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b, cDepartamento de Geometrı́a y Topoloǵıa, F. Ciencias, Universidad de Granada, 18071 Granada, Spain
e-mails: jespinar@ugr.es, jagalvez@ugr.es

Abstract. We obtain height estimates for compact embedded surfaces with positive constant mean cur-
vature in a Riemannian product spaceM2 × R and boundary on a slice. We prove that these estimates
are optimal for the homogeneous spacesR3, S2 × R andH2 × R and we characterize the surfaces
for which these bounds are achieved. We also give some geometric properties on properly embedded
surfaces without boundary.

1 Introduction

The existence of height estimates for a wide class of surfaces in a 3-dimensional ambient space reveals,
in general, important properties on the geometric behaviour of these surfaces, as well as existence and
uniqueness results (see for instance [H], [HLR], [KKMS], [KKS], [R] and [RS]).

E. Heinz [H] showed that a compact graph with positive constant mean curvatureH in R3 and
boundary on a plane can reach at most a height1/H from the plane. Actually, this estimate is optimal
because it is attained by the hemisphere of radius1/H. As a consequence, a compact embedded surface
with constant mean curvatureH 6= 0 and boundary on a plane is at most a distance2/H from that plane.

An optimal bound was also obtained for graphs and for compact embedded surfaces in the hyperbolic
3-spaceH3 with non zero constant mean curvature and boundary on a plane by N. Korevaar, R. Kusner,
W. Meeks and B. Solomon [KKMS].

Later, H. Rosenberg [R] exhibited an optimal bound for surfaces with positive constant Gauss curva-
ture inR3 andH3 (see also [GM]). In fact, he demonstrated the existence of optimal height estimates for
hypersurfaces with a positive constant symmetric function of curvature in the Euclidean and hyperbolic
n-space.
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These estimates in the Euclidean 3-space were generalized by H. Rosenberg and R. Sa Earp [RS]
(see also [GMM]). They obtained an optimal height estimate for a large class of Weingarten surfaces in
R3.

On the other hand, for the product spaceM2 × R of a Riemannian surfaceM2 and the real lineR,
height estimates have recently been exhibited by D. Hoffman, J.H.S. de Lira and H. Rosenberg [HLR]
for a surface with positive constant mean curvatureH and boundary on a slice (see also [CR]). However,
these estimates are not optimal and do not work for every expected value ofH, see [HLR, Remark 1].

In this paper, we obtain adjusted height estimates for graphs and compact embedded surfaces with
positive constant mean curvature inM2×R and boundary on a slice, in such a way that they are optimal
whenM2 is a space form, that is, for the homogeneous spacesR3, S2 ×R andH2 ×R.

We also show that if these bounds are reached for a graphΣ on a domainΩ ⊆ M2, thenΩ has con-
stant Gauss curvature and the Abresch-Rosenberg differential [AR] must vanish identically. In particular,
Σ must be a hemisphere of a complete rotational sphere with constant mean curvature ifM2 × R is a
homogeneous space. Moreover, these estimates are valid for allH > 1/2 in H2 ×R as it was expected
(see [HLR, Remark 1]).

Finally, using Alexandrov reflection principle for surfaces with constant mean curvature and follow-
ing the ideas given in [HLR], we get some geometric properties of properly embedded surfaces without
boundary.

2 Main Results

Throughout this paper we will deal with a 3-dimensional ambient spaceM2 ×R given by the product of
a Riemannian surface without boundaryM2 and the real lineR. In particular, the homogeneous spaces
R3, S2 ×R andH2 ×R are contained in this family of manifolds.

Let us denote bygM2 the metric ofM2. Then the metric ofM2 × R is given by〈 , 〉 = gM2 + dt2.
Let us consider now a surfaceS and an immersionψ : S −→ M2 × R of mean curvatureH and

Gauss mapN . If we take a conformal parameterz for the induced metric onS via ψ, then the first and
second fundamental forms can be written, respectively, as

I = λ |dz|2
II = p dz2 + λH |dz|2 + p dz̄2,

(2.1)

wherep dz2 = 〈−∇ ∂
∂z

N, ∂
∂z 〉 dz2 is the Hopf differential ofψ and∇ is the Levi-Civita connection of

M2 × R.
Let π1 : M2 × R −→ M2 andπ2 : M2 × R −→ R be the usual projections. If we denote by

h : S −→ R the height function, that is,h(z) = π2(ψ(z)), andν = 〈N, ∂
∂t〉, then we have:
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Lemma 2.1. Given an immersionψ : S −→M2 × R, the following equations must be satisfied:

|hz|2 =
1
4

λ (1− ν2) (2.2)

hzz =
λz

λ
hz + p ν (2.3)

hzz̄ =
1
2

λH ν (2.4)

νz = −H hz − 2
λ

phz̄ (2.5)

pz̄ =
λ

2
(Hz + k ν hz) (2.6)

wherek(z) stands for the Gauss curvature ofM2 at π1(ψ(z)).

Proof. Let us write
∂

∂t
= T + ν N

whereT is a tangent vector field onS. Since∂
∂t is the gradient inM2 × R of the functiont, it follows

thatT is nothing but the gradient ofh onS.
Thus, from (2.1), one getsT = 2

λ(hz̄
∂
∂z + hz

∂
∂z̄ ) and so

1 = 〈 ∂
∂t

,
∂

∂t
〉 = 〈T, T 〉+ ν2 =

4 |hz|2
λ

+ ν2,

that is, (2.2) holds.
On the other hand, from (2.1) we have

∇ ∂
∂z

∂

∂z
=

λz

λ

∂

∂z
+ pN

∇ ∂
∂z

∂

∂z̄
=

1
2

λH N (2.7)

−∇ ∂
∂z

N = H
∂

∂z
+

2
λ

p
∂

∂z̄
.

The scalar product of these equalities with∂
∂t gives us (2.3), (2.4) and (2.5), respectively.

Finally, from (2.7) we get

〈∇ ∂
∂z̄
∇ ∂

∂z

∂

∂z
−∇ ∂

∂z
∇ ∂

∂z̄

∂

∂z
,N〉 = pz̄ − 1

2
λ Hz.

Hence, using the relationship between the curvature tensors of a product manifold (see, for instance,
[O, p. 210]), the Codazzi equation becomes

1
2

λ k ν hz = pz̄ − 1
2

λHz,

that is, (2.6) holds.
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It should be observed that the equations given in Lemma 2.1 are the integrability equations in the
case of a surface inS2 ×R andH2 ×R, see [FM] and [D].

Now, in order to obtain some height estimates, let us first describe the only topological spheres with
constant mean curvature which can be embedded in the homogeneous product spaces.

Let us consider the 2-dimensional hyperbolic space of curvaturec < 0

H2(c) = {(x1, x2, x3) ∈ R3 : −x2
1 + x2

2 + x2
3 =

1
c
, x1 > 0}

with the metric induced by the quadratic form−dx2
1 +dx2

2 +dx2
3. Let us also consider the 2-dimensional

sphere of curvaturec > 0

S2(c) = {(x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 =

1
c
}

with the metric induced by the standard Riemannian metric ofR3.
It is well-known that the only topological sphere with constant mean curvatureH > 0 which can be

immersed inR3 ≡ R2 ×R is the totally umbilical sphere of radius1/H.
RegardingH2(c) × R andS2(c) × R, it was shown by Abresch and Rosenberg [AR] that the only

such surfaces are the Hsiang and Pedrosa spheres which, up to congruences, can be parametrized as
follows:

• ForH2(c)×R, givenH0 > 1/2, let us take the revolution surface which results when we turn the
curveα(t) = 1√−c

(cosh k(t), sinh k(t), 0, h(t)),−1 ≤ t ≤ 1, around the axis{( 1√−c
, 0, 0)}×R,

with

k(t) = 2 arcsinh

(√
1− t2

4H2
0 − 1

)
, h(t) =

4H0√
4 H2

0 − 1
arcsin

(
t

2 H0

)
.

This surface has constant mean curvatureH =
√−cH0 and the height difference between its

upper point and its lower point is

8H√−4 cH2 − c2
arcsin

(√−c

2H

)
.

• With regard toS2(c)×R, givenH0 > 0, let us take the revolution surface which results when we
turn the curveα(t) = 1√

c
(− cos k(t), sin k(t), 0, h(t)),−1 ≤ t ≤ 1, around the axis{( 1√

c
, 0, 0)}×

R, with

k(t) = 2 arctan
(

2 H0√
1− t2

)
, h(t) =

4H0√
4H2

0 + 1
arcsinh

(
t√

1 + 4H2
0 − t2

)
.

This sphere has constant mean curvatureH =
√

cH0 and the height difference between its upper
point and its lower point is

8H√
4 cH2 + c2

arcsinh
( √

c

2H

)
.
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Observe that these surfaces are characterized by the fact that the Abresch-Rosenberg differential

Qdz2 = (2H p− c h2
z) dz2,

wherez is a conformal parameter, vanishes identically on them [AR]. That is, an immersion with constant
mean curvatureH > 0 (H >

√−c/2 whenc < 0) in a homogeneous product space such thatQ ≡ 0
must be a piece of one of the complete spheres described above.

Bearing that in mind, we can establish the following optimal estimate for the maximum height that a
surface with constant mean curvature can rise on a sliceM2 × {t0}.
Theorem 2.1. Let Σ ⊆ M2 × R be a compact graph on a setΩ ⊆ M2, with constant mean curvature
H > 0 and whose boundary is contained on the sliceM2 × {0}. Let c be the minimum of the Gauss
curvature onΩ ⊆M2. Then the maximum height thatΣ can rise onM2 × {0} is

4H√−4 cH2 − c2
arcsin

(√−c

2H

)
if c < 0 and H >

√−c

2
,

1
H

if c = 0,

4H√
4 cH2 + c2

arcsinh
( √

c

2H

)
if c > 0.

Moreover, if the equality holds, thenΩ has constant Gauss curvaturec and the Abresch-Rosenberg
differential vanishes identically onΣ. In particular, Σ must be a hemisphere of a complete example
described above ifM2 × R is a homogeneous space.

Proof. We can assume, without loss of generality, thatΣ lies over the sliceM2 × {0} and soν ≤ 0
everywhere. Moreover, in order to simplify the proof, we will suppose thatc is−1, 0 or 1. To do that it
is enough to consider, ifc 6= 0, the new metric onM2×R given by the quadratic form|c| gM2 + dt2 and
the surfaceΣ′ = {(x,

√
|c| t) ∈M2 × R : (x, t) ∈ Σ} which has constant mean curvatureH/

√
|c|.

By differentiating (2.5) with respect tōz and using (2.3), (2.4) and (2.6), one gets

νzz̄ = −k ν |hz|2 − 2
λ
|p|2 ν − H2

2
λ ν.

Then, from (2.2),

νzz̄ = −λ ν

4

(
k(1− ν2) +

8 |p|2
λ2

+ 2 H2

)
. (2.8)

In addition, from (2.5)

|νz|2 =
4 |p|2 |hz|2

λ2
+ H2 |hz|2 +

2H

λ
(p h2

z̄ + p h2
z),

and taking into account that

|Q|2 = 4 H2 |p|2 + |hz|4 − 2 cH(p h2
z̄ + p h2

z),
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we obtain, using also (2.2), that

|νz|2 =
( |p|2

λ
+

H2 λ

4

)
(1− ν2) +

c

λ

(
4H2 |p|2 +

λ2

16
(1− ν2)2 − |Q|2

)
(2.9)

whenc 6= 0.
Now, let us defineφ as the map onΣ given by

φ = h + g(ν), (2.10)

where the functiong will be chosen later. Then we have

φzz̄ = hzz̄ + g′(ν)νzz̄ + g′′(ν)|νz|2. (2.11)

Let us distinguish the casesc = 0 andc 6= 0 separately. First, ifc = 0 we takeg(s) = s/H. Thus,
one gets from (2.4), (2.8), (2.11) andk ≥ 0

φzz̄ = − ν

H

(
2 |p|2

λ
+ k |hz|2

)
≥ 0. (2.12)

On the other hand, ifc 6= 0, from (2.4), (2.8), (2.9) and (2.11)

φzz̄ = − c

λ
|Q|2 g′′(ν) +

|p|2
λ

(
(1− ν2 + 4 cH2)g′′(ν)− 2ν g′(ν)

)
+

+
λ

16
(
8H ν − (2H2 + k(1− ν2))4 ν g′(ν) + (4 H2 (1− ν2) + c (1− ν2)2)g′′(ν)

)
.

(2.13)

We chooseg to make the coefficient of the|p|2 term vanish andg′ > 0. Hence, the derivative ofg is
only determined up to a positive constantm0

g′(ν) =
m0

4H2 + c (1− ν2)

and so we have

g(ν) =
m0√

4H2 − 1
arcsin

(
ν√

4H2 − 1 + ν2

)
if c = −1,

g(ν) =
m0√

4H2 + 1
arcsinh

(
ν√

4H2 + 1− ν2

)
if c = 1.

By usingk ≥ c, we get from (2.13)

φzz̄ ≥ − 8H ν |Q|2
λ (4H2 + c(1− ν2))2

+
λ ν

8
(4H −m0). (2.14)

Therefore, takingm0 = 4H one hasφzz̄ ≥ 0.
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Consequently, for every value ofc we have thatφ ≤ 0 on the boundary of our surface∂Σ and, since
φzz̄ ≥ 0, it follows that the Laplacian ofφ verifies that∆φ ≥ 0 on Σ. Therefore,φ ≤ 0 everywhere on
Σ. Thus, by using thatg is strictly increasing one has

h ≤ −g(ν) ≤ −g(−1),

as we wanted to prove.
Finally, observe that if the maximum height is attained at a point thenφ vanishes identically onΣ.

But, from (2.2) and (2.4),|hz| cannot vanish on an open set ofΣ, or equivalentlyν 6≡ 1 on an open set,
becauseH > 0. Thus, it follows from (2.12) and (2.14) thatk ≡ c andQ ≡ 0.

Remark 2.1. In [HLR] height estimates were given for allH >
√
−c/2 whenc < 0. Here, we have

sharp bounds for allH >
√−c/2 andc < 0.

In addition, the requirementH >
√−c/2 whenc < 0 is essential, because there exists a revolution

surface inH2(c)×R with H =
√−c/2 which is a graph onH2 such that the height function attains a

minimum but not a maximum[AR] .

As a standard consequence of the Alexandrov reflection principle for surfaces of constant mean
curvature with respect to the slicesM2 × {t0}, we have the following corollaries (see [HLR]).

Corollary 2.1. Let c be the infimum of the Gauss curvature onM2 and Σ ⊆ M2 × R an embedded
compact surface with constant mean curvatureH > 0 (H >

√−c/2 if c < 0) and boundary contained
on the sliceM2 × {t0}. Then the maximum height thatΣ can attain onM2 × {t0} is

8H√−4 cH2 − c2
arcsin

(√−c

2H

)
if c < 0,

2
H

if c = 0, (2.15)

8H√
4 cH2 + c2

arcsinh
( √

c

2H

)
if c > 0.

Corollary 2.2. Letc be the infimum of the Gauss curvature onM2 andΣ ⊆M2×R a properly embedded
surface without boundary and with constant mean curvatureH > 0 (H >

√−c/2 if c < 0). Then

• If Σ is compact, the height difference between its upper point and lower point is less than or equal
to the one given by(2.15).

• If Σ is not compact andM2 is compact,Σ must have at least one top end and one bottom end.

These corollaries are an improvement of the corresponding ones given by Hoffman, de Lira and
Rosenberg [HLR], but their proofs are analogous to those.
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