Complementary Romanovski-Routh polynomials

A. Sri Ranga

DMAp/IBILCE, UNESP - Universidade Estadual Paulista
[sri.ranga@unesp.br]
For $b=\lambda+i \eta, \lambda>0$, the complementary Romanovski-Routh polynomials $\mathcal{P}_{n}(b ;$. can be given by the hypergeometric expression

$$
\mathcal{P}_{n}(b ; x)=\frac{(x-i)^{n}}{2^{n}} \frac{(2 \lambda)_{n}}{(\lambda)_{n}}{ }_{2} F_{1}\left(-n, b ; b+\bar{b} ; \frac{-2 i}{x-i}\right), \quad n \geq 1
$$

They satisfy the three term recurrence

$$
\begin{equation*}
\mathcal{P}_{n+1}(b ; x)=\left(x-c_{n+1}^{(b)}\right) \mathcal{P}_{n}(b ; x)-d_{n+1}^{(b)}\left(x^{2}+1\right) \mathcal{P}_{n-1}(b ; x), \quad n \geq 1 \tag{1}
\end{equation*}
$$

with $\mathcal{P}_{0}(b ; x)=1$ and $\mathcal{P}_{1}(b ; x)=x-c_{1}^{(b)}$, where

$$
\begin{equation*}
c_{n}^{(b)}=\frac{\eta}{\lambda+n-1} \quad \text { and } \quad d_{n+1}^{(b)}=d_{n+1}^{(\lambda)}=\frac{1}{4} \frac{n(2 \lambda+n-1)}{(\lambda+n-1)(\lambda+n)}, \quad n \geq 1 \tag{2}
\end{equation*}
$$

Moreover, if $\lambda>1 / 2$ then they also satisfy the varying orthogonality

$$
\int_{-\infty}^{\infty} x^{m} \mathcal{P}_{n}(b ; x) \frac{1}{\left(1+x^{2}\right)^{n}} \frac{\left(e^{-\operatorname{arccot} x}\right)^{2 \eta}}{\left(1+x^{2}\right)^{\lambda}} d x=\gamma_{n}^{(\lambda)} \delta_{m, n}, \quad m=0,1, \ldots, n
$$

In this talk we will look at some recent developments with respect these polynomials.

