Complementary Romanovski-Routh polynomials

A. Sri Ranga

DMAp/IBILCE, UNESP - Universidade Estadual Paulista [sri.ranga@unesp.br]

For $b = \lambda + i\eta$, $\lambda > 0$, the complementary Romanovski-Routh polynomials $\mathcal{P}_n(b;.)$ can be given by the hypergeometric expression

$$\mathcal{P}_{n}(b;x) = \frac{(x-i)^{n}}{2^{n}} \frac{(2\lambda)_{n}}{(\lambda)_{n}} {}_{2}F_{1}\Big(-n,b;\,b+\bar{b};\,\frac{-2i}{x-i}\Big), \quad n \ge 1.$$

They satisfy the three term recurrence

$$\mathcal{P}_{n+1}(b;x) = (x - c_{n+1}^{(b)})\mathcal{P}_n(b;x) - d_{n+1}^{(b)}(x^2 + 1)\mathcal{P}_{n-1}(b;x), \quad n \ge 1,$$
(1)

with $\mathcal{P}_0(b;x) = 1$ and $\mathcal{P}_1(b;x) = x - c_1^{(b)}$, where

$$c_n^{(b)} = \frac{\eta}{\lambda + n - 1}$$
 and $d_{n+1}^{(b)} = d_{n+1}^{(\lambda)} = \frac{1}{4} \frac{n(2\lambda + n - 1)}{(\lambda + n - 1)(\lambda + n)}, \quad n \ge 1.$ (2)

Moreover, if $\lambda > 1/2$ then they also satisfy the varying orthogonality

$$\int_{-\infty}^{\infty} x^m \mathcal{P}_n(b;x) \frac{1}{(1+x^2)^n} \frac{(e^{-\arccos x})^{2\eta}}{(1+x^2)^{\lambda}} dx = \gamma_n^{(\lambda)} \delta_{m,n}, \quad m = 0, 1, \dots, n.$$

In this talk we will look at some recent developments with respect these polynomials.