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Abstract. In this paper we obtain a Lelieuvre-type representation for timelike surfaces with pre-
scribed Gauss map in the 3-dimensional Lorentz-Minkowski space L3. As a main result we classify
the complete timelike surfaces with positive constant Gaussian curvature in L3 in terms of harmonic
diffeomorphisms between simply connected Lorentz surfaces and the universal covering of the de Sitter
Space.

1 Introduction

The existence and uniqueness of a surface in R3 (and also in the rest of Riemannian space forms)
with prescribed Gauss map and a given conformal structure have been subject of a wide study (see
[11], [6], [2] and references therein). This study has also been extended to spacelike surfaces in
L3. Specifically, Kobayashi [8] and Akutagawa and Nishikawa [1] obtained Lorentzian versions of the
classical Enneper-Weierstrass and Kenmotsu representations for maximal and constant mean curvature
surfaces respectively. On the other hand, Mart́ınez, Milán and the third author [3] have rencently
obtained a representation for spacelike surfaces in L3 using the Gauss map and the conformal structure
given by the second fundamental form.

Regarding to timelike surfaces in L3, Magid [9] found a Weierstrass representation for any such a
surface in terms of its Gauss map and mean curvature, showing that the language of complex analysis
used when the surface can be considered as a Riemann surface is a useful device but not essential.
This will also become plain in Section 4 of this paper.

On the other hand, we observe that the study of surfaces with constant Gaussian curvature in L3 is
being developed thanks to its relationship with some classical equations as sinh-Gordon, cosh-Gordon,
sine-Laplace, and its associated Bäcklund and Darboux transformations (see, for instance, [10], [14]).
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Thus, one can find new surfaces with constant Gaussian curvature from a known one. Nevertheless,
these results are local (in essence) and few is known about completeness of the new surfaces.

Our main goal makes usage of another well known relationship between surfaces with constant
Gaussian curvature and harmonic maps [7]. Following the ideas of Lelieuvre [5], we give a repre-
sentation for timelike surfaces with positive Gaussian curvature in terms of its Gauss map using the
conformal structure induced by its second fundamental form. Thus, we classify the (geodesically)
complete timelike surfaces with positive constant Gaussian curvature by showing the existence of a
bijective correspondence between these immersions and the harmonic diffeomorphisms from Lorentz
surfaces into the universal covering of the de Sitter space.

The paper is organized as follows. After a brief section of preliminaries, we study in Section 3
complete revolution timelike surfaces with positive constant Gaussian curvature.

We devote Section 4 to the timelike surfaces with positive Gaussian curvature. Thus, we find a
Lelieuvre-type representation for such surfaces with prescribed Gauss map (Theorem 2). Moreover,
we study under what assumptions a differentiable map N : M −→ S2

1 from a simply connected Lorentz
surface M into the de Sitter space determines a timelike immersion X : M −→ L3 with Gauss map
N and positive Gaussian curvature (Theorem 3). As a result of these theorems, we obtain some
immediate consequences for the case of positive constant Gaussian curvature (Corollaries 5 and 6).
Next we obtain the classification of the complete simply connected timelike immersions with positive
constant Gaussian curvature (Theorem 7).

Finally, Section 5 is devoted to study the case of negative Gaussian curvature. Under that hypoth-
esis, the second fundamental form II defines a Riemannian metric on the surface, so we will consider
it as a Riemann surface with the conformal structure induced by II. Following a similar sketch to the
one in Section 4, we get a Lelieuvre-type representation for such surfaces with prescribed Gauss map
(Theorem 9) and study under what assumptions a differentiable map N : M −→ S2

1 from a simply
connected Riemann surface M determines a timelike immersion X : M −→ L3 with Gauss map N
and negative Gaussian curvature (Theorem 10). To end up, we particularize these results to the case
of negative constant Gaussian curvature (Corollaries 11 and 12).

2 Preliminaries

Let L3 be the 3-dimensional Lorentz-Minkowski space, that is, the real vector space R3 endowed with
the Lorentzian metric tensor 〈, 〉 given by

〈, 〉 = −dx2
1 + dx2

2 + dx2
3,

where (x1, x2, x3) are the canonical coordinates of R3. Associated to that metric, one has the cross
product of two vectors u, v ∈ L3 given by

u× v = (−u2v3 + u3v2, u3v1 − u1v3, u1v2 − u2v1),

which is the unique vector such that 〈u× v, w〉 = det(u, v, w) for all w ∈ L3, where det denotes the
usual determinant in R3.

An immersion X : M −→ L3 from a connected surface M into L3 is said to be a timelike surface
if the induced metric via ψ is a Lorentzian metric on M , which will be also denoted by 〈, 〉 or by
I. Throughout this paper we will assume that M is orientable, and so we can choose a unit normal
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vector field N globally defined on M which can be seen as a map from M into the de Sitter Space
S2

1 = {x ∈ L3 : 〈x, x〉 = 1}. We will refer to N as the Gauss map of the immersion.

We will denote by II = −〈dN, dX〉 the second fundamental form of the immersion X. Then the
Gaussian curvature of M is given by K = det(II)/ det(I). In particular, note that K is positive (resp.
negative) if, and only if, II is a Lorentzian (resp. Riemannian) metric on M .

3 Complete revolution surfaces with positive constant Gaus-
sian curvature.

In this section we center our attention in the rotation timelike surfaces in L3 with positive constant
Gaussian curvature with respect to a timelike axis. Up to a homothety, we can assume that its
Gaussian curvature is one.

Let ψ(r, θ) = (r, f(r) cos θ, f(r) sin θ) be a rotation immersion in L3, where f is a positive function.
Then, ψ is a timelike immersion with constant Gaussian curvature K = 1 if and only if

f ′(r)2 < 1 and f ′′(r) = f(r)(f ′(r)2 − 1)2

In addition, the induced metric is given by I = (f ′(r)2 − 1) dr2 + f(r)2 dθ2.

Thus, in order to find (geodesically) complete immersions, we consider the initial value problem




f ′′(r) = f(r)(f ′(r)2 − 1)2

f(0) = c1

f ′(0) = c2

(1)

Let f : (α, ω)−→R be the maximal solution to (1) for arbitrary real numbers c1, c2 satisfying
c1 ≥ 1 and c2

1 ≤ 1
1−c2

2
< 1 + c2

1. Then, it is easy to check that f satisfies the ordinary differential
equation

f ′(r)2 = 1− 1
c0 + f(r)2

(2)

for c0 = 1
1−c2

2
− c2

1 ∈ [0, 1).

Now, we observe that f(r) ≥ √
1− c0 for all r ∈ (α, ω). In fact, the inequality holds at r = 0

because f(0) = c1 ≥ 1 ≥ √
1− c0. In addition, if r0 ∈ (α, ω) satisfies f(r0) =

√
1− c0 then, from (2),

f ′(r0) = 0 and, from (1), f(r) >
√

1− c0 in a punctured neighbourhood of r0 because f is strictly
convex there.

On the other hand, from (2), f ′(r)2 < 1, that is, f(r) ≤ c1 + |r| for all r ∈ (α, ω). Hence, a
standard argument shows that (α, ω) = R, that is, f is well defined in the whole real line.

Thereby, the revolution surface ψ associated with the above f is a timelike immersion with constant
Gaussian curvature K = 1 which is well defined for all (r, θ) ∈ R2. To show completeness of ψ it
is sufficient to prove that 1/f(r)2 is bounded and the associated Riemannian metric IR = (1 −
f ′(r)2) dr2 + f(r)2 dθ2 is complete (see [12] and [13]).
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Since f(r) ≥ √
1− c0 the first assertion is clear. For the second one we consider the new parameter

ρ such that dρ =
√

(1− f ′(r)2) dr, then

ρ(r) = cte +
∫ r

0

1√
c0 + f(s)2

ds and
1√

c0 + f(s)2
≥ 1√

c0 + (c1 + |s|)2 .

Hence, ρ takes values in the whole real line and IR ≥ dρ2 + (1− c0) dθ2, with (ρ, θ) ∈ R2, that is, IR

is complete.

Theorem 1 There exist infinitely many complete timelike revolution surfaces in L3 with positive
constant Gaussian curvature.

From the above result it is clear the interest of the classification of the complete timelike immersions
in L3 with positive constant Gaussian curvature as we will study in the following section.

4 Timelike Surfaces with Positive Gaussian Curvature

Throughout this section the concept of Lorentz surface plays an important role. We refer the reader
to [15] to revise this subject.

Let X : M −→ L3 be a timelike surface with positive Gaussian curvature K in L3, or equivalently,
a timelike surface whose second fundamental form II is a Lorentzian metric on M . Then we can take
local II-null coordinates (u, v) such that the first and second fundamental forms are given by

I = E du2 + 2F dudv + Gdv2

II = 2f dudv
(3)

where f is a real positive function. Any other II-null coordinates (ũ, ṽ) are related to (u, v) by
ũ = ũ(u) and ṽ = ṽ(v), being ũ′(u) > 0, ṽ′(v) > 0. Let us recall that the 2-forms E du2 and Gdv2 do
not depend on the chosen II-null coordinates. Therefore, they are globally well-defined on M and we
will refer to those as the (2, 0)-part and (0, 2)-part of the metric, respectively.

Now, the Weingarten equations become

Nu = ∂N
∂u = f

EG−F 2 (FXu − EXv)

Nv = ∂N
∂v = f

EG−F 2 (−GXu + FXv).
(4)

From (3), the Gaussian curvature and the Gauss map of M can be written as

K =
−f2

EG− F 2
and N =

Xu ×Xv√
F 2 − EG

respectively. Hence, thanks to the Weingarten equations (4) we obtain

Xu =
−1√
K

N ×Nu, Xv =
1√
K

N ×Nv, (5)
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that is, the immersion can be recovered in terms of its Gaussian curvature and its Gauss map. Even
more, the Gaussian curvature is determined, up to multiplications by positive constants, by the Gauss
map. In fact, using (5) we obtain from Xuv −Xvu = 0 that

N × (KuNu + KvNv − 4KNuv) = 0, (6)

and so
(log K)uNu + (log K)vNv = 4(Nuv − 〈Nuv, N〉N). (7)

By taking the inner product of both terms in (7) with Xu and Xv respectively and using again (5),
one easily gets

−(log K)v = 4
det(N,Nuv, Nu)
det(N, Nu, Nv)

, −(log K)u = 4
det(N, Nuv, Nv)
det(N,Nu, Nv)

as we had announced.

In the following theorem we summarize all the comments above jointly with more geometric
information about the timelike surface:

Theorem 2 Let X : M −→ L3 be a timelike immersion with positive Gaussian curvature K, N its
Gauss map and (u, v) II-null coordinates. Then X can be recovered in terms of K and N as

Xu =
−1√
K

N ×Nu, Xv =
1√
K

N ×Nv, (8)

and the Gaussian curvature is determined, up to multiplications by positive constants, by the Gauss
map in the following way:

−(log K)u = 4
det(N,Nuv, Nv)
det(N, Nu, Nv)

, −(log K)v = 4
det(N, Nuv, Nu)
det(N, Nu, Nv)

. (9)

Moreover, the first and second fundamental forms of the immersion are given by

I = 1
K

(−〈Nu, Nu〉 du2 + 2〈Nu, Nv〉 dudv − 〈Nv, Nv〉 dv2
)

II = 2√
K

det(N,Nu, Nv) dudv
(10)

and its mean curvature by

H =
√

K
〈Nu, Nv〉

det(N,Nu, Nv)
. (11)

Proof: The expressions for the derivatives of X and log K have already been obtained. As regard
to (10), it follows easily from (5). Finally, (11) can be obtained using (10) and the fact that H =
−Ff/(EG− F 2), K = −f2/(EG− F 2).

In the following Theorem we show under what assumptions a map N : M −→ S2
1 from a simply

connected Lorentz surface M determines a timelike immersion X : M −→ L3 with Gauss map N .

Theorem 3 Let M be a simply connected Lorentz surface and N : M −→ S2
1 a differentiable map.

Then, there exists a timelike immersion X : M −→ L3 with Gauss map N and such that the structure
given by its second fundamental form is the one of M if and only if

det(N, Nu, Nv) > 0 (12)
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and (
det(N,Nuv, Nv)
det(N, Nu, Nv)

)

v

=
(

det(N,Nuv, Nu)
det(N, Nu, Nv)

)

u

(13)

for any II-null coordinates (u, v).

In this case, the immersion is unique (up to similarity transformations of L3) and can be calculated
as in Theorem 2.

Proof: If X : M −→ L3 is a timelike immersion with Gauss map N such that II is a Lorentzian metric
on M , the direct implication follows from Theorem 2. The converse implication is a straightforward
computation, bearing in mind that (12) says that II is a Lorentzian metric on M , (13) is the necessary
condition for the existence of K and both of them are the integrability conditions of the immersion.
Note that the integration is single-valued because M is simply connected.

Finally, if X and Y are two timelike immersions as above with Gaussian curvatures KX and KY

respectively, then from (9) we have that KX = λKY for a positive real constant λ, and so it follows
from (8) that Y =

√
λX + V , V ∈ L3.

Thanks to the above theorem, we are able to get the following uniqueness result for timelike
immersions with positive Gaussian curvature. The concept of conformal equivalence between Lorentz
surfaces herein coincides, in essence, with the corresponding one between Riemann surfaces, and can
be revised, for example, in [15]. Anyway, it must worth pointing out that while in the case of simply
connected Riemann surfaces there exist three classes of equivalence (the complex plane C, the unit
disk D and the Riemann sphere S2), in the case of simply connected Lorentz surfaces there exist
infinitely many ones.

Proposition 4 Let M be a simply connected Lorentz surface and X1, X2 : M −→ L3 two timelike im-
mersions with positive Gaussian curvatures K1, K2 and Gauss maps N1, N2 : M −→ S2

1, respectively.
Then the following conditions are equivalents:

(i) There exist a conformal equivalence ϕ on M and an isometry f of L3 such that f ◦X1 = X2 ◦ϕ.

(ii) There exist a conformal equivalence ϕ on M and an isometry i of S2
1 such that i ◦N1 = N2 ◦ ϕ

and K1 = K2 ◦ ϕ.

Proof: First, let us suppose that f ◦X1 = X2 ◦ ϕ where f and ϕ are as in the statement. Since every
isometry preserves the Gaussian curvature, it follows that K1 = K2 ◦ ϕ. Moreover, by taking i as the
restriction of df to S2

1 it is easy to check that i ◦N1 = N2 ◦ ϕ.

Conversely, given an isometry i of S2
1 we can consider f ′ as the extension of i to an isometry of

L3. If we take X ′
1 = f ′ ◦X1, (ii) says that N ′

1 = N2 ◦ϕ and K ′
1 = K2◦, ϕ, where N ′

1 and K ′
1 stand for

the Gauss map and the Gaussian curvature of X ′
1. Now, Theorem 2 assures that d(X ′

1 −X2 ◦ ϕ) = 0
and so X ′

1 = X2 ◦ ϕ + V , V ∈ L3, which ends up the proof.

4.1 Positive Constant Gaussian Curvature Surfaces

Let X : M −→ L3 be a timelike immersion with positive constant Gaussian curvature and let us
consider II-null coordinates (u, v). Then (6) says that N × Nuv = 0, and so the Gauss map N is
harmonic into S2

1. Conversely if N is harmonic it follows from (9) that K is constant. So we have (see
also [7]):
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Corollary 5 Let X : M −→ L3 be a timelike immersion with positive constant Gaussian curvature
K. Then K is constant if, and only if, its Gauss map is harmonic for the second fundamental form.

In the case when M is a simply connected Lorentz surface, Theorem 3 allows us to obtain the
following:

Corollary 6 Given a harmonic local diffeomorphism N : M −→ S2
1 preserving the orientation from

a simply connected Lorentz surface M and a positive constant K, there exists a unique timelike im-
mersion (up to translations) with positive constant Gaussian curvature K, Gauss map N , and such
that the structure induced by the second fundamental form is the one given on M .

Proof: In fact, note that the harmonicity of N implies that (13) holds. On the other hand, since N is
a local diffeomorphism preserving the orientation, it follows that (12) also holds.

To finish this section, we are going to establish a classification result for complete timelike surfaces
with positive constant Gaussian curvature K in terms of suitable harmonic maps.

Let us denote by B the set of harmonic diffeomorphisms preserving the orientation from any simply
connected Lorentz surface onto the universal covering S̃2

1 of S2
1, where two harmonic diffeomorphisms

hi : Mi −→ S̃2
1, i = 1, 2, will be identified if there exist a conformal equivalence ϕ : M1 −→ M2 and

an isometry i of S̃2
1 such that h1 = i ◦ h2 ◦ ϕ.

On the other hand, AK will stand for the set of complete timelike immersions with constant
Gaussian curvature K > 0 from any simply connected Lorentz surface into L3, where we will identify
two immersions Xi : Mi −→ L3, i = 1, 2, if there exist a conformal equivalence ϕ : (M1, II) −→
(M2, II) and an isometry f of L3 such that X2 ◦ ϕ = f ◦X1 (i.e., if X1 and X2 are congruent).

Then we have the following:

Theorem 7 There exists a bijective correspondence between AK and B for all K > 0.

Proof: We will suppose, without loss of generality, that K = 1.

Let us take X ∈ A1, X : M −→ L3, and (u, v) local II-null coordinates on M . Then the (2, 0)
and (0, 2) parts of the metric I verify that (I(2,0))v = 0 = (I(0,2))u, which implies that the identity
map IdM : (M, II) −→ (M, I) is a harmonic diffeomorphism.

Since (M, I) is complete, simply connected and has Gaussian curvature K = 1, there exists an
isometry i : (M, I) −→ S̃2

1. Hence, i ◦ IdM is a harmonic diffemorphism uniquely determined up to
isometries of S̃2

1. We will denote by Φ(X) = [i ◦ IdM ] the class of i ◦ IdM in B. Then we define
Φ : A1 −→ B given by Φ([X]) = Φ(X).

First, let us see that, indeed, Φ is a map. Let Xi : Mi −→ L3, i = 1, 2, be two congruent complete
timelike immersions, that is, there exist a conformal equivalence ϕ : (M1, II) −→ (M2, II) and an
isometry f of L3 so that X2◦ϕ = f◦X1. If i : (M2, I)−→S̃2

1 is an isometry then i◦f◦IdM1 = i◦IdM2◦ϕ
(where p and Xi(p) are identified, i = 1, 2). Hence, Φ(X1) = Φ(X2).

To see that Φ is injective, let us take Xi : Mi −→ L3, i = 1, 2, two complete timelike immersions
such that Φ(X1) = Φ(X2). Then there exist a conformal equivalence ϕ : (M1, II) −→ (M2, II) and
an isometry i : (M1, I) −→ (M2, I) such that IdM1 = i−1 ◦ IdM2 ◦ ϕ. Consequently i = ϕ and X1,
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X2 ◦ i are two timelike immersions from (M1, I) into L3 with the same induced metric, the same
conformal structure for the second fundamental form and the same Gaussian curvature. Therefore,
Gauss’ egregium theorem assures that X1 and X2 ◦ i have the same second fundamental form, and so
they coincide up to an isometry of L3, whence [X1] = [X2].

Finally, let us check that Φ is onto. To see that, let us take a harmonic diffeomorphism h :
M −→ S̃2

1 preserving the orientation from a simply connected Lorentz surface M onto S̃2
1, and

let us consider the composition map h̃ = π ◦ h : M −→ S2
1, where π : S̃2

1 −→ S2
1 is the canonical

projection. Observe that h̃ is also harmonic and so, from Theorem 3, there exists a timelike immersion
Y : M −→ S2

1 with Gauss map h̃ and constant Gaussian curvature K = 1. On the other hand, note
that the identity map IdM : (M, IIY ) −→ (M, IY ) is harmonic, (where, for instance, IY stands for the
first fundamental form of Y ) and, since M is simply connected and (M, IY ) has constant Gaussian
curvature K = 1, there exists an isometric immersion i : (M, IY ) −→ S̃2

1. Thus, as the composition
map ĩ = π ◦ i : (M, IY ) −→ S2

1 is also an isometric immersion, Theorem 3 says that there exists a
timelike immersion X : M −→ L3 with Gauss map Ñ = ĩ ◦ IdM : (M, IIY ) −→ S2

1 and constant
Gaussian curvature 1.

Observe that the third fundamental form of X, IIIX , is nothing but the pullback by ĩ of the
standard metric of S2

1, whence IIIX = IY . Therefore, from (10),

−〈h̃u, h̃u〉 = 〈Ñu, Ñu〉, 〈h̃u, h̃v〉 = 〈Ñu, Ñv〉, −〈h̃v, h̃v〉 = 〈Ñv, Ñv〉
for any II-null coordinates (u, v). Thus, we have that IX = IIIY , and also that IIX = IIY , because
det(h̃, h̃u, h̃v) = det(Ñ , Ñu, Ñv). Finally, since IX = 〈dh̃, dh̃〉 = 〈dh, dh〉 is the pullback by h of the
standard metric of S̃2

1, it follows that X is complete, that is, X ∈ A1, which jointly with Φ(X) = [h]
ends up the proof.

Remark 8 Every harmonic diffeomorphism into S2
1 can be lifted to one into S̃2

1 and vice versa.
Moreover, every Lorentz surface is locally conformally equivalent to a domain of L2. Therefore,
the study of Gu [4] on the harmonic maps from L2 into S2

1 and the above results can be used to
the construction of complete and non complete timelike immersions with positive constant Gaussian
curvature.

5 Timelike Surfaces with Negative Gaussian Curvature

Let X : M −→ L3 be a timelike surface with negative Gaussian curvature K in L3, or equivalently, a
timelike surface whose second fundamental form is a Riemannian metric on M . Thus, from now on
M will be considered as a Riemann surface with the conformal structure induced by II.

If z = u + iv is a conformal parameter, the first and second fundamental forms are given by

I = E du2 + 2F dudv + Gdv2

II = e(du2 + dv2)

where e is a positive real function.

Then, the Weingarten equations become

Nu =
e

EG− F 2
(−GXu + FXv) Nv =

e

EG− F 2
(FXu − EXv) (14)
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whereas the Gaussian curvature and the Gauss map of M are given by

K =
e2

EG− F 2
and N =

Xu ×Xv√
F 2 − EG

respectively.

Now, using the Weingarten equations (14) we get

Xu =
−1√−K

N ×Nv, Xv =
1√−K

N ×Nu,

or equivalently

Xz =
−i√−K

N ×Nz, (15)

so that the immersion can be recovered in terms of the Gaussian curvature and the Gauss map.

As in the case of positive Gaussian curvature, the Gauss map determines, up to multiplications by
positive constants, the Gaussian curvature of the surface. In fact, using (15) one gets from Xzz−Xzz =
0 that

N × (KzNz + KzNz − 4KNzz) = 0, (16)

whence
(log K)zNz + (log K)zNz = 4(Nzz − 〈Nzz, N〉N). (17)

Now, by taking the inner product of both terms in (17) by Xz and using again (15), we finally have

−(log K)z = 4
det(N, Nz, Nzz)
det(N,Nz, Nz)

.

We summarize all the comments above jointly with more geometric information about the surface
in the following theorem:

Theorem 9 Let X : M −→ L3 be a timelike immersion with negative Gaussian curvature K, N its
Gauss map and z = u + iv a local conformal parameter on M . Then X can be recovered in terms of
K and N as

Xz =
−i√−K

N ×Nz, (18)

and the Gaussian curvature is determined, up to multiplications by positive constants, by the Gauss
map in the following way:

−(log K)z = 4
det(N, Nz, Nzz)
det(N,Nz, Nz)

. (19)

Moreover, the first and second fundamental forms of the immersion are given by

I = 1
K

(−〈Nz, Nz〉 dz2 + 2〈Nz, Nz〉 dzdz − 〈Nz, Nz〉 dz2
)

II = −2i√−K
det(N, Nz, Nz) dzdz

(20)

and its mean curvature by

H = 2i
√
−K

〈Nz, Nz〉
det(N,Nz, Nz)

. (21)
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Proof: The expressions for Xz and (log K)z have already been obtained. Concerning to (20), it
follows easily from (15). Finally, (21) can be obtain using (20) and that H = e(E + G)/(EG − F 2),
K = e2/(EG− F 2).

In the following Theorem we show under what assumptions a map N : M −→ S2
1 from a simply

connected Riemann surface M determines a timelike immersion X : M −→ L3 with Gauss map N .
Note that M must be conformally equivalent to the complex plane C or the unit disk D because M
is a non compact, simply connected surface and, so, a global conformal coordinate is available.

Theorem 10 Let M be a simply connected Riemann surface and N : M −→ S2
1 a differentiable map.

Then, there exists a timelike immersion X : M −→ L3 with Gauss map N and such that the structure
given by its second fundamental form is the one of M if and only if

−i det(N, Nz, Nz) > 0 (22)

−
(

det(N, Nz, Nzz)
det(N,Nz, Nz)

)

z

=
(

det(N,Nz, Nzz)
det(N, Nz, Nz)

)

z

(23)

for a global conformal coordinate z.

In this case, the immersion is unique (up to similarity transformations of L3) and can be calculated
as in Theorem 9.

Proof: If X : M −→ L3 is a timelike immersion with Gauss map N such that II is a Riemann metric
on M , the direct implication follows from Theorem 9. The converse implication is a straightforward
computation, bearing in mind that (22) says that II is a Riemannian metric on M and (23) is the
integrability condition for K.

To end up, if X and Y are two timelike immersions as above with Gaussian curvatures KX and
KY respectively, then from (19) we have that KX = λKY for a positive real constant λ, and hence,
using (18), we have that Y =

√
λX + V , V ∈ L3.

5.1 Negative Constant Gaussian Curvature Surfaces

Let X : M −→ L3 be a timelike immersion with negative constant Gaussian curvature. If we consider
on M a local conformal parameter z = u + iv, (16) says that N ×Nzz = 0, and so the Gauss map N
is harmonic into S2

1. Conversely, if N is harmonic we get from (19) that K is constant. Thus, we can
state (see [7]):

Corollary 11 Let X : M −→ L3 be a timelike immersion with negative Gaussian curvature K. Then
K is constant if, and only if, its Gauss map is harmonic for the second fundamental form.

In the case when M is a simply connected Riemann surface, Theorem 10 allows us to obtain the
following:

Corollary 12 Given a harmonic local diffeomorphism N : M −→ S2
1 preserving the orientation from

a simply connected Riemann surface M and a negative constant K, there exists a unique timelike
immersion (up to translations) with negative constant Gaussian curvature K, Gauss map N and such
that the structure induced by the second fundamental form is the one given on M .

10



Proof: It results immediately by observing that the harmonicity of N implies that (23) holds. On
the other hand, since N is a local diffeomorphism preserving the orientation, it follows that (22) also
holds.
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