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Abstract

We study from a global point of view the Laguerre minimal surfaces in R
3. In

particular, we generalize in a natural way the class of Laguerre minimal surfaces
(introducing what we call Generalized Laguerre minimal surfaces) and obtain a
conformal representation formula for this new class of surfaces. Besides, we study
the completeness of the Laguerre metric and classify the flat Laguerre minimal
surfaces. Finally, we solve the Björling problem for Generalized Laguerre minimal
surfaces and, as an application, we classify the rotational ones.

Keywords: Complete Laguerre minimal surfaces, flat Laguerre minimal surfaces, conformal
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1 Introduction

An oriented surface ψ : S −→ R
3 with non-zero Gauss curvature K and mean curvature

H is called a Laguerre minimal surface (in short, L-surface) if

∆IIIH

K
= 0,

where ∆III stands for the Laplacian with respect to the third fundamental form III of ψ.
The study of these surfaces traces back to a series of papers by W. Blaschke [3, 4, 5, 6],
where such surfaces appear as critical points of the functional

L(ψ) =

∫
H2 −K

K
dS,

1 Corresponding author. Tel.: 34-967-599200; fax: 34-967-599224
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dS being the area element of the surface. This functional is invariant under the 10-
dimensional group of Laguerre transformations, which are transformations of the space of
oriented spheres that preserve oriented contact of spheres and take planes to planes (see,
for instance, [13] for a detailed study).

This theory has recently received much attention (see, among others, [8, 12, 13, 15,
16, 17, 19, 21]), mostly from a local point of view.

In this paper we deal with the study of L-surfaces from a global point of view. Thus,
in Section 2 we generalize the definition of L-surface to surfaces whose Gaussian curvature
can vanish in a set of isolated points and are Laguerre minimal in the classic sense away
from that set. This is a natural class of surfaces that we will call Generalized Laguerre
minimal immersions (in short, GL-immersion). In particular, this class contains the one
of minimal surfaces in R

3.
In Section 3 we provide a conformal representation for GL-surfaces in terms of a

real harmonic function, a meromorphic one and a holomorphic 1-form globally defined
on the surface (Theorem 2). In Section 4, we use this representation in order to study
the completeness of the Laguerre metric hL. Thus, we prove that every L-immersion with
complete Laguerre metric must have negative Euclidean Gaussian curvatureK everywhere
(Theorem 3). On the other hand, we show that every Euclidean complete immersion with
negative K must have complete Laguerre metric hL (Theorem 4); however the converse
is not true. In addition, we prove that hL can be extended on a GL-surface to the points
whereK = 0, and provide a complete classification of the flat GL-surfaces for the Laguerre
metric (Theorem 5).

Finally, in Section 5 we give a Björling-like formula which solves the Björling problem
for GL-surfaces, that is, we study the set of GL-surfaces containing a given curve with a
given tangent plane along every point of such curve (Theorem 6). As an application of
that formula, we classify the rotational GL-surfaces.

2 Preliminaries

Let ψ : S −→ R
3 be an immersion from an orientable, connected surface S into R

3, with
Gaussian curvature K and mean curvature H . Let us assume that both curvatures are
related by

H(p) = R(p) ·K(p) ∀p ∈ S, (1)

for a smooth function R : S −→ R.
Under these conditions we can define the quadratic form

h̃ = I − 2RII, (2)

where I and II are, respectively, the induced metric and the second fundamental form of
the immersion.

This new quadratic form is conformal to the third fundamental form of the immersion
if K 6= 0, since

III = −K I + 2H II = −K h̃. (3)
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Besides, if K = 0 at a point p ∈ S then, from (1), H(p) = 0 and II = 0 at p. In particular,

h̃ = I at p.
With all of this, h̃ must be a definite quadratic form. In addition, since III is a

Riemannian metric wherever K 6= 0 and h̃ = I at the points with K = 0 then, from (3),

h̃ is a Riemannian metric if K ≤ 0 and so −h̃ is when K > 0.

Proposition 1 Let ψ : S −→ R3 be an immersion. If R : S −→ R
3 is a smooth function

such that H = RK then one of the following situations happens:

• K > 0 everywhere on S, or

• K ≤ 0 on S, and in this case either K vanishes identically on S and so ψ lies on a
plane, or {p ∈ S : K(p) = 0} is a set of isolated points.

Proof: Since the quadratic form h̃ given by (2) is definite everywhere, then h̃ must be

globally positive definite or negative definite at every point. Hence, as h̃ is positive definite
at a point if and only if K ≤ 0 at that point, we can deduce that K > 0 everywhere or
K ≤ 0 at every point.

On the other hand, from (3), III = −K h̃, which is also true at the points with K = 0.
Thus, since III := 〈dN, dN〉, where N is the Gauss map of the immersion, we obtain

that N is a conformal map for S with the structure induced by h̃. Hence, dN vanishes
at isolated points or dN vanishes identically, or equivalently, K = 0 at isolated points or
ψ(S) lies on a plane.

�

Remark 1 In the conditions of the above Proposition, we can define the Riemannian
metric h given by h = h̃ if K ≤ 0 and h = −h̃ if K > 0. In addition, we have proved that
the Gauss map N of the immersion is conformal for the metric h since III = |K| h.

Definition 1 Let ψ : S −→ R
3 be an immersion and R : S −→ R a smooth function such

that H = RK. We say that ψ is a Generalized Laguerre minimal immersion (in short,
GL-immersion) if the Laplacian of R with respect to the Riemannian metric h vanishes
identically, that is,

∆hR = 0.

Observe that the family of immersions satisfying this condition basically agrees with the
family of Laguerre minimal immersions (in short, L-immersion), by taking R = H/K and
bearing in mind that h and III are conformal.

However, we allow the Gaussian curvature to vanish at some points. This is an
important fact, because, for instance, minimal immersions are GL-immersions, but they
are not L-immersions in general since the Gaussian curvature could vanish at some points.
More generally, the Weingarten surfaces satisfying H = cK, c ∈ R, are GL-surfaces.

Since the family of Laguerre minimal surfaces is invariant under the action of the
Laguerre group, we can obtain GL-surfaces from a given one. Other examples can be
obtained from dilations or normal translations:
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Example 1 (Homothetic Surfaces) Given a GL-surface ψ : S −→ R3, the homothetic

surface ψ̃ = c ψ for c ∈ R, c 6= 0, is also a GL-surface with R̃ = cR. To check that, it
is enough to observe that K̃ = K/c2, H̃ = H/c and the third fundamental forms of both
immersions agree. �

Example 2 (Parallel Surfaces) Let ψ : S −→ R3 be a GL-surface with Gauss map
N , Gaussian curvature K and mean curvature H. Then the parallel surface to ψ to a
distance a ∈ R, ψ̃ = ψ+aN , is an immersion wherever 1−2aH+a2K 6= 0, with Gaussian
curvature and mean curvature given by (see, for instance, [20])

K̃ =
K

1− 2aH + a2K
,

H̃ =
H − aK

1− 2aH + a2K
.

Since the Gauss maps of both immersions agree then the third fundamental forms coincide.
Moreover R̃ = R− a, and so we have that ψ̃ is also a GL-immersion. �

We finish this Section by remarking that a compact GL-surface must be a round
sphere. For that, it is enough to observe that any compact surface S in R

3 must have
a point with positive Gaussian curvature K. Thus, from Proposition 1, K is positive
everywhere and the surface must be a topological sphere. On the other hand, since S is
compact and R is harmonic on S, then R is a constant c0. Therefore, the GL-surface is a
Weingarten surface satisfying H = c0K. In this case, it is classically known that S must
be a round sphere (see, for instance, [7] or [11]).

3 A Conformal Representation

In this section we obtain an explicit conformal representation for GL-surfaces. A different
representation for L-surfaces was given by Wang in [21]. In particular, Wang got a
local conformal representation for an L-surface u : D −→ L4, u = (u1, u2, u3, u4), in
the 4-dimensional Lorentz-Minkowski space L4. Then, from the 2-parameter family η of
spheres in R3 centered at (u1, u2, u3) with radius −u4, he obtains two dual L-surfaces as
the enveloping surfaces of η and proves that any L-surface can be locally obtained by
this construction. We provide a global conformal representation which depends on three
geometric data: a real harmonic function, a meromorphic one and a holomorphic 1-form.

We also refer the reader to [18], where a representation for L-isothermic surfaces
which are L-minimal is obtained, and to [15, Proposition 8], where the authors provide a
Weiertrass-like formula for nondegenerate L-minimal surfaces of spherical type.

Let ψ : S −→ R
3 be an immersion with Gauss map N = (N1, N2, N3) and denote by

g : S −→ C ∪ {∞} the composition of the stereographic projection from the north pole
with N , that is,

g =
N1 + i N2

1−N3
.
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As usual, we will also call g the Gauss map of the immersion ψ.
We observe that N can be obtained from g as

N =

(
g + g

1 + |g|2
,−i

g − g

1 + |g|2
,
−1 + |g|2

1 + |g|2

)
. (4)

From now on, if ψ : S −→ R
3 is a GL-immersion then we will consider S as a Riemann

surface with the conformal structure induced by h. Thus, from Remark 1, N is conformal
for the metric h, or equivalently, g : S −→ C ∪ {∞} is a meromorphic function.

Moreover, R is a harmonic real function for the Riemann surface S, since ∆hR = 0.
We denote by ∂R the (1,0)-part of dR for S, which is a holomorphic 1-form, that is,
∂R = Rz dz for any local conformal parameter z for the Riemann surface S.

Theorem 2 Let ψ : S −→ R3 be a non flat GL-surface, with Gauss map g, such that
H = RK. Then there exists a holomorphic 1-form ω such that the immersion ψ can be
recovered as

ψ = −RN +Re

∫ (
∂R + ω

g
+ g (∂R − ω), i

∂R + ω

g
− i g (∂R − ω), 2ω

)
. (5)

Conversely, let S be a simply connected Riemann surface, g : S −→ C ∪ {∞} a non
constant meromorphic function, ω a holomorphic 1-form and R : S −→ R a real harmonic
function, such that if g has a zero (resp. a pole) of order n ∈ N at p ∈ S, then ∂R + ω
(resp ∂R − ω) has a zero of order greater than or equal to n at p. Then (5) defines a
GL-surface wherever

∣∣∣∣
ω + ∂R

g
+ ḡ(ω − ∂R)

∣∣∣∣
2

−R2 4|dg|2

(1 + |g|2)2
6= 0 (6)

with Gauss map g and H = RK.

Proof: Since ψ is a non flat immersion then, from Proposition 1, the points where the
Gaussian curvature vanishes are isolated. Thus, if we denote by S0 = {p ∈ S : K(p) 6= 0}
then ψ : S0 −→ R

3 is an L-immersion and

∆III(ψ +RN) = 0

for all p ∈ S0 (see, for instance [13]).
Since h and III are conformal Riemannian metrics on S0, then ∆h(ψ + RN) = 0 on

S0 and so it is on S by continuity. Thus, we can consider the three holomorphic 1-forms

Φk = ∂ (ψk +RNk) , k = 1, 2, 3.

On the other hand, if z is a local conformal parameter for h then the third fundamental
form and the second fundamental form of the immersion can be written as

III = 2 〈Nz, Nz̄〉 |dz|
2

II = 〈ψz,−Nz〉 dz
2 + 2〈ψz,−Nz̄〉 |dz|

2 + 〈ψz̄,−Nz̄〉 dz̄
2,
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where again we have used that h and III are conformal, that is, 〈Nz, Nz〉 ≡ 0.
Hence, a straightforward computation gives (see also [14, Eq. 8])

〈ψz,−Nz̄〉

〈Nz, Nz̄〉
=
H

K
= R

on S0 and so, by continuity, 〈ψz +RNz, Nz̄〉 = 0 on S.
This let us obtain

〈(φ1, φ2, φ3) , Nz̄〉 = 〈(ψ +RN)z , Nz̄〉 = 〈ψz +RNz, Nz̄〉 = 0, (7)

where Φk = φk dz, k = 1, 2, 3.
From (4),

Nz̄ =
gz

(1 + |g|2)2
(
1− g2, i(1 + g2), 2g

)

and from (7) one gets

(1− g2)φ1 + i(1 + g2)φ2 + 2gφ3 = 0. (8)

On the other hand, we obtain Rz = 〈(ψ +RN)z , N〉 = 〈(φ1, φ2, φ3) , N〉, that is, using
(4)

(g + g)φ1 − i(g − g)φ2 + (|g|2 − 1)φ3 = Rz(1 + |g|2). (9)

By using (8) and (9), the functions φ1 and φ2 can be obtained as

2φ1 =
Rz + φ3

g
+ g (Rz − φ3),

2φ2 = i
Rz + φ3

g
− i g (Rz − φ3).

Therefore, by taking ω = Φ3, we obtain from

ψz + (RN)z = (φ1, φ2, φ3)

the representation formula (5).
Conversely, let S be a Riemann surface and consider ψ : S −→ R

3 given by (5). From
the conditions between the zeroes and poles of g, ∂R+ω and ∂R−ω, we obtain that the
three 1-forms which must be integrated in (5) are well-defined on S and so the map ψ is.

Given a local conformal parameter z for S, then

〈ψz, ψz̄〉
2 − 〈ψz, ψz〉〈ψz̄, ψz̄〉 =

(
(1 + |g|2)4|φ3|

2 − 4|g|2|gz|
2R2 + (1− |g|4)2|Rz|

2 + (1 + |g|2)3(1− |g|2)(φ3Rz̄ + φ3Rz)

2|g|2(1 + |g|2)2

)2

,

where ω = φ3dz. Thus, ψ is an immersion if and only if (6) is satisfied.
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A direct computation gives 〈ψz, N〉 = 0, that is, N , or equivalently g, is the Gauss
map of the immersion.

Moreover, the second and third fundamental forms are given by

II = −

(
ω +

1− |g|2

1 + |g|2
∂R

)
dg

g
+

4R |dg|2

(1 + |g|2)2
−

(
ω +

1− |g|2

1 + |g|2
∂R

)
dg

g

III =
4 |dg|2

(1 + |g|2)2

(10)

Hence, at any point where K 6= 0 (or equivalently gz 6= 0) we have

H

K
=

〈ψz,−Nz̄〉

〈Nz, Nz̄〉
= R,

and so H = RK on S by continuity.
In addition, since the third fundamental form and the Riemannian metric h are

conformal, and 〈Nz, Nz〉 ≡ 0, the conformal structure given by h is the one of S. Therefore,
∆hR = 0, that is, ψ is a GL-immersion.

�

This conformal representation coincides with the classical Weierstrass representation
for minimal surfaces when R = 0, and is also valid for the linear Weingarten surfaces
satisfying H = c0K, c0 ∈ R.

Moreover, if ψ lies on a plane, the previous representation also works by taking g as a
constant.

Finally, we observe that the Gauss curvature of the GL-immersion can be easily
computed from (10) as

K =

4|dg|2

(1+|g|2)2

R2 4|dg|2

(1+|g|2)2
−
∣∣∣ω+∂R

g
+ ḡ(ω − ∂R)

∣∣∣
2 . (11)

4 Completeness of the Laguerre metric

Let ψ be an L-immersion in R
3. It is well-known that the quadratic form

hL =
H2 −K

K2
III

is invariant under the Laguerre group and, in fact, it is a Riemannian metric if ψ has
no umbilical point, that is, if H2 − K 6= 0. This is called the Laguerre metric of the
immersion.

From (10) and (11) the Laguerre metric can be computed as

hL =
H2 −K

K2
III =

(
R2 −

1

K

)
III =

∣∣∣∣
ω + ∂R

g
+ ḡ(ω − ∂R)

∣∣∣∣
2

. (12)

As a consequence we obtain a global property on complete L-surfaces.
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Theorem 3 Let ψ : S −→ R
3 be an L-immersion with complete Laguerre metric. Then

the Euclidean Gaussian curvature of the immersion is negative everywhere.

Proof: Let us assume that the immersion has a point of positive Euclidean Gaussian
curvature. Then, from Proposition 1, K > 0 everywhere. So, from (12), the conformal
metric R2 III satisfies hL ≤ R2 III and then R2 III is a complete metric on S (with R
different from 0 everywhere).

Since R is harmonic and III is a metric of constant curvature 1, we obtain that
the curvature of the conformal metric R2 III must be positive at every point. Thus,
using the classical Huber Theorem, we obtain that S is conformally equivalent to either a
compact surface or a compact surface minus a finite number of points. In particular, S is
a parabolic Riemann surface and R is a harmonic function on S with R 6= 0. Therefore,
R must be a constant c0.

In such a case, R2 III = c20 III is a complete metric on S of positive constant curvature
and so, using Gauss-Bonnet, S is a topological sphere.

On the other hand, from (10), the (2,0)-part of II with respect to the Riemann surface
S is the holomorphic quadratic form −ω dg/g. But a quadratic holomorphic form on a
sphere must vanish identically. Therefore, from (10), II and III are conformal metrics,
or equivalently, ψ is a totally umbilical immersion. But this is impossible since hL is not
degenerate, which proves the result.

�

Remark 2 A GL-immersion with Euclidean Gaussian curvature K > 0 at any point and
associated complete metric h must be a totally umbilical round sphere. For proving that,
it is enough to observe that the conformal metric R2 III is complete since

h = 2RII − I =
1

K
III ≤ R2 III,

and the proof follows as in the previous theorem.
In particular we have an alternative proof of the fact that a compact GL-surface must

be a totally umbilical round sphere.

We also study the relation between the Euclidean completeness of an immersion and
the completeness of the Laguerre metric.

Theorem 4 Let ψ : S −→ R
3 be an Euclidean complete immersion with negative curvature.

Then the Laguerre metric hL of the immersion is complete.

Proof: Let p be a point of S. Since K(p) < 0, there exist doubly orthogonal coordinates
(u, v) in a neighbourhood of p such that the first fundamental form and the second
fundamental form of the immersion are given by

I = E du2 +Gdv2, II = k1E du
2 + k2Gdv

2

where E,G are positive functions and k1, k2 are its principal curvatures.
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Thus, the third fundamental form is written as III = k21 E du
2 + k22 Gdv

2 and the
Laguerre metric as

hL =
H2 −K

K2
III =

1

4

(
1

k1
−

1

k2

)2 (
k21 E du

2 + k22 Gdv
2
)
=

=
1

4

((
1−

k1
k2

)2

E du2 +

(
1−

k2
k1

)2

Gdv2

)
≥

1

4
I, (13)

where we have used that k1k2 < 0.
This inequality proves that the completeness of I implies that the Laguerre metric is

also complete.
�

Let ψ : S −→ R
3 be a non flat GL-immersion with Euclidean Gaussian curvature

K ≤ 0. It is worth pointing out that the Laguerre metric is a well defined metric on the
set of isolated points with K = 0. For that, let us first observe that, from (12), hL is
a well-defined quadratic form on every GL-immersion since (ω + ∂R)/g and g(ω − ∂R)
are holomorphic 1-forms (Theorem 2). Besides, if p ∈ S with K(p) = 0 then there
exists a punctured neighborhood of p where K < 0. Thus, from (13), I ≤ 4hL in this
neighborhood, and so I(p) ≤ 4hL(p). Therefore, hL is also a Riemannian metric at p.

On the other hand, it is important to bear in mind that the converse of Theorem 4 is
not true, that is, the Laguerre completeness does not imply the Euclidean completeness.
Let us show this in the following example.

Example 3 Let us consider the L-immersion given by Theorem 2 for S = C ≡ R
2 with

R =
z2 + z̄2

2
, ω = −z dz, g(z) = −

1

z
, z ∈ C.

That is,

ψ(u, v) =

(
−2u(1 + 2v2)

1 + u2 + v2
,
−2v(1 + 2u2)

1 + u2 + v2
,
−2u2 + 2v2

1 + u2 + v2

)

where z = u+ i v (see Figure 1).
A direct computation gives us

I =
4(1 + 2v2)2

(1 + u2 + v2)2
du2 +

4(1 + 2u2)2

(1 + u2 + v2)2
dv2

and a complete Laguerre metric hL = 4(du2 + dv2).
It is easy to see that the curve α(t) = ψ(t, 0), t ≥ 0, has Euclidean length

L(α) =

∫ ∞

0

2

1 + t2
dt = π,

which proves that the induced metric I is not complete. �
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Figure 1: Complete flat L-surface.

This example gives us a complete flat immersion for the Laguerre metric with vanishing
Laguerre form (see [12, Theorem 5.1]). In [19], Song and Wang prove that an L-surface
with constant Laguerre curvature must be flat and this surface is Laguerre equivalent to a
surface with vanishing mean curvature in a degenerate hyperplane R3

0 of the 4-dimensional
Lorentz-Minkowski space.

We use the conformal representation given by Theorem 2 in order to classify the GL-
surfaces in R

3 with flat Laguerre metric.

Theorem 5 Let ψ : S −→ R
3 be a GL-surface with flat Laguerre metric. Then, up to an

isometry of R3, the immersion can be locally parameterized as

ψ(u, v) =

(
2u−

4RRu

4 +R2
u +R2

v

,−2v +
4RRv

4 +R2
u +R2

v

,
8R

4 +R2
u +R2

v

)
(14)

for suitable local conformal parameters (u, v) ∈ Ω ⊆ R
2, where the harmonic function

R(u, v) must satisfy |RRzz| 6= 1 + |Rz|
2, z = u+ iv.

Moreover, if hL is complete then ψ is, up to an isometry of R3, globally parameterized
as in (14) with (u, v) ∈ R

2 and |RRzz| < 1 + |Rz|
2.

Proof: Let us take p ∈ S with Euclidean Gaussian curvature K(p) 6= 0. Up to a rotation
in R

3 we can assume N(p) = (0, 0,−1), or equivalently, g(p) = 0. Now, using (12) and
that hL is flat, we have that the metric agrees locally with the modulus of a holomorphic
1-form, that is, ∣∣∣∣

ω + ∂R

g
+ ḡ(ω − ∂R)

∣∣∣∣
2

= |a(z)dz|2 (15)

in a neighborhood of p, where a(z) is a holomorphic function for the local conformal
parameter z.
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Since K(p) 6= 0 we have that dg 6= 0 at p, and using that g is meromorphic with
g(p) = 0 then we can take ζ = g as a local parameter in a neighborhood of p.

On the other hand, since hL cannot vanish at p and g(p) = 0, the holomorphic 1-form
(ω + ∂R)/g cannot vanish in a neighborhood of p. Thus, from (15), we obtain

|1 + ζ̄ b(ζ)|2 = |c(ζ)|2 (16)

in a neighborhood of ζ = 0, where b(ζ) and c(ζ) are holomorphic functions with

b(ζ) = g
ω − ∂R

ω + ∂R
. (17)

If we evaluate (16) at ζ = 0 we obtain |c(0)| = 1. Moreover, if we derive (16), with
respect to ζ , n ≥ 2 times, we have

ζ̄
dnb(ζ)

dζn
+ ζ b(ζ)

dn(ζ b(ζ))

dζn
= c(ζ)

dnc(ζ)

dζn
.

Thus, for ζ = 0, we obtain dnc(ζ)
dζn

(0) = 0 for any n ≥ 2, because |c(0)| = 1. Hence,

c(ζ) = c0 + c1 ζ , and so b(ζ) must be a constant b0 from (16).
Then, from (17), we obtain that

g
ω − ∂R

ω + ∂R
= b0

in a neighborhood of p. But this must be globally true on S by analyticity.
Therefore, the holomorphic 1-form ω can be recovered from g and R as

ω =
g + b0
g − b0

∂R,

and

hL = 4

∣∣∣∣
(1 + b0 ḡ)∂R

g − b0

∣∣∣∣
2

= 4

∣∣∣∣
(1 + b0 g)∂R

g − b0

∣∣∣∣
2

.

Since hL is a flat metric, given q ∈ S, there exists a conformal parameter w = u+ iv
in a neighborhood of q such that hL = 4|dw|2 = 4(du2+ dv2). Moreover, if hL is complete
then the parameter w is globally defined in C ≡ R

2.
So, up to a change of parameter w̃ = eiθ w, θ ∈ R, if necessary, we have

(1 + b0 g)∂R

g − b0
= dw.

Hence, we can calculate g and ω in terms of R as

g =
b0 +Rw

1− b0Rw

, ω =
2b0 + (1− |b0|

2)Rw

1 + |b0|2
. (18)
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Thus, using Theorem 2, the immersion is, up to a translation, given by

ψ1(u, v) =
(1− b21 + b22)(2u−

4RRu

4+R2
u
+R2

v

)− 2b1b2(−2v + 4RRv

4+R2
u
+R2

v

)− 2b1
8R

4+R2
u
+R2

v

1 + b21 + b22
,

ψ2(u, v) =
−2b1b2(2u−

4RRu

4+R2
u
+R2

v

) + (1 + b21 − b22)(−2v + 4RRv

4+R2
u
+R2

v

)− 2b2
8R

4+R2
u
+R2

v

1 + b21 + b22
,

ψ3(u, v) =
2b1(2u−

4RRu

4+R2
u
+R2

v

) + 2b2(−2v + 4RRv

4+R2
u
+R2

v

) + (1− b21 − b22)
8R

4+R2
u
+R2

v

1 + b21 + b22
,

where b0 = b1 + ib2.
Therefore, the immersion is given by (14) when we compose with the isometry of R3,

Φ(x) = Ax, for the orthogonal matrix

A =
1

1 + b21 + b22




1− b21 + b22 −2b1b2 2b1
−2b1b2 1 + b21 − b22 2b2
−2b1 −2b2 1− b21 − b22



 .

Let us observe that the formula (14) is obtained from Theorem 2 when we take b0 = 0
in (18). Hence, from (6), the immersion is not degenerated at any point if, and only if,
|RRzz| 6= 1 + |Rz|

2. In addition, if hL is complete then, from Theorem 3 and using that
hL is well-defined at the isolated points with K = 0, its Euclidean Gaussian curvature
must be non positive. So we finally get |RRzz| < 1 + |Rz|

2 (see (11)).
�

5 The Björling Problem for GL-Surfaces

Let ψ : S −→ R3 be a non flat GL-surface. Consider a real interval I, a regular analytic
curve α(s) : I −→ S and take β(s) = (ψ ◦α)(s), V (s) = (N ◦α)(s), r(s) = (R ◦ψ ◦α)(s).

By the inverse function theorem there exists a local conformal parameter z for the
metric h, defined in a complex domain Ω containing I, such that its real part is s, i.e.
z = s+ it. Thus,

ψ(s, 0) = β(s) ∀s ∈ I, (19)

N(s, 0) = V (s) ∀s ∈ I, (20)

R(s, 0) = r(s) ∀s ∈ I. (21)

Our aim is to recover the immersion ψ in a neighborhood of the curve α(s) from (19),
(20) and (21). However, we will observe that this information does not provide uniqueness,
and so we will need to add another condition. In particular we will see that adding the
initial data

Rt(s, 0) := d(s) ∀s ∈ I

12



to the previous ones, we can recover ψ univocally. That is, we want to recover completely
the immersion ψ in terms of the value of ψ,N,R and Rt along a curve α(s). Among others,
we refer the reader to [1, 2, 9, 10] where different Björling type problems are studied.

In order to do that, let us consider the holomorphic map

Φ(z) = (ψ(z) +R(z)N(z))z

=
1

2

{
∂ψ

∂s
(z) +R(z)

∂N

∂s
(z) +

∂R

∂s
(z)N(z)

}

−
i

2

{
∂ψ

∂t
(z) +R(z)

∂N

∂t
(z) +

∂R

∂t
(z)N(z)

}
.

This map can be computed along the curve α as

Φ(s) =
1

2
{β ′(s) + r(s)V ′(s) + r′(s)V (s)}

−
i

2

{
∂ψ

∂t
(s) + r(s)

∂N

∂t
(s) + d(s)V (s)

}
,

where ψt(s), Nt(s) must be calculated.
Let us write the second and third fundamental forms as

II = eds2 + 2fdsdt+ gdt2, III = λ(ds2 + dt2),

where we have used that z is a conformal parameter for h and so for III.
Since 〈Ns, Ns〉 = 〈Nt, Nt〉 and 〈Ns, Nt〉 = 0 we have −Nt = N ×Ns and so

−Nt(s) = V (s)× V ′(s).

Up to at the isolated points where the Euclidean Gauss curvature vanishes, Ns and
Nt are a basis of the tangent plane. Hence, from the expressions of II and III we have

ψt =
1

λ
(−f Ns − g Nt) ,

wherever K 6= 0.
Since λ(s) = 〈V ′(s), V ′(s)〉, f(s) = 〈β ′(s), V (s) × V ′(s)〉 and g(s) can be calculated

from the equality

R =
H

K
=
e+ g

2λ

as g(s) = 2r(s)〈V ′(s), V ′(s)〉+ 〈V ′(s), β ′(s)〉, we obtain

ψt(s) = −
〈β ′(s), V (s)× V ′(s)〉

〈V ′(s), V ′(s)〉
V ′(s)−

(
2r(s) +

〈V ′(s), β ′(s)〉

〈V ′(s), V ′(s)〉

)
V (s)× V ′(s).

With all of this,

Φ(s) =
1

2
β ′(s) + a1(s) V (s) + a2(s) V

′(s) + a3(s) V (s)× V ′(s) (22)

13



where

a1(s) =
r′(s)− i d(s)

2
, a2(s) =

1

2

(
r(s) + i

〈β ′(s), V (s)× V ′(s)〉

〈V ′(s), V ′(s)〉

)
,

a3(s) = −
i

2

(
r(s) +

〈V ′(s), β ′(s)〉

〈V ′(s), V ′(s)〉

)
.

Therefore, the holomorphic function Φ(z) = (ψ(z) +R(z)N(z))z can be recovered as
the complex analytic extension of Φ(s) in a complex domain D ⊆ Ω with I ⊆ D.

Analogously, the holomorphic function g(z) can be obtained as the complex analytic
extension of

g(s) =
V1(s) + iV2(s)

1− V3(s)
. (23)

So, N(z) can be calculated from g(z) using (4).
In the same way, since Rz is a holomorphic function and

Rz(s) =
1

2
(Rs(s)− iRt(s)) =

1

2
(r′(s)− id(s)),

we get

R(z) = Re(r(z)) + Im

(∫ z

z0

d(w) dw

)
, (24)

with z0 ∈ I.
This allows us to recover the immersion in terms of the initial data:

Theorem 6 Let ψ : S −→ R
3 be a non flat GL-surface, I a real interval, α(s) : I −→ S

a regular analytic curve, β(s) = (ψ ◦ α)(s), V (s) = (N ◦ α)(s) and r(s) = (R ◦ ψ ◦ α)(s).
Let z be a local conformal parameter for the metric h, defined in a complex domain Ω
containing I, such that its real part is s, i.e. z = s+ it, and take d(s) = (R ◦ ψ)t ◦ α(s).
Then we can recover ψ in a certain domain D ⊆ Ω, I ⊆ D, as

ψ(z) = β(z0) + r(z0) V (z0)− R(z)N(z) + 2Re

∫ z

z0

Φ(w) dw, (25)

where Φ(z) is the complex analytic extension of (22), N(z) is obtained from the complex
analytic extension g(z) of (23), R(z) is given by (24) and z0 ∈ I.

Conversely, let β(s), V (s) : I −→ R
3 be two non constant analytic curves with 〈β ′(s), V (s)〉 =

0 and let r(s), d(s) : I −→ R be two analytic functions. Then the map ψ(z) given by (25)
is, at its regular points, a GL-surface with Gauss map N and conformal parameter z,
satisfying H = RK. Moreover, for s ∈ I one gets ψ(s) = β(s), N(s) = V (s), R(s) = r(s)
and Rt(s) = d(s), where z = s+ i t.

Proof: For the converse part, let us start by observing that

〈(ψ +RN)z, Nz̄〉 =
gz

(1 + |g|2)2
〈Φ(z), (1− g2, i(1 + g2), 2g)〉.
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As 〈Φ(z), (1− g2, i(1+ g2), 2g)〉 is a holomorphic function and a direct computation gives
〈(ψ +RN)z, Nz̄〉 = 0 for z = s ∈ I then

〈(ψ +RN)z, Nz̄〉 ≡ 0. (26)

From this equality, and using that R(z) is harmonic and |N(z)| = 1, we have

∂
∂z̄
〈ψz, N〉 = 〈ψzz̄, N〉+ 〈ψz, Nz̄〉 = 〈−RNzz̄, N〉+ 〈−(RN)z, Nz̄〉

= −R(〈Nzz̄, N〉+ 〈Nz, Nz̄〉) = 0.

In addition, since 〈ψz, N〉 = 0 on I, we have that 〈ψz, N〉 ≡ 0 and N is the unit normal
of ψ.

On the other hand, since g(z) is holomorphic, or equivalently, N(z) is a conformal
map, one has that z is a conformal parameter for III at the points where ψ(z) is an
immersion with K(z) 6= 0.

From (26), 〈ψz +RNz, Nz̄〉 ≡ 0, and so at the regular points with K(z) 6= 0 one gets

H

K
=

〈ψz,−Nz̄〉

〈Nz, Nz̄〉
= R.

But since K(z) = 0 only happens at the points where g′(z) = 0, we have that the regular
points with vanishing K are isolated. Therefore, H = RK at the regular points of ψ, z
is a conformal parameter for h (because h and III are conformal) and ∆hR = 0 as we
wanted to show.

Finally, it is a straightforward computation to prove that the initial conditions for
z = s ∈ I are satisfied.

�

As an example of the use of the above theorem, we will study the rotational GL-
surfaces. It is important to observe that the following process can be realized not only
for revolution GL-surfaces but for any GL-surface invariant under an 1-parameter group
of the 10-dimensional Laguerre group.

Let S be a rotational surface with respect to the axis OZ = {(0, 0, x3) : x3 ∈ R}.
Up to a Laguerre transformation given by a vertical translation and a dilation, we can
assume that (1, 0, 0) ∈ S.

Since S is a rotational surface, the curve given up to a reparameterization by

β(s) = (cos s, sin s, 0), s ∈ R,

is contained in S, and the unit normal along β(s) must be given by the rotation of
V (0) = (cos ρ, 0, sin ρ) for a certain constant ρ ∈ [0, 2π), that is,

V (s) = (cos ρ cos s, cos ρ sin s, sin ρ), s ∈ R.

Observe that if cos ρ = 0 then V (s) = (0, 0,±1) and so the Gauss map g(z) is a
constant, that is, S lies on a plane. Otherwise, g(s) = ei s cos ρ/(1− sin ρ) and

g(z) =
ei z cos ρ

(1− sin ρ)
.
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Hence, the unit normal is given by

N(s+ i t) =

(
2aet cos s

a2 + e2t
,
2aet sin s

a2 + e2t
,
a2 − e2t

a2 + e2t

)
,

where a = cos ρ/(1− sin ρ).
Let us note that the image of the unit normal along a parallel of S must be a parallel

of the unit sphere. So, from the expression of N we have that the parallels of S are
obtained when t is constant. On the other hand, R must be constant along any parallel
of the revolution surface S. Hence R only depends on t and so

R(s+ i t) = r + d t

for certain constants r, d ∈ R, since R must be harmonic with respect to the conformal
parameter z = s + i t.

Now, the map Φ(s) given by (22) can be computed as

Φ(s) =

(
−A sin s− i B cos s

2
,
A cos s− i B sin s

2
,−

i

2
C

)

where A = 1+ r cos ρ, B = − sin ρ+ cos ρ(d− r sin ρ) and C = cos ρ(1 + r cos ρ) + d sin ρ.
Therefore, S can be recovered as

ψ1 =

(
A cosh t+B sinh t− (r + d t)

2 a et

a2 + e2t

)
cos s

ψ2 =

(
A cosh t+B sinh t− (r + d t)

2 a et

a2 + e2t

)
sin s

ψ3 = C t+D − (r + d t)
a2 − e2t

a2 + e2t

with D = r sin ρ.
In order to simplify the expression of ψ we consider the reparameterization ψ∗(s, t) =

ψ(s, t+ t0) where we choose t0 such that et0 = a if a > 0. Then, using the relations of the
constants a, d, A,B, C

A =
C + d

2 a
+
a(C − d)

2
, B =

C + d

2 a
−
a(C − d)

2
,

we obtain, up to a vertical translation,

ψ∗
1 =

(
C cosh t+ d

(
sinh t−

t

cosh t

)
− r∗

1

cosh t

)
cos s

ψ∗
2 =

(
C cosh t+ d

(
sinh t−

t

cosh t

)
− r∗

1

cosh t

)
sin s

ψ∗
3 = C t+ (d t+ r∗) tanh t,

where r∗ = r+d t0. If a < 0 then we choose t0 such that et0 = −a. In this case, we obtain,
up to a reparameterization, one of the previous examples. Therefore, we have proved
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Figure 2: Generatrices of ψc, ψs and ψp

Proposition 7 Any non flat revolution GL-surface with respect to the OZ axis is, up to
a vertical translation, given by

a1ψc + a2ψs + a3ψp

for three real constants a1, a2, a3, where ψc is a catenoid, ψs is a sphere and ψp is a
revolution surface with a pick (see Figure 2), parameterized as,

ψc(s, t) = (cosh t cos s, cosh t sin s, t),

ψs(s, t) =

(
cos s

cosh t
,
sin s

cosh t
,− tanh t

)
,

ψp(s, t) =

(
(sinh t−

t

cosh t
) cos s, (sinh t−

t

cosh t
) sin s, t tanh t

)
.
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