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1 Introduction

In this work we deal with surfaces of constant Gaussian curvature in the ambient &ffaseR and
S? x R. This kind of surfaces was already studied by the authors in [AEG], where the following question
posed by Alencar, Do Carmo and Tribuzy in [ACT] was studied:

What are the closed surfaces of constant Gaussian curvatire inR andS? x R?

This question became natural after the classification of the surfaces with constant mean curvature and
genus zero due to Abresch and Rosenberg in [AR]. In particular, it was shown in [AEG] that the only
complete surfaces of constant Gaussian curvakiifg) > 0 in H* x R (K(I) > 1in S* x R) are
rotational surfaces. In addition, the authors proved the non existence of complete surfaces with constant
Gaussian curvatur& (I) < —1in H? x R andS? x R.

1The first author is partially supported by Junta de Comunidades de Castilla-La Mancha, Grant No PAI-05-034.
The authors are partially supported by MCYT-FEDER, Grant No MTM2004-02746
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Here we focus on two aspects of the surfaces of constant Gaussian curvature. On the one hand,
in Section 3 we obtain optimal height estimates for these surfaces when they have positive extrinsic
curvature, characterizing the rotational complete examples as the only surfaces for which the bounds
are attained. In general, height estimates for surfaces with any constant curvature (mean, Gaussian,
Weingarten surfaces, etc.) are a powerful tool to get geometrical information about such surfaces (see,
for instance, [AEGZ2], [H], [HLR], [KKMS], [KKS] and [RS]).

On the other hand, we provide a representation for the surfaces of constant Gaussian chir\igture
in terms of the height functior,, and the last coordinate of its unit normal(see Sections 4 and 5). We
pay special attention to the particular cases whed) agrees with the sectional curvature of the base
of the ambient space, that i&;(1) = 1in S* x R (resp. K(I) = —1 in H? x R), because then the
integrability equations reduce to an elliptic (resp. hyperbolic) sinh-Gordon equation. We also provide
complete examples of surfaceshiff x R with K (1) = —1 by means of its representation.

2 Preliminaries

Let us consider the homogeneous sp@tex R as the hypersurface of the usual Euclidean 4-sﬁh‘be
given by
S? xR = {(w1, 22,23, 24) € R*: x% +x§ +x§ =1}

Let us also denotBl® x R as the Riemannian submanifold of the Lorentzian 4-sfidgevith induced
metric—z? + 23 + 23 + 23, given by

H? x R = {(x1, 22,23, 24) € R* 1 —2? + 22 + 22 = -1, 21 > 0}.

As long as we do not need to distinguish between them explicitly, we will embracéothR and
S? x R under the usual notatidil®(¢) x R, withe = 1, —1, whereM?2(1) = S* andM?(—1) = H?.
Let 7 be the unit normal oM?(e) x R in the ambient spad&* or .* given by

n(x1, x2, 3, 24) = (21, T2, 23,0).

Let us consides as an orientable surface ard S — M?(e) x R an immersion with unit normal
vector field N and associated shape operatbrWe will denote byh the height function or®, that is,
the fourth coordinate immersion @f, and byv the fourth coordinate of the unit normal.

Unlike the case of immersions in a space form, the immergias not totally determined by the
Gauss and Codazzi equations. More precisely, the compatibility equations for such an immersion can be
written as (see [Da])

Gauss K(I)=K +¢ev? (2.1)
Codazzi VxAY —VyAX — AX,Y]=cv((Y,T)X — (X, T)Y) (2.2)
VT = vAX (2.3)

dv(X) = —(AX,T) (2.4)

IT|?+v* =1 (2.5)



for all differentiable vector fields{, Y on S. Here,V is the induced Levi-Civita connection i T'
is the gradient of the height functian ||7'|| its modulus for the induced metrié (/) is the Gaussian
curvature ands the extrinsic curvature of the immersion.

Throughout this paper we will deal with surfacesl\iﬁ?(e) x R with constant Gaussian curvature.
We will refer to such surfaces d§(7)—surfaces

3 Height Estimates for K (I)—Surfaces

Let S be a surface and : S — M?(¢) x R an immersion with positive extrinsic curvatut&, > 0.
Then its second fundamental forth], is definite. We will chooseV such that/ I is positive definite,
that is, N is the inner normal.

Let z be a conformal complex parameter for the Riemannian méfrid hen, we can write

I = (d,dy) = Edz® + 2F |dz|* + EdZ?,
IT = (dy,—dN) =2pldz|*.
In order to make some computations 8rwith respect to the second fundamental form, we will

rewrite the compatibility equations (2.1)-(2.5) in terms of the parameter
First, observe that the extrinsic curvature is given by

2
P
K=-= 3.1
5 (3.1)
whereD = |E|* — F2 < 0.
We can put
1
T = 5(0@ + @ds) (3.2)
where
o= FEh, — Fh; (3.3)

and, for instance), denotes the fiel%.
Now, takingX = 0; andY = 0, in (2.2), we have

V. AD. — Vo, Ad: = cv(h.0= — hs0.).

Thus, in order to obtain the information given by the previous equation (or equivalently (2.2)) we con-
sider, for instance, the inner product wiih

0:(AD,,05) — (AD.,V5.05) + (Ads,V.0,) = ev(h. E — h:F) = eva.

Therefore, (2.2) is equivalent to

Pz 1 2 v
+ Iy —T'3y) = ea—,
P 12— 122 P

wherel“fj, 1,7,k = 1,2, stand for the Christoffel symbols associated.td hus, for instance, the tangent

part of V_ 0, is given byTl'{, 9, + I'?,0; and the tangent part 5.0 is I'1,0, + I'2,0:.
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On the other hand, takin§ = 9., (2.3) becomes
Vo.T = v.A9,. (3.4)
Considering the inner product with
(Vo.T,0z) = 0:AT, 0z) — (T, Vp,0z) = haz — Tigh. — Tiyhs
v(Adz,0,) = vp

and so
h.z = Tish, + T3hs + vp.
And considering the inner product of (3.4) with one gets
h.. =T}1h, + T3 hs.
The two previous equations are equivalent to (2.3).
Now, writing (2.4) forX = 0z, and using (3.1) and (3.2), we have
aK

v = —(AD: T) = — (A0, 0:) = =5 p = —

expression equivalent to (2.4).
Finally, from (3.2) and (3.3) we have

1
(I,T) = —(ahs +ahs).

Bearing in mind the above comments, we get the following:

Lemma 3.1. The compatibility equations for an immersignwith positive extrinsic curvature can be
written in a conformal parameter for the second fundamental form as

Gauss K(I)=K +¢ev? (3.5)
Codazzi % + (Y, —T%) = sa% (3.6)
hez = Tiihe + T bz (3.7)
h.z = Tish, +T3h: +vp (3.8)
vy = % (3.9)

P
%(ahz +ahz) + 12 = 1. (3.10)

We will focus our attention on the surfaces with constant Gaussian curvature. Thus, from now on we
will suppose that) has constant Gaussian curvatéfél).

In order to obtain some estimates for these surfaces we compute the Laplaceamdofwith respect
to the second fundamental form.



Proposition 3.1. Lety : S — M?(¢) x R be an immersion with constant Gaussian curvatirel )
and positive extrinsic curvature. Let us consider a conformal paramefer its second fundamental
form such that

(dip, dip) = Edz* + 2F |dz|* + BEdz?,

II = (d,—dN) = 2p|dz|?,

p>0.
Then one has
hee = (K(I)—2)-2, (3.11)
K
Vys 5VM —vFK (3.12)
0% 5 . :
Proof. A straightforward computation (see [Mi, Lemma 8]) gives
D-
Ty + T3 = . 3.13
12 7129 5D (3.13)
Then (3.6) and (3.13) allow us to obtain
D: Pz 1 4
—= _E _—orl, —ca-.
2D P 12 €O[p
Now, differentiating (3.1) with respect toit follows
Dz Pz KZ
-z _ Pz __ 3.14
2D p 2K (3.14)

and so we get

On the other hand, since the Gaussian curvatukg isfconstant, differentiating the Gauss equation
(3.5) we have, using (3.9), that

K
K, = —2a02% (3.15)
P
Therefore,

RAY
I'g=e—.

(3.16)
From (3.8) and bearing in mind thET2 =TI'?, one has
o h, + ahz
h.z = 5Ehz + €£h5 +vp=vp (1 + €W>
p p p
and using (3.1) and (3.10)
D(1—12
h.z = vp (1 +€(2y>> =
p
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Thus (3.11) follows from the Gauss equation (3.5).
Now, if we differentiate (3.9) and use (3.1), (3.14) and (3.15) then one has

K o p. K laf*  aK D,
= K.— —KaZ2 =2 il EE - 3.17
Vzz paz+ zp ap2 paz+5VD » 2D ( )

From (3.3), (3.7) and (3.8) one gets
ay = 2<¢z2a¢2>hz + Ehzz - <1/]zza ¢2>h2 - <1/]Z7Q;Z)22>h2 - thé
= 2(ToF +hE)h, + E(Tjyh. + T hz) — (T F 4+ T3 E)hz — (T1,E 4 T3, F)hz +
—F(Tigh: +Thhs + pv) = a(T'}, + T1;) + ol'fy — al'jy — vpF.

We observe that from (3.16) one heE?,—al'}, = 0 and by conjugating (3.13) one gét$,+T1, =
D./(2D). Thus,

z
= a—= —upF.
Qy a2D vp

Hence, (3.12) follows from (3.17). O
Let us consider the quadratic form
Qdz? = (K(I) — &) {1z, 1b:) + h?) d2?, (3.18)

which is well defined for surfaces of constant Gaussian curvature and positive extrinsic curvature [AEG].
From (3.1), (3.3), (3.11) and (3.16) we have

QZ = 2(K(I)_5)<¢]Z2>wz>+25hzhz2

= 2AK(I) - <) (TYE + T2 F) + 2¢h, (K (I) — 5)%
vo v vD
= 2 (K(I)—¢) % (aE + &F — Dh,) = 0.

That is,@ dz? is a holomorphic quadratic form. This result was proven in [AEG] in order to classify
the complete surfaces with constant Gaussian curvature. We also have as a consequence

Corollary 3.1. LetX be a surface satisfying

1. Yis aflat surface ifH x R, which is locally a graph off*. Then the projection : H? x R —
H? x {0} = H? is a harmonic map for the second fundamental form.

2. ¥ is a surface of constant Gaussian curvature on8in R with ||T'|| # 0 everywhere. Then the
height function is harmonic for the second fundamental form.



Proof. We remark that, from (2.1) and (2.5), a flat surfac@lih x R has positive extrinsic curvature if
and only if||T"|| # 1 everywhere. Or equivalently, it is locally a graphHA.
In addition, for the flat surfacE

QdZQ = (W)z, ¢z> - hz) dz* = <772>7]Z> dz?
is holomorphic. That isy is a harmonic map.
The proof is similar in the second case. O]

These results should be understood as an analogue to the fagatidt are harmonic maps for the
induced metric of a minimal surface ii* x R. More generically, the height function is a harmonic map
for the induced metric of a minimal surface in every product spate< R.

In our height estimates we will see that the extreme cases are the complete surfaces of constant
Gaussian curvature iW?(e) x R (see [AEG]). Thus, we will briefly describe them.

Example 3.1 (CompleteK (I)-surfaces inH? x R). Let K (I) be a positive constant and
¥ (u,v) = (cosh k(v), sinh k(v) cos u, sinh k(v) sin u, h(v)).

the revolution surface ifil* x R given by

k(v) = arcsinh ( sin(n/ K (1) v))

b
k()

h(v) = - \/m arctan costy K1) v)
K(I) \/K(I)+sin2(\/mv)

withv € [0, 7/+y/ K (I)].
Thenyy is, up to isometries, the parametrization of the only complete surface with constant Gaussian
curvaturek (1) in H? x R.

and

Example 3.2 (Completek (I)-surfaces inS* x R). Let us consider a constaii () > 1 and
Y(u,v) = (sink(v), cos k(v) cos u, cos k(v) sinu, h(v))
the revolution surface i§* x R given by

1
K()

k(v) = arccos ( sin(/ K (1) v))

and

K -1 cos(y/E (D) v) + /K (1) - sin(y/E (D) v)
hv) = — 2D 10,
K(I 1+ /K(I)

withv € [0, 7/\/K(I)].
Then is, up to isometries, the parametrization of the only complete surface with constant Gaussian
curvatureK (I) in S? x R.



We will prove that our height estimates are reached when the quadraticfak vanishes iden-
tically. Thus, in order to characterize these examples we have the next Theorem. We observe that this
result is local and a global version of it was given in [AEG].

Theorem 3.1. Let : S — M?(¢) x R be an immersion of constant Gaussian curvatirel) > 0
if e = —1 (resp. K(I) > 1if e = 1). Let us assume th& dz2 vanishes identically o. Theny is a
piece of a complet& (I)—surface.

Proof. For exposition clarity we will divide this proof into two parts. First, we will show that the im-
mersion must be helicoidal, that ig,is invariant under a continuous group of isometries of the ambient
space. Then, in the second part, we will demonstrate that the orbits of this helicoidal movement are
circles on the sliceM?(e) x {ho}. Thus, we will conclude thap is a revolution surface.

Following [AEG] we define the metric

g
A=T+ ———dh*
AOET
From (2.1) and (2.5)K is positive and sd is definite. In addition, sincg dz? = 0, it follows that
the (2, 0)—part of A with respect td I vanishes. Thereforel and are conformal. In particular, there

exists a positive function on S such thatf I = AA. And, from [AEG, Lemmal])? = K (I) — .
Let (u,v) be local doubly orthogonal coordinates for the first and second fundamental form, that is,

I = Edu®+ Gdv?
II = ki Edu®+ kGdv?

wherek; and ko, are the principal curvatures of the immersign Recall that these coordinates are
available on a neighbourhood of every non umbilical point as well as on the interior set of umbilical
points. Hence, we will consider these points and, using that this set is dertsenanwill deduce that

the obtained properties can be extended to the whole surface by continuity.

Since
A=(E+— 12 )du?+2—— hyhydudvo+ ( G+ —— 12 ) dv?
K(I)—¢ ™ K(I)—¢ " K(I)—¢ "
and/I = /K (I) — A we have

WE = VK1) —¢ <E + (3.19)

& 2
K(I)—e h”)
0 = hyhy (3.20)
_ _ € 2
koG = /K(I) 6<G+K(I)—gh”)' (3.22)
From (3.20) it is easy to see that the set given by the union of the interior of the setiheré and

the interior of the set wherk, = 0 is dense. Hence, we can assume that= 0 in our neighbourhood
where(u, v) are available.



Then, from (3.19), the principal curvatuke = /K (I) — ¢ is a positive constant. In addition, from
(2.4)
Uy = dl/(au) = —</€16u, T> = —kl hu = 0.

Thus, from the Gauss equation (2.08z),, = 0.
Now, (3.21) can be rewritten as
k1(ko — k1)G = eh?. (3.22)

Since we are considering an umbilical free neighbourhood or totally umbilical neighbourhood, we
observe that ift; = k, thenh, also vanishes identically. Therefore,must be constant, that is, the
surface would lie on a slice and $6(/) = ¢, which is a contradiction.

Hencek; # ko in our neighbourhood an@,, = 0 from (3.22).

If we consider the Codazzi equation (2.2) f6r= 9,, andY = 9,, we get

(kig — kl)VQuav = V3uk26v — Vavk‘lau =&V (<8U,T)8u — <8u,T>av) = 6l/hvau.

Moreover,Vy, 0, = f—E Ou, SO(log E)yy = (Ey/E), = 0. That is, the functior®(u, v) can be written
asE(u,v) = Eq(u) Eo(v) for positive functions?; and Es.
Finally, we take new parameters;, y) such that

dr = +/Ei(u) du, y=n.

Then, the first fundamental form, the second fundamental faremdv only depend ony, that is, the
functionsE, G, k1, ko2, h andv do not depend ofz, y) but only ony.

Hence, the immersions(z, y) andy(x, y) = ¥ (x+x0, y), for a suitabler,, have the same functions
E, G, k1, ko, h andv. So,¥(x,y) andy(z + xg,y) only differ from an isometry of the ambient space
for eachz (see [Da]), that isy is helicoidal and the orbits are given Byt) = (x + t, y).

In the second part of the proof we will show thais a rotation surface. First, we observe thét)
lies on a slice because the height function only depends on

In particular,3(t) € M?(¢) x {y} = M?(e) is invariant under a continuous group of isometries of
M?(¢). Then, the curvature ¢f in M?(¢) is constant.

Therefore, if: = 1 theng lies on a circle of52. Otherwise, if: = —1, § lies on a circle ofd? if and
only if its curvature is greater than one.

For the last case, an easy computation gives us
1 E,

Vo, 0p = — =

Oy +ki1EN
2Gy+1 )

whereV denotes the Levi-Civita connection ii* x R. In addition, 3 can be parametrized by the arc
length as3(s) = ¢¥(z + s/v/E(y), y). Then, the square of its curvature is given by

2
(T80 T 6)) = s (- + REQ? ) 2 K = K(D) + 1> 1,

Thus, lies on a circle in any case andmust be a rotation surface. Finally, the proof finishes from
the next Lemma. O



Lemma 3.2. Lety : S — M?(e) x R be a rotation surface such that the principal curvatukgs
associated with its parallels agree. #f > 1 fore = —1 or k; > 0 for e = 1 then, up to isometries, it

is a piece of the complete surfaces of constant Gaussian curvature described in Example 3.1 or Example
3.2.

Proof. Let us parametrize
Y (u,v) = (cosh k(v), sinh k(v) cos u, sinh k(v) sin u, h(v)) if e =—1,
Y(u,v) = (sin k(v), cos k(v) cos u, cos k(v) sinu, h(v)) if e =1,

with &/ (v)? + h/(v)? = 1.
Then, a straightforward computation gives us that the principal curvatures associated with the paral-
lels are
k1 = h'(v) coth(k(v)) if e = —1, k1 = h'(v) tan(k(v)) ife=1.

The solutions to these equations are given by
k(v) = ko(£(v + ), h(v) = £ho(£(v + c)) + c1,

wherecy, c¢; are two real constants aigd(v), ho(v) are the ones of Example 3.1 and Example 3.2.
Therefore,) is, up to reparametrizations and vertical translations, a piece of the complete surfaces
of constant Gaussian curvature. O

Now, we are ready to obtain our height estimate.

Theorem 3.2. Let® C M?(¢) x R be a compact graph on a set C M?(¢), with positive constant
Gaussian curvaturds (I) > ¢ and whose boundary is contained on the sidé(c) x {0}. Then the
maximum height that can attain onMI?(¢) x {0} is

K(I)+1 1 e
) Metan < K(D) fe=-1 ©29

K1) -1, [VEID)+1 L
K(I In ( K(I) — 1) ife =1. (3.24)

Moreover, the equality holds if, and only ¥,is the hemisphere of a complei& I) —surface.

Proof. Observe that, sinc& (1) is positive and greater thanthe extrinsic curvatur&’ is also positive,
from (2.1) and (2.5). We can assume, without loss of generality this over the SliCMQ(s) x {0}
and sov < 0 everywhere because of the chosen orientation.

Let us consider the functions

) v o
Warctan ( K(I)) ife=-1

fo K(I)—1ln< K(I)—u) N
K(I)—v?
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and¢ = h + f onS. Observe tha = f < 0ondS. Our aim is to show thap,> > 0 on S, because
under these conditions the maximum principle assures#thab on S. From this last fact our estimate
for the maximum height follows easily, that is,d@f< 0 then (3.23) and (3.24) hold. Observe that these
bounds are optimal, because they are achieved for the hemispheres of the céagpletsurfaces.

Let us see thab.z > 0. From (3.1), (3.5), (3.9) and (3.12), we have

K(I) — —K(I) — 2
foo= VEDZE (kg 2oy oty = VELD ('g' +KF>.

Using (3.3) and (3.5), we obtain

2

KF+ ¢ |g| = KF +¢e(|h.]* = F||T|?) = F(K(I) —¢) + ¢ |h2|*.
Thus, using (3.11) we get
_(E()—e)v elhz|?
bz = p—VE(I) —e(F+ g5 ). (3.25)
From [AEG, Lemma 1], we have
2
Kl —e= thpQ QP
(F+#55) — wlier
or equivalently
2 _(K(I) - ) F—i—ﬂ 2__ﬂ (3.26)
P K -] ~ K -¢ '
SinceF + ;“})i is the (1, 1)—part of the metricA with respect to/ I, then it must be positive.
Therefore, from E3.25) and (3.26),; is greater than or equal to zero.

Finally, note that if the extreme value is achieved, thgn = 0. That is,Q or v vanish identically
on S. But, S cannot lie on a cylinder becaus&(I) # 0, thatis,v # 0. Thereforef) = 0 and the result
follows from Theorem 3.1. O

Remark 3.1. From the Bonnet-Myers theorem, it can be deduced that every minimizing geodesic in a
surfacey) : S — M?(e) x R with positive constant Gaussian curvatuk& 1) has length less than

or equal to27/+/ K (I). Hence, there always exists height estimates for such a surface, although these
estimates are far from optimal. The bounds we provide in the above theorem are, as we have seen, the
optimal ones.

We would like to point out that the hypothedi&(7) > 1in S* x R can be changed fak (1) > 0,
K(I)# 1. Infact, if ¢ : S — M?(¢) x R is a surface with Gaussian curvatutgI), 0 < K(I) < 1,
then there does not exist a pojntvhere the height function attains a maximum or minimum, because
from the Gauss equation it would lbg(p)k2(p) < 0 and so in any neighborhood pfthere would be
points of greater and less height than In particular, we answer a question posed by the authors in
[AEG].
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Proposition 3.2. There does not exist a complete surface with constant Gaussian curvatiije0 <
K(I)<1,inS* xR.

As a consequence of the classical Alexandrov reflection principle for slidé@z(ﬁ) x R, we get
the following

Corollary 3.2. Lety : S — M?(¢) x R be an embedding of a compact surface with positive constant
Gaussian curvaturd({(I) > ¢, such that its boundary(05) (possibly empty) is contained in a slice
I\\/JIQ(g) x {tp}. Then the height difference between its upper point and its lower point is less than or
equal to

2 KU)H&retan( ! ) ife =-1
K(I)

K(I)
K(I)-1 VEK(I)+1 e
2 K ln( K(I)—l) ife =1.

Moreover, if such a difference is attaineg(S) is, up to isometries, the complet&( 1) —surface.

4 Representation of K (I)—Surfaces with K’ > 0

Lety : S — M?(e) x R be aK (I)—surface with positive extrinsic curvature and assume kias
positive definite. We will also assume that the surface is transverse to eachsiieg x {t} for all
t € R, that is, T never vanishes ofl, or equivalentlyp? < 1 on S. We will refer to such a surface as a
transverse surface

Let us observe that the points where= 1 is an isolated set becausé > 0 (that is, I is positive
definite).

From (3.3) and (3.10) one has

2

anz Fh;z
ah, +ah DB F? = a+ Fh 2,
1—12 h
that is,
e P
 ahy+ahs 1—0v?
Hence, by using (3.3) again
a? h?
- ahz—i-@hg + 1—1/2.
On the other hand, from (3.5) and (3.9) one gets
=L __ (4.1)

K(I)—ev?
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In addition, from (3.1), (3.5) and (3.10)

K(I) — ev?

2
=-DK =—
p 1—0v2

(ahz + @hg).

With all of this, £/, F' can be written in terms df., v, v, and K (I) as

h? v?
B = z z
1—v2 (1= (K()-—ev?)’
F— |h2|2 |VZ|2

T2 T UKD =)
Thus, from (3.3), (3.9) and (4.1)

o = — vihz +vzh, ve
(1—v2)(K(I)—ev?) ®
Vzhé + Vzhz
= EET
p 1—02 >

At this point it would be interesting to observe that the induced metric and the second fundamental
form can be recovered for any transverse surface with positive extrinsic curvature in tefms,of
K (I) and the conformal structure given By. In fact, the compatibility equations for the existence
of an immersion from a simply connected Riemann surface with fixed functionsS — R and
v:S — (—1,1) and fixed Gaussian curvature are given by Lemma 3.1.
The compatibility equations are much more simple for a surface with constant Gaussian curvature:

Theorem 4.1. Let S be a surface and : S — M?(e) x R a transverseX (I)—immersion such that
K > 0. Then, given a local conformal parametefor 71, the first and second fundamental forms/of
can be recovered in terms of its height functign’ and the constank' (/) as

h? 2
E=q-n- (1= 12)(K(I) — ev?) (4-2)
_ |ha | v

E = T T oKD =) (4-3)

Vzhg + Vghz
e By 0. (4.4)

In additionh andv verify

_ (K(I) —e)v L
hee = = (1 —v2)(K(I) — ev?) (v2hs + vehs) “9
Ve = - ’ (K(1) = 2607 + o)l + (K (D) — e”)[h) . (46)

(1—-v2)(K(I) —ev?)

Conversely, letk(I) € R ande € {—1,1} be constantsh : S — Randv : § — (—1,1)
functions on a simply-connected Riemann surf&ceatisfying(4.5), (4.6), K(I) — cv?> > 0 and
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v.hz + vzh, < 0. Then, there exists an immersign: S — M?(e) x R such thatS is a trans-
verseK (I)—surface whose first and second fundamental forms are given by

I = BEdz* 4 2F|dz|* + BEdz?,  II =2p|dz|?

where E, I’ and p are defined by4.2), (4.3) and (4.4) respectively, whose height function and the
fourth coordinate of its normal are given liyand v respectively, and the structure given by its second
fundamental form is the one 6f Moreover, this immersion is unique up to an isometriiBf<) x R.

Proof. For the first part we observe that (4.2), (4.3) and (4.4) are already computed. In addition, (4.5)
and (4.6) are equivalent to (3.11) and (3.12) when the previous expressiahg'cindp are used.
The second part is a tedious but straightforward computation bearing in mind Lemma 3.1.0

This representation has a special interest for transverse surfaces with Gaussian chfyAturel
in S% x R. In this case, it is not known if the slices are the only complete surfaces with constant Gaussian
curvatureK (I) = 1in S? x R [AEG]. In addition, the compatibility equations will be reduced to the
elliptic sinh-Gordon equation.

Thus, letyy : S — S* x R be a transverse immersion wifti(I) = 1 in the previous conditions.
Sincer? < 1, it follows from (3.5) that' > 0 and so we can assume tHdtis a Riemannian metric on
S. Then, we are under the hypothesis of Theorem 4.1 and consequently the height faietianmonic

for 11 andv verifies )
1%
Vys = —V (]hZ\Q + 21|_Z|V2) .

If we definew = arctanh(v), this last equation becomes

W,z + |h2|?sinh(w) cosh(w) = 0. 4.7)
and we can reformulated Theorem 4.1 for these surfaces as follows:

Corollary 4.1. Let S be a connected surface angl: S — S* x R a transverse immersion with
K(I) = 1. Then, given a local conformal parametefor 1, the first and second fundamental forms of
1 can be recovered in terms of its height functioandw = arctanh(v) as

E = cosh®(w)h? —w? (4.8)
F = cosh?(w)|h.|* + |w.|? 4.9)
p = —(wshz+wzh,)>0 (4.10)

wherew verifies(4.7).

Conversely, let : S — R be an harmonic function on a simply-connected Riemann suiface
andw : S — R a function verifyingu.hs + wzh, < 0 and (4.7). Then, there exists an immersion
¥+ S — S* x R such that§ is transverse with constant Gaussian curvatiifé/) = 1, whose first
and second fundamental forms are given by

I = Edz? + 2F|dz|? + Edz*,  1I =2p|dz|?
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where E/, F' and p are defined by4.8), (4.9) and (4.10) respectively, whose height function and the
fourth coordinate of its normal are given lyandr» = tanh(w) respectively, and the structure given by
its second fundamental form is the one $nMoreover, this immersion is unique up to an isometry of
S? x R.

Sinceh., # 0 in a transverse immersion ahd is a holomorphic function whef (I) = 1in S* x R,
we can take a conformal parametesuch thati( = h.dz. Thus, (4.7) becomes the classical elliptic
sinh-Gordon equation

wee + sinh(w) cosh(w) = 0.

5 Representation ofK (I)—Surfaces with X' < 0

Similar results to the ones given in the previous section can be obtained for trans\disesurfaces
with negative extrinsic curvature. In this cadd,is a Lorentzian metric an§ can be considered as a
Lorentz surface with the induced conformal structure (see [We]).

So, we can take asymptotic coordinatesv) for a surface with’ < 0 such that the first and second
fundamental form can be written as

I = Edu® + 2F dudv + Gdv>
11 = 2fdudv.

After a development similar in essence to the one in the case of positive extrinsic curvature we obtain
some results which are enunciated without a proof in order to not repeat the same computations.

Theorem 5.1. Let S be a connected surface and: S — M?(¢) x R a transversek (I)—immersion
such thatK' < 0. Then, given asymptotic coordinates v) for 11, the first and second fundamental
forms ofy can be recovered in terms of its height functign, and the constank’(7) as

h? V2
E = X U 5.1
1-v?2  (1-v?) (K —ev?) ®-1)

hyh Uy V.
F — u'v u”v .2
1—V2+(1—I/2)(K[—81/2) (®-2)

hy vy
¢ = 1—v2  (1-12)(K; —e1?) (®-3)

uhU 'Uhu
fo= etV (5.4)
1—v
In addition,h andv verify
(K[ — E)I/
hyw = — (1 — U2)(K[ _ 61/2) (Vuhv + Vvhu) (5.5)
v

Vi = — (1= ) (K — a7 ((KI —2? + ey + (K1 — €V2)2huhv) ) (5.6)
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Conversely, lef{ () € R ande € {—1,1} be constants : S — Randv : S — (-1, 1) func-
tions on a simply-connected Lorentz surfaceatisfying(5.5), (5.6), K (1) —cv? < 0 andv,hy, +vy,hy <
0. Then, there exists an immersign: S — M?2(e) x R such thatS is a transversek (I)—surface
whose first and second fundamental forms are given by

I = Edu® + 2Fdudv + Gdv?, IT = 2fdudv

whereFE, F, G and f are defined by5.1), (5.2), (5.3)and(5.4) respectively, whose height function and
the fourth coordinate of its normal are given byandv respectively, and the structure given by its second
fundamental form is the one ¢h Moreover, this immersion is unique up to an isometriBf<) x R.

If ¢ : S — H? x R is a transverse immersion witki (1) = —1, it follows from (3.5) thatk < 0
at every point. In addition, from Theorem 5/Ljs harmonic for/I andv verifies

Uy
Vuvzy(huhv—Qli;).

By takingw = arctanh(v), this last equation becomes

Wyy — hyhy sinh(w) cosh(w) = 0. (5.7)
Corollary 5.1. Let S be a connected surface and: S — H? x R a transverse immersion with
K(I) = —1. Then, given local asymptotic coordinates v) for 11, the first and second fundamental
forms ofy) can be recovered in terms of its height functioandw = arctanh(v) as
E = cosh?(w)h? + w2 (5.8)
F = cosh?(w)hyhy — wuw, (5.9)
G = cosh?(w)h? + w? (5.10)
f = —(wyhy +wyhy) >0 (5.11)

wherew verifies(5.7).

Conversely, leth : S — R be a harmonic function on a simply-connected Lorentz surface
andw : S — R a function verifyingu, h, + wy,h, < 0 and(5.7). Then, there exists an immersion
¢ : § — H? x R such thatS is transverse with constant Gaussian curvatifél ) = —1, whose first
and second fundamental forms are given by

I = Edu?® + 2Fdudv + Gdv?, II = 2fdudv

whereFE, F, G and f are defined by5.8), (5.9), (5.10)and(5.11)respectively, whose height function and
the fourth coordinate of its normal are given byandv = tanh(w) respectively, and the structure given

by its second fundamental form is the one&oMoreover, this immersion is unique up to an isometry of
H? x R.

From this result, it is easy to obtain complete surfaces Wiftl) = —1 in H? x R, for instance, if
one takeg,, = 0 and chooses a suitahlu, v) = wq(u) + wa(v).

Moreover, sincé,, = 0 if h, andh, do not vanish then taking the new parameters) such that
du = hydu, dv = h,dv the previous equation (5.7) becomes the hyperbolic sinh-Gordon equation

wgs — sinhw coshw = 0.
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