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EFFECTIVE COMPUTATION OF THE GELFAND-KIRILLOV
DIMENSION FOR MODULES OVER POINCARE-BIRKHOFF-WITT
ALGEBRAS WITH NON QUADRATIC RELATIONS

JOSE L. BUESO, J. GOMEZ TORRECILLAS, AND F. J. LOBILLO

ABSTRACT. We give an algorithm to compute the Gelfand-Kirillov dimension of
finitely generated modules over algebras like universal enveloping algebras of finite—
dimensional Lie algebras, Weyl algebras, quantized Weyl algebras, quantum affine
spaces, differential operators algebras, the possitive part of quantized universal en-
veloping algebras of semisimple Lie algebras and the quantized Uq (sta(k)) .

INTRODUCTION

We give an algorithm to compute the Gelfand-Kirillov dimension of a given finitely
generated left module over a k-algebra R, where k is a (commutative) field. Of
course, this cannot be done for any algebra R, so that we will restrict ourselves to
Poincaré-Birkhoff-Witt algebras (cf. [5, 6]). These are associative algebras generated
over k by finitely many elements zy,...,z, in such a way that the standard monomi-
als X =g .. 28" for a = (ay,...,a,) € N* form a basis of R as k-vector space.
Moreover, the size of the semi-commutators Z;%; —qi;T;T; are controlled by some good
ordering in N™ (see Definition 1.4 for the details). A classical example of this situa-
tion occurs when R is the universal enveloping algebra of a Lie k~algebra with basis
Z1,...,Zn . An algorithm to computing Gelfand-Kirillov dimension for cyclic modules
in this case was obtained in [7]. This effective method depends on the existence of
a standard filtration on R with a commutative polynomial ring as associated graded
algebra. In fact, the essential point there is that the commutators [zi,z;] are linear
polynomials in z,,...,z,. Therefore, this approach does not work for algebras with
relations of bigger degree. For PBW algebras with quadratic relations (i.e., when the
semi-commutators among the generators zi,...,z, are polynomials of total degree
at most 2), we included a first version of our algorithm in [5, 6], but it works only
for cyclic modules and does not apply to important examples of algebras like Sigurds-
son’s iterated differential operators algebras [19], the positive part of the quantized
enveloping algebra of a finite-dimensional semi-simple Lie algebra or the quantized
enveloping algebra of s[(3). The problem here is that the variables that appear in
the Poincaré-Birkhoff-Witt basis have non quadratic relations. We solve this in the
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Our algorithm works for modules of the form R/L, where R is a PBW algebra in the
sense of [6] with respect to an almost graded order (see Definition 2.1), and L is a left
ideal of R. The central idea is the effective assignment of a set of exponents Exp(L)
to L by using Grobner bases and then recognize the Gelfand-Kirillov dimension of
R/L as certain computable dimension of Exp(L) (Theorem 2.5).

1. PBW ALGEBRAS

1.1. We will assume that R is generated as k-algebra by finitely many elements

T1,...,%n. For a € N", consider the standard monomial X* =z ...z% . The alge-
bra R is a multivariate polynomial k -algebra in z,...,z, if the set B={X* | a €

N"} is a basis of R as k-vector space. This means that every element f of R has a
unique standard representation as
(1) f= Z CaX®

acNn

1.2. We begin with N™ and its additive monoid structure. Consider an admissible
order < in N ie., < is a total order satisfying the following conditions:

(1) 0=(0....,0) <« for every a € N,
(2) If a <, then a+v < [+ for every v € N*.

Dickson's Lemma (see, e.g., [2, Corollary 4.48]) gives that N™ is well ordered by <.

1.3. Consider R a multivariate polynomial k-algebra (seec 1.1). As every element
[ € R can be uniquely expressed by its standard representation, we define the Newton

diagram of f by )
N(f) = {a € N* | ¢, # 0}
and the ezponent of f by
exp(f) = max N (/)

To avoid irrelevant hypothesis in our statements, define exp(0) = —co, where —co ¢
N". We assume that —co < & and —co0 + @ = —00 for every a € N". The leading
coefficient and leading monomial of f are

le(f) = coxp(pyy and  Im(f) = le(f) XD,
Definition 1.4. The algebra R is called a Poincaré-Birkhoff- Witt (PBW algebra, for

short) if there is an admissible order < such that exp(fg) = exp(f)+exp(f) for every
f.9 € R. By [6] or [5], this is equivalent to the existence of nonzero scalars gij in k

such that

(2) l‘jl‘i = jSiliil'j + Z C,Y.)\/’Y

y<ei e
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(i)
where ¢; = (0,...,1,...,0).
type in [13].
Proposition 1.5. A PBW algebra is a fillered structure in the sense of [17]. More-
over, as PBW algebras are noetherian (sce [6, Corollary 2.9]) the procedures in [17]

finish in a finite number of steps.

These algebras are called polynomial rings of solvable

2. GELFAND-KIRILLOV DIMENSION.

Fix a commutative field k and assume that R is a k-algebra. While we introduce
some notation, we recall the notion of Gelfand-Kirillov dimension of finitely generated
k-algebras (details in [16, 14, 15]). If V is a finite-dimensional vector subspace of R
such that 1 € V and n is a positive integer, then V" denotes the vector subspace

of R generated by all n—fold products v; -+ - v, where v; € V. It is understood that
VO = k. It is clear that V™ C V™1l for all n. Now, assume that R is finitely

generated as k-algebra by V. The Gelfand-Kirillov dimension of R (GKdim(R)
for short) measures the rate of growth of the Hilbert Junction HFy,(n) = dimy, V",
In fact, GKdim(R) is the infimun of the real numbers r such that HF/(n) < n’
for n > 0. It is known that this value is independent of the choice of V. The GK
dimension of a finitely generated left R-module M is given by the growth of the
function HFyy = dimy(V™U), where U is any finite-dimensional vector subspace of
M which generates M as left R—module. This dimension can be expressed by the
following formula.

GKdim(M) = vy(HFyy(n))
where y(f) = limsuplog,(f(n)) for any function f from N to, N (see [16, 8.1.5,
8.1.6).
In this section we are going to develop an algorithm to compute the Gelfand—Kirillov
dimension of cyclic left R-modules in the case that R is a k-algebra. All admissible
orders does not allow the computation of GI dimension. We need some finiteness
condition. Let w € (R*)" be a n—vector of positive real components. For any a € N»
we put

<aaw> =aqwy -0+ QpWn.
Definition 2.1. An admissible order < on N" is called almost graded if there exists
w € (R*)" such that a < 8 implies (o, w) < (B,w). The vector w is called weight
vector.
Example 2.2. Let < be the lexicographical order over N and w € (R*)".
computations show that the order <, defined by

(aaw} < <,3,w) or
@S0l T {(a,w) = (f,w) anda < f3

is an almost graded admissible order. The same procedure can be applied to any

admissible order <.

Easy
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2.3. For any ideal £ C N™ and any weight vector w € (R*)", we define the w -
Hilbert function of E as

HF¥(s) = card{a € N*\ E | (a,w) < s}.
Lemma 2.4. Let & C N" be an ideal and let w,w’ € (RT)".
YHFE).
This number is known as the dimension of £, i.e., dim(E) = v(HF§) for some (and

then all) w € (R*)"*. Our algorithm to computing the Gelfand-Kirillov dimension is
based on the following theorem, whose proof is postponed to the end of the section.

Theorem 2.5. Let R be a PBW k -algebra with respect an almost graded order over
N™ with weight vector w. Let L C R be a left ideal. Then

GKdim (%) _ dim(Exp(L))

Then vy(HFY) =

Next, we will prove Theorem 2.5. We split the proof in several Lemmas. Fix V =
kz, + --- + kz, as generating subspace of R as k-algebra and let U be the vector

subspace of R/L spanned by 1+ L.
Lemma 2.6. With the previous assumptions,

card{a € N"\ Exp(L) | {a,w) < s} =dimg{f + L | {exp(f),w) < s}
Lemma 2.7. Let w = max{w,...,wn}. Then
VEU C {f + L | {exp(f),w) < wk}.
Lemma 2.8. There exists a € N such that
{f + L | ({exp(f),w) <k} CV*U

Proof of Theorem 2.5. Using the lemmas 2.7, 2.8 and [16, 8.1.7], we have
GKdim (%) =vy(HFvy) =v(F*)

where F¥(k) = dime{f + L | {exp(f),w) < k}. The statement follows from lemma
2.6 and 2.3 g

3. EXAMPLES

Theorem 2.5 can be obviously applied to cyclic left R-modules in the case R = U(g),
the universal enveloping algebra of a f.d. Lie algebra g, or for R = O,(k™), the
multi-parameter quantum coordinate algebra of the n-dimensional afline space over
k. More generally, our method covers Berger's g—enveloping algebras [3]. [n all these
cases we can take w = (1....,1) as weight vector.

A wide class of quantum groups are PBW algebras with respect to an almost graded
order. In fact, we have the following algorithmic method to find the weight vector w

for ‘homothetic’ iterated Ore extensions.
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Example 3.1. ([9, Example 3.3]) Let R = kz]|z2; 09,8 ... [Tn;on, n] be an iter-
ated Ore extension of k. Assume that o;(z;) = gi;z:, for every 1 < j < p, where the
qi; 's are nonzero scalars in k. The set 3 = {X% o € N"} is a k—basis of R. We will
construct a weight vector w = (wy,...,w,). Set w; =1 and define wi as the degree
in z; of the polynomial éy(z;). Put w, = max{1,w;2}. Suppose we have defined
Wy, wioy for 322 Fork=1,...,5—1, set wy; = max{oqw;+- -+ Wj_,; @ €
N(6i(zx))} and choose w; = max{1l,wx; —w;; 1 <,k <j—1}. Endow N™ with the
admissible order <, (see 2.2). By [9, Example 3.3, R is a PBW algebra with respect
to <, .

Some examples of these iterated Ore extensions are the algebras H(p, A) defined in
(1], which include the quantum coordinate algebras of M, (k); and the multiparameter
quantized Weyl algebra R = AZT(k) from [12]. The iterated differential operator
algebras of [19] are also covered, as well as the positive part of the quantized enveloping
algebra of a finite-dimensional Lie algebra as defined by Drinfeld [8] and Jimbo [11]

(see [18]).
Example 3.2. We want to consider now the quantized universal enveloping algebra
U,(st3(k)) . This k-algebra has as k-basis the monomials

n ¢

121f{lazf;sakflkzzegle??e%a
where n;,m; € N and ¢ € Z (see [21, Theorem 1.1]). The finiteness conditions
required to compute GK dimension do not allow the use of negative exponents. So
we are going to define a new algebra generated by fi2, f13, fas, k1, k2, 11,12, €12, €13, €23

and relations obtained from (21, Section 3] using I; as k;7'. This algebra is called
Ve(sl3(k)). Using Bergman’s Diamond Lemma [4], and with enough amount of paper,

1t is easy to see that the monomials )
2 15 o kT kg ey ey ey
form a k-basis for V,(sl3(k)) with n;,a;b;,m; € N. Moreover, as proved in 9,
Example 3.4], the vector w = (7,10,11,1,1,1,1,7,10,11) is a weight vector which
makes V(sl3(k)) a PBW algebra with respect to the almost graded order <, (see
Example 2.2). As the elements k;l; are central, we have
Vo (sla(k
Uy sty i) = YalZ0(8)
where [ is the two-sided ideal generated (as left ideal!) by kil; — 1 and kply — 1.
This isomorphism allows us to compute GK dimension of finitely generated Uy (sls(k)) -
modules through V,(sl3(k)). In particular,

GKdim(U,(sl3(k))) = 8.
The same ideas can be exported to U, (s, (k)).

Remark 8.3. TFor examples like universal enveloping algebras of finite dimensional solv-
able Lie algebras [20] or coordinate algebras of quantum affine spaces and quantized
Weyl algebras [10], the height of any prime ideal P can be computed as GKdim(R) —
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GIKdim(?/P), so the computation of the height becomes effective. We can also com-
pute the grade of a finitely generated module M as j(M) = GKdim(R) — GKdim(M)
for Auslander-Regular and Cohen-Macaulay PBW algebras. In particular, we can
decide if a given finitely generated module over a Weyl algebra is holonomic.
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