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1 Introduction

In this work we deal with surfaces of constant Gaussian curvature in the ambient spacesH2 × R and
S2×R. This kind of surfaces was already studied by the authors in [AEG], where the following question
posed by Alencar, Do Carmo and Tribuzy in [ACT] was studied:

What are the closed surfaces of constant Gaussian curvature inH2 ×R andS2 ×R?

This question became natural after the classification of the surfaces with constant mean curvature and
genus zero due to Abresch and Rosenberg in [AR]. In particular, it was shown in [AEG] that the only
complete surfaces of constant Gaussian curvatureK(I) > 0 in H2 × R (K(I) > 1 in S2 × R) are
rotational surfaces. In addition, the authors proved the non existence of complete surfaces with constant
Gaussian curvatureK(I) < −1 inH2 ×R andS2 ×R.

1The first author is partially supported by Junta de Comunidades de Castilla-La Mancha, Grant No PAI-05-034.
The authors are partially supported by MCYT-FEDER, Grant No MTM2004-02746
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Here we focus on two aspects of the surfaces of constant Gaussian curvature. On the one hand,
in Section 3 we obtain optimal height estimates for these surfaces when they have positive extrinsic
curvature, characterizing the rotational complete examples as the only surfaces for which the bounds
are attained. In general, height estimates for surfaces with any constant curvature (mean, Gaussian,
Weingarten surfaces, etc.) are a powerful tool to get geometrical information about such surfaces (see,
for instance, [AEG2], [H], [HLR], [KKMS], [KKS] and [RS]).

On the other hand, we provide a representation for the surfaces of constant Gaussian curvatureK(I)
in terms of the height function,h, and the last coordinate of its unit normal,ν (see Sections 4 and 5). We
pay special attention to the particular cases whenK(I) agrees with the sectional curvature of the base
of the ambient space, that is,K(I) = 1 in S2 × R (resp. K(I) = −1 in H2 × R), because then the
integrability equations reduce to an elliptic (resp. hyperbolic) sinh-Gordon equation. We also provide
complete examples of surfaces inH2 ×R with K(I) = −1 by means of its representation.

2 Preliminaries

Let us consider the homogeneous spaceS2 × R as the hypersurface of the usual Euclidean 4-spaceR4

given by
S2 ×R = {(x1, x2, x3, x4) ∈ R4 : x2

1 + x2
2 + x2

3 = 1}.
Let us also denoteH2 ×R as the Riemannian submanifold of the Lorentzian 4-spaceL4, with induced
metric−x2

1 + x2
2 + x2

3 + x2
4, given by

H2 ×R = {(x1, x2, x3, x4) ∈ R4 : −x2
1 + x2

2 + x2
3 = −1, x1 > 0}.

As long as we do not need to distinguish between them explicitly, we will embrace bothH2×R and
S2 ×R under the usual notationM2(ε)×R, with ε = 1,−1, whereM2(1) = S2 andM2(−1) = H2.

Let η be the unit normal ofM2(ε)×R in the ambient spaceR4 orL4 given by

η(x1, x2, x3, x4) = (x1, x2, x3, 0).

Let us considerS as an orientable surface andψ : S −→M2(ε)×R an immersion with unit normal
vector fieldN and associated shape operatorA. We will denote byh the height function onS, that is,
the fourth coordinate immersion ofψ, and byν the fourth coordinate of the unit normalN .

Unlike the case of immersions in a space form, the immersionψ is not totally determined by the
Gauss and Codazzi equations. More precisely, the compatibility equations for such an immersion can be
written as (see [Da])

Gauss K(I) = K + εν2 (2.1)

Codazzi ∇XAY −∇YAX −A[X,Y ] = εν(〈Y, T 〉X − 〈X, T 〉Y ) (2.2)

∇XT = νAX (2.3)

dν(X) = −〈AX,T 〉 (2.4)

||T ||2 + ν2 = 1 (2.5)
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for all differentiable vector fieldsX, Y on S. Here,∇ is the induced Levi-Civita connection onS, T
is the gradient of the height functionh, ||T || its modulus for the induced metric,K(I) is the Gaussian
curvature andK the extrinsic curvature of the immersion.

Throughout this paper we will deal with surfaces inM2(ε) × R with constant Gaussian curvature.
We will refer to such surfaces asK(I)−surfaces.

3 Height Estimates forK(I)−Surfaces

Let S be a surface andψ : S −→ M2(ε) × R an immersion with positive extrinsic curvature,K > 0.
Then its second fundamental form,II, is definite. We will chooseN such thatII is positive definite,
that is,N is the inner normal.

Let z be a conformal complex parameter for the Riemannian metricII. Then, we can write

I = 〈dψ, dψ〉 = Edz2 + 2F |dz|2 + Ēdz̄2,

II = 〈dψ,−dN〉 = 2ρ |dz|2 .

In order to make some computations onS with respect to the second fundamental form, we will
rewrite the compatibility equations (2.1)-(2.5) in terms of the parameterz.

First, observe that the extrinsic curvature is given by

K = −ρ2

D
, (3.1)

whereD = |E|2 − F 2 < 0.
We can put

T =
1
D

(α∂z + ᾱ∂z̄) (3.2)

where
α = Ēhz − Fhz̄ (3.3)

and, for instance,∂z denotes the field∂∂z .
Now, takingX = ∂z̄ andY = ∂z in (2.2), we have

∇∂z̄A∂z −∇∂zA∂z̄ = εν(hz∂z̄ − hz̄∂z).

Thus, in order to obtain the information given by the previous equation (or equivalently (2.2)) we con-
sider, for instance, the inner product with∂z̄

∂z̄〈A∂z, ∂z̄〉 − 〈A∂z,∇∂z̄∂z̄〉+ 〈A∂z̄,∇∂z̄∂z〉 = εν(hzĒ − hz̄F ) = ενα.

Therefore, (2.2) is equivalent to
ρz̄

ρ
+ (Γ1

12 − Γ2
22) = εα

ν

ρ
,

whereΓk
ij , i, j, k = 1, 2, stand for the Christoffel symbols associated toz. Thus, for instance, the tangent

part of∇∂z∂z is given byΓ1
11∂z + Γ2

11∂z̄ and the tangent part of∇∂z∂z̄ is Γ1
12∂z + Γ2

12∂z̄.
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On the other hand, takingX = ∂z, (2.3) becomes

∇∂zT = νA∂z. (3.4)

Considering the inner product with∂z̄

〈∇∂zT, ∂z̄〉 = ∂z〈T, ∂z̄〉 − 〈T,∇∂z∂z̄〉 = hzz̄ − Γ1
12hz − Γ2

12hz̄

ν〈A∂z̄, ∂z〉 = νρ

and so
hzz̄ = Γ1

12hz + Γ2
12hz̄ + νρ.

And considering the inner product of (3.4) with∂z one gets

hzz = Γ1
11hz + Γ2

11hz̄.

The two previous equations are equivalent to (2.3).
Now, writing (2.4) forX = ∂z̄, and using (3.1) and (3.2), we have

νz̄ = −〈A∂z̄, T 〉 = − α

D
〈A∂z̄, ∂z〉 = − α

D
ρ =

αK

ρ
,

expression equivalent to (2.4).
Finally, from (3.2) and (3.3) we have

〈T, T 〉 =
1
D

(αhz + αhz̄).

Bearing in mind the above comments, we get the following:

Lemma 3.1. The compatibility equations for an immersionψ with positive extrinsic curvature can be
written in a conformal parameter for the second fundamental form as

Gauss K(I) = K + εν2 (3.5)

Codazzi
ρz̄

ρ
+ (Γ1

12 − Γ2
22) = εα

ν

ρ
(3.6)

hzz = Γ1
11hz + Γ2

11hz̄ (3.7)

hzz̄ = Γ1
12hz + Γ2

12hz̄ + νρ (3.8)

νz̄ =
αK

ρ
(3.9)

1
D

(αhz + αhz̄) + ν2 = 1. (3.10)

We will focus our attention on the surfaces with constant Gaussian curvature. Thus, from now on we
will suppose thatψ has constant Gaussian curvatureK(I).

In order to obtain some estimates for these surfaces we compute the Laplacian ofh andν with respect
to the second fundamental form.
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Proposition 3.1. Let ψ : S −→ M2(ε) × R be an immersion with constant Gaussian curvatureK(I)
and positive extrinsic curvature. Let us consider a conformal parameterz for its second fundamental
form such that

I = 〈dψ, dψ〉 = Edz2 + 2F |dz|2 + Ēdz̄2,

II = 〈dψ,−dN〉 = 2ρ |dz|2 , ρ > 0.

Then one has

hzz̄ = (K(I)− ε)
νρ

K
, (3.11)

νzz̄ = εν
|α|2
D

− νFK. (3.12)

Proof. A straightforward computation (see [Mi, Lemma 8]) gives

Γ1
12 + Γ2

22 =
Dz̄

2D
. (3.13)

Then (3.6) and (3.13) allow us to obtain

Dz̄

2D
− ρz̄

ρ
= 2Γ1

12 − εα
ν

ρ
.

Now, differentiating (3.1) with respect tōz it follows

Dz̄

2D
− ρz̄

ρ
= −Kz̄

2K
(3.14)

and so we get

Γ1
12 = −Kz̄

4K
+ εα

ν

2ρ
.

On the other hand, since the Gaussian curvature ofψ is constant, differentiating the Gauss equation
(3.5) we have, using (3.9), that

Kz̄ = −2εν
αK

ρ
. (3.15)

Therefore,
Γ1

12 = ε
να

ρ
. (3.16)

From (3.8) and bearing in mind thatΓ1
12 = Γ2

12 one has

hzz̄ = ε
να

ρ
hz + ε

να

ρ
hz̄ + νρ = νρ

(
1 + ε

αhz + αhz̄

ρ2

)

and using (3.1) and (3.10)

hzz̄ = νρ

(
1 + ε

D(1− ν2)
ρ2

)
=

νρ

K

(
K − ε(1− ν2)

)
.
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Thus (3.11) follows from the Gauss equation (3.5).
Now, if we differentiate (3.9) and use (3.1), (3.14) and (3.15) then one has

νzz̄ =
K

ρ
αz + Kz

α

ρ
−Kα

ρz

ρ2
=

K

ρ
αz + εν

|α|2
D

− αK

ρ

Dz

2D
. (3.17)

From (3.3), (3.7) and (3.8) one gets

αz = 2〈ψzz̄, ψz̄〉hz + Ēhzz − 〈ψzz, ψz̄〉hz̄ − 〈ψz, ψzz̄〉hz̄ − Fhzz̄

= 2(Γ1
12F + Γ2

12Ē)hz + Ē(Γ1
11hz + Γ2

11hz̄)− (Γ1
11F + Γ2

11Ē)hz̄ − (Γ1
12E + Γ2

12F )hz̄ +

−F (Γ1
12hz + Γ2

12hz̄ + ρν) = α(Γ2
12 + Γ1

11) + αΓ2
12 − ᾱΓ1

12 − νρF.

We observe that from (3.16) one hasαΓ2
12−ᾱΓ1

12 = 0 and by conjugating (3.13) one getsΓ2
12+Γ1

11 =
Dz/(2D). Thus,

αz = α
Dz

2D
− νρF.

Hence, (3.12) follows from (3.17).

Let us consider the quadratic form

Qdz2 =
(
(K(I)− ε)〈ψz, ψz〉+ εh2

z

)
dz2, (3.18)

which is well defined for surfaces of constant Gaussian curvature and positive extrinsic curvature [AEG].
From (3.1), (3.3), (3.11) and (3.16) we have

Qz̄ = 2(K(I)− ε)〈ψzz̄, ψz〉+ 2εhzhzz̄

= 2(K(I)− ε)
(
Γ1

12E + Γ2
12F

)
+ 2εhz(K(I)− ε)

νρ

K

= 2ε(K(I)− ε)
(

να

ρ
E +

νᾱ

ρ
F − νD

ρ
hz

)

= 2ε(K(I)− ε)
ν

ρ
(αE + ᾱF −Dhz) = 0.

That is,Qdz2 is a holomorphic quadratic form. This result was proven in [AEG] in order to classify
the complete surfaces with constant Gaussian curvature. We also have as a consequence

Corollary 3.1. LetΣ be a surface satisfying

1. Σ is a flat surface inH2×R, which is locally a graph onH2. Then the projectionη : H2×R −→
H2 × {0} ≡ H2 is a harmonic map for the second fundamental form.

2. Σ is a surface of constant Gaussian curvature one inS2 ×R with ‖T‖ 6= 0 everywhere. Then the
height function is harmonic for the second fundamental form.
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Proof. We remark that, from (2.1) and (2.5), a flat surface inH2 ×R has positive extrinsic curvature if
and only if‖T‖ 6= 1 everywhere. Or equivalently, it is locally a graph onH2.

In addition, for the flat surfaceΣ

Qdz2 = (〈ψz, ψz〉 − h2
z) dz2 = 〈ηz, ηz〉 dz2

is holomorphic. That is,η is a harmonic map.
The proof is similar in the second case.

These results should be understood as an analogue to the fact thatη andh are harmonic maps for the
induced metric of a minimal surface inH2×R. More generically, the height function is a harmonic map
for the induced metric of a minimal surface in every product spaceN2 ×R.

In our height estimates we will see that the extreme cases are the complete surfaces of constant
Gaussian curvature inM2(ε)×R (see [AEG]). Thus, we will briefly describe them.

Example 3.1 (CompleteK(I)-surfaces inH2 ×R). LetK(I) be a positive constant and

ψ(u, v) = (cosh k(v), sinh k(v) cos u, sinh k(v) sinu, h(v)).

the revolution surface inH2 ×R given by

k(v) = arcsinh

(
1√

K(I)
sin(

√
K(I) v)

)

and

h(v) = −
√

1 + K(I)
K(I)

arctan


 cos(

√
K(I) v)√

K(I) + sin2(
√

K(I) v)




with v ∈ [0, π/
√

K(I)].
Then,ψ is, up to isometries, the parametrization of the only complete surface with constant Gaussian

curvatureK(I) inH2 ×R.

Example 3.2 (CompleteK(I)-surfaces inS2 ×R). Let us consider a constantK(I) > 1 and

ψ(u, v) = (sin k(v), cos k(v) cos u, cos k(v) sinu, h(v))

the revolution surface inS2 ×R given by

k(v) = arccos

(
1√

K(I)
sin(

√
K(I) v)

)

and

h(v) = −
√

K(I)− 1
K(I)

log


cos(

√
K(I) v) +

√
K(I)− sin2(

√
K(I) v)

1 +
√

K(I)




with v ∈ [0, π/
√

K(I)].
Then,ψ is, up to isometries, the parametrization of the only complete surface with constant Gaussian

curvatureK(I) in S2 ×R.
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We will prove that our height estimates are reached when the quadratic formQdz2 vanishes iden-
tically. Thus, in order to characterize these examples we have the next Theorem. We observe that this
result is local and a global version of it was given in [AEG].

Theorem 3.1. Let ψ : S −→ M2(ε) × R be an immersion of constant Gaussian curvatureK(I) > 0
if ε = −1 (resp.K(I) > 1 if ε = 1). Let us assume thatQ dz2 vanishes identically onS. Thenψ is a
piece of a completeK(I)−surface.

Proof. For exposition clarity we will divide this proof into two parts. First, we will show that the im-
mersion must be helicoidal, that is,ψ is invariant under a continuous group of isometries of the ambient
space. Then, in the second part, we will demonstrate that the orbits of this helicoidal movement are
circles on the slicesM2(ε)× {h0}. Thus, we will conclude thatψ is a revolution surface.

Following [AEG] we define the metric

A = I +
ε

K(I)− ε
dh2.

From (2.1) and (2.5),K is positive and soII is definite. In addition, sinceQdz2 ≡ 0, it follows that
the(2, 0)−part ofA with respect toII vanishes. Therefore,A andII are conformal. In particular, there
exists a positive functionλ onS such thatII = λA. And, from [AEG, Lemma1],λ2 = K(I)− ε.

Let (u, v) be local doubly orthogonal coordinates for the first and second fundamental form, that is,

I = Edu2 + Gdv2

II = k1Edu2 + k2Gdv2

wherek1 and k2 are the principal curvatures of the immersionψ. Recall that these coordinates are
available on a neighbourhood of every non umbilical point as well as on the interior set of umbilical
points. Hence, we will consider these points and, using that this set is dense onS, we will deduce that
the obtained properties can be extended to the whole surface by continuity.

Since

A =
(

E +
ε

K(I)− ε
h2

u

)
du2 + 2

ε

K(I)− ε
hu hv du dv +

(
G +

ε

K(I)− ε
h2

v

)
dv2

andII =
√

K(I)− εA we have

k1 E =
√

K(I)− ε

(
E +

ε

K(I)− ε
h2

u

)
(3.19)

0 = hu hv (3.20)

k2 G =
√

K(I)− ε

(
G +

ε

K(I)− ε
h2

v

)
. (3.21)

From (3.20) it is easy to see that the set given by the union of the interior of the set wherehu = 0 and
the interior of the set wherehv = 0 is dense. Hence, we can assume thathu ≡ 0 in our neighbourhood
where(u, v) are available.

8



Then, from (3.19), the principal curvaturek1 =
√

K(I)− ε is a positive constant. In addition, from
(2.4)

νu = dν(∂u) = −〈k1∂u, T 〉 = −k1 hu = 0.

Thus, from the Gauss equation (2.1),(k2)u = 0.
Now, (3.21) can be rewritten as

k1(k2 − k1)G = εh2
v. (3.22)

Since we are considering an umbilical free neighbourhood or totally umbilical neighbourhood, we
observe that ifk1 ≡ k2 thenhv also vanishes identically. Therefore,h must be constant, that is, the
surface would lie on a slice and soK(I) = ε, which is a contradiction.

Hence,k1 6= k2 in our neighbourhood andGu = 0 from (3.22).
If we consider the Codazzi equation (2.2) forX = ∂u andY = ∂v, we get

(k2 − k1)∇∂u∂v = ∇∂uk2∂v −∇∂vk1∂u = εν (〈∂v, T 〉∂u − 〈∂u, T 〉∂v) = ενhv∂u.

Moreover,∇∂u∂v = Ev
2E ∂u, so(log E)uv = (Ev/E)u = 0. That is, the functionE(u, v) can be written

asE(u, v) = E1(u) E2(v) for positive functionsE1 andE2.
Finally, we take new parameters,(x, y) such that

dx =
√

E1(u) du, y = v.

Then, the first fundamental form, the second fundamental form,h andν only depend ony, that is, the
functionsE, G, k1, k2, h andν do not depend on(x, y) but only ony.

Hence, the immersionsψ(x, y) andϕ(x, y) = ψ(x+x0, y), for a suitablex0, have the same functions
E, G, k1, k2, h andν. So,ψ(x, y) andψ(x + x0, y) only differ from an isometry of the ambient space
for eachx0 (see [Da]), that is,ψ is helicoidal and the orbits are given byβ(t) = ψ(x + t, y).

In the second part of the proof we will show thatψ is a rotation surface. First, we observe thatβ(t)
lies on a slice because the height function only depends ony.

In particular,β(t) ⊆ M2(ε) × {y} ≡ M2(ε) is invariant under a continuous group of isometries of
M2(ε). Then, the curvature ofβ inM2(ε) is constant.

Therefore, ifε = 1 thenβ lies on a circle ofS2. Otherwise, ifε = −1, β lies on a circle ofH2 if and
only if its curvature is greater than one.

For the last case, an easy computation gives us

∇∂x∂x = −1
2

Ey

G
∂y + k1 E N,

where∇ denotes the Levi-Civita connection inH2 × R. In addition,β can be parametrized by the arc
length asβ(s) = ψ(x + s/

√
E(y), y). Then, the square of its curvature is given by

〈∇β′(s)β
′(s),∇β′(s)β

′(s)〉 =
1

E(y)2

(
Ey(y)2

G(y)
+ k2

1E(y)2
)
≥ k2

1 = K(I) + 1 > 1.

Thus,β lies on a circle in any case andψ must be a rotation surface. Finally, the proof finishes from
the next Lemma.

9



Lemma 3.2. Let ψ : S −→ M2(ε) × R be a rotation surface such that the principal curvaturesk1

associated with its parallels agree. Ifk1 > 1 for ε = −1 or k1 > 0 for ε = 1 then, up to isometries, it
is a piece of the complete surfaces of constant Gaussian curvature described in Example 3.1 or Example
3.2.

Proof. Let us parametrize

ψ(u, v) = (cosh k(v), sinh k(v) cos u, sinh k(v) sinu, h(v)) if ε = −1,

ψ(u, v) = (sin k(v), cos k(v) cos u, cos k(v) sinu, h(v)) if ε = 1,

with k′(v)2 + h′(v)2 = 1.
Then, a straightforward computation gives us that the principal curvatures associated with the paral-

lels are
k1 = h′(v) coth(k(v)) if ε = −1, k1 = h′(v) tan(k(v)) if ε = 1.

The solutions to these equations are given by

k(v) = k0(±(v + c0)), h(v) = ±h0(±(v + c0)) + c1,

wherec0, c1 are two real constants andk0(v), h0(v) are the ones of Example 3.1 and Example 3.2.
Therefore,ψ is, up to reparametrizations and vertical translations, a piece of the complete surfaces

of constant Gaussian curvature.

Now, we are ready to obtain our height estimate.

Theorem 3.2. Let Σ ⊆ M2(ε) × R be a compact graph on a setΩ ⊆ M2(ε), with positive constant
Gaussian curvatureK(I) > ε and whose boundary is contained on the sliceM2(ε) × {0}. Then the
maximum height thatΣ can attain onM2(ε)× {0} is

√
K(I) + 1

K(I)
arctan

(
1√

K(I)

)
if ε = −1, (3.23)

√
K(I)− 1

K(I)
ln

(√
K(I) + 1√
K(I)− 1

)
if ε = 1. (3.24)

Moreover, the equality holds if, and only if,Σ is the hemisphere of a completeK(I)−surface.

Proof. Observe that, sinceK(I) is positive and greater thanε, the extrinsic curvatureK is also positive,
from (2.1) and (2.5). We can assume, without loss of generality, thatΣ lies over the sliceM2(ε) × {0}
and soν ≤ 0 everywhere because of the chosen orientation.

Let us consider the functions

f =

√
K(I) + 1

K(I)
arctan

(
ν√
K(I)

)
if ε = −1

f = −
√

K(I)− 1
K(I)

ln

( √
K(I)− ν√
K(I)− ν2

)
if ε = 1
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andφ = h + f on S. Observe thatφ = f ≤ 0 on ∂S. Our aim is to show thatφzz̄ ≥ 0 on S, because
under these conditions the maximum principle assures thatφ ≤ 0 onS. From this last fact our estimate
for the maximum height follows easily, that is, ifφ ≤ 0 then (3.23) and (3.24) hold. Observe that these
bounds are optimal, because they are achieved for the hemispheres of the completeK(I)−surfaces.

Let us see thatφzz̄ ≥ 0. From (3.1), (3.5), (3.9) and (3.12), we have

fzz̄ =

√
K(I)− ε

K2
(Kνzz̄ + 2εν |νz|2) =

−
√

K(I)− ε ν

K

(
ε |α|2

D
+ KF

)
.

Using (3.3) and (3.5), we obtain

KF +
ε |α|2

D
= KF + ε(|hz|2 − F ‖T‖2) = F (K(I)− ε) + ε |hz|2 .

Thus, using (3.11) we get

φzz̄ =
(K(I)− ε) ν

K

(
ρ−

√
K(I)− ε (F +

ε|hz|2
K(I)− ε

)
)

. (3.25)

From [AEG, Lemma 1], we have

K(I)− ε =
ρ2

(
F + ε|hz |2

K(I)−ε

)2
− |Q|2

(K(I)−ε)2

or equivalently

ρ2 − (K(I)− ε)

(
F +

ε |hz|2
K(I)− ε

)2

= − |Q|2
K(I)− ε

. (3.26)

SinceF + ε|hz |2
K(I)−ε is the(1, 1)−part of the metricA with respect toII, then it must be positive.

Therefore, from (3.25) and (3.26),φzz̄ is greater than or equal to zero.
Finally, note that if the extreme value is achieved, thenφzz̄ ≡ 0. That is,Q or ν vanish identically

onS. But,S cannot lie on a cylinder becauseK(I) 6= 0, that is,ν 6≡ 0. Therefore,Q ≡ 0 and the result
follows from Theorem 3.1.

Remark 3.1. From the Bonnet-Myers theorem, it can be deduced that every minimizing geodesic in a
surfaceψ : S −→ M2(ε) × R with positive constant Gaussian curvatureK(I) has length less than
or equal to2π/

√
K(I). Hence, there always exists height estimates for such a surface, although these

estimates are far from optimal. The bounds we provide in the above theorem are, as we have seen, the
optimal ones.

We would like to point out that the hypothesisK(I) ≥ 1 in S2 × R can be changed forK(I) > 0,
K(I) 6= 1. In fact, if ψ : S −→M2(ε)×R is a surface with Gaussian curvatureK(I), 0 < K(I) < 1,
then there does not exist a pointp where the height function attains a maximum or minimum, because
from the Gauss equation it would bek1(p)k2(p) < 0 and so in any neighborhood ofp there would be
points of greater and less height thanp. In particular, we answer a question posed by the authors in
[AEG].
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Proposition 3.2. There does not exist a complete surface with constant Gaussian curvatureK(I), 0 <
K(I) < 1, in S2 ×R.

As a consequence of the classical Alexandrov reflection principle for slices inM2(ε) × R, we get
the following

Corollary 3.2. Letψ : S −→M2(ε)×R be an embedding of a compact surface with positive constant
Gaussian curvatureK(I) > ε, such that its boundaryψ(∂S) (possibly empty) is contained in a slice
M2(ε) × {t0}. Then the height difference between its upper point and its lower point is less than or
equal to

2

√
K(I) + 1

K(I)
arctan

(
1√

K(I)

)
if ε = −1

2

√
K(I)− 1

K(I)
ln

(√
K(I) + 1√
K(I)− 1

)
if ε = 1.

Moreover, if such a difference is attained,ψ(S) is, up to isometries, the completeK(I)−surface.

4 Representation ofK(I)−Surfaces withK > 0

Let ψ : S −→ M2(ε) × R be aK(I)−surface with positive extrinsic curvature and assume thatII is
positive definite. We will also assume that the surface is transverse to each sliceM2(ε) × {t} for all
t ∈ R, that is,T never vanishes onS, or equivalently,ν2 < 1 onS. We will refer to such a surface as a
transverse surface.

Let us observe that the points whereν2 = 1 is an isolated set becauseK > 0 (that is,II is positive
definite).

From (3.3) and (3.10) one has

αhz + αhz̄

1− ν2
= D = |E|2 − F 2 =

∣∣∣∣
α + Fhz̄

hz

∣∣∣∣
2

− F 2,

that is,

F = − |α|2
αhz + ᾱhz̄

+
|hz|2

1− ν2
.

Hence, by using (3.3) again

E =
ᾱ2

αhz + ᾱhz̄
+

h2
z

1− ν2
.

On the other hand, from (3.5) and (3.9) one gets

α =
ρ νz̄

K(I)− εν2
. (4.1)
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In addition, from (3.1), (3.5) and (3.10)

ρ2 = −D K = −K(I)− εν2

1− ν2
(αhz + ᾱhz̄).

With all of this,E, F can be written in terms ofhz, ν, νz andK(I) as

E =
h2

z

1− ν2
− ν2

z

(1− ν2)(K(I)− εν2)
,

F =
|hz|2

1− ν2
+

|νz|2
(1− ν2)(K(I)− εν2)

.

Thus, from (3.3), (3.9) and (4.1)

α = − νzhz̄ + νz̄hz

(1− ν2)(K(I)− εν2)
νz̄

ρ = −νzhz̄ + νz̄hz

1− ν2
> 0.

At this point it would be interesting to observe that the induced metric and the second fundamental
form can be recovered for any transverse surface with positive extrinsic curvature in terms ofh, ν,
K(I) and the conformal structure given byII. In fact, the compatibility equations for the existence
of an immersion from a simply connected Riemann surface with fixed functionsh : S −→ R and
ν : S −→ (−1, 1) and fixed Gaussian curvature are given by Lemma 3.1.

The compatibility equations are much more simple for a surface with constant Gaussian curvature:

Theorem 4.1. Let S be a surface andψ : S −→ M2(ε) × R a transverseK(I)−immersion such that
K > 0. Then, given a local conformal parameterz for II, the first and second fundamental forms ofψ
can be recovered in terms of its height functionh, ν and the constantK(I) as

E =
h2

z

1− ν2
− ν2

z

(1− ν2)(K(I)− εν2)
(4.2)

F =
|hz|2

1− ν2
+

|νz|2
(1− ν2)(K(I)− εν2)

(4.3)

ρ = −νzhz̄ + νz̄hz

1− ν2
> 0. (4.4)

In additionh andν verify

hzz̄ = − (K(I)− ε)ν
(1− ν2)(K(I)− εν2)

(νzhz̄ + νz̄hz) (4.5)

νzz̄ = − ν

(1− ν2)(K(I)− εν2)
(
(K(I)− 2εν2 + ε)|νz|2 + (K(I)− εν2)2|hz|2

)
. (4.6)

Conversely, letK(I) ∈ R and ε ∈ {−1, 1} be constants,h : S −→ R and ν : S −→ (−1, 1)
functions on a simply-connected Riemann surfaceS satisfying(4.5), (4.6), K(I) − εν2 > 0 and
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νzhz̄ + νz̄hz < 0. Then, there exists an immersionψ : S −→ M2(ε) × R such thatS is a trans-
verseK(I)−surface whose first and second fundamental forms are given by

I = Edz2 + 2F |dz|2 + Ēdz̄2, II = 2ρ|dz|2

whereE, F and ρ are defined by(4.2), (4.3) and (4.4) respectively, whose height function and the
fourth coordinate of its normal are given byh andν respectively, and the structure given by its second
fundamental form is the one ofS. Moreover, this immersion is unique up to an isometry ofM2(ε)×R.

Proof. For the first part we observe that (4.2), (4.3) and (4.4) are already computed. In addition, (4.5)
and (4.6) are equivalent to (3.11) and (3.12) when the previous expressions ofE, F andρ are used.

The second part is a tedious but straightforward computation bearing in mind Lemma 3.1.

This representation has a special interest for transverse surfaces with Gaussian curvatureK(I) = 1
in S2×R. In this case, it is not known if the slices are the only complete surfaces with constant Gaussian
curvatureK(I) = 1 in S2 × R [AEG]. In addition, the compatibility equations will be reduced to the
elliptic sinh-Gordon equation.

Thus, letψ : S −→ S2 × R be a transverse immersion withK(I) = 1 in the previous conditions.
Sinceν2 < 1, it follows from (3.5) thatK > 0 and so we can assume thatII is a Riemannian metric on
S. Then, we are under the hypothesis of Theorem 4.1 and consequently the height functionh is harmonic
for II andν verifies

νzz̄ = −ν

(
|hz|2 + 2

|νz|2
1− ν2

)
.

If we defineω = arctanh(ν), this last equation becomes

ωzz̄ + |hz|2 sinh(ω) cosh(ω) = 0. (4.7)

and we can reformulated Theorem 4.1 for these surfaces as follows:

Corollary 4.1. Let S be a connected surface andψ : S −→ S2 × R a transverse immersion with
K(I) = 1. Then, given a local conformal parameterz for II, the first and second fundamental forms of
ψ can be recovered in terms of its height functionh andω = arctanh(ν) as

E = cosh2(ω)h2
z − ω2

z (4.8)

F = cosh2(ω)|hz|2 + |ωz|2 (4.9)

ρ = −(ωzhz̄ + ωz̄hz) > 0 (4.10)

whereω verifies(4.7).
Conversely, leth : S −→ R be an harmonic function on a simply-connected Riemann surfaceS

and ω : S −→ R a function verifyingωzhz̄ + ωz̄hz < 0 and (4.7). Then, there exists an immersion
ψ : S −→ S2 × R such thatS is transverse with constant Gaussian curvatureK(I) = 1, whose first
and second fundamental forms are given by

I = Edz2 + 2F |dz|2 + Ēdz̄2, II = 2ρ|dz|2
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whereE, F and ρ are defined by(4.8), (4.9) and (4.10) respectively, whose height function and the
fourth coordinate of its normal are given byh andν = tanh(ω) respectively, and the structure given by
its second fundamental form is the one onS. Moreover, this immersion is unique up to an isometry of
S2 ×R.

Sincehz 6= 0 in a transverse immersion andhz is a holomorphic function whenK(I) = 1 in S2×R,
we can take a conformal parameterζ such thatdζ = hzdz. Thus, (4.7) becomes the classical elliptic
sinh-Gordon equation

ωζζ̄ + sinh(ω) cosh(ω) = 0.

5 Representation ofK(I)−Surfaces withK < 0

Similar results to the ones given in the previous section can be obtained for transverseK(I)−surfaces
with negative extrinsic curvature. In this case,II is a Lorentzian metric andS can be considered as a
Lorentz surface with the induced conformal structure (see [We]).

So, we can take asymptotic coordinates(u, v) for a surface withK < 0 such that the first and second
fundamental form can be written as

I = Edu2 + 2Fdudv + Gdv2

II = 2fdudv.

After a development similar in essence to the one in the case of positive extrinsic curvature we obtain
some results which are enunciated without a proof in order to not repeat the same computations.

Theorem 5.1. LetS be a connected surface andψ : S −→ M2(ε)×R a transverseK(I)−immersion
such thatK < 0. Then, given asymptotic coordinates(u, v) for II, the first and second fundamental
forms ofψ can be recovered in terms of its height functionh, ν and the constantK(I) as

E =
h2

u

1− ν2
− ν2

u

(1− ν2)(KI − εν2)
(5.1)

F =
huhv

1− ν2
+

νuνv

(1− ν2)(KI − εν2)
(5.2)

G =
h2

v

1− ν2
− ν2

v

(1− ν2)(KI − εν2)
(5.3)

f = −νuhv + νvhu

1− ν2
> 0. (5.4)

In addition,h andν verify

huv = − (KI − ε)ν
(1− ν2)(KI − εν2)

(νuhv + νvhu) (5.5)

νuv = − ν

(1− ν2)(KI − εν2)
(
(KI − 2εν2 + ε)νuνv + (KI − εν2)2huhv

)
. (5.6)
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Conversely, letK(I) ∈ R andε ∈ {−1, 1} be constants,h : S −→ R andν : S −→ (−1, 1) func-
tions on a simply-connected Lorentz surfaceS satisfying(5.5), (5.6), K(I)−εν2 < 0 andνuhv+νvhu <
0. Then, there exists an immersionψ : S −→ M2(ε) × R such thatS is a transverseK(I)−surface
whose first and second fundamental forms are given by

I = Edu2 + 2Fdudv + Gdv2, II = 2fdudv

whereE, F , G andf are defined by(5.1), (5.2), (5.3)and(5.4) respectively, whose height function and
the fourth coordinate of its normal are given byh andν respectively, and the structure given by its second
fundamental form is the one onS. Moreover, this immersion is unique up to an isometry ofM2(ε)×R.

If ψ : S −→ H2 ×R is a transverse immersion withK(I) = −1, it follows from (3.5) thatK < 0
at every point. In addition, from Theorem 5.1,h is harmonic forII andν verifies

νuv = ν

(
huhv − 2

νuνv

1− ν2

)
.

By takingω = arctanh(ν), this last equation becomes

ωuv − huhv sinh(ω) cosh(ω) = 0. (5.7)

Corollary 5.1. Let S be a connected surface andψ : S −→ H2 × R a transverse immersion with
K(I) = −1. Then, given local asymptotic coordinates(u, v) for II, the first and second fundamental
forms ofψ can be recovered in terms of its height functionh andω = arctanh(ν) as

E = cosh2(ω)h2
u + ω2

u (5.8)

F = cosh2(ω)huhv − ωuωv (5.9)

G = cosh2(ω)h2
v + ω2

v (5.10)

f = −(ωuhv + ωvhu) > 0 (5.11)

whereω verifies(5.7).
Conversely, leth : S −→ R be a harmonic function on a simply-connected Lorentz surfaceS

andω : S −→ R a function verifyingωuhv + ωvhu < 0 and (5.7). Then, there exists an immersion
ψ : S −→ H2 ×R such thatS is transverse with constant Gaussian curvatureK(I) = −1, whose first
and second fundamental forms are given by

I = Edu2 + 2Fdudv + Gdv2, II = 2fdudv

whereE, F , G andf are defined by(5.8), (5.9), (5.10)and(5.11)respectively, whose height function and
the fourth coordinate of its normal are given byh andν = tanh(ω) respectively, and the structure given
by its second fundamental form is the one ofS. Moreover, this immersion is unique up to an isometry of
H2 ×R.

From this result, it is easy to obtain complete surfaces withK(I) = −1 in H2 ×R, for instance, if
one takeshu ≡ 0 and chooses a suitableω(u, v) = ω1(u) + ω2(v).

Moreover, sincehuv = 0 if hu andhv do not vanish then taking the new parameters(ū, v̄) such that
dū = hudu, dv̄ = hvdv the previous equation (5.7) becomes the hyperbolic sinh-Gordon equation

ωūv̄ − sinhω coshω = 0.
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