# An Approach to Differential Invariants of G-Structures

#### Ignacio Sánchez-Rodríguez

Department of Geometry and Topology, University of Granada, Spain

#### IX Andalusian Meeting on Geometry

In memóriam of Professor Florentino García Santos

Jaén (Spain), 11th May 2012

#### Presentation

- The paradigm of scalar differential invariant of a G-structure is the scalar curvature  $\mathbf{S_g} \colon M \to \mathbb{R}$  of a Riemannian manifold  $(M, \mathbf{g})$ . On each  $m \in M$  it is defined  $\mathbf{S_g}(m)$  from the values of  $\mathbf{g}$  and its partial derivatives in m up to second order, that is to say, it depends of the 2-jet of the metric at m. It is said that the scalar curvature is invariant by diffeomorphisms because if  $\varphi \colon M \to M$  is a diffeomorphism then the scalar curvature of the metric  $\varphi^{-1*}\mathbf{g}$  verifies  $\mathbf{S_{\varphi^{-1*}\mathbf{g}}} = \mathbf{S_g} \circ \varphi^{-1}$ .
- The scalar differential invariants of the metrics are well studied and it is known the number of functionally independent metric invariants – depending on the dimension of *M* and the maximal order of derivatives of g involved – and how they are obtained from the Riemann curvature.
- This essay is a preparatory study in order to access the scalar differential invariants of other G-structures types. Particularly, we are interested in the differential invariants of conformal structures – do not confuse these with the conformal invariants with weight; in any case, the invariants of our work are of weight zero.

#### Introduction

- P, principal bundle over M with group G; right action  $p \cdot g$ ; P/G = M.
- W, manifold; left action g · w; G\W topological space, in general not a manifold; notation: [w].
- $P \times W$ ; right action  $(p, w) \cdot g := (p \cdot g, g^{-1} \cdot w)$ ; we obtain the associated bundle  $P(W) \equiv (P \times W)/G$ ; notation: [p, w].
- LM, linear frame bundle of M with group  $Gl_n$ .
- $Gl_n/O_n$ , quotient manifold; left action of  $Gl_n$  on  $Gl_n/O_n$ .
- $LM(Gl_n/O_n)$ , the bundle of metrics: Giving a metric  $\mathbf{g}$  is equivalent to give a section  $\sigma_{\mathbf{g}} \colon M \to LM(Gl_n/O_n)$ ,  $\sigma_{\mathbf{g}}(m) = [I,O_n]$ , with  $I \in LM$  being some basis  $\mathbf{g}$ -orthonormal. Reciprocally, a section  $\sigma$  defines a metric establishing which are the orthonormal bases.
- The bundle  $J^rLM(Gl_n/O_n)$  of r-jets of sections of  $LM(Gl_n/O_n)$  has, for each element  $j_m^r\sigma$ , the information of the r-jet at m of the corresponding metric g.
- We can define the scalar curvature function  $S: J^2LM(\mathrm{Gl}_n/\mathrm{O}_n) \to \mathbb{R}$  so that  $S \circ j^2\sigma_g = S_g$  that is  $S(j_m^2\sigma_g) := S_g(m)$ .

#### Introduction

- $LM(Gl_n/O_n)$ , the bundle of metrics: Giving a metric  $\mathbf{g}$  is equivalent to give a section  $\sigma_{\mathbf{g}} \colon M \to LM(Gl_n/O_n)$ ,  $\sigma_{\mathbf{g}}(m) = [l, O_n]$ , with  $l \in LM$  being some basis  $\mathbf{g}$ -orthonormal. Reciprocally, a section  $\sigma$  defines a metric establishing which are the orthonormal bases.
- The bundle  $J^rLM(\mathrm{Gl}_n/\mathrm{O}_n)$  of r-jets of sections of  $LM(\mathrm{Gl}_n/\mathrm{O}_n)$  has, for each element  $j_m^r\sigma$ , the information of the r-jet at m of the corresponding metric  $\mathbf{g}$ .
- We can define the scalar curvature function  $S: J^2LM(Gl_n/O_n) \to \mathbb{R}$  so that  $S \circ j^2\sigma_q = S_q$  that is  $S(j_m^2\sigma_q) := S_q(m)$ .
- Action of a diffeomorphism  $\varphi: M \to M$

```
on LM: I \mapsto \varphi_* \circ I.

on LM(W): \bar{\varphi} \colon [I, w] \mapsto [\varphi_* \circ I, w].

on sections \sigma \colon M \to LM(W): \sigma \mapsto \bar{\varphi} \circ \sigma \circ \varphi^{-1}.

on jets of sections: \widehat{\varphi}^r \colon j_m^r \sigma \mapsto j_{\varphi(m)}^r (\bar{\varphi} \circ \sigma \circ \varphi^{-1}).
```

• In the case  $W = Gl_n/O_n$ , it is easy to prove that  $\sigma_{\varphi^{-1}*g} = \bar{\varphi} \circ \sigma_g \circ \varphi^{-1}$  and, using this fact, to prove that

$$\mathbf{S}_{\varphi^{-1}*\mathbf{g}} = \mathbf{S}_{\mathbf{g}} \circ \varphi^{-1}, \ \forall \, \mathbf{g}, \ \forall \, \varphi \quad \Longleftrightarrow \quad \mathbf{S} = \mathbf{S} \circ \widehat{\varphi}^2, \ \forall \, \varphi$$



# The action of diffeomorphisms on frame bundles and associated bundles

• Let  $F^rM$  be the r-th order frame bundle over M, with dim M=n. This is a principal bundle with group  $G_n^r$ , the r-th jet group. The right action of  $j_0^r\xi\in G_n^r$  on  $j_0^r\psi\in F^rM$  is defined by  $j_0^r(\psi\circ\xi)\in F^rM$ .

 $\xi$  is a diffeomorphism between neighborhoods of  $0 \in \mathbb{R}^n$ , with  $\xi(0) = 0$ ,  $\psi$  is a diffeomorphism between a neighborhood of 0 and an open set of M.

The pseudogroup  $\mathcal{D}M$  of diffeomorphisms between open sets of M acts on  $F^rM$ : The left action of  $\varphi \in \mathcal{D}M$  on  $j_0^r\psi \in F^rM$  is defined by  $j_0^r(\varphi \circ \psi) \in F^rM$ , – when  $\psi(0) \in \operatorname{dom} \varphi$ .

The action of diffeomorphisms is transitive:

$$\forall j_{\scriptscriptstyle 0}^r \psi, j_{\scriptscriptstyle 0}^r \psi' \in \mathit{F}^r \mathit{M}, \ \exists \ \varphi \in \mathcal{D} \mathit{M} \ \text{such that} \ j_{\scriptscriptstyle 0}^r (\varphi \circ \psi) = j_{\scriptscriptstyle 0}^r \psi' \ .$$

• Let  $F^rM(W)$  be an associated bundle to  $F^rM$ ; the left action of  $\varphi \in \mathcal{D}M$  defined there is given by – over dom  $\varphi$ :

$$\bar{\varphi}^r \colon F^r M(W) \to F^r M(W), \quad [j_0^r \psi, w] \mapsto [j_0^r (\varphi \circ \psi), w].$$



#### Scalar differential invariants

## Definition (Invariants of associated bundles)

A function  $f: F^rM(W) \to \mathbb{R}$  is a scalar differential invariant of  $F^rM(W)$  if,  $\forall w \in W, \forall \varphi \in \mathcal{D}M$  and  $\forall j_0^r \psi \in F^rM$  with  $\psi 0 \in \text{dom } \varphi$ , it is verified:

$$f[j_0^r\psi,\mathbf{w}]=f[j_0^r(\varphi\circ\psi),\mathbf{w}].$$

Equivalently,  $\forall \varphi \in \mathcal{D}M$ ,  $\mathbf{f} \circ \overline{\varphi}^{\mathbf{r}} = \mathbf{f}$  over dom  $\varphi$ .

We can reduce the problem of finding the scalar differential invariants of F'M(W) to a problem that is independent from M and its diffeomorphisms.

## Theorem (Independence from *M* of the invariants)

The set of scalar differential invariants of  $F^rM(W)$  is in bijective correspondence with the set of functions  $h: G_n^r \backslash W \to \mathbb{R}$  such that  $h \circ \Pi$  is differentiable – being  $\Pi: W \to G_n^r \backslash W, \ w \mapsto [w]$ .

6/16

## Scalar differential invariants

#### **Demostration**

Given an invariant  $f: F^rM(W) \to \mathbb{R}$ , the function  $h[w] := f[j_0^r\psi, w]$  is well defined because:

- (i) for another  $j_0^r \psi'$ , we obtain a diffeomorphism  $\varphi = \psi' \circ \psi^{-1}$  between neighbohoods of  $\psi$ 0 y  $\psi'$ 0, and then  $f[j_0^r \psi', w] = f[j_0^r (\varphi \circ \psi), w] = f[j_0^r \psi, w]$ ;
- (ii) if  $w' \in [w]$ , there exists  $j_0^r \xi \in G_n^r$  such that
- $[j_0^r \psi, w'] = [j_0^r \psi, j_0^r \xi \cdot w] = [j_0^r (\psi \circ \xi), w], \text{ then } f[j_0^r \psi, w'] = f[j_0^r (\psi \circ \xi), w] \text{ and, } from (i), f[j_0^r \psi, w'] = f[j_0^r \psi, w].$

The differentiability follows from the identity  $h \circ \Pi = f \circ \pi \circ \iota_{z}$ , where  $\pi \colon F^{r}M \times W \to F^{r}M(W)$  is the natural projection and  $\iota_{z} \colon W \to F^{r}M \times W$ ,  $\iota_{z}(w) := (z, w)$ , with  $z \in F^{r}M$ .

Reciprocally, given  $h: G_n^r \setminus W \to \mathbb{R}$ , the function  $f[j_0^r \psi, w] := h[w], \forall j_0^r \psi \in F^r M$ , which obviously is invariant, is well defined because

$$f[j_0^r(\psi \circ \xi), j_0^r \xi^{-1} \cdot w] = h[j_0^r \xi^{-1} \cdot w] = h[w], \quad \forall j_0^r \xi \in G_n^r$$

It is known that f is differentiable if and only if  $f \circ \pi$  is differentiable; as  $f \circ \pi = h \circ \Pi \circ \pi_2$ , with  $\pi_2 : F^r M \times W \to W$  being the projection  $\pi_2(z, w) = w$ , the differentiability of f follows of the differentiability of  $h \circ \Pi$ .

# Bundles of *r*-jets of sections

- Given a bundle E over M with fiber W, it is obtained the bundle of r-jets of local sections of E,  $J^rE$ , whose basis is M and fiber is the space  $J^r_0(\mathbb{R}^n, W)$  of r-jets at 0 of applications of  $\mathbb{R}^n$  to W.
- Let us see how work in the case  $E = F^k M(W)$ . We use the natural section of  $F^k M$  induced from a chart (x, U):

$$\widehat{x}^k \colon U \to F^k M, \quad p \mapsto \widehat{x}^k p := j_0^k (x^{-1} \circ \tau_{x(p)}),$$

with  $\tau_{x(p)}$  being the translation by x(p) on  $\mathbb{R}^n$ . A local trivialization of E is:

$$\Psi^{x} \colon E|_{U} \to U \times W, \quad [\widehat{x}^{k}p, w] \mapsto (p, w).$$

Now, a local section  $\sigma \colon U \to E$  is characterized by the application  $\sigma^x \colon U \to W$  such that  $\Psi^x(\sigma(p)) = (p, \sigma^x(p))$ . We can write  $\sigma = [\widehat{x}^k, \sigma^x]$ . Then, a local trivialization of  $J^r E$  is

$$J^r E|_U \to U \times J^r_0(\mathbb{R}^n, W), \quad j^r_p \sigma \mapsto (p, j^r_0(\sigma^x \circ x^{-1} \circ \tau_{xp})).$$



# The bundle of jets of sections is an associated bundle

#### Proposition (1)

If  $E = F^k M(W)$  is an associated bundle to  $F^k M$  with typical fiber W then  $J^r E$  is an associated bundle to  $F^{r+k} M$  with typical fiber  $J^r_0(\mathbb{R}^n, W)$ .

#### **Demostration**

We consider the following action of  $j_0^{r+k}\xi\in G_n^{r+k}$  on  $j_0^r\mu\in J_0^r(\mathbb{R}^n,W)$  defined by

$$j_0^r((j^k\xi\cdot\mu)\circ\xi^{-1})\in J_0^r(\mathbb{R}^n,W),\tag{1}$$

in which occurs the W-valued function given by

$$(j^k \xi \cdot \mu)(\mathbf{v}) := j_0^k (\tau_{-\xi(\mathbf{v})} \circ \xi \circ \tau_{\mathbf{v}}) \cdot \mu(\mathbf{v}), \quad \mathbf{v} \in \mathbb{R}^n;$$

the last dot here refers to the action of  $G_n^k$  on W.

# The bundle of jets of sections is an associated bundle

#### Proposition (1)

If  $E = F^k M(W)$  is an associated bundle to  $F^k M$  with typical fiber W then  $J^r E$ is an associated bundle to  $F^{r+k}M$  with typical fiber  $J_{\circ}^{r}(\mathbb{R}^{n},W)$ .

#### Demostration

(cont.) It is proved that (1) defines a left action of  $G_n^{r+k}$  on  $J_n^r(\mathbb{R}^n, W)$  and then it produces an associated bundle  $F^{r+k}M(J_{\circ}^{r}(\mathbb{R}^{n},W))$ . We can define a fibered application – in the domain of the chart x - by

$$\Lambda \colon J^r E \longrightarrow F^{r+k} M(J_0^r(\mathbb{R}^n, W))$$
$$j_p^r \sigma \longmapsto \left[\widehat{\chi}^{r+k} p, j_0^r (\sigma^x \circ \chi^{-1} \circ \tau_{\chi(p)})\right],$$

which is an isomorphism of bundles. We proved that this definition is independent of the chart and, thus, that it is a bundle isomorphism globally defined.

# Action of diffeomorphisms on jets of sections

In a bundle  $E = F^k M(W)$  it is defined the action of a diffeomorphism  $\varphi$  by:

$$\bar{\varphi}^k \colon E \to E, \ [j_0^k \psi, w] \mapsto [j_0^k (\varphi \circ \psi), w].$$

If  $\sigma$  is a section of E in a neighborhood of  $p \in M$  then  $\bar{\varphi}^k \circ \sigma \circ \varphi^{-1}$  is a section of E in a neighborhood of  $\varphi(p)$ . Thus, it is defined the action of  $\varphi$  on J'E by:

$$\widehat{\varphi}^{r,k}\colon J^rE\to J^rE,\quad j_p^r\sigma\mapsto j_{\varphi(p)}^r(\bar{\varphi}^k\circ\sigma\circ\varphi^{-1}).$$

#### Definition (Invariants of bundles of jets of sections)

A differentiable function  $f: J^r(F^kM(W)) \to \mathbb{R}$  is a scalar differential invariant (SDI) of r-th order over  $F^kM(W)$  if,  $\forall \varphi \in \mathcal{D}M$ ,  $f \circ \widehat{\varphi}^{r,k} = f$  on dom  $\varphi$ .

The two definitions of SDI of r-th order over  $F^kM(W)$  and of SDI of  $F^{r+k}M(J^r_0(\mathbb{R}^n,W))$  are equivalent because of the commutative diagram:

$$J^{r}(F^{k}M(W)) \xrightarrow{\Lambda} F^{r+k}M(J_{0}^{r}(\mathbb{R}^{n}, W))$$

$$\downarrow_{\widehat{\varphi}^{r,k}} \qquad \qquad \downarrow_{\widehat{\varphi}^{r+k}}$$

$$J^{r}(F^{k}M(W)) \xrightarrow{\Lambda} F^{r+k}M(J_{0}^{r}(\mathbb{R}^{n}, W))$$

#### Bundle of G-structures

Let G be a closed subgroup of  $\operatorname{Gl}_n$ . The left action of  $\operatorname{Gl}_n$  on  $\operatorname{Gl}_n/G$  gives the associated bundle  $M_G \equiv LM(\operatorname{Gl}_n/G)$  which is called the *bundle of* G-structures. Its sections,  $\sigma \colon M \to M_G$ , are in correspondence with the principal subbundles,  $P = \{I \in LM \colon [I,G] \in \sigma(M)\}$ , with group G which are the so-called G-structures on M.

Let  $J'M_G$  be the bundle of r-jets of local sections of  $M_G$ , whose fiber is  $J_0'(\mathbb{R}^n, \operatorname{Gl}_n/G)$ . The action of  $\varphi \in \mathcal{D}M$  on  $J'M_G$  is defined by:

$$\widehat{\varphi}^{r,1} \colon J^r M_G \to J^r M_G, \quad j_p^r \sigma \mapsto j_{\varphi(p)}^r (\bar{\varphi} \circ \sigma \circ \varphi^{-1}).$$

## Definition (Scalar differential invariants of G-structures)

A scalar differential invariant of r-th order of G-structures on M is a differentiable function  $f: J^rM_G \to \mathbb{R}$  which verifies  $f \circ \widehat{\varphi}^{r,1} = f$  over  $\operatorname{dom} \varphi$ ,  $\forall \varphi \in \mathcal{D}M$ .

[Addded in traslation: A paradigmatic example is the scalar curvature of (pseudo-)Riemannian geometry  $\mathbf{S} \colon J^2 M_{\mathrm{O}_n} \to \mathbb{R}$ , being  $M_{\mathrm{O}_n} \equiv LM(\mathrm{Gl}_n/\mathrm{O}_n)$  (see the Introduction)]

## Scalar differential invariants of G-structures

The isomorphism Λ of Proposition (1) allows to identify the bundle of jets of sections  $J^r M_G$  and the associated bundle  $F^{r+1} M(J^r(\mathbb{R}^n, Gl_n/G))$  with respect to the action of  $j_n^{r+1}\xi\in G_n^{r+1}$  on  $j_n^r\mu\in J_n^r(\mathbb{R}^n,\mathrm{Gl}_n/G)$  defined by

$$j_0^r ((D\xi \cdot \mu) \circ \xi^{-1}) \in J_0^r(\mathbb{R}^n, \mathrm{Gl}_n/G),$$

being  $(D\xi \cdot \mu)(v) := D\xi|_{v} \cdot \mu(v)$ , with  $v \in \mathbb{R}^{n}$  and the last dot for the action of  $Gl_n$  on  $Gl_n/G$ .

Therefore, a scalar differential invariant of G-structures can be seen as a differentiable function  $f: F^{r+1}M(J_0^r(\mathbb{R}^n, \operatorname{Gl}_n/G)) \to \mathbb{R}$  which verifies  $f \circ \overline{\varphi}^{r+1} = f$ ,  $\forall \varphi \in \mathcal{D}M$ . Now, as one application to G-structures of the theorem of independence from M of the invariants, we obtain:

## Theorem (Scalar differential *G*-invariants of *r*-th order)

The set of scalar differential invariants of r-th order of G-structures on a manifold M is in natural bijective correspondence with the functions  $h: G_n^{r+1} \setminus J_n^r(\mathbb{R}^n, Gl_n/G) \to \mathbb{R}$  such that  $h \circ \Pi$  is differentiable. We say that h is a scalar differential G-invariant of r-th order.

## Minimum number of scalar differential *G*-invariants

It can be proved that the subspace of  $G_n^{r+1} \setminus J_0^r(\mathbb{R}^n, \operatorname{Gl}_n/G)$ , denoted with  $G^r$ , which is the union of the orbits of maximal dimension – in  $J_0^r(\mathbb{R}^n, \operatorname{Gl}_n/G)$  – is an open dense subset which – I conjecture – is a differentiable manifold whose dimension,  $m_r$ , will be the number of functionally independent scalar differential G-invariants of r-th order.

#### Theorem (Minimum number of scalar differential *G*-invariants)

Let G be a closed subset of  $Gl_n$  and  $m = \dim G$ . The number  $m_r$  of functionally independent scalar differential G-invariants of r-th order verifies

$$m_r \ge (n^2 - m) \binom{n+r}{n} - n \binom{n+r+1}{n} + n.$$

#### **Demostration**

Taking into account that  $\dim J_0^r(\mathbb{R}^n,\operatorname{Gl}_n/G)=(n^2-m)\binom{n+r}{n}$  and  $\dim G_n^{r+1}=n(\binom{n+r+1}{n}-1)$ , the result follows of  $\dim (G_n^{r+1}\setminus G')\geq \dim G'-\dim G_n^{r+1}$ .

## Minimum number of metric and conformal invariants

In the case of parallelizations of  $M - G = \{I_n\}$  – or in the case of fields of projective frames –  $G = \{kI_n : k \neq 0\}$  – the minimum number of the theorem coincides with the exact number of invariants.

In the metric case the minimum coincides with the exact number of  $O_n$ -invariants, except for n = 2 and n = 2 in which there is an invariant.

In the conformal case, the exact number of  $CO_n$ -invariants is an open problem [see (\*) in the references].

## Min. number of $O_n$ -invariants

| n r | 1 | 2          | 3   | 4    | 5    |
|-----|---|------------|-----|------|------|
| 1   | 0 | 0          | 0   | 0    | 0    |
| 2   | - | <b>0</b> † | 2   | 5    | 9    |
| 3   | - | 3          | 18  | 45   | 87   |
| 4   | - | 14         | 74  | 200  | 424  |
| 5   | - | 40         | 215 | 635  | 1475 |
| 6   | - | 90         | 510 | 1644 | 4164 |

#### Min. number of $CO_n$ -invariants

|       | ** |    |     |      |      |  |
|-------|----|----|-----|------|------|--|
| $n^r$ | 1  | 2  | 3   | 4    | 5    |  |
| 1     | _  |    | -   |      |      |  |
| 2     | _  | _  | _   | _    | _    |  |
| 3     | _  |    | _   | 10   | 31   |  |
| 4     | _  |    | 39  | 130  | 298  |  |
| 5     | _  | 19 | 159 | 509  | 1223 |  |
| 6     |    | 62 | 426 | 1434 | 3702 |  |
| 0     | -  | 02 | 420 | 1434 | 3/02 |  |

IX FAG - 2012

#### References

Pedro L. García, J. Muñoz Masqué, Differential invariants on the bundles of G-structures, Lect. Notes in Math. **1410** (1989), 177–201.

J. Muñoz Masqué, Antonio Valdés,
The number of functionally independent invariants of a
pseudo-Riemannian metric,
J. Phys. A: Math. Gen. **27** (1994), 7843–7855.

R. A. Sarkisyan,

On differential invariants of geometric structures, Izv. Ross. Akad. Nauk Ser. Mat. 70:2 (2006), 99–158

B. Kruglikov,\*

Conformal differential invariants,

J. Geom. Phys. **113** (2017), 170–175.

<sup>\*[</sup>Added in translation. This author gives the exact numbers of SDI for conformal structures. These coincide with the minima given by us, except for n=3 & r=3 with 1 SDI, for n=4 & r=2 with 3 SDI and for  $n\geq 5$  & r=2 with n SDI more that the minimum given.]