t, ∂u〉 = 0, 〈∇∂t∂t, ∂v〉 = 0, 〈∇∂t∂t, ∂t〉 = 0,

(1)
where for instance ∂u stands for ∂

∂u
.

Let us consider the graph ψ(u, v) = (ϕ(u, v), h(u)) in M × R, with height function h(u)
only depending on the “distance function” u, and compute its principal curvatures.

We denote by ∂u and ∂v the partial derivatives with respect to u and v on the graph ψ. Thus,

∂u = ∂u + h′(u)∂t, ∂v = ∂v,

and the induced metric of the graph is

I = (f + h′(u)2) du2 + f G dv2.

Hence, the unit normal (pointing upwards) of the graph is given by

N =
1√

f(f + h′(u)2)
(−h′(u)∂u + f∂t).

On the other hand,

∇∂u
∂u = ∇∂u

(∂u + h′(u)∂t) = ∇∂u
∂u + h′′(u)∂t + h′(u)∇∂u

∂t =

= ∇∂u∂u + h′(u)∇∂t∂u + h′′(u)∂t + h′(u)(∇∂u∂t + h′(u)∇∂t∂t),

∇∂u
∂v = ∇∂v

∂u = ∇∂v∂u + h′(u)∇∂v∂t,

∇∂v
∂v = ∇∂v∂v.

(2)
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Therefore, from (1) and (2), the second fundamental form can be computed as

〈∇∂u
∂u, N〉 =

1√
f(f + h′(u)2)

(
−1

2
fuh

′(u)− h′(u)2ft − 1

2
fft + fh′′(u)

)
,

〈∇∂u
∂v, N〉 = 0,

〈∇∂v
∂v, N〉 =

1√
f(f + h′(u)2)

(
1

2
(fuG + fGu)h

′(u)− 1

2
fftG

)
.

In particular, the coordinate curves are the lines of curvature of the graph. Moreover, the
principal curvatures are given by

k1 =
−fuh

′(u)− 2h′(u)2ft − fft + 2fh′′(u)

2(f + h′(u)2)
√

f(f + h′(u)2)
,

k2 =
1

2
√

f(f + h′(u)2)

(
(
fu

f
+

Gu

G
)h′(u)− ft

)
.

(3)

As a consequence of (3) we can state

Proposition 1. Let (M1, g1), (M2, g2) be two Riemannian surfaces, Ω an open set in R2 and
ϕi : Ω −→Mi, i = 1, 2, two parameterizations such that

gi = du2 + Gi(u, v)dv2, (u, v) ∈ Ω. (4)

If we endow ϕi(Ω)×R ⊆Mi×R with the warped metrics 〈, 〉i = f(u, t)gi +dt2, i = 1, 2, then
the principal curvatures ki

1, k
i
2 of the graph ψi(u, v) = (ϕi(u, v), h(u)), for the metric 〈, 〉i and

the normal pointing upwards, satisfy k1
1 = k2

1 and

k1
2 ≥ k2

2 if and only if
G1

u

G1
h′(u) ≥ G2

u

G2
h′(u). (5)

We emphasize that the geometric quantity Gi
u

2Gi appearing in (5) is the geodesic curvature of
the coordinate curves βi(v) = ϕi(u0, v) for the metric gi given in (4). In order to obtain some
natural conditions for (5) to be satisfied, we establish a comparison result which relates the
geodesic curvature of the coordinate curves βi(v) and the Gaussian curvature Ki of (Mi, gi).

Proposition 2. In the conditions of Proposition 1, assume the domain Ω = I × J is the product
of two real intervals I, J ⊆ R. Let us suppose that one of the following items holds:

(i) There exists (u0, v0) ∈ I × J such that

G1
u

G1
(u0, v0) ≥ G2

u

G2
(u0, v0), and K1(u, v0) ≤ K2(u, v0) for all u ≥ u0.
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(ii) There exist points pi ∈ Mi such that (u, v) are geodesic polar coordinates around pi for
the metric gi, and an angle v0 such that

K1(u, v0) ≤ K2(u, v0) for all u ∈ I = (0, ρ0).

Then
G1

u

G1
(u, v0) ≥ G2

u

G2
(u, v0)

for u ≥ u0 in the first case, or for u > 0 in the second one.

Proof. From (4), the Gaussian curvature Ki of the metric gi is given by

Ki = −
(

Gi
u

2Gi

)

u

−
(

Gi
u

2Gi

)2

. (6)

On the other hand, given four differentiable functions f, g, kf , kg : [t1, t2) −→ R satisfying

f ′(t) + f(t)2 = −kf (t), g′(t) + g(t)2 = −kg(t), (7)

with f(t1) ≥ g(t1), and kf (t) ≤ kg(t) for t ∈ [t1, t2), then it is easy to show that f(t) ≥ g(t)
for all t ∈ [t1, t2).

As a consequence, the result is proven in case (i) from (6) and (7) by replacing

f(t) =
G1

u

2G1
(t, v0), g(t) =

G2
u

2G2
(t, v0), kf (t) = K1(t, v0), kg(t) = K2(t, v0).

Now, let us assume (u, v) are geodesic polar coordinates. In this case it is well known that
(see for instance [dC])

lim
u→0

Gi(u, v0) = 0 and lim
u→0

(
√

Gi)u(u, v0) = 1. (8)

In addition, if Gi
u 6= 0 then (6) can be rewritten as

(
2Gi

Gi
u

)

u

= 1 + Ki

(
2Gi

Gi
u

)2

. (9)

On the other hand, given four real functions f, g, kf , kg : [0, t0) −→ R, satisfying

f ′(t) = 1 + kf (t)f(t)2, g′(t) = 1 + kg(t)g(t)2, (10)

with kf (t) ≤ kg(t), t ∈ [0, t0), and f(0) = g(0) = 0, then it is easy to show that f(t) ≤ g(t)
for t ∈ [0, t0).
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Observe that Ki(0, v) is well defined as the Gaussian curvature at the point pi ∈ Mi where
the geodesic polar coordinates are centered, and from the initial conditions about Gi we have

lim
u→0

2Gi

Gi
u

= lim
u→0

√
Gi

(
√

Gi)u

= 0.

Thus, from (8), there exists ε0 > 0 such that (Gi)u(u, v0) > 0 for 0 < u < ε0, and the case
(ii) can be proven from (9) and (10) by replacing

f(t) =
2G1

G1
u

(t, v0), g(t) =
2G2

G2
u

(t, v0), kf (t) = K1(t, v0), kg(t) = K2(t, v0)

for 0 < u < ε0.
Finally, from case (i), the result is true for any u ∈ I = (0, ρ0).

Combining these two propositions we have a strong comparison result in order to deform
a surface from an ambient space to another in such a way that its principal curvatures are con-
trolled in the process. This fact will be shown in the next section.

3 Existence of barriers in MxR.
In this section we give some existence and non existence results for surfaces in product spaces
and generalize some known results in homogeneous product spaces to general product spaces.

From now on we will denote by M(c) the complete simply connected 2-dimensional space
form of constant curvature c, that is, a hyperbolic plane if c < 0, the Euclidean plane if c = 0
or a sphere if c > 0.

Let us start with a topological sphere S of constant mean curvature H0 in M(c) × R (see,
for instance, [AR, AEG2]). Observe that S is unique up to isometries of the ambient space and
only exists for H0 >

√−c/2 if c < 0. Moreover, S is rotational and symmetric with respect to a
horizontal slice. In particular, S is a bigraph over a geodesic disk ofM(c) of radius rc(H0) > 0.

Thus, let p ∈M(c) and (ρ, θ) be geodesic polar coordinates around p. Since S is a rotational
surface the lower part of S can be considered as a graph over the geodesic disk centered at p and
radius rc(H0), with height function h(ρ) which only depends on ρ. Moreover, h(ρ) is strictly
increasing, see [AR]. Hence, this part of the constant mean surface S can be described as

ψ1(ρ, θ) = (ρ, θ, h(ρ)) ∈M(c)× R.

Note that, for convenience, we have deleted the parameterization ϕ in the previous expression.
Now, given a general product space M × R and geodesic polar coordinates (ρ, θ) around a

point q ∈M, which are well defined for 0 < ρ ≤ rc(H0), we can consider the new immersion

ψ2(ρ, θ) = (ρ, θ, h(ρ)) ∈M× R.
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Applying the same process for the upper part of S, we obtain a sphere S∗ in M × R which
is a bigraph over the geodesic disk of radius rc(H0) centered at q.

We remark that S∗ is symmetric with respect to a horizontal slice as S is, and any vertical
translation of S∗ is congruent to S∗. However, S∗ depends strongly on the point q ∈ M, i. e. if
we start with another point q̃ ∈M and obtain a new surface S̃∗ following the same process then
S∗ and S̃∗ are not isometric in general.

Now, assume the Gaussian curvature K of M is bigger than or equal to c. Thus, using
Proposition 1 and Proposition 2 we have that S∗ has mean curvature H ≤ H0 for its inner
normal.

With all of this, we obtain

Theorem 1. Let Dr be a closed geodesic disk of radius r > 0 in a Riemannian surface M,
and c := minDr(K) be the minimum of the Gaussian curvature of M in the disk Dr. Consider
H0 > 0 such that rc(H0) = r, then there is no vertical graph over Dr with minimum of its mean
curvature min(H) ≥ H0.

Proof. Assume Σ ⊆ M × R is a graph over Dr with min(H) ≥ H0 for a unit normal N .
Without loss of generality we can assume the unit normal N points upwards.

Let q ∈ M be the center of the geodesic disk Dr and consider the sphere S∗ centered at q
obtained previously, which has mean curvature less than or equal to H0 for its inner normal.

Move the sphere S∗ up until Σ is below S∗, and go down till S∗ intersects Σ for the first
time. Then, the classical maximum principle for mean curvature asserts that both surfaces must
agree locally. In particular, Σ and S∗ have constant mean curvature H0 and Σ agrees with the
lower hemisphere of S∗. However, this is a contradiction because S∗ is not a strict graph over
the boundary of Dr since its unit normal is horizontal at those points.

This result can be seen as an extension of the one by Espinar and Rosenberg [ER] which
asserts that ifM is a complete Riemannian surface with inf(K) = −1, then there is no complete
entire vertical graph inM× R with inf(H) > 1/2. The proof in their case is different and they
study the spectrum of the Laplacian ofM in order to estimate the Cheeger constant ofM.

Theorem 1 can be generalized in different ways. On one hand, the hypothesis on the mean
curvature of the surface is not a basic condition since it is only used in order to apply a maximum
principle to this functional. Thus, a similar result to Theorem 1 can be analogously proven for
other functionals with a maximum principle. For instance, positive extrinsic curvature or Gaus-
sian curvature with positive extrinsic curvature (see [AEG1, EGR] for the revolution spheres in
M(c) × R to be deformed in these cases). On the other hand, the same ideas can be used for
warped products. For example, the hyperbolic 3-space can be seen as a warped product and a
similar result can be shown for mean curvature in the so called pseudo-hyperbolic spaces (see
[T]).

Next, we will give more applications to our comparison result for the mean curvature func-
tional, bearing in mind that analogous results are possible for other functionals.
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Let us denote by diamc(H0) the diameter of the unique sphere inM(c)×R of constant mean
curvature H0 > 0. Then we obtain,

Theorem 2. Let M be a complete, simply connected surface with infimum of its Gaussian cur-
vature c ∈ R and injectivity radius i ∈ (0,∞]. Consider a properly embedded surface Σ in
M×R with mean curvature H ≥ H0 > 0 (H0 >

√−c/2 if c < 0). If rc(H0) < i then the mean
convex component can not contain a closed geodesic ball inM× R of radius diamc(H0)/2.

Proof. Let S be a sphere of constant mean curvature H0 in M(c) × R. We will call center of
S to the unique point (p0, t0) ∈ M(c) × R such that S is a revolution surface with respect to
the axis given by the vertical geodesic γ(t) = (p0, t) and symmetric with respect to the slice of
height t = t0. Thus, if we consider the corresponding sphere S∗ inM×R, using geodesic polar
coordinates at a point q0 ∈M, we will say that S∗ is centered at (q0, t0).

Assume Σ is a properly embedded surface inM×R with mean curvature H ≥ H0 > 0 and
B is a closed geodesic ball of radius diamc(H0)/2 contained in the mean convex component
of Σ. Let α : [0, 1] −→ M × R be a continuous curve such that α(0) is the center of B and
α(1) ∈ Σ. So, since the injectivity radius i > rc(H0), for each s ∈ [0, 1] we can consider the
sphere S∗(s) centered at α(s) which satisfies

H ≤ H0 for all z ∈ S∗(s) for all s ∈ [0, 1].

Though the spheres S∗(s) are not isometric in general, they constitute a continuous defor-
mation when s varies. So, it must exist a first s0 ∈ (0, 1) such that S∗(s0) intersects Σ at a point
z0. Hence, as S∗(s0) is contained in the mean convex component of Σ, the maximum principle
can be used in order to show that Σ and S∗(s0) must agree. But this is a contradiction, as we
wanted to prove.

It is well-known that the exponential map is a global diffeomorphism in a Hadamard mani-
fold M for any point p ∈ M. In addition, given a complete geodesic γ in M, we will consider
the vertical plane P = γ × R in the Hadamard manifoldM× R, which is isometric to R2. It is
clear that the geodesics of M × R which are orthogonal to P give a foliation of M × R. Thus,
we will say that a surface is a horizontal graph over the vertical plane if its projection on P is
one to one.

Hence, as a straightforward consequence we obtain the following result.

Corollary 1. Let H0 > 0 and M be a Hadamard surface with c = inf(K) > −∞. Then there
exists no entire horizontal graph inM× R with mean curvature H ≥ H0 >

√−c/2.

Now, we construct different families of barriers inM×R in order to obtain some theorems
which generalize the corresponding theorems in homogeneous product spaces. Once the bar-
riers are obtained the proof of the results will follow as its analogous result in a homogeneous
space. Thus, we will only present the surfaces which are the desired barriers and omit the rest
of details of the proof.
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First, we generalize a certain analogous to the half-space theorem for minimal surfaces ofR3

given by Nelli and Sa Earp for surfaces with the critical value of the mean curvature H = 1/2
in H2 × R. Here, H2 denotes the hyperbolic plane of constant curvature −1.

Let us denote by S0 the entire rotational graph with constant mean curvature H = 1/2
in H2 × R. Nelli and Sa Earp proved that a complete surface with constant mean curvature
H = 1/2, different from a rotational simply connected one, can not be properly immersed in
the mean convex side of S0 [NS].

LetM be a Hadamard surface with curvature K ≤ −1. Given a point p ∈M, we denote by
S∗0(p) ⊆ M× R the corresponding simply connected graph obtained from the rotational entire
graph S0 ⊆ H2 × R, using polar coordinates at p. Since vertical translations are isometries of
the ambient spaceM×R, we will also denote by S∗0(p) the vertical translations of the previous
entire graph.

From Proposition 1 and Proposition 2 the surface S∗0(p) has mean curvature H ≥ 1/2 for
the unit normal pointing upwards.

Theorem 3. Let M be a Hadamard surface with curvature K ≤ −1. Consider a complete
surface Σ in M× R with mean curvature satisfying |H| ≤ 1/2. Then, given p ∈ M, Σ can not
be properly immersed in the mean convex side of S∗0(p), unless H ≡ 1/2,M = H2 and Σ = S0.

Proof. Following [NS], consider the family Hα, α > 1, of non embedded rotational surfaces in
H2 × R with constant mean curvature H = 1/2 (see also [NSST]).

In this case the height function of the profile curve Γα of the surfaceHα is not monotonous.
We only need to consider the non bounded connected component Γ1

α of Γα for which the height
function is strictly increasing as a function of the distance to the revolution axis.

Let p ∈M and Σ be a surface which is properly immersed in the mean convex side of S∗0(p),
with mean curvature satisfying |H| ≤ 1/2.

Let us denote by Gα the piece of Hα obtained by rotating the curve Γ1
α. Thus, given polar

coordinates at the point p ∈M, the graphs Gα inH2×R can be deformed to graphs G∗α inM×R.
From the conditions of the height function of Γ1

α and using Proposition 1 and Proposition 2, we
obtain that the mean curvature of these surfaces is bigger than or equal to 1/2 everywhere.

Thus, we can use the family of graphs G∗α in order to show that Σ is a vertical translation
of S∗0(p) or there must be an α0 > 1 such that Σ and G∗α0

intersect at a point and Σ is above
G∗α0

. The latter possibility can not happen from the maximum principle for the mean curvature
of both surfaces.

Hence, Σ is a vertical translation of S∗0(p). So, Σ and S∗0(p) are congruent and they must
have constant mean curvature 1/2. Finally, from (5) and (6), it is easy to see that since the mean
curvature of the entire graphs S∗0(p) and S0 agree then the curvature of M is K = −1 for any
q ∈M, and soM is, up to isometries, the hyperbolic plane.

As usual, we say that an end E of a surface in M × R is cylindrically bounded if there
exists a compact set D ⊆ M such that E is contained in the vertical “cylinder” D × R. As a
straightforward consequence of Theorem 3 we have,
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Corollary 2. Let M be a Hadamard surface with curvature K ≤ −1. Assume Σ is a properly
immersed surface in M × R with mean curvature |H| ≤ 1/2 and cylindrically bounded ends.
Then Σ must have more than one end.

As in the Euclidean spaceR3, there also exist catenoids inH2×R. These surfaces have been
used by Sa Earp and toubiana [ST] in order to obtain an interesting result about the behavior at
infinity of a minimal surface in H2 × R. We can generalize that result as follows.

Theorem 4. Let M be a Hadamard surface with pinched curvature −1 ≤ K ≤ b < 0. Let
γ ⊆ ∂∞M × R be an arc. Assume there exist a vertical straight line L ⊆ ∂∞M × R and a
subarc γ′ ⊆ γ such that

(1) γ′ ∩ L 6= ∅ and ∂γ′ ∩ L = ∅,

(2) γ′ stays on one side of L,

(3) γ′ ⊆ ∂∞M× (t0, t0 + π), for some real number t0.

Then there is no properly immersed minimal surface (maybe with finite boundary), Σ ⊆
M×R, with asymptotic boundary γ and such that Σ∪γ is a continuous surface with boundary.

Proof. We first observe that since K ≤ b < 0, given two points p1, p2 ∈ ∂∞M, there exists
a unique geodesic Γ ⊆ M with p1 and p2 as its points at infinity. Thus, the idea of the proof
follows as in [ST] where we need to consider now as a family of barriers the surfaces C∗ in
M × R obtained from the family of catenoids in H2 × R. Since K ≥ −1, from Proposition
1 and Proposition 2 the new surfaces C∗ in M × R have mean curvature H ≤ 0 for the unit
normal pointing to the interior of the neck, and they can be used as in [ST].

As a consequence of this result one has,

Corollary 3. Let M be a Hadamard surface with −1 ≤ K ≤ b < 0. Consider a Jordan curve
γ ⊆ ∂∞M × R homologous to zero (in ∂∞M × R), which is contained in a open slab between
two horizontal circles of ∂∞M× R with width equal to π. Then, there is no properly immersed
minimal surface with asymptotic boundary γ.

It is also possible to show that under certain conditions a constant mean curvature surface
with boundary on a slice must be a graph. This result was proven by Nelli, Sa Earp, Santos and
Toubiana [NSST] in H2 × R. For that, they use the rotational entire graphs of constant mean
curvature H ∈ [0, 1/2]. By deforming these graphs we can also obtain,

Theorem 5. Let M be a Hadamard surface with curvature satisfying −c2 ≤ K ≤ −1, c ≥ 1.
Consider a compact surface Σ immersed in M × R with boundary a C2,α Jordan curve Γ with
geodesic curvature greater than c, contained in a horizontal slice. Assume that Σ has constant
mean curvature H0 ∈ [0, 1/2]. Then Σ is a vertical graph.
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Proof. First of all, we observe that the result is obvious for H0 = 0 from the maximum principle
for Σ and the minimal surfaces given by the horizontal slices.

Thus, let Σ be a compact surface immersed in M × R with boundary Γ ⊆ M × {0} and
constant mean curvature H0 ∈ (0, 1/2]. Let D be the bounded closed domain determined by
Γ ⊆M ≡M× {0}. Let us see that Σ is contained in the cylinder D × R.

Let p0 ∈ M be a point in Γ. Consider the unique horocycle in M which is tangent to Γ at
p0 with the same unit normal. Since the curvature of M satisfies K ∈ [−c2,−1], we have that
the geodesic curvature of this horocycle is between 1 and c. Using that Γ is a Jordan curve with
geodesic curvature greater than c, it is easy to see that Γ must be contained in the convex closed
domain Ω determined by the previous horocycle.

Let γ(s) be the oriented geodesic parameterized by the arc length which is normal to Γ
with γ(0) = p0 and γ′(0) pointing to Ω. For each s > 0 consider the closed geodesic disk Ds

centered at γ(s) and radius s. Since Ω is the limit of the disks Ds when s goes to infinity and Γ
is a compact set, then there must exist s0 > 0 such that Ds0 contains Γ.

Let S be the rotational entire graph with constant mean curvature H0 in H2 × R. Consider
its associated entire graph S∗ ⊆M×R when we use geodesic polar coordinates at γ(s0) ∈M.
Let us also denote by S

∗
the reflection of S∗ with respect to a horizontal slice. The surfaces S∗

and S
∗

are congruent, and from Proposition 1 and Proposition 2 we obtain that they have mean
curvature H ≥ H0 for its unit normal pointing to the mean convex component.

Since S∗ and S
∗

have been obtained using polar coordinates at γ(s0) we can assume that,
up to vertical translations, S∗∩M×{0} = ∂Ds0 = S

∗∩M×{0}. In particular, Γ is contained
in the mean convex components of S∗ and S

∗
, because Γ ⊆ Ds0 .

As Σ is compact we can move vertically S∗ in such a way that Σ is completely contained
in the mean convex component of S∗. Now, from the maximum principle, if we move back
S∗ then the surfaces Σ and S∗ do not intersect until S∗ is in its initial position (that is, when
S∗ ∩M× {0} = ∂Ds0).

The same argument can be used for S
∗
. Therefore, Σ is contained in the cylinder Ds0 × R

and there is no point of Σ in the vertical line {p0} × R except the point (p0, 0) ∈ Γ.
Repeating the same argument for any point (p0, 0) in Γ we get that Σ is contained in the

vertical cylinder D × R.
Now, let Σ0 be the graph of constant mean curvature H0 with boundary Γ (see [S]). Then,

from the balancing formula for graphs with constant mean curvature H0 > 0 [HLR, Proposition
3], it follows (see [NSST]) that Σ must agree with Σ0 or the reflection of Σ0 with respect to the
sliceM× {0}.

The obtained comparison result can be also used for obtaining barriers which are subsolu-
tions of certain partial differential equations. These subsolutions will be sufficient for showing
existence of solutions to that equation. In fact, this work was motivated by the construction
in [GR] of some specific barriers for minimal surfaces in M × R. Similar barriers have been
recently used in [FR], which can be seen as a case of our general description in Section 2.
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Now, we give an example of existence of graphs with constant extrinsic curvature, that is,
we obtain solutions to a Dirichlet problem for the Monge-Ampère equation associated to the
graphs of positive constant extrinsic curvature. Let rc(k0) be the radius of the geodesic disk
of the space form M2(c) where the rotational sphere of constant extrinsic curvature k0 > 0 of
M2(c)× R is defined (see [EGR]).

Theorem 6. Let Dr be a closed geodesic disk of radius r > 0 in M, and c the maximum of the
curvature ofM in Dr. Take k0 > 0 such that rc(k0) = r, then there exists a graph h of constant
extrinsic curvature k > 0 inM× R and

h|∂Dr = 0

for any k < k0.

Proof. Let Sk be the sphere in M(c)× R with constant extrinsic curvature k > 0 (see [EGR]).
Observe that, up to translations, Sk1 is contained in the open bounded component determined
by Sk2 when k1 > k2. Hence, since r = rc(k0) is the radius of the closed disk where the sphere
Sk0 is defined then, up to vertical translations, for k < k0 there exists a spherical cup Ck of
Sk such that Ck is the strict graph of a function hk in a closed geodesic disk of radius r, with
hk = 0 at the boundary.

If we consider the associated graph C∗
k in M × R using geodesic polar coordinates at the

center of Dr then from Proposition 1 and Proposition 2 the surface C∗
k has extrinsic curvature

greater than or equal to k. Thus, we have a subsolution for our Dirichlet problem.
Therefore, from [G] (see also [S]), there exists a graph of constant extrinsic curvature k and

zero boundary data.

Lastly, we must remark that the process of obtaining barriers can be also carried out in
higher dimensions inMn × R, though in this case the process is more intricate [GL].
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