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Presentation

The paradigm of scalar differential invariant of a G-structure is the scalar
curvature Sg : M → R of a Riemannian manifold (M,g). On each m ∈ M
it is defined Sg(m) from the values of g and its partial derivatives in m up
to second order, that is to say, it depends of the 2-jet of the metric at m.
It is said that the scalar curvature is invariant by diffeomorphisms
because if ϕ : M → M is a diffeomorphism then the scalar curvature of
the metric ϕ−1∗g verifies Sϕ−1∗g = Sg ◦ ϕ−1.
The scalar differential invariants of the metrics are well studied and it is
known the number of functionally independent metric invariants –
depending on the dimension of M and the maximal order of derivatives of
g involved – and how they are obtained from the Riemann curvature.
This essay is a preparatory study in order to access the scalar differential
invariants of other G-structures types. Particularly, we are interested in
the differential invariants of conformal structures – do not confuse these
with the conformal invariants with weight; in any case, the invariants of
our work are of weight zero.
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Introduction

P, principal bundle over M with group G; right action p · g; P/G = M.
W , manifold; left action g · w ; G\W – topological space, in general not a
manifold; notation: [w ].
P ×W ; right action (p,w) · g := (p · g,g−1 · w); we obtain the associated
bundle P(W ) ≡ (P ×W )/G; notation: [p,w ].
LM, linear frame bundle of M with group Gln.
Gln/On, quotient manifold; left action of Gln on Gln/On.
LM(Gln/On), the bundle of metrics: Giving a metric g is equivalent to give
a section σg : M → LM(Gln/On), σg(m) = [l ,On], with l ∈ LM being some
basis g-orthonormal. Reciprocally, a section σ defines a metric
establishing which are the orthonormal bases.
The bundle J r LM(Gln/On) of r -jets of sections of LM(Gln/On) has, for
each element j rmσ, the information of the r -jet at m of the corresponding
metric g.
We can define the scalar curvature function S : J2LM(Gln/On)→ R so
that S ◦ j2σg = Sg – that is S(j2mσg) := Sg(m).
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Introduction

LM(Gln/On), the bundle of metrics: Giving a metric g is equivalent to give
a section σg : M → LM(Gln/On), σg(m) = [l ,On], with l ∈ LM being some
basis g-orthonormal. Reciprocally, a section σ defines a metric
establishing which are the orthonormal bases.
The bundle J r LM(Gln/On) of r -jets of sections of LM(Gln/On) has, for
each element j rmσ, the information of the r -jet at m of the corresponding
metric g.
We can define the scalar curvature function S : J2LM(Gln/On)→ R so
that S ◦ j2σg = Sg – that is S(j2mσg) := Sg(m).
Action of a diffeomorphism ϕ : M → M

on LM: l 7→ ϕ∗ ◦ l .
on LM(W ): ϕ̄ : [l,w ] 7→ [ϕ∗ ◦ l,w ].
on sections σ : M → LM(W ): σ 7→ ϕ̄ ◦ σ ◦ ϕ−1.
on jets of sections: ϕ̂r : j r

mσ 7→ j r
ϕ(m)(ϕ̄ ◦ σ ◦ ϕ−1).

In the case W = Gln/On, it is easy to prove that σϕ−1∗g = ϕ̄ ◦ σg ◦ ϕ−1

and, using this fact, to prove that

Sϕ−1∗g = Sg ◦ ϕ−1, ∀g, ∀ϕ ⇐⇒ S = S ◦ ϕ̂2, ∀ϕ

Ignacio Sánchez–Rodríguez (UGR) Differential Invariants of G - Structures IX EAG - 2012 4 / 16



The action of diffeomorphisms on frame bundles and
associated bundles

Let F r M be the r -th order frame bundle over M, with dim M = n. This is a
principal bundle with group Gr

n, the r -th jet group. The right action of
j r
0
ξ ∈ Gr

n on j r
0
ψ ∈ F r M is defined by j r

0
(ψ ◦ ξ) ∈ F r M.

ξ is a diffeomorphism between neighborhoods of 0 ∈ Rn, with ξ(0) = 0,
ψ is a diffeomorphism between a neighborhood of 0 and an open set of M.

The pseudogroup DM of diffeomorphisms between open sets of M acts
on F r M: The left action of ϕ ∈ DM on j r

0
ψ ∈ F r M is defined by

j r
0
(ϕ ◦ ψ) ∈ F r M, – when ψ(0) ∈ domϕ.

The action of diffeomorphisms is transitive:

∀ j r
0
ψ, j r

0
ψ′ ∈ F r M, ∃ϕ ∈ DM such that j r

0
(ϕ ◦ ψ) = j r

0
ψ′ .

Let F r M(W ) be an associated bundle to F r M; the left action of ϕ ∈ DM
defined there is given by – over domϕ :

ϕ̄r : F r M(W )→ F r M(W ), [j r
0
ψ,w ] 7→ [j r

0
(ϕ ◦ ψ),w ].
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Scalar differential invariants

Definition (Invariants of associated bundles)
A function f : F r M(W )→ R is a scalar differential invariant of F r M(W ) if,
∀w ∈W , ∀ϕ ∈ DM and ∀ j r

0
ψ ∈ F r M with ψ0 ∈ domϕ, it is verified:

f [j r
0
ψ,w ] = f [j r

0
(ϕ ◦ ψ),w ].

Equivalently, ∀ϕ ∈ DM, f ◦ ϕ̄r = f over domϕ.

We can reduce the problem of finding the scalar differential invariants of
F r M(W ) to a problem that is independent from M and its diffeomorphisms.

Theorem (Independence from M of the invariants)
The set of scalar differential invariants of F r M(W ) is in bijective
correspondence with the set of functions h : Gr

n\W → R such that h ◦ Π is
differentiable – being Π: W → Gr

n\W, w 7→ [w ].
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Scalar differential invariants

Demostration
Given an invariant f : F r M(W )→ R, the function h[w ] := f [j r

0
ψ,w ] is well

defined because:
(i) for another j r

0
ψ′, we obtain a diffeomorphism ϕ = ψ′ ◦ ψ−1 between

neighbohoods of ψ0 y ψ′0, and then f [j r
0
ψ′,w ] = f [j r

0
(ϕ ◦ ψ),w ] = f [j r

0
ψ,w ];

(ii) if w ′ ∈ [w ], there exists j r
0
ξ ∈ Gr

n such that
[j r

0
ψ,w ′] = [j r

0
ψ, j r

0
ξ · w ] = [j r

0
(ψ ◦ ξ),w ], then f [j r

0
ψ,w ′] = f [j r

0
(ψ ◦ ξ),w ] and,

from (i), f [j r
0
ψ,w ′] = f [j r

0
ψ,w ].

The differentiability follows from the identity h ◦ Π = f ◦ π ◦ ιz , where
π : F r M ×W → F r M(W ) is the natural projection and ιz : W → F r M ×W ,
ιz(w) := (z,w), with z ∈ F r M.
Reciprocally, given h : Gr

n\W → R, the function f [j r
0
ψ,w ] := h[w ], ∀ j r

0
ψ ∈ F r M,

which obviously is invariant, is well defined because
f [j r

0
(ψ ◦ ξ), j r

0
ξ−1 · w ] = h[j r

0
ξ−1 · w ] = h[w ], ∀ j r

0
ξ ∈ Gr

n
It is known that f is differentiable if and only if f ◦ π is differentiable; as
f ◦ π = h ◦ Π ◦ π2 , with π2 : F r M ×W →W being the projection π2 (z,w) = w ,
the differentiability of f follows of the differentiability of h ◦ Π.
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Bundles of r -jets of sections

Given a bundle E over M with fiber W , it is obtained the bundle of r -jets
of local sections of E , J r E , whose basis is M and fiber is the space
J r

0
(Rn,W ) of r -jets at 0 of applications of Rn to W .

Let us see how work in the case E = F k M(W ). We use the natural
section of F k M induced from a chart (x ,U):

x̂k : U → F k M, p 7→ x̂k p := jk
0

(x−1 ◦ τx(p)),

with τx(p) being the translation by x(p) on Rn. A local trivialization of E is:

Ψx : E |U → U ×W , [x̂k p,w ] 7→ (p,w).

Now, a local section σ : U → E is characterized by the application
σx : U →W such that Ψx (σ(p)) = (p, σx (p)). We can write σ = [x̂k , σx ].
Then, a local trivialization of J r E is

J r E |U → U × J r
0
(Rn,W ), j rpσ 7→

(
p, j r

0
(σx ◦ x−1 ◦ τxp)

)
.
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The bundle of jets of sections is an associated bundle

Proposition (1)
If E = F k M(W ) is an associated bundle to F k M with typical fiber W then J r E
is an associated bundle to F r+k M with typical fiber J r

0
(Rn,W ).

Demostration
We consider the following action of j r+k

0
ξ ∈ Gr+k

n on j r
0
µ ∈ J r

0
(Rn,W ) defined

by
j r
0

(
(jkξ · µ) ◦ ξ−1) ∈ J r

0
(Rn,W ), (1)

in which occurs the W -valued function given by

(jkξ · µ)(v) := jk
0

(τ−ξ(v) ◦ ξ ◦ τv ) · µ(v), v ∈ Rn;

the last dot here refers to the action of Gk
n on W .
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The bundle of jets of sections is an associated bundle

Proposition (1)
If E = F k M(W ) is an associated bundle to F k M with typical fiber W then J r E
is an associated bundle to F r+k M with typical fiber J r

0
(Rn,W ).

Demostration
(cont.) It is proved that (1) defines a left action of Gr+k

n on J r
0
(Rn,W ) and then

it produces an associated bundle F r+k M(J r
0
(Rn,W )). We can define a fibered

application – in the domain of the chart x – by

Λ: J r E −→ F r+k M(J r
0
(Rn,W ))

j rpσ 7−→
[
x̂ r+k p, j r

0
(σx ◦ x−1 ◦ τx(p))

]
,

which is an isomorphism of bundles. We proved that this definition is
independent of the chart and, thus, that it is a bundle isomorphism globally
defined.
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Action of diffeomorphisms on jets of sections
In a bundle E = F k M(W ) it is defined the action of a diffeomorphism ϕ by:

ϕ̄k : E → E , [jk
0
ψ,w ] 7→ [jk

0
(ϕ ◦ ψ),w ].

If σ is a section of E in a neighborhood of p ∈ M then ϕ̄k ◦ σ ◦ϕ−1 is a section
of E in a neighborhood of ϕ(p). Thus, it is defined the action of ϕ on J r E by:

ϕ̂r ,k : J r E → J r E , j rpσ 7→ j rϕ(p)(ϕ̄
k ◦ σ ◦ ϕ−1).

Definition (Invariants of bundles of jets of sections)
A differentiable function f : J r

(
F k M(W )

)
→ R is a scalar differential invariant

(SDI) of r -th order over F k M(W ) if, ∀ϕ ∈ DM, f ◦ ϕ̂r ,k = f on domϕ.

The two definitions of SDI of r -th order over F k M(W ) and of SDI of
F r+k M(J r

0
(Rn,W )) are equivalent because of the commutative diagram:

J r
(
F k M(W )

) Λ−→ F r+k M(J r
0
(Rn,W ))yϕ̂r,k

yϕ̄r+k

J r
(
F k M(W )

) Λ−→ F r+k M(J r
0
(Rn,W ))
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Bundle of G-structures

Let G be a closed subgroup of Gln. The left action of Gln on Gln/G gives the
associated bundle MG ≡ LM(Gln/G) which is called the bundle of
G-structures. Its sections, σ : M → MG, are in correspondence with the
principal subbundles, P = {l ∈ LM : [l ,G] ∈ σ(M)}, with group G which are
the so-called G-structures on M.
Let J r MG be the bundle of r -jets of local sections of MG, whose fiber is
J r

0
(Rn,Gln/G). The action of ϕ ∈ DM on J r MG is defined by:

ϕ̂r ,1 : J r MG → J r MG, j rpσ 7→ j rϕ(p)(ϕ̄ ◦ σ ◦ ϕ
−1).

Definition (Scalar differential invariants of G-structures)
A scalar differential invariant of r -th order of G-structures on M is a
differentiable function f : J r MG → R which verifies f ◦ ϕ̂r ,1 = f over domϕ,
∀ϕ ∈ DM.

[Addded in traslation: A paradigmatic example is the scalar curvature of (pseudo-)Riemannian
geometry S : J2MOn → R, being MOn ≡ LM(Gln/On) (see the Introduction)]
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Scalar differential invariants of G-structures

The isomorphism Λ of Proposition (1) allows to identify the bundle of jets of
sections J r MG and the associated bundle F r+1M

(
J r

0
(Rn,Gln/G)

)
with respect

to the action of j r+1
0

ξ ∈ Gr+1
n on j r

0
µ ∈ J r

0
(Rn,Gln/G) defined by

j r
0

(
(Dξ · µ) ◦ ξ−1) ∈ J r

0
(Rn,Gln/G),

being (Dξ · µ)(v) := Dξ|v · µ(v), with v ∈ Rn and the last dot for the action of
Gln on Gln/G.
Therefore, a scalar differential invariant of G-structures can be seen as a
differentiable function f : F r+1M

(
J r

0
(Rn,Gln/G)

)
→ R which verifies

f ◦ ϕ̄r+1 = f , ∀ϕ ∈ DM. Now, as one application to G-structures of the
theorem of independence from M of the invariants, we obtain:

Theorem (Scalar differential G-invariants of r -th order)
The set of scalar differential invariants of r -th order of G-structures on a
manifold M is in natural bijective correspondence with the functions
h : Gr+1

n \J r
0
(Rn,Gln/G)→ R such that h ◦Π is differentiable. We say that h is a

scalar differential G-invariant of r -th order.
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Minimum number of scalar differential G-invariants

It can be proved that the subspace of Gr+1
n \J r

0
(Rn,Gln/G), denoted with Gr ,

which is the union of the orbits of maximal dimension – in J r
0
(Rn,Gln/G) – is

an open dense subset which – I conjecture – is a differentiable manifold
whose dimension, mr , will be the number of functionally independent scalar
differential G-invariants of r -th order.

Theorem (Minimum number of scalar differential G-invariants)
Let G be a closed subset of Gln and m = dim G. The number mr of
functionally independent scalar differential G-invariants of r -th order verifies

mr ≥ (n2 −m)

(
n + r

n

)
− n
(

n + r + 1
n

)
+ n.

Demostration
Taking into account that dim J r

0
(Rn,Gln/G) = (n2 −m)

(n+r
n

)
and

dim Gr+1
n = n

((n+r+1
n

)
− 1
)
, the result follows of

dim(Gr+1
n \Gr ) ≥ dim Gr − dim Gr+1

n .
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Minimum number of metric and conformal invariants

In the case of parallelizations of M – G = {In} – or in the case of fields of
projective frames – G = {kIn : k 6= 0} – the minimum number of the
theorem coincides with the exact number of invariants.
In the metric case the minimum coincides with the exact number of
On-invariants, except for† n = 2 and r = 2 in which there is an invariant.
In the conformal case, the exact number of COn-invariants is an open
problem [see (∗) in the references].

Min. number of On-invariants

n�r 1 2 3 4 5
1 0 0 0 0 0
2 - 0† 2 5 9
3 - 3 18 45 87
4 - 14 74 200 424
5 - 40 215 635 1475
6 - 90 510 1644 4164

Min. number of COn-invariants

n�r 1 2 3 4 5
1 - - - - -
2 - - - - -
3 - - - 10 31
4 - - 39 130 298
5 - 19 159 509 1223
6 - 62 426 1434 3702
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