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Abstract

We give a conformal representation for improper affine spheres which is used to solve
the Cauchy problem for the Hessian one equation. With this representation, we charac-
terize the geodesics of an improper affine sphere, study its symmetries and classify the
helicoidal ones. Finally, we obtain the complete classification of the isolated singularities
of the Hessian one Monge-Ampère equation.

1 Introduction

It is well known that the elliptic Monge-Amp̀ere equations are one of the main research streams
in partial differential equations. In particular, the classical Monge-Ampère equation

det

(
∂2u

∂xi∂xj

)
= 1

is an important inquiry topic which has generated a large quantity of works. Its interest is also
clear in differential geometry. Among other applications, the graphs of these solutions can
be considered as improper affine spheres in affine differential geometry (see [CY]) and they
are also the integrability conditions for flat surfaces in hyperbolic 3-space (see, for instance,
[GMM] or [Sp, p. 165]).

The affine spheres in the unimodular affine 3-space are the totally umbilical surfaces of
the affine theory, which studies the invariant properties under the group of unimodular affine
transformations. They are the basic surfaces in this theory, with constant affine mean curvature
H and affine normal lines that are mutually parallel for improper affine spheres, i. e.H = 0, or
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pass through a fixed point for proper affine spheres, i. e.H 6= 0. In contrast to the Euclidean
case, the class of totally umbilical surfaces is very large and it has been extensively investigated.

For the geometric study of the improper affine spheres we will consider its associated
Cauchy problem:Find all improper affine spheres containing a prescribed curve and with a
given analytic tangent plane distribution along the curve.

This problem can be considered as a generalization of the Cauchy problem for the above
mentioned Hessian one equation and it is inspired by the classical Björling problem for minimal
surfaces in the Euclidean 3-space, which was posed by E.G. Björling in 1844 and solved in 1890
by H.A. Schwarz [DHKW, pp. 120-135].

The importance of the Björling problem relies on the fact that it has been used to prove in-
teresting geometric properties of minimal surfaces inR3. This has motivated the generalization
of the Björling problem to other geometric theories, as well as its application to the local and
global description of different families of surfaces. Among the references dealing with the clas-
sical Björling problem and its generalizations we may quote [ACM], [Bl1], [DHKW], [GMi1],
[GMi2], [GMi3], [Mi], [Ni].

In affine differential geometry, a Björling type problem was first considered by W. Blaschke
[Bl1] for the class of affine surfaces with vanishing affine mean curvature, i. e. surfaces with
maximal affinely invariant area [Ca]. Nevertheless, his study is centered in finding all maxi-
mal affine surfaces whose affine conormal contains a given analytic strip. Thus, the prescribed
initial data are related to the affine conormal of the surface and not to the surface itself, which
makes it difficult to give geometric properties about the maximal affine surface. The Blaschke
solution to this problem depends strongly on the vanishing of the Laplacian of the affine conor-
mal immersion, as it happens in Björling’s case for the coordinates of the minimal immersion.
In contrast, we will fix initial data on the surface in order for it to be studied directly and will
relate the problem to the above Monge-Ampère equation.

Thus, after some preliminaries, in Section 3 we study necessary and sufficient conditions
on an analytic strip to contain an improper affine sphere and give a conformal representation
which is adapted to solve the associated Cauchy problem. It is important to remark that our
Weierstrass type resolution is different from the classical conformal representation for maximal
affine surfaces by Blaschke [Bl2] and the one for improper affine spheres by L. Ferrer, A.
Mart́ınez and F. Miĺan [FMM1], [FMM2], and it is particularly useful in the study of special
curves on an improper affine sphere.

As an immediate consequence, we obtain conditions on an analytic curveβ for the existence
of a unique improper affine sphere containing it when the affine metric is prescribed alongβ.
In addition, using our conformal representation, we solve explicitly the Cauchy problem for the
Hessian one Monge-Ampère equation.

In Section 4 we study the geodesics of an improper affine sphere. We characterize the
geodesics for the affine metric and give a necessary and sufficient condition on a curve to be the
geodesic of some improper affine sphere, which can be calculated using the resolution to the
Cauchy problem. Moreover, we derive a reflection principle as well as a generalized symmetry
principle and show how spheres with the topology of a cylinder can be computed.

Section 5 is devoted to the classification of the helicoidal improper affine spheres, that is,
those which are invariant under a 1-parameter equiaffine isometry group. For this, we observe
that the orbit of a fixed point is a curve with some symmetry properties, what allows us to use
the resolution to the Cauchy problem. In addition, we investigate its affine completeness, when
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an orbit is considered as its boundary.
In Section 6, we focus our attention on the singularities of the Hessian one Monge-Ampère

equation. Two famous results by K. Jörgens [Jo1], [Jo2] showed that the revolution surfaces
provide the only entire solutions or entire solutions with an isolated singularity to this equation,
up to equiaffine transformations. Recently, the classification of the entire solutions to this equa-
tion with a finite number of isolated singularities was achieved [GMMi]. However, nothing was
known about the local classification of these singularities.

We prove that there exists an explicit one to one correspondence between the class of local
solutions to the Monge-Amp̀ere equation with an isolated singularity and the family of planar
convex regular analytic Jordan curves. For this, we need to solve a slightly more general Cauchy
problem for a class of Lagrangian immersions associated to the Hessian one equation [Wo] and
show how a curve of singularities of an improper affine sphere can determine the surface itself.

2 Preliminaries

In this section we examine some elementary facts about improper affine spheres and establish
some notations. We refer the reader to [CY], [LSZ] and [NS] for more detailed discussions
about affine surfaces.

Let (x1, x2, x3) be a rectangular coordinate system inR3 andψ : M −→ R3 a (locally
strongly convex) improper affine sphere with a possibly empty differentiable boundary. Then,
up to an equiaffine transformation, we can assume that its affine normal is given bye3 =
(0, 0, 1).

Since the affine normal is transversal to the immersion,ψ can be locally seen as the graph
of an analytic strongly convex functionf(x1, x2) satisfying the Hessian one equation

fx1x1 fx2x2 − f 2
x1x2 = 1 (2.1)

with fxixi > 0 for i = 1, 2. Herefxixj stands for ∂2f
∂xi∂xj .

In such a case, the affine conormalN and the affine metrich of ψ are given by

N = (−fx1 ,−fx2 , 1) ,

h = fx1x1 (dx1)2 + 2fx1x2 dx1 dx2 + fx2x2 (dx2)2 .

Now, if we considerM as a Riemann surface with the structure induced by the affine metric,
then takingz = x1 + ifx2 andζ = fx1 + ix2 one gets from (2.1)

h =
1

fx2x2

|dz|2 =
1

fx1x1

|dζ|2 ,

that is,z andζ are well oriented conformal parameter immersions.
Finally, we observe that the graph of any solution to the Monge-Ampère equation (2.1) is

an improper affine sphere with affine normale3 if fxixi > 0 for i = 1, 2, or affine normal−e3

otherwise. Thus, some properties of the solutions to this equation can be deduced from the
improper affine spheres and vice versa.
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3 Conformal Representation for Improper Affine Spheres

In this section we give a representation for improper affine spheres in terms of holomorphic
data. The representation is adapted to the resolution of the associated Cauchy problem which
can be formulated as follows:

Let I be an interval,β : I −→ R3 a regular analytic curve andΠ an analytic
distribution of planes alongβ such thatβ′(s) ∈ Π(s) for all s ∈ I. Given a non
zero vectorξ, find every improper affine sphere containingβ(I) with tangent plane
Π(s) atβ(s) for all s ∈ I and affine normal vectorξ.

If we denote byV (s) the affine conormal atβ(s), we observe that the knowledge ofΠ(s)
andξ determineV (s) since the affine conormal is orthogonal toΠ(s) and its inner product with
ξ is one. And, obviously, the regular analytic curveV determinesΠ.

Thus, given two regular analytic curvesβ, V : I −→ R3 we study necessary and sufficient
conditions on these curves for the existence of an improper affine sphere containingβ(I) with
affine conormal mapV (s) atβ(s).

Now, let ψ : M −→ R3 be an improper affine sphere with affine normalξ and affine
conormal mapN : M −→ R3. If we consider a regular analytic curveα : I −→ M and
β = ψ ◦ α, V = N ◦ α then〈β′(s), V (s)〉 = 0 becauseV (s) is normal to the immersion;
〈β′′(s), V (s)〉 = h(β′(s), β′(s)) > 0 since the affine metric is Riemannian, and〈V (s), ξ〉 =
1.

Motivated by these facts, we say that a pair of regular analytic curvesβ, V : I −→ R3 is
admissiblefor a non zero vectorξ if




〈β′(s), V (s)〉 = 0,
〈β′′(s), V (s)〉 > 0, and
〈ξ, V (s)〉 = 1

(3.1)

for all s ∈ I.
Thereby, if the Cauchy problem has a solution, the pair of curvesβ, V must be admissible.

Conversely, we prove that this condition is sufficient to find a unique solution to the Cauchy
problem. More concretely,

Theorem 3.1. Let I be an interval andβ, V : I −→ R3 an admissible pair of curves for a
non zero vectorξ. Then there exists a unique improper affine sphere containingβ(I) with affine
conormalV (s) at β(s) for all s ∈ I and affine normal vectorξ.

Proof. Let us assumeξ = e3 and take an admissible pairβ, V : I −→ R3 for ξ with β(s) =
(β1(s), β2(s), β3(s)) andV (s) = (V 1(s), V 2(s), 1). Let us suppose that there exists an im-
proper affine sphereψ = (ψ1, ψ2, ψ3) with affine conormalN = (N1, N2, 1) containingβ(I)
such that its affine conormal alongβ is V . By the inverse function theorem there exists a local
conformal parameterz for the affine metrich, defined in a complex domain containingI, such
that its real part iss, i.e. z = s + it.

As it was proven in the above sectionψ1 − iN2 is a well oriented conformal parameter for
h. Thus,(ψ1 − iN2)(z) is a holomorphic function such that(ψ1 − iN2)(s) = β1(s)− iV 2(s).
Therefore, by analyticity, we have that(ψ1 − iN2)(z) = β1(z) − iV 2(z), whereβ1(z), V 2(z)
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denotes the holomorphic extension ofβ1, V 2, respectively. This equality holds on a certain
domain where the holomorphic extensions ofβ1 andV 2 exist. Analogously, we obtain(−N1 +
iψ2)(z) = −V 1(z) + iβ2(z).

Thus, one has

ψ1(z) = < (β1(z)− iV 2(z)) , N1(z) = −< (−V 1(z) + iβ2(z)) ,

ψ2(z) = = (−V 1(z) + iβ2(z)) , N2(z) = −= (β1(z)− iV 2(z)) ,
(3.2)

where< and= stand for the real and imaginary part of a complex number, respectively.
Moreover, since〈ψz, N〉 = 0, it follows thatψ3 can be calculated as

ψ3(z) = ψ3(s0)−
∫ z

s0

(ψ1
wN1 + ψ2

wN2) dw + (ψ1
w̄N1 + ψ2

w̄N2)dw̄, (3.3)

with s0 ∈ I. Using thatψ3(s0) = β(s0), the immersionψ can be computed from (3.2) and (3.3)
in terms ofβ(s) andV (s).

This fact proves the uniqueness part of the theorem forξ = e3, because the above expres-
sions only depend onβ, V and the parameters; but an analytic change ofs is nothing but a
conformal change of parameter for the affine metric.

To prove existence, given an admissible pairβ, V : I −→ R3 for e3 we define the functions
ψ1, ψ2, N1 andN2 as in (3.2). These functions can be well defined in a simply connected
complex domain containingI where the holomorphic extensions ofβ andV are possible. And,
since

∂

∂z
(ψ1

z̄N
1 + ψ2

z̄N
2) =

∂

∂z̄
(ψ1

zN
1 + ψ2

zN
2)

we can also define the real function

ψ3(z) = β3(s0)−
∫ z

s0

(ψ1
wN1 + ψ2

wN2) dw + (ψ1
w̄N1 + ψ2

w̄N2)dw̄ (3.4)

for a fixed points0 ∈ I.
It is clear thatψj(s) = βj(s) andN j(s) = V j(s) for all s ∈ I, j = 1, 2. Thus, from (3.4),

ψ3(s) = β3(s0)−
∫ s

s0

(β1′(r)V 1(r) + β2′(r)V 2(r))dr = β3(s)

for all s ∈ I, since the pairβ, V is admissible fore3.
Now, we prove thatψ = (ψ1, ψ2, ψ3) is an improper affine sphere in a complex domain

containingI with affine conormalN = (N1, N2, 1) and affine normale3.
First, we observe that

ψz ∧ ψz̄ =
(
ψ1

zψ
2
z̄ − ψ1

z̄ψ
2
z

)
N = 2i= (

ψ1
zψ

2
z̄

)
N,

being

= (
ψ1

zψ
2
z̄

)
(s) = −1

4
〈β′′(s), V (s)〉 < 0,

where by∧we denote the cross product inR3. This implies thatψ is an immersion in a complex
neighbourhood ofI with normal direction given byN .
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Since the third coordinate immersion ofN is non zero,ψ can be locally considered as a
graph with respect to the planeΠ0 = {(x1, x2, x3) ∈ R3 : x3 = 0}. Thus, if we take the local
parameters(x, y) = (ψ1, ψ2) then a straightforward computation shows

ψ3
x = −N1, ψ3

y = −N2 and ψ3
xxψ

3
yy − (ψ3

xy)
2 = 1

with ψ3
xx, ψ3

yy > 0. Therefore,ψ is an improper affine sphere with affine conormalN and affine
normale3.

This ends up the proof forξ = e3. The general case for an arbitraryξ can be easily deduced
from the above one.

From now on, without loss of generality, we will assume that, up to an equiaffine transfor-
mation, the affine normal ise3. Thus, from the above theorem we have the following conformal
representation,

Theorem 3.2. Let I be an interval andβ, V : I −→ R3 an admissible pair of curves fore3.
Then, the unique improper affine sphereψ = (ψ1, ψ2, ψ3) containingβ(I) with affine conormal
V (s) at β(s) and affine normale3 can be calculated in a neighbourhood ofI in C as follows,

N1(z) = −< (−V 1(z) + iβ2(z)) ,

N2(z) = −= (β1(z)− iV 2(z)) ,

ψ1(z) = < (β1(z)− iV 2(z)) ,

ψ2(z) = = (−V 1(z) + iβ2(z)) ,

ψ3(z) = β3(s0)−
∫ z

s0
(ψ1

wN1 + ψ2
wN2) dw + (ψ1

w̄N1 + ψ2
w̄N2)dw̄

(3.5)

wheres0 ∈ I is a fixed point andN = (N1, N2, 1) is its affine conormal.
Moreover, its affine metrich is given by

h = −<
((

β1
z − iV 2

z

) (
V 1

z + iβ2
z

))
|dz|2.

Proof. We only need to compute the affine metric of the improper affine sphere, that is,

h(ψz, ψz) = 〈ψzz, N〉 = −〈ψz, Nz〉 = 0,

h(ψz, ψz̄) = 〈ψzz̄, N〉 = ψ3
zz̄.

Thus, using the last equation in (3.5)

ψ3
zz̄ = −1

2
<

((
β1

z − iV 2
z

) (
V 1

z + iβ2
z

))

and the theorem follows.

Remark 3.1. Although the conformal resolution given in the above theorem is local, it is clear
that the global solution can be found by analytic continuation.

It is interesting to observe that for an admissible pair of curvesβ, V , the value ofV is
determined, in some cases, in terms of the affine metric alongβ. More explicitly,
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Lemma 3.1. Let I be an interval andβ, V an admissible pair of curves fore3. Let us con-
sider the analytic functionm(s) = 〈β′′(s), V (s)〉, s ∈ I. If there existss0 ∈ I such that
det(β′(s0), β

′′(s0), e
3) 6= 0 thenV can be calculated in terms ofβ andm.

Proof. Sincedet(β′(s0), β
′′(s0), e

3) 6= 0 we obtain thatdet(β′(s), β′′(s), e3) 6= 0 in a neigh-
bourhood ofs0. Thus, using that the pair is admissible, the system of linear equations with
variableV (s) 



〈β′(s), V (s)〉 = 0,
〈β′′(s), V (s)〉 = m(s),
〈e3, V (s)〉 = 1

(3.6)

can be solved in the above neighbourhood ofs0, with a unique solution. Thereby,V is deter-
mined arounds0 and globally determined by analyticity.

If we write β = (β1, β2, β3), one hasdet(β′, β′′, e3) = β1′β2′′ − β2′β1′′. Then,β1′β2′′ −
β2′β1′′ 6= 0 if and only if the planar curve(β1, β2) has non zero Euclidean curvature.

Therefore, the conditiondet(β′(s0), β
′′(s0), e

3) 6= 0 is equivalent to say that the affine pro-
jection ofβ in the direction ofe3 on a transversal plane (and, hence, on every transversal plane)
is a locally strongly convex curve ats0.

As a converse of the Lemma we have

Proposition 3.1. Let I be an interval andβ : I −→ R3 a regular analytic curve such that
det(β′(s), β′′(s), e3) 6= 0 for all s ∈ I. Then, given a positive analytic functionm : I −→ R+

there exists a unique improper affine sphere containingβ(I) and satisfyingh(β′(s), β′(s)) =
m(s), s ∈ I, whereh denotes its affine metric.

Proof. Bearing in mind thath(β′(s), β′(s)) = 〈β′′(s), V (s)〉, the proof of this result is an easy
consequence of (3.6) and Theorem 3.1.

Example 3.1. Let us considerβ : R −→ R3 given byβ(s) = (b0 cos s, b0 sin s, 0) with b0 > 0
andm(s) = m0 > 0. Then Proposition 3.1 assures the existence of a unique improper affine
sphereψ = (ψ1, ψ2, ψ3) containing the circleβ(R) with constant affine metricm0 on β(R).
This example provides us every revolution improper affine sphere (see Section 5), which can be
calculated from (3.6) and Theorem 3.2. That is,

V (s) = (−m0

b0

cos s,−m0

b0

sin s, 1)

and

ψ1(s, t) = b0 cos s cosh t− m0

b0

cos s sinh t,

ψ2(s, t) = −m0

b0

sin s sinh t + b0 sin s cosh t,

ψ3(s, t) = − 1

4b2
0

(
2(m2

0 − b4
0)t− 2m0b

2
0 cosh(2t) + (m2

0 + b4
0) sinh(2t)

)− m0

2
,

where we have used the holomorphic extensions ofcos s andsin s

cos z = cos s cosh t− i sin s sinh t,
sin z = sin s cosh t + i cos s sinh t

for z = s + it.
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Remark 3.2. Let us consider the regular analytic curveβ : R −→ R3 given byβ(s) =
(cos s, s, sin s). In this casedet(β′(s), β′′(s), e3) = cos s and, so, if we takem(s) = 1 for
all s ∈ R, then from (3.6) we have

V (s) = (− 1

cos s
− tan s,− cos s− (1 + sin s) tan s, 1), s ∈

]
−π

2
,
π

2

[
.

This proves that the conditiondet(β′(s), β′′(s), e3) 6= 0 at any point in Proposition 3.1 cannot
be relaxed, since it is not possible to defineV in R.

Now, our aim is to solve the Cauchy problem for the classical Monge-Ampère equation




fxxfyy − f 2
xy = 1

f(x, 0) = a(x), a′′(x) > 0
fy(x, 0) = b(x)

(3.7)

wherea, b are two analytic functions defined on an intervalI andf is defined on a domain in
the(x, y)-plane containingI × {0}.

Note thata′′(x) must be different from zero in order for the Monge-Ampère equation to be
satisfied. Thereby, without loss of generality, changingf to −f if necessary, we can assume
a′′(x) > 0 for all x ∈ I.

Bearing in mind that the graph of a solution of the Monge-Ampère equation can be locally
seen as an improper affine sphere, one has

Theorem 3.3. There exists a unique solution to the Cauchy problem (3.7) in a neighbourhood
of I × {0} given by

f(x, y) = a(x0) +
1

2

∫ z

x0

{<(a′(w)(1 + ib′(w)))− i=(w + ib(w)) a′′(w)} dw+

+
{
<(a′(w))(1− ib′(w)) + i=(w + ib(w)) a′′(w)

}
dw̄

with
x(z) = <(z)−=(b(z)), y(z) = =(a′(z)).

Here,a(z) andb(z) are holomorphic extensions ofa(x) andb(x), respectively, andx0 ∈ I is a
fixed point.

Proof. It is easy to convince oneself that solving the Cauchy problem (3.7) is equivalent to
solve the Cauchy problem for improper affine spheres and admissible dataβ(s) = (s, 0, a(s)),
V (s) = (−a′(s),−b(s), 1), s ∈ I, for ξ = e3 (see Section 2).

Then, the result follows from Theorem 3.1 and Theorem 3.2.

4 Some Applications

It is well known that a curve of an improper affine sphere is a pre-geodesic for the induced
connection if and only if the affine projection of the curve in the direction of the affine normal
ξ on a transversal plane, lies in a line (see, for instance, [NS]). Here, we mean by pre-geodesic
a geodesic up to reparametrizations.
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We use the resolution to the Cauchy problem in order to characterize the geodesics of an
improper affine sphere for the affine metric and to study what are the conditions that a given
curve must satisfy to be the geodesic of some improper affine sphere.

Theorem 4.1.LetM be a Riemann surface andψ : M −→ R3 an improper affine sphere with
affine conormalN : M −→ R3. If we consider a regular analytic curveα : I −→ M from an
interval I and takeβ = ψ ◦ α, V = N ◦ α, thenβ is a pre-geodesic for the affine metric if and
only if det(β′(s), β′′(s), e3) + det(V ′(s), V ′′(s), e3) = 0 for all s ∈ I.

Proof. Using Theorem 3.2 we have a conformal parameterz = s + it, defined in a neighbour-
hood containingI, for the affine metrich such thatψ = β for z = s.

If we denote by∇̂ the Levi-Civita connection ofh, thenβ is a pre-geodesic if only if
∇̂β′(s)β

′(s) is proportional toβ′(s). Or equivalently,

0 = h

(
∇̂ ∂

∂s

∂

∂s
,

∂

∂t

)
= −1

2

∂

∂t
h(

∂

∂s
,

∂

∂s
) = − ∂

∂t
h(

∂

∂z
,
∂

∂z̄
)

alongβ(s), that is,

=
(

∂

∂z
h(

∂

∂z
,
∂

∂z̄
)

)
= 0

for all z = s ∈ I.
Thus, deriving with respect toz the expression ofh given in Theorem 3.2 and evaluating at

z = s one has that the imaginary part of
(
β1′′(s)− iV 2′′(s)

)(
V 1′(s) + iβ2′(s)

)
+

(
β1′(s) + iV 2′(s)

)(
V 1′′(s)− iβ2′′(s)

)

must vanish identically. That is,

0 = β1′(s)β2′′(s)− β1′′(s)β2′(s) + V 1′(s)V 2′′(s)− V 1′′(s)V 2′(s)

= det(β′(s), β′′(s), e3) + det(V ′(s), V ′′(s), e3),

as we wanted to prove.

Bearing in mind that a pre-geodesicβ is a geodesic if and only if0 = h(∇̂β′(s)β
′(s), β′(s)) =

∂
∂s

h(β′(s), β′(s)), one has

Corollary 4.1. Let I be an interval andβ : I −→ R3 a regular analytic curve. Thenβ is the
geodesic of some improper affine sphere for the affine metric if and only if there exists a regular
analytic curveV : I −→ R3 satisfying




〈β′(s), V (s)〉 = 0
〈β′′(s), V (s)〉 = c0

〈e3, V (s)〉 = 1
(4.1)

for a positive constantc0, such thatdet(β′(s), β′′(s), e3) + det(V ′(s), V ′′(s), e3) = 0.
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Example 4.1. It is easy to check that the curveβ(s) = (cos s, sin s, 0) cannot be a geodesic
of an improper affine sphere for the affine metric. The only curveV verifying (4.1) isV (s) =
(− cos s,− sin s, 1). But,

det(β′(s), β′′(s), e3) + det(V ′(s), V ′′(s), e3) = 1 + c2
0.

However, for the curveβ(s) = (cosh s, sinh s, 0) there exists a unique improper affine
sphere havingβ as a geodesic for the affine metric which can be calculated by takingV (s) =
(cosh s,− sinh s, 1).

Now, we use the conformal representation for improper affine spheres in order to establish
several consequences regarding their symmetries. Our aim is to see how a symmetry in the
admissible data generates a symmetry of the whole surface.

Let F : R3 −→ R3 an element of the groupA(R3), that is, an affine transformation with
det(dF ) = ±1. As it is well known,F can be written as

F (v) = Av + b, v ∈ R3 (4.2)

whereA is a3 × 3 matrix with determinant±1 andb ∈ R3 is a fixed vector. We observe that
if ψ is an improper affine sphere with affine conormal vector fieldN and affine normalξ, then
F ◦ψ can be seen as an improper affine sphere with affine conormal(At)−1 N and affine normal
Aξ.

Thus, given an admissible pair of curvesβ, V : I −→ R3 for ξ = e3, we will say that
F ∈ A(R3) is a symmetryof the admissible pair ifAe3 = e3 and there exists an analytic
diffeomorphismf : I −→ I such thatβ ◦ f = F ◦ β andV ◦ f = (At)−1 V .

Theorem 4.2 (Generalized symmetry principle).Any symmetry of an admissible pair gener-
ates a global symmetry of the resulting improper affine sphere.

Corollary 4.2. Let β, V : R −→ R3 be an admissible pair of T-periodic regular curves for
someT > 0, then the improper affine sphere that they generate has the topology of a cylinder
in a neighbourhood ofβ(R).

Conversely, every improper affine sphere with the topology of a cylinder can be constructed
in this way.

The proofs of these results are, in essence, analogous to the corresponding ones in [GMi2],
and so we omit them.

A particular case occurs when a vertical plane intersects orthogonally an improper affine
sphere:

Corollary 4.3 (Reflection principle). Every vertical plane which intersects orthogonally an
improper affine sphere is a reflection plane of the surface.

Proof. Let us denote byβ the curve (locally) given by the intersection of the vertical planeΠ
and the improper affine sphere, andV its affine conormal alongβ. If we consider the orthogonal
reflectionF with respect toΠ, it is clear thatdF (e3) = e3 andV lies onΠ.

Thus,F is a symmetry ofβ, V , with f = Id. And, from Theorem 4.2,F is also a symmetry
of the surface.
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The generalized symmetry principle provides us the main tool for the classification of the
helicoidal improper affine spheres. Specifically, we will use the following result, which is very
useful for the construction of improper affine spheres with prescribed symmetries.

Corollary 4.4. Letβ : I −→ R3 be a regular curve satisfyingdet(β′(s), β′′(s), e3) 6= 0, s ∈ I,
and m : I −→ R+ an analytic function. IfF ∈ A(R3) and f : I −→ I is an analytic
diffeomorphism such thatdF (e3) = e3, F ◦ β = β ◦ f andm(s) = f ′(s)2 m(f(s)), thenF is a
symmetry of the improper affine sphere given by Proposition 3.1.

Proof. Let V (s) be the unique solution to (3.6) and let us writeF as in (4.2). Then, using that
β(f(s)) = F (β(s)) = Aβ(s) + b, we obtain

β′(f(s)) =
1

f ′(s)
A β′(s), β′′(f(s)) =

1

f ′(s)2
(A β′′(s)− f ′′(s) β′(f(s)))

and (3.6) becomes



〈Aβ′(s), V (f(s))〉 = 0,
〈Aβ′′(s), V (f(s))〉 = f ′(s)2 m(f(s)) = m(s),
〈Ae3, V (f(s))〉 = 1.

ThusV (f(s)) = (At)−1 V (s) is the only solution to the above linear system and the result
follows from the generalized symmetry principle.

Example 4.2. Let us consider the curveβ : R −→ R3 given byβ(s) = (cos(s), sin(s), 0)
andm(s) = 1 + cos2(s). Then the unique improper affine sphere containing the circleβ(R)
and affine metrich such thath(β′(s), β′(s)) = m(s) has, from Corollary 4.2, the topology of a
cylinder, since Proposition 3.1 assures thatV (s) must be2π-periodic asβ(s) andm(s).

Moreover, if we takeF as the reflection with respect to the vertical plane with equation
x1 = 0 andf(s) = −s, we observe that, from Corollary 4.4,F is a symmetry of the surface.
Similarly,x2 = 0 is another plane of symmetry of the improper affine sphere.

5 Helicoidal Improper Affine Spheres

If ψ is an improper affine sphere which remains unchanged by an equiaffine transformationF
then it is clear thatdF preserves the affine normal ofψ. Thus, for the study of the helicoidal
improper affine spheres, we consider the equiaffine transformations whose differential preserves
a non zero fixed vector. Specifically, we denote byG the group of equiaffine transformations
F : R3 −→ R3 satisfyingdF (e3) = e3.

We will identify G, in a standard way, with the subgroup of matrices ofSL(4,R) given by







a b 0 c
d e 0 f
g h 1 j
0 0 0 1


 : a, b, c, d, e, f, g, h, j ∈ R, with ae− bd = 1





,
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with Lie algebra

g =








a b 0 f
c −a 0 g
d e 0 h
0 0 0 0


 : a, b, c, d, e, f, g, h ∈ R





.

Thus, one has

Proposition 5.1. Up to conjugation inA(R3), every non trivial 1-parameter subgroup ofG is
given by




x1

x2

x3


 −→




1 0 0
s 1 0

a s2

2
a s 1







x1

x2

x3


 + b




s
s2

2
a s3

6


 (5.1)




x1

x2

x3


 −→




1 0 0
s 1 0
0 0 1







x1

x2

x3


 +




0
0
a s


 (5.2)




x1

x2

x3


 −→




cosh s sinh s 0
sinh s cosh s 0

0 0 1







x1

x2

x3


 +




0
0
a s


 (5.3)




x1

x2

x3


 −→




cos s − sin s 0
sin s cos s 0

0 0 1







x1

x2

x3


 +




0
0
a s


 (5.4)




x1

x2

x3


 −→




es 0 0
0 e−s 0
0 0 1







x1

x2

x3


 +




0
0
a s


 (5.5)




x1

x2

x3


 −→




1 0 0
0 1 0
a s b s 1







x1

x2

x3


 +




s
0

a s2

2


 (5.6)




x1

x2

x3


 −→




1 0 0
0 1 0
0 s 1







x1

x2

x3


 (5.7)




x1

x2

x3


 −→




1 0 0
0 1 0
0 0 1







x1

x2

x3


 +




0
0
s


 (5.8)

for some constantsa, b ∈ R.
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Proof. Let us consider the matricesA ∈ g andD1 ∈ G given by

A =




a b 0 f
c −a 0 g
d e 0 h
0 0 0 0


 , D1 =




α β 0 0
γ δ 0 0
0 0 1 0
0 0 0 1


 .

Then, by choosing suitable numbersα, β, γ, δ, the matrixA1 = D1 A D−1
1 can be reduced to

one of the following ones



0 0 0 f1

c1 0 0 g1

d1 e1 0 h1

0 0 0 0


 ,




0 c1 0 f1

c1 0 0 g1

d1 e1 0 h1

0 0 0 0


 ,




0 −c1 0 f1

c1 0 0 g1

d1 e1 0 h1

0 0 0 0


 ,




a1 0 0 f1

0 −a1 0 g1

d1 e1 0 h1

0 0 0 0




with c1 6= 0.
Now, we takeD2 ∈ G as




1 0 0 α
0 1 0 β
γ δ 1 0
0 0 0 1


 or




0 1 0 α
−1 0 0 β
γ δ 1 0
0 0 0 1


 .

Then,A2 = D2 A1 D−1
2 is simplified in each case for appropriate numbersα, β, γ, δ, to one of

these matrices:



0 0 0 f2

c1 0 0 0
0 e2 0 0
0 0 0 0


 ,




0 0 0 0
c1 0 0 0
0 0 0 h2

0 0 0 0


 ,




0 c1 0 0
c1 0 0 0
0 0 0 h2

0 0 0 0


 ,




0 −c1 0 0
c1 0 0 0
0 0 0 h2

0 0 0 0


 ,




a1 0 0 0
0 −a1 0 0
0 0 0 h2

0 0 0 0


 ,




0 0 0 f3

0 0 0 0
d2 e2 0 0
0 0 0 0


 ,




0 0 0 0
0 0 0 0
0 e3 0 0
0 0 0 0


 ,




0 0 0 0
0 0 0 0
0 0 0 h3

0 0 0 0


 ,

wherec1, a1, f3, e3, h3 are non zero real numbers.
Since every continuous 1-parameter subgroup ofG is given byexp(sA), s ∈ R, with A ∈ g,

the result follows easily.

Now, we focus our attention on the classification of the improper affine spheres which are
invariant by a 1-parameter group of equiaffine transformations, that is, helicoidal improper
affine spheres. For that, we need the following lemmas,

Lemma 5.1. LetFs, s ∈ R, be a 1-parameter group of equiaffine transformations inG. Let us
write, for eachs ∈ R, Fs(v) = A(s)v + b(s), whereA(s) is a3× 3 matrix andb(s) ∈ R3. Let
us also considerβp(s) = Fs(p) for p ∈ R3. Thus,

1. Givenq1 = (q1, q2, q3
1), q2 = (q1, q2, q3

2) ∈ R3, one hasβq1(s) = βq2(s) + (0, 0, q3
1 − q3

2),
that is,βq1 andβq2 agree up to a vertical translation.
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2. If p ∈ R3 verifies thatβp is a regular analytic curve satisfyingdet(β′p, β
′′
p , e3) 6= 0 every-

where, then form(s) = m0 > 0 the only improper affine sphere given by Proposition 3.1
is helicoidal.

3. If p ∈ R3 and V : R −→ R3 satisfy that(βp, V ) is an admissible pair fore3, then
the improper affine sphere they generate is invariant underFs if and only if V (s) =
(A(s)t)−1V (0) for all s ∈ R.

Proof. The first assertion is a direct computation. For the second statement, if we consider
F = Ft andf(s) = s + t for an arbitrary constantt ∈ R one hasF (βp(s)) = βp(f(s)). And,
using Corollary 4.4, the improper affine sphere given by Proposition 3.1 remains unchanged by
Ft.

Finally, for the third assertion, ifψ is the improper affine sphere generated byβp andV with
affine conormalN , then we obtain thatFs ◦ ψ has affine conormal(A(s)t)−1N . Thus, since
ψ is invariant by the 1-parameter group andFs(βp(0)) = βp(s) thenV (s) = (A(s)t)−1V (0).
Conversely, from the generalized symmetry principle, it is sufficient to prove that for every
t ∈ R, the equiaffine transformationFt is a symmetry of the admissible pair. Thus, if we
choosef : R −→ R given byf(s) = s + t then

βp(f(s)) = Fs+t(p) = Ft(Fs(p)) = Ft(βp(s)),

V (f(s)) = (A(s + t)t)−1V (0) = (A(t)t)−1(A(s)t)−1V (0) = (A(t)t)−1V (s),

as we wanted to prove.

Lemma 5.2. Let ψ : M −→ R3 be an improper affine sphere with affine normale3, which is
invariant by the 1-parameter group of equiaffine transformationsFs, s ∈ R.

1. Given a real numberλ, the new immersionψ + λ e3 is also a helicoidal improper affine
sphere invariant byFs.

2. Letp ∈ ψ(M) andβp(s) = Fs(p), then the affine metrich verifies thath(β′p(s), β
′
p(s)) is

constant.

Proof. Sinceψ has affine normale3 thenFs is a 1-parameter subgroup ofG and, so, the first
statement follows easily. For the second assertion we observe that given an arbitrary fixed
numbert ∈ R, βp(s + t) = Ft(βp(s)) and then

h(β′p(s + t), β′p(s + t)) = h(dFt(β
′
p(s)), dFt(β

′
p(s))) = h(β′p(s), β

′
p(s)).

Here the second equality holds becauseh remains unchanged by equiaffine transformations.

From the above lemmas it seems clear that the classification of helicoidal improper affine
spheres can be reached by studying the orbits of any point under the 1-parameter groups of
equiaffine transformations. Thus, we focus our attention into the 1-parameter groups given by
Proposition 5.1.

• Group (5.1):

We distinguish two cases depending on the value ofb in the 1-parameter group (5.1).
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If b 6= 0 and p = (p1, p2, p3) ∈ R3, then the first coordinate immersion of the curve
βp(s), given by the orbit ofp, is β1

p(s) = p1 + bs. Hence, every orbit has a point on the plane
{(x1, x2, x3) : x1 = 0}.

On the other hand, by using Lemmas 5.1 and 5.2 the helicoidal improper affine spheres
containing the point(0, p2, p3) and the point(0, p2, 0) agree up to a vertical translation. Thus,
the study of the helicoidal surfaces generated by the 1-parameter group (5.1) can be deduced
from the study of the orbits of the points(0, p2, 0).

Let p = (0, c, 0) andβp(s) = (bs, c+ bs2/2, acs+ abs3/6). If we takem(s) = m0 > 0 then
from (3.6)

V (s) =

(
−2ac + 2m0s− abs2

2b
,
m0 − abs

b
, 1

)
,

and its associated improper affine sphereψ is (see Figure 1)

ψ1(s, t) = bs− at

ψ2(s, t) = c +
m0t

b
− ast +

b (s− t) (s + t)

2
(5.9)

ψ3(s, t) =
1

6b2

(−2t
(
3m2

0 − 3b2m0t + b4t2
)

+ abs
(
6bc + 6m0t + b2

(
s2 − 3t2

))
+

−a2bt
(
6c + b

(
3s2 + t2

)))

Figure 1:a = 0, b = 1, c = 0, m0 = 1.

Therefore, from Lemmas 5.1 and 5.2, we obtain that every helicoidal improper affine sphere
generated by the 1-parameter group (5.1), withb 6= 0, is given by (5.9), up to vertical transla-
tions.

Observe that its induced affine metric is given by

h = (m0 − (a2 + b2)t)(ds2 + dt2).

Hence,ψ is an immersion whent < m0/(a
2 + b2). Moreover, given a constantr ∈ R, ψ can be

considered as a complete immersion in{(s, t) : t ≤ r < m0/(a
2 + b2)}, that is, it is a complete

immersion when we consider an orbit as its boundary.
Now, we assumeb = 0 in (5.1). Letp = (0, p2, p3) ∈ R3 andψ an improper affine sphere

invariant by (5.1). Ifp ∈ ψ(M) then there exists a pointq ∈ ψ(M) (in a neighbourhood ofp)
with non zero first coordinate. Andψ can be seen as an improper affine sphere generated by
the orbit associated toq. Thus, the study of these helicoidal surfaces is reduced to the orbits of
points with non zero first coordinate.
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Let p = (p1, p2, p3) ∈ R3 with p1 6= 0. The second coordinate immersion of the curve
βp(s), given by the orbit ofp, is β2

p(s) = p1s + p2. Hence, the orbit has a point on the plane
{(x1, x2, x3) : x2 = 0}.

By using again Lemmas 5.1 and 5.2 the helicoidal improper affine spheres containing the
point (p1, 0, p3) and the point(p1, 0, 0) agree up to a vertical translation. Thus, the study of the
helicoidal surfaces generated by the 1-parameter group (5.1), withb = 0, can be deduced from
the study of the orbits of the points(p1, 0, 0) wherep1 6= 0.

Let p = (c, 0, 0), c 6= 0 andβp(s) = (c, cs, acs2/2). Let V : R −→ R3 such that the
pair βp, V is admissible fore3 and generates a helicoidal improper affine sphere invariant by
(5.1). Sincedet(β′p(s), β

′′
p (s), e3) ≡ 0, V may be not unique, but using (3.1),ac > 0 and

V (0) = (d, 0, 1) with d ∈ R. And using Lemma (5.1)

V (s) =

(
d +

as2

2
,−as, 1

)
.

In addition, the helicoidal improper affine sphere associated to the pairβp, V can be parametrized
as (see Figure 2)

ψ(s, t) =

(
c− a t, s (c− a t) ,

a (6 d t + 3 c (s2 + t2)− a t (3 s2 + t2))

6

)
(5.10)

whereac > 0. From Lemmas 5.1 and 5.2 every helicoidal improper sphere generated by the
1-parameter group (5.1), withb = 0, is given by the above expression up to vertical translations.

Figure 2:a = 1, c = 1, d = 0.

Moreover, the induced affine metric ofψ is given by

h = a(c− at)(ds2 + dt2),

so thatψ is an immersion whent < c/a. Thus,ψ is a complete immersion in{(s, t) : t ≤
r < c/a} wherer ∈ R, that is, it is a complete immersion when we consider an orbit as its
boundary.

The study of the rest of 1-parameter groups can be achieved in a similar way. Hence, we
will omit some redundant comments in the following cases.

• Groups (5.2), (5.7) and (5.8):

There is no improper affine sphere generated by one of these 1-parameter groups since
almost every orbit is a straight line and an improper affine sphere must be locally strongly
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convex.

• Group (5.3):

The study of the helicoidal improper affine spheres associated to (5.3) can be reduced to
the orbits of points(p1, p2, p3) with (p1)2 6= (p2)2. Up to a rotation ofkπ/2 with k = 1, 2, 3,
and using Lemmas 5.1 and 5.2 we only need to investigate the orbits of the pointsp = (c, 0, 0)
wherec > 0.

Thus, one hasβp(s) = (c cosh s, c sinh s, as) and, givenm(s) = m0 > 0, we obtainV (s) =
((m0 cosh s + a sinh s)/c,−(a cosh s + m0 sinh s)/c, 1). The helicoidal improper affine sphere
that they generate can be parametrized by (see Figure 3)

ψ1(s, t) = c cos t cosh s− sin t (m0 cosh s + a sinh s)

c
,

ψ2(s, t) = c cos t sinh s− sin t (a cosh s + m0 sinh s)

c
, (5.11)

ψ3(s, t) =
1

4

(
2m0 + 4as +

2 (−a2 + c4 + m2
0) t

c2
− 2m0 cos(2t)− (a2 + c4 −m2

0) sin(2t)

c2

)
.

Figure 3:a = 0, c = 1, m0 = 1.

Its affine metric

h = (m0 cos(2t) +
(
a2 + c4 −m2

0

)
cos t sin t/c2)(ds2 + dt2)

is not complete if we consider an orbit as its boundary.

• Group (5.4):

The study of the helicoidal improper affine spheres associated to (5.4) can be reduced to the
orbits of pointsp = (c, 0, 0) with c > 0. Thus, one obtainsβp(s) = (c cos s, c sin s, as). And,
givenm(s) = m0 > 0 thenV (s) = ((−m0 cos s + a sin s)/c,−(a cos s + m0 sin s)/c, 1).

The associated helicoidal improper affine sphere that they generate can be parametrized by
(see Figure 4)

ψ1(s, t) = c cos s cosh t +
(−m0 cos s + a sin s) sinh t

c
,

ψ2(s, t) = c cosh t sin s− (a cos s + m0 sin s) sinh t

c
, (5.12)

ψ3(s, t) =
1

4

(
−2m0 + 4as− 2 (a2 − c4 + m2

0) t

c2
+ 2m0 cosh(2t)− (a2 + c4 + m2

0) sinh(2t)

c2

)
.

17



Figure 4:a = 1, c = 1, m0 = 1.

Its affine metric is

h = (m0 cosh(2t)− (
(
a2 + c4 + m2

0

)
cosh t sinh t)/c2)(ds2 + dt2)

and, so,ψ is well defined fort < arctanh(2c2m0/(a
2 + c4 + m2

0))/2. Thereby,ψ can be seen
as a complete immersion with an orbit as its boundary.

We observe thath is well defined for all(s, t) ∈ R2 if and only if a = 0 andm0 = c2.
Or equivalently, the immersion can be parametrized as(x1, x2, f(x1, x2)) wheref(x1, x2) =
((x1)2 + (x2)2)/2− c2/2, that is,ψ is an elliptic paraboloid.

• Group (5.5):

The study of the helicoidal improper affine spheres associated to (5.5) can be reduced to the
orbits of the pointsp = (c, c, 0) with c > 0. Thus, one obtainsβp(s) = (ces, ce−s, as). And,
givenm(s) = m0 > 0 thenV (s) = ((m0 − a)e−s/(2c), (m0 + a)es/(2c), 1).

The associated helicoidal improper affine sphere that they generate can be parametrized by
(see Figure 5)

ψ1(s, t) =
es (2 c2 cos t + (a + m0) sin t)

2 c
,

ψ2(s, t) =
e−s(2 c2 cos t + (−a + m0) sin t)

2 c
, (5.13)

ψ3(s, t) =
4c2 (m0 + 2as) + 2 (a2 − 4c4 −m2

0) t− 4c2m0 cos(2t) + (a2 + 4c4 −m2
0) sin(2t)

8 c2
.

Figure 5:a = 0, c = 1, m0 = 1.
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Its affine metric is

h = (m0 cos(2t)− (
(
a2 + 4c4 −m2

0

)
sin(2t))/(4c2))(ds2 + dt2)

and, so,ψ is not complete if we consider an orbit as its boundary.

• Group (5.6):

The helicoidal improper affine spheres associated to (5.6) can be investigated from the orbits
of the pointsp = (0, c, 0) with c ∈ R. Thus, one getsβp(s) = (s, c, bcs + as2/2). And V (s)
must be(−bc− as, d− bs, 1) for an arbitraryd ∈ R with a > 0, from Lemma 5.1.

The associated helicoidal improper affine sphere that they generate can be parametrized by

ψ(s, t) =

(
s− b t, c + a t,

1

2

(
2 b c s− 2 b2 c t + a

(
s2 − 2 d t + t2

)))
,

that is, the immersion can be reparametrized as(x1, x2, f(x1, x2)) wheref(x1, x2) is a polyno-
mial of second order. Hence, the improper affine sphereψ is an elliptic paraboloid.

Finally, we summarize the study of helicoidal improper spheres in the following result.

Theorem 5.1.Letψ be a helicoidal improper affine sphere. Then, up to equiaffine transforma-
tions,ψ is given by (5.9), (5.10), (5.11), (5.12) or (5.13).

In addition, ifψ can be considered as a complete immersion with an orbit as its boundary
thenψ can only be isometric to (5.9), (5.10) or (5.12).

6 Classification of the non removable singularities

We devote this section to the study of the singularities of the improper affine spheres and the
Hessian one equation. For that, we will need a slightly more general conformal representation
for the class of improper affine spheres with singularities.

First, we recall the relationship between special Lagrangian immersions and improper affine
spheres in order to obtain an adequate singularity concept.

Let us denote byC2 ≡ R4 the complex 2-plane and let(x1, x2, x3, x4) be a rectangular
coordinate system inR4. Takingy1 = x1 + ix2, y2 = x3 + ix4, we consider the usual metricg,
the symplectic formω and the complex 2-formΩ given by

g = |dy1|2 + |dy2|2, ω =
i

2
(dy1 ∧ dy1 + dy2 ∧ dy2), Ω = dy1 ∧ dy2.

Then, the following facts were proved in [Ma] (see also [Wo])

• If M is a Riemann surface andψ = (ψ1, ψ2, ψ3) : M −→ R3 is an improper affine sphere
with affine normale3 and affine conormalN = (N1, N2, 1), then the mapLψ : M −→ C2

given by (ψ1 + iψ2, N1 + iN2) is a special Lagrangian immersion with respect to the
calibration<(iΩ). Moreover, its induced metricdτ 2 = d(ψ1)2 + d(ψ2)2 + d(N1)2 +
d(N2)2 is conformal to the affine metrich of ψ.
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• Conversely, ifL : M −→ C2 is a special Lagrangian immersion with respect to the
calibration<(iΩ) given byL(z) = (y1(z), y2(z)), z ∈ M , then

ψL(z) =

(
<(y1(z)), =(y1(z)), −

∫ z

z0

〈dy1, y2〉
)

is a (possibly multivalued) improper affine sphere at its regular points, wherez0 is a fixed
point. In addition, the immersion is locally a graph(x1, x2, f(x1, x2)) satisfying (2.1). If
we define

NL(z) = (<(y2(z)),=(y2(z)), 1) and hL = 〈dψL,−dNL〉 (6.1)

then they are the affine conormal and the affine metric whenfx1x1 > 0 and they change
signs whenfx1x1 < 0.

Roughly speaking, the above mapψL is an improper affine sphere with “natural” singulari-
ties. Concretely,ψL has a singularity at a pointp if and only if the affine metric is degenerated
anddτ 2 is regular atp.

Observe that given an improper affine sphereψ with affine normale3 and associated spe-
cial Lagrangian immersionLψ, then the new immersionψLψ

agrees withψ, up to a vertical
translation.

In fact, a mapψ : M −→ R3 is called animproper affine mapor animproper affine sphere
with admissible singularitiesif there exists a special Lagrangian immersionL : M −→ C2 with
respect to the calibration<(iΩ) such that its associated mapψL agrees withψ, up to a vertical
translation.

Obviously, the mapψL gives us (possibly multivalued) solutions to the Monge-Ampère
equation (2.1) with singularities. In special, we will focus our attention on the classification of
the non removable isolated singularities of the Hessian one equation.

In the spirit of Theorem 3.1 we obtain the following result for special Lagrangian immer-
sions:

Theorem 6.1.Let I be an interval andγ : I −→ R4 ≡ C2 a regular analytic curve

γ(s) = (β1(s), β2(s), V 1(s), V 2(s)) ∈ R4, s ∈ I.

Then there exists a unique special Lagrangian immersionL with respect to the calibration
<(iΩ) containingγ(I). Moreover,L = (L1, L2, L3, L4) can be calculated in a neighbourhood
of I in C as

L1(z) = < (β1(z)− iV 2(z)) ,

L2(z) = = (−V 1(z) + iβ2(z)) ,

L3(z) = −< (−V 1(z) + iβ2(z)) ,

L4(z) = −= (β1(z)− iV 2(z)) ,

(6.2)

with
dτ 2 =

(|β1
z − iV 2

z |2 + |V 1
z − iβ2

z |2
) |dz|2.

its induced metric.
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In addition, the associated improper affine sphere with admissible singularitiesψL is given
by

ψL(z) =

(
L1(z), L2(z),−

∫ z

s0

(L1
wL3 + L2

wL4) dw + (L1
w̄L3 + L2

w̄L4)dw̄

)
(6.3)

wheres0 ∈ I is a fixed point, and the affine metric at its regular points

h =
∣∣∣<

((
β1

z − iV 2
z

) (
V 1

z + iβ2
z

))∣∣∣ |dz|2. (6.4)

Proof. Bearing in mind that the functionsL1 − iL4 and−L3 + iL2 are holomorphic, the proof
of this result is, in essence, the one given in Theorem 3.1 and Theorem 3.2.

Remark 6.1. As it was observed in Remark 3.1, the special Lagrangian immersionL and the
improper affine sphere with admissible singularitiesψL can be recovered by analytic continua-
tion not only on a neighbourhood ofI but globally.

As an interesting consequence of the above result we obtain that, under some assumptions,
an immersion can be recovered in terms of its set of singularities:

Corollary 6.1. Let I be an interval andβ : I −→ R3 a regular analytic curve satisfying
det(β′(s), β′′(s), e3) 6= 0, for all s ∈ I. Then, there exists a unique improper affine map
containingβ(I) in its set of singularities.

Proof. From Theorem 6.1, ifβ = (β1, β2, β3) is a curve of singularities then there exists a
Lagrangian immersionL and a local conformal parameterz = s + i t such that

L(s) = (β1(s), β2(s), V 1(s), V 2(s)), s ∈ I,

for certain analytic functionsV 1, V 2, andψL(s) = β(s), up to a vertical translation.
Therefore, from (6.3),

−β3′(s) = β1′(s) V 1(s) + β2′(s) V 2(s). (6.5)

Now, the affine metric is degenerated onβ if and only if

0 = β1′(s) V 1′(s) + β2′(s) V 2′(s).

Besides, by differentiation in (6.5), the above equation is equivalent to

−β3′′(s) = β1′′(s) V 1(s) + β2′′(s) V 2(s). (6.6)

Hence, from (6.5), (6.6) and sincedet(β′(s), β′′(s), e3) 6= 0 for all s ∈ I, one has thatV 1

andV 2 are uniquely determined. Thus,L(s) is known and the uniqueness and existence of the
improper affine map is clear from Theorem 6.1.

Example 6.1.Let us consider the regular analytic curve given by

β(s) =

(
cos s, sin s,

1

5
cos(2s)

)
, s ∈ R.
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Then, sincedet(β′(s), β′′(s), e3) ≡ 1, there exists a unique improper affine map containing
β(R) in its set of singularities, which can be calculated by solving (6.5), (6.6), and so taking

L(s) =

(
cos s, sin s,−4

5
cos3 s,

4

5
sin3 s

)

in Theorem 6.1.
This surface can be parametrized by (see Figure 6)

ψ1 = cos s cosh t +
3 cos s sinh t

5
− cos(3 s) sinh(3 t)

5

ψ2 = cosh t sin s− 3 sin s sinh t

5
− sin(3 s) sinh(3 t)

5

ψ3 =
1

100
(62 t + 10 cos(2 s) (3− 2 cosh(2 t) + cosh(4 t)) +

−24 cos(4 s) cosh3 t sinh t− 16 sinh(2 t)− sinh(6 t)
)
.

Figure 6: Improper affine sphere with admissible singularities.

Finally, we focus our attention on the classification of the isolated singularities of the
Monge-Amp̀ere equation (2.1). The classification of the entire solutions to the Hessian one
equation with a finite number of isolated singularities is achieved in [GMMi]. Nevertheless,
nothing is known about the local classification of these singularities. Thus, as the main applica-
tion of Theorem 6.1, we give an explicit description of the solutions to (2.1) around an isolated
singularity.

LetU be a neighbourhood of(0, 0) in the(x1, x2)-plane andf(x1, x2) aC2 solution (and so
analytic solution) to (2.1) onU\{(0, 0)}. Thenf extends continuously to(0, 0); moreover, if
this extension isC1 at (0, 0) thenf is globallyC2 onU (see [GMMi] and [Jo2]). Therefore, it is
said thatf has anon removablesingularity at(0, 0) if f is notC1 at this point.

Proposition 6.1. LetU be a neighbourhood of(0, 0) in the(x1, x2)-plane andf : U −→ R a
C2 solution to (2.1) onU\{(0, 0)}, with f(0, 0) = 0. Then there exists a2π-periodic regular
analytic curveV : R −→ R2 such that the graph(x1, x2, f(x1, x2)) can be parametrized
around the origin by

ψ(z) =

(
L1(z), L2(z),−

∫ z

0

(L1
wL3 + L2

wL4) dw + (L1
w̄L3 + L2

w̄L4)dw̄

)
(6.7)
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for z ∈ Br0 = {w ∈ C : 0 ≤ =(w) < r0}, where

L1(z) = = (
V 2(z)

)
, L2(z) = −= (

V 1(z)
)
, L3(z) = < (

V 1(z)
)
, L4(z) = < (

V 2(z)
)

with V = (V 1, V 2) andr0 ∈ R.
Here, ψ is an immersion when0 < =(z) < r0 and ψ(z) = (0, 0, 0) when=(z) = 0.

Moreover,ψ is well defined on the annulusBr0/(2πZ), i. e. ψ(z +2π) = ψ(z) for anyz ∈ Br0.

Proof. It is proved in [Jo2] (see also [GMMi]) thatf has a non removable singularity at(0, 0) if
and only if the underlying conformal structure of its affine metric around the singularity is that
of an annulusAr = {w ∈ C : 1 < |w| < r}.

Thus, if we consider the special Lagrangian immersionL associated to the improper affine
sphere(x1, x2, f(x1, x2)) in this punctured neighbourhood of(0, 0) then L is not only well
defined on the annulusAr but it can be analytically continued across|w| = 1 by Schwarzian
reflection on{w ∈ C : 1/r < |w| < r} (see [GMMi]). In addition, if we denote byψL =
(ψ1, ψ2, ψ3) the improper affine map associated toL, then(ψ1, ψ2)(w) = (0, 0) for |w| = 1 (i.
e. the singularity is the image of|w| = 1).

Let us consider the new conformal parametrizationL̃(z) = L(e−i z) with − log r < =(z) <
log r. Then if we writez = s + it and

L̃(s) = (β1(s), β2(s), V 1(s), V 2(s)), s ∈ R,

it is clear that̃L(s + 2π) = L̃(s) and(β1(s), β2(s)) = (ψ1(e−is), ψ2(e−is)) = (0, 0).
Hence, for0 ≤ =(z) < log r, the improper affine mapψeL is a2π-periodic parametrization

of (x1, x2, f(x1, x2)) around the origin, in such a way thatψ
eL(s) = (0, 0, 0) for all s ∈ R. Here

ψ
eL is recovered from Theorem 6.1 for̃L(s) = (0, 0, V 1(s), V 2(s)) as we wanted to prove.

Thus, the local study of non removable singularities of (2.1) is reduced to the investigation
of the properties of the closed curveV .

First, we observe that given a2π-periodic regular analytic curve

γ(s) = (0, 0, V 1(s), V 2(s)), s ∈ R,

then the special Lagrangian immersion thatγ generates,L : ∆ −→ R4 ≡ C2, satisfiesL(z +
2π) = L(z), for z, z + 2π ∈ ∆, and it is easy to see that the same is true for its associated
improper affine mapψL : ∆ −→ R3, where∆ stands for a neighbourhood ofR in C.

From the periodicity of the data we can assume the existence of a real numberr0 such that
∆0 := {z ∈ C : −r0 < =(z) < r0} ⊆ ∆. In addition, sinceV i is real analyticV i(z) = V i(z)
for i = 1, 2, z ∈ ∆0. Therefore,

L(z) = (L1(z), L2(z), L3(z), L4(z)) = (−L1(z),−L2(z), L3(z), L4(z)), z ∈ ∆0,

and
ψL(z) = −ψL(z).

That is, ifψL parametrizes the solution(x1, x2, f(x1, x2)) for 0 ≤ =(z) < r0 (as in Proposition
6.1), thenψL is a parametrization of the solution(y1, y2, g(y1, y2)) = −(x1, x2, f(x1, x2)) for
−r0 < =(z) ≤ 0.
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Subsequently, we remark that to consider a new analytic parameters̃ = s̃(s) for the curveγ
is nothing but a conformal change of parameter forL from z = s + it to z̃ = s̃ + it̃ and hence
a different parametrization ofψL.

Nevertheless, it is important to bear in mind that ifs̃′(s) > 0 then the points with=(z) > 0
correspond to those with=(z̃) > 0, but if s̃′(s) < 0 then=(z) > 0 correspond to=(z̃) < 0. That
is, if V (s) is a2π-periodic parametrization associated to(x1, x2, f(x1, x2)) and we consider the
new 2π-periodic parametrizationV (s̃), then we obtain a new2π-periodic parametrization of
(x1, x2, f(x1, x2)) using Proposition 6.1 if the new parameter preserves the orientation of the
plane curveV (s̃′(s) > 0). Otherwise, we obtain a parametrization of the reflected solution
−(x1, x2, f(x1, x2)).

With all of these, we note that the solution(x1, x2, f(x1, x2)) only depends on the curve
V (R), where we identify the solution with its reflected one.

Thus, if we considerS as the set of local solutionsf(x1, x2) to (2.1) with non removable
singularity around the origin such thatf(0, 0) = 0, where a solution and its reflected one are
identified, one has

Theorem 6.2 (Classification of the non removable singularities).There exists an explicit one
to one correspondence betweenS and the convex regular analytic Jordan curves ofR2.

Proof. First of all, we need to prove that given a solutionf(x1, x2) to (2.1) around the origin
with non removable singularity at(0, 0) andf(0, 0) = 0, then the2π-periodic regular analytic
plane curveV : R −→ R2 given by Proposition 6.1 has curvature different from zero at any
point, or equivalently,V (R) = V ([0, 2π[) is a locally convex closed curve. In addition we will
show that it is a Jordan curve. This correspondence is clearly injective sinceV determinesf
and later we will show that it is also surjective.

Let V = (V 1, V 2) : R −→ R2 be a2π-periodic regular analytic curve. Associated to
γ(s) = (0, 0, V 1(s), V 2(s)) we consider the special Lagrangian immersionL which is well
defined on∆0 := {z = s + it ∈ C : −r0 < =(z) < r0} for a certainr0 ∈ R.

From the expression of the affine metric ofψL (6.4) one has that every real number is a non
regular point. In fact,z ∈ ∆0 is non regular if and only if

0 = <(−iV 2
z V 1

z ) =
1

4

(|V 2
z + iV 1

z |2 − |V 2
z − iV 1

z |2
)
.

Thus, the set of singular points ofψL is the nodal set of the harmonic function

ω = log

( |V 2
z + iV 1

z |2
|V 2

z − iV 1
z |2

)
.

That is, since the real lineR is made up by singular points, it follows that, close enough toR,
ψL is an immersion if and only ifR is not crossed by any other nodal curve ofω, or equivalently,
ωz(s) 6= 0 for all s ∈ R ⊆ C.

As

ωz = 2i
V 1

zzV
2
z − V 1

z V 2
zz

(V 1
z )2 + (V 2

z )2
,

then fors0 ∈ R one has thatωz(s0) 6= 0 if and only if V is locally convex ats0.
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Therefore, given a solutionf(x1, x2) to (2.1) around the origin with non removable singu-
larity at (0, 0) andf(0, 0) = 0 then its associated plane curveV given by Proposition 6.1 must
be locally convex.

We need to show thatV is, in fact, globally convex and so we will have a well defined
correspondence fromS into the set of convex regular analytic Jordan curves ofR2. For that, we
will use the Legendre transform of an immersion (see [LSZ, p. 89]).

Let ψ = (ψ1, ψ2, ψ3) : Br0/(2πZ) −→ R3 be the parametrization of the graph off(x1, x2)
given by Proposition 6.1. Since this graph is identified with its reflected solution, we can assume
that fx1x1 > 0. Thus, from (6.1) and (6.2), the affine conormal ofψ at its regular points is
(N1, N2, N3) = (<(V 1(z)),<(V 2(z)), 1) and the Legendre transform ofψ is given by

T ψ = −(N1, N2, ψ1N1 + ψ2N2 + ψ3). (6.8)

Observe thatT ψ is well defined on the annulusBr0/(2πZ) and is a locally strongly convex
immersion for0 < =(z) < r0 because so isψ. In addition, its affine conormal is given by

N T = (−ψ1,−ψ2, 1). (6.9)

Let us denote byCr the circle{z ∈ C : =(z) = r}/(2πZ). The third coordinateT 3

of T ψ extends continuously toC0, so asT 3(C0) = 0, and the affine conormal also extends
continuously to the circleC0 with N T (C0) = (0, 0, 1).

Then, sinceT ψ is locally strongly convex, there exists an annulusA = {z ∈ C : 0 <
=(z) ≤ r1}/(2πZ), with r1 < r0, satisfying thatT ψ(A) is properly immersed in the upper
halfspaceR3

+ = {(x1, x2, x3) : x3 > 0}. In particular, ifd0 = dist(0, T 3(Cr1)), then for all
d ∈ (0, d0) the curvesΓd = T ψ(A) ∩ {(x1, x2, x3) : x3 = d} are regular, convex and closed.

Now, we prove that these curvesΓd are embedded. If the planar curveΓd was not embedded
then the Euclidean normal vectornΓd

of Γd on this plane would wind at least twice. But the
orthogonal projection of the conormal alongΓd on {(x1, x2, x3) : x3 = d} has the same
direction thatnΓd

. So, the affine conormal alongΓd would wind at least twice on the plane
{(x1, x2, x3) : x3 = 1}. This would mean thatN T self-intersects alongΓd. But, this is not
possible, since by (6.9) it would contradict that(x1, x2, f(x1, x2)) is a graph because of the
existence of two different points with the same(x1, x2) coordinates.

Therefore, all the curvesΓd = (Γ1
d, Γ

2
d, d) are regular convex Jordan curves lying on parallel

planes. Thus, we obtain a family of regular convex Jordan curvesVd = (Γ1
d, Γ

2
d, 0) which

converges toT ψ(C0) = (V 1, V 2, 0) whend → 0. Hence,V is an embedded curve as we
wanted to show.

To end up the proof, we only need to prove that the correspondence is surjective.
Let V = (V 1, V 2) : R −→ R2 be a2π-periodic regular analytic parametrization of a convex

Jordan curve andL the special Lagrangian immersion generated byγ(s) = (0, 0, V 1(s), V 2(s)),
which is well defined if−r0 < =(z) < r0 for a certain real numberr0.

Using the above study about the nodal set ofV , the2π-periodic improper affine mapψL

is an immersion when0 < =(z) < r1 for a suitabler1 < r0. That is,ψ(w) = ψL(i log w)
is a well defined immersion onA′ = {w ∈ C : 1 < |w| < er1} with ψ(w) = (0, 0, 0) for
|w| = 1. Moreover, ifψ can be seen as a graph for1 ≤ |w| < er1 then(0, 0) is a non removable
singularity since its induced conformal structure is the one of an annulus.
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We can assume that the affine normal ofψ on A′ is e3, up to an identification with its
reflected solution. Thus, the Legendre transformT ψ of ψ, given by (6.8), takes the limit values
(V 1, V 2, 0) for |w| = 1, with constant limit affine conormal(0, 0, 1).

Therefore,T ψ lies in R3
+, and there is somed0 > 0 such that for everyd ∈ (0, d0] the

intersectionΓd = T ψ(A′) ∩ {(x1, x2, x3) : x3 = d} is a regular convex Jordan curve. Now,
let Sd1 denote the portion ofT ψ(A′) which lies in the slab{(x1, x2, x3) : d1 ≤ x3 ≤ d0},
whered1 > 0. Then, asSd1 is convex, it is known that the convexity and embeddedness of
the curvesΓd assure that the Euclidean unit normal onSd1 is a global diffeomorphism onto its
spherical image. Lettingd1 → 0, the Euclidean normal ofT ψ is a global diffeomorphism from
1 < |w| < r2 onto its spherical image, for a certainr2. In particular, the affine conormal ofT ψ

is a global diffeomorphism from1 < |w| < r2.
Hence, by (6.9) we conclude thatψ must be a global graph about the origin, as we wished

to prove.
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