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Abstract

Let R be a ring with a set of local units, and a homomorphism of groups © : G —
Pic(R) to the Picard group of R. We study under which conditions © is determined
by a factor map, and, henceforth, it defines a generalized crossed product with a same
set of local units. Given a ring extension R C S with the same set of local units and
assuming that © is induced by a homomorphism of groups G — Invy(S) to the group of
all invertible R-sub-bimodules of S, then we construct an analogue of the Chase-Harrison-
Rosenberg seven terms exact sequence of groups attached to the triple (R C S, ©), which
involves the first, the second and the third cohomology groups of G with coefficients in
the group of all R-bilinear automorphisms of R. Our approach generalizes the works by
Kanzaki and Miyashita in the unital case.

Introduction

For a Galois extension R/k of commutative rings with identity and finite Galois group G,
Chase, Harrison and Rosenberg, gave in [5, Corollary 5.5] (see also [6]) the following seven
terms exact sequence of groups

1 — HYG,U(R)) — Pici(k) — Picgr(R)® — H*(G,U(R)) — B(R/k)
— HY(G,Picg(R)) — H3(G,U(R)),

where for a ring A with identity, Pica(4) = {[P] € Pic(A)| ap = pa,Va € A,p € P} is a
subgroup of the Picard group Pic(A), and U(A) the group of units. The group B(R/k) is the
Brauer group of Azumaya k-algebras split by R, and the other terms are the usual cohomology
groups of G with coefficients in abelian groups. As one can realize, the case of finite Galois
extension of fields reduces to fundamental theorems in Galois cohomology of fields extensions,
namely, the Hilbert’s 90 Theorem, and the isomorphism of the Brauer group of a field with
the second cohomology group.
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The construction of this sequence of groups, as was given in [5, 6], is ultimately based
on the consideration of a certain spectral sequence already introduced by Grothendieck, and
the generalized Amitsur cohomology. The same sequence was also constructed after that by
Kanzaki [13, Theorem, p.187], using only elementary methods that employ the novel notion of
generalized crossed products. This notion has been the key success which allowed Miyashita
to extend in [14, Theorem 2.12] the above framework to the context of a noncommutative
unital ring extension R C S with a homomorphism of groups to the group of all invertible
sub-R-bimodules of S. In this setting the seven terms exact sequence takes of course a slightly
different form, although the first, the fourth and the last terms remain the cohomology groups
of the acting group with coefficients in the group of units of the base ring. The commutative
Galois case is then recovered by first considering a tower k C R C S, where k C R is a finite
Galois extension and S is a fixed crossed product constructed from the Galois group; secondly
by considering the homomorphism of groups which sends any element in the Galois group to
it corresponding homogeneous component of S (components which belong to the group of all
invertible sub-R-bimodules of 5).

In this paper we construct an analogue of the above seven terms exact sequence in the
context of rings with local units (see the definition below). The most common class of examples
are the rings with enough orthogonal idempotents or Gabriel’s rings which are defined from
small additive categories. It is noteworthy that up to our knowledge there is no satisfactory
notion in the literature of morphism of rings with local units that could be, for instance,
extracted from a given additive functor between additive small categories. Here we restrict
ourselves to the naive case of extensions of the form R C S which have the same set of local
units. This at least includes the situation where two small additive categories have the same
set of objects and differ only in the size of the sets of morphisms, as it frequently happens in
the theory of localization in abelian categories. Our methods are inspired from Miyashita’s
work [14] and use the results of our earlier work [9]. The present paper is in fact a continuation
of [9]. It is worth noticing that, although the steps for constructing the seven terms sequence
in our context are slightly parallel to [14], this construction is not an easy task since it has its
own challenges and difficulties.

The paper is organized as follows. In Section 1 we give some preliminary results on
similar and invertible unital bimodules. Most of results on similar unital bimodules are in
fact the non unital version of [11, 12|, except perhaps the construction of the twisting natural
transformations and its weak associativity (Proposition 1.3 and Lemma 1.4). The generalized
crossed product is introduced in Section 2, where we also give useful constructions on the
normalized 2 and 3-cocycles with coefficient in the unit group of the base ring. Section 3 is
devoted to the construction of an abelian group whose elements consist of isomorphic classes
of generalized crossed products. We show that it contains a subgroup which is isomorphic
to the 2-cohomology group (Proposition 3.2). Our main results is contained in Section 4,
which contains a number of exact sequences of groups that culminate in the seven terms exact
sequence that generalizes Chase-Harrison-Rosenberg’s one (Theorem 4.12).

Notations and basic notions:

In this paper ring means an associative and not necessarily unital ring. We denote by Z(R)
(resp. Z(@)) the center of a ring R (resp. of a group G), and if R is unital we will denote by
U(R) the unit group of R, that is, the set of all invertible elements of R.

Let R be aring and E C R a set of idempotent elements; R is said to be a ring with set of
local units E, provided that for every finite subset {ry,---,r,} C R, there exists e € E such



that
er; = rie = 15, forevery i=1,--- n,

In this way, given a finite set {ry,---,r,} of elements in R, we denote
Unit{ry, - ,rp} = {e cE|er;=rie=r; forevery i=1,2,--- ,n}.

Observe that our definition differs from that in |1, Definition 1.1], since we do not assume
that the idempotents of E commute. In fact, our rings generalize those of 1] since, when the
idempotents are commuting, it is enough to require that for each element r € R there exists
e € E such that er = re = r (see [1, Lemma 1.2]). The Rees matrix rings considered in 2],
are for instance, rings with a set of local units with noncommuting idempotents.

Let R be a ring with a set of local units E. A right R-module X is said to be unital
provided one of the following equivalent conditions holds

(i) X ®r R = X via the right R-action on X,
(i) XR:={>pinie zirilmi € R, 2 € X} = X,
(iii) for every element z € X, there exists an element e € E such that ze = x.

Left unital R-modules are analogously defined. Obviously any right R-module X contains
X R as the largest right unital R-submodule.

Let R and S be rings with a fixed set of local units, respectively, E and E’. In the sequel,
an extension of rings ¢ : (R, E) — (S, E") with the same set of local units, stand for an additive
and multiplicative map ¢ which satisfies ¢(E) = E’. Note that since R and S have the same
set of local units, any right (resp. left) unital S-module can be considered as right (resp. left)
unital R-module by restricting scalars. Furthermore, for any right S-module X, we have the
equality XR = XS.

1 Similar and invertible unital bimodules.

Let R be a ring with a set of local units E. In the first part of this section we give some prelim-
inary results on unital R-bimodules, which we will use frequently in the sequel. Most of them
were already formulated by K. Hirata in [11] and [12] when R is unital. For the convenience
of the reader we will give in our case complete proofs. The second part provides a relation
between the automorphism group of an invertible unital R—bimodule and the automorphisms
of the base ring R. This result will be also used in the forthcoming sections.

A unital R-bimodule is an R-bimodule which is left and right unital. In the sequel, the
expression R-bilinear map means homomorphism of R-bimodules. Note that if M is a unital
R-bimodule, then for every element m € M, there exists a two sided unit e for m. That is,
there exists e € E such that m = me = em, see |7, p. 733]. If several R-bimodules are
handled, say M, N, P with a finite number of elements {m;,n;,p;}i, m; € M,n; € N,p; € P,
then we denote by Unit{m;, n;,p;} the set of common two sided units of the m;’s, n;’s and
the p;’s. This means, that e € Unit{m;, n;,p;} C E if and only if

em; = m; = Mmye, en; = n; = Nn;e, ep; = P; = Pi€, for every 1= 1,-" ,n.



Given a unital R-bimodule M, we denote its invariant sub-bimodule, that is, the set of all
R-bilinear maps from R to M, by

M*E .= Homp_g(R, M).

It is canonically a module over the commutative ring of all R-bimodule endomorphisms Z :=
Endr_g(R). The Z-action is given as follows: for every z € Z and f € M ¥, we have

z.f : RRrR — rRMR, (7" — f(z(r)) = z(e)f(r) = f(r)z(e), where e € Um't{r}) .

Lemma 1.1. Let R be a ring with local units and M a unital R-bimodule such that ME- R ,
that is, M is isomorphic as an R-bimodule to a direct summand of direct sum of n copies of

R. Then
(i) M® is a finitely generated and projective Z-module;
(ii) there is an isomorphism of R-bimodules
M = Rz ME,
where the R-bimodule structure of the right hand term is induced by that of R. That is,
r(s@z f)it = (rst) @z f, (s®zfec Rz M~E rteR).

Proof. Let us consider the following canonical R-bimodule homomorphisms:

2

@i M~ R T R 4 : RC RW T M, i=1,---,n,

where m; and ¢; are the canonical projections and injections.

(i) It is clear that {(¢;, ¥¥)}; € MT x Homz(M%, Z) is a finite dual Z-basis for M
where each v} is defined by the right composition with ;, that is, ¥/ (f) = ¢; o f, for every
feME

(77) We know that there is a well defined R-bilinear map

Roz ME i M

r®z fl—>f(7‘)

We can easily show that
-1

M il Roz ME

m—————— > pi(m) @z i,

is actually the inverse map of 7. O

We will follow Miyashita’s notation concerning this class of R-bimodules. That is, if we
have an R-bimodule M which is a direct summand as a bimodule of finitely many copies of
another R-bimodule N, we shall denote this situation by M|N. It is clear that this relation
is reflexive and transitive. Furthermore, it is compatible with the tensor product over R, in
the sense that we have M @ Q|N ®r @ and Q @ M|Q ®r N, for every unital R-bimodule
@, whenever M|N. In this way, we set

M ~ N, if and only if, M|N and N|M, (1)

and call M is similar to N. This in fact defines an equivalence relation which is, in the above
sense, compatible with the tensor product over R.



Lemma 1.2. Let R be a ring with local units and M, N are unital R-bimodules such that
MR and N|R as bimodules. Then

(i) for every finitely generated and projective Z-module P, we have an isomorphism of Z-
modules
(Roz P)R = p;

(ii) there is a natural (on both components) Z-linear isomorphism

(M @rN)® = MEoz NE

Proof. (i) Let {(pi, p})}1<i<n be a dual Z-basis for P. Given an element f € (R ®z P)f, we
define a finite family of elements in Z:

zfi = (R®zpj)of R R®zP —+R®zZ=R.
Now, an easy computation shows that the following maps are mutually inverse

P (Roz P)R (Roz P)R P

pH—— r»—>r®gp], fi E:’lzf,ipia

which gives the stated isomorphism.
(17) By Lemma 1.1(ii) we know that

M~ Rz MPand N 2 Rez NE.

Therefore, we have
M@rN = R®s (MR Rz NR) .

Since by Lemma 1.1(i), M @z N is a finitely generated and projective Z-module, we obtain
the desired isomorphism by applying item (i) just proved above. O

Keep the notations of the first paragraph in the proof of Lemma 1.1.

Proposition 1.3. Let R be a ring with local units and M, N are unital R-bimodules such
that M|R and N|R as bimodules. Then there is a natural R-bilinear isomorphism M @p N =
N ®r M given explicitly by

R

TM’N:M®RN — N ®r M
TQRRY! > wi(z)y @R Yile),

where e € Unit{x,y}.

Proof. By Lemmata 1.1 and 1.2, we have the following chain of R-bilinear isomorphisms

M®RNi>R®ZMR®ZNRi>R®ZNR®ZMRi>N®R<R®ZMR)i>N®RM.

Writing down explicitly the composition of these isomorphisms, we obtain the stated one. [



The natural transformation T_ _ is associative in the following sense.

Lemma 1.4. Let R be ring with a local units. Consider X,Y, P,Q,U,V unital R-bimodules
which satisfy Q|R, (Y @r V)|R, (X @r U)|R and (P ®r Y)|R, all as bimodules. Then the
following diagram is commutative:

XRQURPRT
X@rURrRPRIRY QrV ®r Q BN L X QrUQRPORQORY QpV

Txeu, PRY®VRQ Txeou, PoQey®V

PRRYQQRX QU QrV ®r Q PRRQIRY Qp X QrU ®pr V.

PeTygxeueV,Q

Proof. Straightforward. O

Recall form [9, p. 227] that a unital R-bimodule X is said to be invertible if there exists
another unital R-bimodule Y with two R-bilinear isomorphisms
X KRR Y

R Y ®r X.

4
~

IR —

As was shown in [9], one can choose the isomorphisms [, v such that
X®pt = [IQrX, YQ®grl = t®grY.

In others words, such that (I,t=!) is a Morita context from R to R. In this way, Y is
isomorphic as an R-bimodule to the right unital part X*R of the right dual R-module
X* = Hom_g(X, R) of X. This isomorphism is explicitly given by

Y = X*R, (yb—> [:rl—>t(y®x)]>.

It is worth mentioning that X is not necessarily finitely generated as right unital R-module;
but a direct limit of finitely generated and projective right unital R-modules.
Given e € E consider its decomposition with respect to the invertible unital R-bimodule

X, that is,
e =Y meye, (ie. e =Y l(ze@rye))
(e) (e)

It is clear that the x.’s and the y.’s can be chosen such that
€Te = Te, and Ye = yee,
which means that e is a right unit for the y.’s and left unit for the z.’s.

Remark 1.5. It is noteworthy that a two sided unit of the set of elements {z.,y.} do not
need in general to coincide with e. However, any two sided unit e; € Unit{z.,y.} is also a
unit for e. In other words, the elements e and Z( ¢) Te €Ye belong to the same unital ring eRe,
but they are not necessarily equal. This makes a difference in technical difficulties compared
with the case of unital rings.

The following lemma gives explicitly the relation between the automorphisms group of uni-
tal invertible R-bimodule and the unit group of the commutative unital ring Z = Endg_g(R).



Lemma 1.6. Let R be a ring with local units and X an tnvertible unital R-bimodule. Then
there is an isomorphism of groups, from the group of R-bilinear automorphisms of X, Autp_r(X)
to the unit group of Z, defined by

AutR_R(X) AutR_R(R) = U(Z) (2)

ot g

where for each r € R with unit e € Unit{r}, we have
5(r) = > olwe)yer = > ro(we)ye.
(e) (e)
In particular, for every element t € X and o € Autg_r(X), we have
o(t) = o(e)t, whenever e € Unit{t}.
Proof. Follows directly from [4, Lemma 2.1]. O

The Picard group of R is denoted by Pic(R). It consists of all isomorphisms classes of
invertible unital R-bimodules, with multiplication induced by the tensor product. As in the
unital case [10, Theorem 2.(i)|, there is a canonical homomorphism of groups a : Pic(R) —
Aut(U(Z2)). This homomorphism is explicitly given as follows. Given [X] € Pic(R) and
u € U(Z), we consider the R-bilinear automorphism of X defined by

oy X — X, (t'—>tu(e), te X, andeEUm't{t}).

We clearly have oy, = 0400y, and so 0., = 0,00, for u,v € U(Z). It follows from Lemma
1.6 that
ou(rt) = oy (r)t, for every t € X,r € R. (3)

This equation implies that the element o, € U(Z) is independent from the choice of the
representative X of the class [X] € Pic(R). We have thus a well defined map

a:Pic(R) —» AwtU(2)),  [X]— apy(u) = oy

which is a homomorphism of groups by (3). This is exactly the homomorphism induced by
the map « of [4, p. 135]. We have the formula:

aix|(w)(r) = au(r) = Y rzeule)ye, (i) ri(ze ®p uler)ye)), (4)
(e) (e)

where e € Unit{r}, e; € Unit{x.,ye}, and as before e = Z(e) Tele.

2 Generalized crossed products with local units.

Let G be any group with neutral element 1. Consider a ring R with a set of local units E,
and a group homomorphism © : G — Pic(R). This is equivalent to give sets of invertible
R-bimodules and isomorphisms of bimodules

{0,:2€G), {F, 10,00, — Oy, z,y€q},

7



where O(x) = [O,] for every z € G. Consider the product on the direct sum P, g Ox
determined by the maps ]-"gy. There is no reason to expect that this product, after the choice
of the representatives ©,, will be associative. In fact, it becomes an associative multiplication
if and only if the diagram

FS,®6.
0, ®r O, @R O, Oy OR O (5)
0.0FS, Fonz
Fo
@x ®R @yz nyz

commutes for every x,y,z € G. Even in this case, it is not clear wether this multiplication has
a set of local units. On the other hand, we know that there is an isomorphism of R-bimodules
t: R — ©1, so a natural candidate for such a set should be E' = ((E). In fact, this is a set of
local units if and only if, for every x € G, the following diagrams are commutative

~

('-)x ®RR — 633 3 R®R @:1:

:@:p

@x ®R e1 91 ®R eaz

The previous discussion suggest then the following definition.

Definition 2.1. A factor map for the morphism © : G — Pic(R) consists of sets of invertible
R-bimodules and isomorphisms of bimodules

{0,:2€G), {F2,:0,0p0, — 04y, 2,y € G},

where O(z) = [©,] for every z € G, and one isomorphism of R-bimodules ¢ : R — ©; such
that the diagrams (5) and (6) are commutative.

Now we come back to our initial homomorphism of groups © : G — Pic(R) and its
associated family of isomorphisms {fgy}%y,e G- Our next aim is to find conditions under
which we can extract from these data a factor map for R and G. First of all we should assume
that the diagrams of (6) are commutative. We can define using the homomorphism of groups
o : Pic(R) — Aut(U(2)) given by equation (4), a left G-action on the group of units U(Z),
where Z = Endr_gr(R). Written down explicitly the composition @0 © : G — Pic(R) —
Aut(U(Z2)) the outcome action is described as follows. Given a unit e € E, its decomposition
with respect to the invertible R-bimodule ©; is written as e = 37 zcZe € H©ey) = R.
Using formula (4), the left G-action on U(Z) is then defined by

GxU(2) UZ) (7)

(x,u) Tu = |1 3 raeu(en)Te|
where e € Unit{r} and e; € Unit{z.,T.}. Recall that in this case e; € Unit{e}, and so
e1 € Unit{r}.

The abelian group of all n-cocycles with respect to this action is denoted by Z§(G,U(Z2));
while by Bg(G,U(Z)) we denote the n-coboundary subgroup. The n-cohomology group, is
then denoted by HS(G,U(Z)).



Remark 2.2. To each homomorphism of groups © : G — Pic(R), it corresponds as before a
G-group structure on U (Z), and so it leads to the cohomology groups H¢(G,U(Z)). It seems
that this correspondence has not been systematically studied, even in the case of unital rings.
However, as we will see, it is in fact the starting key point of any theory of generalized crossed
products. Following the commutative and unital case, see Remark 2.13 below, here we will
also extract our results from one fixed G-action, this is to say fixed cohomology groups. For
instance, one could start with the cohomology which corresponds to the trivial homomorphism
of groups, that is, | : G — Pic(R) sending = — [R], of course here the cohomology is not at
all trivial.

Here is a non trivial example.

Example 2.3. (|4]) Let R be a ring with E as a set of local units. Assume that there is
a homomorphism of groups ® : G — Aut(R) to the group of ring automorphisms of R (we
assume that ®(z)(E) = E, for every x € G). Composing with the canonical homomorphism
Aut(R) — Pic(R) which sends = +— [R*] (i.e. the R-bimodule whose underlying left R-
module is pR and its right module structure is r.s = rz(s)), we obtain a homomorphism
© : G — Pic(R). The corresponding family of maps {fgy}m,yeg is given by

fgy :R*@r RY — R™,(r ®p s — rx(s)).

Here of course the associativity and unitary properties of the multiplication of R, both imply
that {]:x@’y}x’yeg is actually a factor map for R and G. A routine computation shows now that
the cohomology HE(G,U(Z)) which corresponds to this © is exactly the one considered in [4,
p. 135], since the G-action (7) coincides for this case with that given in [4].

Lemma 2.4. Keep the above G-action on U(Z). Fiz an element x € G.
(1) For every t € ©, and uw € U(Z), we have
tu(e) = “ule)t, where e € Unit{t}. (8)

(2) Given similar bimodules M ~ ©,; for every m € M and u € U(Z), we have

mu(e) = “u(e)m, with e € Unit{m}. 9)

Proof. (1) This is equation (3).
(2) The identity (8) clearly lifts to finite direct sums @é"), and, hence, for subbimodules M of
ol 0

Proposition 2.5. Let R be a ring with a set of local units E and G any group. Assume that
there is a homomorphism of groups © : G — Pic(R) whose family of maps {ng}x@ cg satisfy
the commutativity of diagrams (6). Denote by 0y @ Oy — Oy, the isomorphisms that
satisfy

G0 Foye 0 (0n 0r FY.) = Foy.o (72, 0r0.). (10)

Then .y defines a normalized element of Zg(G, U(Z)), where ay,, » is the image of cy.
under the isomorphism of groups stated in Lemma 1.6. Furthermore, z’fo::, is cohomolog-

ically trivial, that is, there is a normalized map o_ _ : G x G — U(Z2) such that
aﬂ%y,z = Uz,yz xa’y,z 0—;; 0—:1,_‘y1727



for every x,y,z € G, then there is a factor map {?S,y}l’-y eg for ©, defined by

—=0
fx7y

: @z ®R @y @zy

Uy QR Uy | Ux,y(e)fgy(uw ®R Uy),

where e € Unit{u,, u,}.

Proof. Consider z,y,z,t € G, and u, € O,, uy € O, u, € O, and u; € O, denote by u,u, the
image of u, ® g u, under fgy. There are several isomorphisms from 0, ®r 0, ®r O, ®r O; to
Ozy-¢ which are defined by the family ]-"9,. So it will be convenient to adopt some notations.
In order to do this, we rewrite the stated equation (10) satisfied by the a— _ _’s, as follows

Oy (ux(uyu2)> = ((uxuy)uz).

Using Lemma 1.6, this is equivalent to
Bay,=(€) (ux(uyuz)) = ((uxuy)uz) ,

where e € Unit{ug,uy,u.} and f_ _ _ := oz/,,\:, is the image of o, . under the homomor-
phism of groups defined in Lemma 1.6. In this way, if we fix a unit e € Unit{ug, uy, u,,u:},
then we have

((uxuy)uz) W = Bay:(e) (uz(uyuz)) i

= B (€)Bayz(€) "Byn(e) (1 (uy ()

= Boa(€)Brna(€) “Bea(€)B () (o) (ww)

= Buu(€)Brna(€) " Byt(€)B7 (€8t (0) ((ataty us ) .
Given h € E, using the above notations, we can consider the following units

h = thfh, hy € Um't{xh,fh};
(h)

hi =Y UnTn, b2 € Unit{yn,, Uy, };
(h1)

ho = ZthZhQ, hs € Unit{zhz,flw};
(h2)

hs = Zthsghw hy € Unit{ths,f}m}.
(hs)

10



It is clear that hy is a unit for all the handled elements, in particular hy € Unit{zn, Yn,, 2hy, ths }-
According to the equality showed previously, for every set {xn, Yn,, 2hy, ths }, We have

(nna)2ns ) the = Bruye(1a) Boyet (1) "Byt (ha) B o () Bt o () (g2 ) the

Using the map F, f)t,l, and summing up, we get
Z ((xhyhl)zfm) thsihs = /B'rvy7z(h4)6$7yzvt(h4> xﬁy,zﬂf(h‘l) z,y, zt(h4)ﬂxy z t(h4) ((‘Thyh1)zh2> tthhgv
(h3)

which means that
(fl;hyfu)zhz = ﬁ%y7z(h4)ﬁx,yz,t(h4) mBy,z,t(h4)ﬁ z,y, zt(h‘4)ﬁxy z t(h4)($hyh1)zh27 equahty m ®zyz
Repeating thrice the same process, we end up with

h = 6%972’(})’4)6%3/2,75(}”4)xlgy,zﬂf(h‘l) ;vyzt(h’4) myzt(h4)h
= er,y,Z(h)ﬁx,yZ,t(h) wﬁy,Z,t(h) x,;zlj,zt(h) xyl,z,t(h)v

since hqh = hhy = h and the involved maps are R-bilinear. Therefore, for any unit h € E, we
have

ﬁxy,z,t o ﬁx,y,zt(h) = z,By,z,t o Bz,yz,t o /Bx,y,z(h)-

Since the f_ _ _’s are R-bilinear, this equality implies the 3-cocycle condition, that is,
Bwy,z,t o Bm,y,zt = I/By,z,t © /Bx,yz,t o 5:5,1;,27 fOI' every x, Yy, z, te g
A routine computation, using equation (8), shows the last statement. O

Corollary 2.6. Let R be a ring with local units and G any group, and fix a factor map
{Os}zeg for R and G with its associated cohomology groups. Assume that there is a family of
invertible unital R-bimodules {Q}2 e g such that Qg ~ ©, (they are similar), for every x € G,
with a family of R-bilinear isomorphisms

]:a;,y 1, ®p Qy — sz.

For x,y,z € G, we denote by oy > : Quyz — Quy. the resulting isomorphisms which satisfy
Qg yz O Jxyz © (Q:c ®r F, ,z) = fmy,z o (Jr:c,y ®R Qz) . (11)

Then Quy . defines an element of Z3(G, U(Z)), where auy. . is the image of ay., , under the
isomorphism of groups stated in Lemma 1.6.

Proof. This is a direct consequence of Proposition 2.5 and Lemma 2.4(2). O

We need to clarify the situation when two different classes of representatives are chosen.

11



Proposition 2.7. Let R be a ring with a set of local units E and G any group. Consider
two factor maps {F, y}x’y eg and {F, y}:):yeg such that, for every x € G, there exists an R-

bilinear isomorphism ay : 'y 3 ©,. Denote by 1, ,, where x,y € G, the following R-bilinear
isomorphism

FO -1 ~ Fr o~
. z,y = x,y =
Txy - @xy @ ®R @ Fac ®R Fy Fa}y @xy)
That 1is,
© T
T,y O ]-“x’y o(az ®ray) = agyo 'Fx,y‘

Then Toy defines a normalized element of Z&(G, U(Z)), where T, is the image of 7, under
the isomorphism of groups stated in Lemma 1.6.

Proof. Fix a set of elements x,y, 2z € G. Assume that we have

Ty (M) Toyz(h) = Tuy(h)Tay2(h), for every unit h € E. (12)
So taking any element r € R with unit f € Unit{r}, we obtain

Teyz© Tyz(r) = Teyz o0 7yz(f7)
= ITy,z(f)'ﬁ;;z(r)
= Ty (f)Tey=(f)r

= ?w\,:/y(f)Txy,z(f)r

=  Tayz (%(f)T>

= Tays O Tay(r),

which shows that 7—_ is a 2-cocycle. In fact 7—_ is by definition a normalized 2-cocycle.
Equation (12) is fulfilled by following analogue steps as in the proof of Proposition 2.5. O

Proposition 2.8. The hypothesis are that of Corollary 2.6. Assume further that there are
two families of invertible unital R-bimodules {Qz}recg and {T'z}zecg as in Corollary 2.6 (i.e.
Iy ~ 0, ~Q,), together with families of R-bilinear isomorphisms

fgy 1 Qp @r Qy — Qgy, }"};y Iy @r Ty — Ty

Assume also that there are R-bilinear isomorphisms a; : Qp — 'y, © € G. Consider the
associated 3-cocycles ﬁg_’_, ﬁf’_y_ € Z¢(G, U(Z)) given by Proposition 2.5. Then,

—1
B2 o (BN ) e BA(G UZ)
That is, they are cohomologous, or [ﬁg_’_] = [BL_ _]in HE(G, U(Z)).

Proof. Let us denote by o and of _ _ the R-bilinear isomorphisms satisfying equation

(11), respectively, for {2, }z cgand {I', }x eg For any pair z,y € G, we consider the R-bilinear
isomorphism by, : Q) — €y defined by the following equation

gy 0 byy 0 ]—"gy = ]-'gl;y o (ax ®R ay> . (13)

12



We denote by 7.4, ¥,y € G, the image of b, under the homomorphism of groups defined in
Lemma 1.6.

Fix z,y,z € G, and consider (tg,ty,t;) € Q; x Q, x Q; and (ug, uy,u;) € Ty x Ty xT', with
a common unit e € Unit{ty,ty,t,, uz, uy, u;}. Using the notation of the proof of Proposition
2.5, we can write

Bﬂ?,y,z(e) tu(tyt:) = (tmty)t2~ (14)
e (@) uz(uyuz) = (uguy)u.. (15)
Yay(€) azy(taty) = az(tz)ay(ty). (16)

A routine computation as in the proof of Proposition 2.5 using equation (14), (15) and (16),
show that, for every unit h € E, we have
—1

< Xy,z(h))_l :I;,y,z(h) = ('Yar,yZ(h)>_1 (I"Yy,Z(h)> Ya,y (M) Vay,2(h)-

This implies that

T Q -1 T -1 -t
z,y,z © (B@y,Z) = Tay,z O Vay © ( 'Yy,2> © (’Yr,yZ> , inU(Z),
which finishes the proof. O

Now we are able to give the right definition of generalized crossed product. We hope it
will result cleaner than the one considered in [13, 14] for rings with identity. In the sequel, R
denotes a ring with a set of local units E.

Definition 2.9. Given a factor map as in Definition 2.1
(FO,: 0, @R Oy —+ Oy, z,y € G,

with an isomorphism of R-bimodules ¢ : R — ©1, we define its associated generalized crossed
product A(O) = @,cg O, with multiplication

0.0, = fgy(ex ® 0y), for 6, € ©,,0, € ©,.

It follows that ©; is a subring of A(©) and the map ¢ : R — O is a ring isomorphism.
Therefore, «(E) is a set of local units for ©; that serves as well as a set of local units for A(©).
Normally, we will identify R with ©1, and, thus, E will be a set of local units for the generalised
crossed product A(©). Obviously, A(O) is a G-graded ring such that ©,0, = ©,, for every
x,y € G (thus, it could be referred to as a strongly graded ring after [15]). For instance, if we
take © as in Example 2.3, then A(O) is the skew group ring R * G, see [4].

Remark 2.10. A factor map as in Definition 2.1 determines a generalized crossed product I' =
@D.cg '+ with ring isomorphism ¢ : R — I'; and multiplication given by v, = fgy('ym ®RYy)
for v, € I'z,y € I'y. In other words, generalized crossed products and factor maps are just
two ways to define the same mathematical object. A generalized crossed product I' gives

clearly a group homomorphism

I':G——Pic(R), (z — [[z]).
Whether a general group homomorphism G — Pic(R) gives some generalized crossed product
is not so clear. However, as we have seen in Proposition 2.5, this is possible, if the underlying

maps satisfy the commutativity of diagrams (6) and the associated 3-cocycle is trivial or at
least cohomologically trivial.
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Definition 2.11. A morphism of generalized crossed products (A(©), v), (A(T'),¢) is a graded
ring homomorphism f : A(©) — A(T") such that f or = . Equivalently, it consists of a set of
homomorphisms of R—bimodules

{fe:0, 5T, 2€G}
such that all the diagrams

FE

O, R @y ld @xy
fz®fyi lfﬂcy
'y ®@rly P Lyy

commute, and fj ov =&

Let R C S be an extension of rings with the same set of local units E. We denote as in
[9] by Invg(S) the group of all invertible unital R-sub-bimodules of S. An R-sub-bimodule
X C S belongs to the group Invy(S) if and only if there exists an R-sub-bimodule Y C §
such that
XY =R =YX,

where the first and last terms are obviously defined by the multiplication of S. Clearly, there
is a homomorphism of groups p : Invg(S) — Pic(R).

Remark 2.12. A generalized crossed product I' of R with G gives in particular the ring
extension ¢ : (R, E) — (I, E') with local untis. In this way, I'; is a unital R-subbimodule of
I' for every = € G, and the isomorphism ¢ : R — I'y becomes R-bilinear. We will identify
I'; with R and E with E’. Let us denote by F' : T’ ®z I' — T' the multiplication map of the
ring I'. It follows from [9, Lemma 1.1] that its restriction to I'y ®g I'y gives an R-bilinear
isomorphism

Fry: Do @ Ty —=T,Iy =Ty,

for every z,y € G, since, obviously, I', € Invy(T") for every 2z € G. Clearly, our generalized
crossed product determines a factor map in the sense of Definition 2.1. On the other hand,
the associated homomorphisms of groups I' : G — Pic(R) actually factors throughout the
morphism p. That is, we have a commutative diagram of groups

G Pic(R) (17)

N
N
TN I
[

Invy (D).

As we have seen in Remark 2.12; one can start with a fixed ring extension R C S with the
same set of local units E, and then work with the T'’s defined this time by T : G — Invg(9)
instead of the I'’s. In this case the situation becomes much more manageable, in the sense
that each morphism I induces automatically a factor map and vice versa.

14



Remark 2.13. As was shown in [13, Remarks 1., 2. and 3.|, the above notion generalizes
the classical notion of crossed product in the commutative Galois setting. Specifically, given a
commutative Galois extension k C R with a finite Galois group G, and consider the canonical
homomorphism of groups @y : G — Picg(R), where Picx(R) = {[P] € Pic(R)| kp = pk,Vk €
k,p € P}, which sends # — [R”] to the class of the R-bimodules R* whose underlying left
R-module is rR and its right R-module structure was twisted by the automorphism x, see
Example 2.3. In this case, the over ring is chosen to be S = @,cg®Po(x) defined as the usual
crossed product attached to ®g, which is not necessary trivial, that is, defined using any 2-
cocycle. Thus, in the Galois theory of commutative rings, the homomorphism of groups which
leads to the study of intermediate crossed products rings, is the obvious homomorphism of
groups © which satisfies ®9 = p o ©, where y is as in diagram (17).

3 An abelian group of generalized crossed products.

From now on, we fix a ring extension R C S with the same set of local units E. Let G be any
group and assume given a morphism of groups

0:G — Invg(S), (:1: — @a:) )

where we have used the notation of Remark 2.12. The multiplication of S induces then a
factor map
{fgy 10, ROy — Oy, iz, y € G}

Clearly R = Oj, whence E is a set of local units for A(©). We introduce in this section
an abelian group C(O/R) whose elements are the isomorphism classes of generalized crossed
products whose homogeneous components are similar as R-bimodules to that of A(©), see
Section 2 for definition. Our definition is inspired from that of Miyashita [14, §2.|, however
the proofs presented here are slightly different. This group will be crucial for the construction
of the seven terms exact sequence of groups in the next section.

Let us consider thus the set C(0©/R) of isomorphism classes of generalized crossed products
[A(T")] such that, for each z € G, we have I'; ~ O, that is they are similar as R-bimodules,
see Section 1.

Proposition 3.1. Consider the set of isomorphisms classes of generalized crossed products
C(O/R) defined above. Then C(©/R) has the structure of an abelian group. Moreover the
subset Co(O/R) consisting of classes [A(A)] such that for every x € G, A, = O, as R-
bimodules, is a sub-group of C(©/R).

Proof. Given two classes [A(Q)], [A(T")] € €(O/R), their multiplication is defined by

AONAM] = [& 2 Ok Oyt ©r Ta).

The factor maps of its representative generalized crossed product are given by the following
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composition

O ®rO,-1 @1, R Qy QR @y—l QR Fy
|
|

‘\ Qz®Tez,1®Fw,Qy®Rey,l®Fy

\\ \

\ Q, ®RQy KRR @yfl KRR @xfl ®rTl: ®Rry

\ Q (S T
\ fm,y®fy—1’x—l®f1,y
\
AN
AN
FOON
S el Qay @R O (1)1 QR L'y,
=~ - — >

where T@x_1®pz,gy®R@y_1 is the twist R-bilinear map defined in Proposition 1.3. The asso-

ciativity of the .7-"911 ’s is easily deduced using Lemma 1.4. This multiplication is commutative
since for any two classes [A(Q2)], [A(T')] € €(©/R), we have a family of R-bilinear isomorphisms

Iy ®rO,-1 QO Qs 'y ®r 0,1 @ Qy ®p O,—1 @R Oy
\
\ TRO:

\ Qs ®R@x—1 Rr . ®R@x—1 RR Op

1%

~

\\\->Qx®R®x*1 ®era

which is easily shown to be compatible with both factors maps of I' and 2. Thus, it induces
an isomorphism at the level of generalized crossed products.

It is clear that the class of [A(©)] is the unit of this multiplication. The inverse of any
class [A(Q)] is given by

[A@Q)] = [ © 0 O Qo1 91 0]

Lastly, the fact that Cy(©/R) is a sub-group of C(O/R), can be immediately deduced from
definitions. O

Proposition 3.2. Consider the abelian group Co(©/R) of Proposition 3.1. Then there is an
isomorphism of groups

Co(®/R) = HE(G,U(2)).

Proof. The stated isomorphism is given by the following map:

C: €o(O/R) — HB(G,U(Z)), (IAMW)]— [F-]).

)
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where 7_ _ is the normalized 2-cocycle defined in Proposition 2.7 and [7_ _] denotes its
equivalence class in H3(G,U(Z)). First we need to show that this map is in fact well de-
fined. To do so, we take two isomorphic generalized crossed products x : A(A) 5 A(X)

which represent the same element in the subgroup Cy(©/R), with R-bilinear isomorphisms
az : Ay — O, «+ X, : by, for all x € G. Then we check that the associated 2-cocycles are

cohomologous. So let us denote these cocycles by 7_ _ and y_ _ associated, respectively, to
A(A) and A(X). We need to show that [7_ _] = [y _]. Recall from Proposition 2.7 that we
have

e A ) >
Tay © Fay © (ax QR ay) = Ay oSy VayOJFgy0 (bx QR by> = byyo Fyy,

for every z,y € G, where F. i\?, and ]-"3, are, respectively, the factor maps relative to A and
3. For each = € G, we set the following R-bilinear isomorphism

az! Xz b

where Y, is the xz-homogeneous component of the isomorphism y. Then it is easily seen, using
the fact that x is morphism of generalized crossed products, that, for each pair of elements
x,y € G, we have

O,

ﬁa:y O T,y © -/T"Sy = Ya,y © fgy © (/Bcc R 5y> . (18>
We claim that N B B
Tey(€)Bzy(€) = Az y(e)Bz(e)*By(e), forall e €E. (19)
So let e € E, and consider its decomposition e = Z(e) TeT With respect to ©,, for a given
z €G. Let e; € Unit{ze, T }. Using equation (18), we get the following equality in S
> BuyoTaul@eye)TeTe = . e (Bel@e)By(ver)) TeyTe (20)
(6), (61) (6)7 (61)
Routine computations show that,

Z BryTw,y(xeyel)?elje = ?m,y(el)gry(‘fl)e = a,y(@ﬁwy(@): and
(e), (e1)
®

Z Yy (Bx(xE)ﬁy(ym)) Ye,Te = 7x,y(el)gx(el)xgy(el)e = "?%y(e)gx(e)xgy(e),
(e); (e1)

which by (20) imply that
7~—QC,y(e)gacy(e) = ’Ayiw,y(e)gx(e)itlgy(e)a
which is the claimed equality. On the other hand we define
h:G U(Z) = Autip_r(R)

T (hx ST — Z(e) rﬁx(are)fe)

where e € Unit{r}, and e = }_ ) zcT is the decomposition of e in R = ©;0,-1. It is clear

form definitions that E;B = hg, for ever x € G. Taking an arbitrary element r € R, we can
show using equation (19) that

Tay O Pay(r) = Fay 0 Thy o hy(r).
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Therefore, T,y 0 hyy = Yy © “hy o hy, which means that 7_ _ and 7_ _ are cohomologous.
By the same way, we show that, if 7_ _ and J_ _ are cohomologous, then A(A/R) and
A(X/R) are isomorphic as generalized crossed products, which means that the stated map ¢
is injective. To show that this map is surjective, we start with a given normalized 2-cocycle
o__:G* = U(Z), and consider the following R-bilinear automorphisms: for every x € G

9, : 0, — O, (u — ax,x(e)u) ,

where e € Unit{u}. Now set ¥, = O, as an R-bimodule with the R-bilinear isomorphism
Y, 1 Xy — O, previously defined. We define new factor maps relative to those 3,’s, by

Fry i S @nTy > Tay (e @nty 0y (O0F T (4 @R 1))

where e € Unit{u,,u,}. The 2-cocycle condition on o_ _ gives the associativity of .7-"3_, while
the normalized condition gives the unitary property. Thus, A(X/R) is a generalized crossed
product whose isomorphic class belongs by definition to the sub-group Cy(0/R).

Lastly, by a routine computation, using the definition of the twist natural map given in

Proposition 1.3, we show that the map ( is a homomorphism of groups. O

4 The Chase-Harrison-Rosenberg seven terms exact sequence.

In this section we show the analogue of Chase-Harrison-Rosenberg’s [5] seven terms exact
sequence, generalizing by this the case of commutative Galois extensions with finite Galois
group due of T. Kanzaki |13, Theorem p.187| and the noncommutative unital case treated by
Y. Miyashita in [14, Theorem 2.12].

From now on we fix a ring extension R C S with a same set of local units E, together
with a morphism of groups © : G — Invg(S) and the associated generalized crossed product
A(O/R) having ]:9_ as a factor map relative to ©.

We denote by Pic(R) and Pic(S), respectively, the Picard group of R and S. There is a
canonical left G-action on Pic(R) induced by the obvious homomorphism of groups Inv(S) —
Pic(R) given explicitly by

“IP] = [0, ®r P®Rr©,-1], forevery z € G, and [P] € Pic(R).

The corresponding G-invariant sub-group is denoted by Pic(R)Y. We will consider the sub-
group Picz(R) whose elements are represented by Z-invariant R-bimodules, in the sense that

[P] € Picz(R), if and only if [P] € Pic(R), and 3(e)pe’ = epj(€e’), Vp € P,
for every pair of units e, e’ € E, and every element 3 € Z. In this way, we set
Picz(R)Y := Picz(R) N Pic(R)Y.
Recall from [9, Sect. 3| the group P(S/R):

P(S/R) = { [P] =l6)= [X] | [P] € Pic(R),[X] € Pic(S), and a map ¢ : rPr — RXR}
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where at least one of the maps ¢; : P®r S — X, or ¢, : S ®r P — X, canonically attached
to ¢, is an isomorphisms of bimodules. For more details on the structure group of this set we
refer to [9, Section 3.|. Obviously there is a homomorphism of groups

O, : P(S/R) — Pic(R), (( [P] == [X] ) — [P}) . (21)

This group also inherits the above G-action. That is, there is a canonical left G-action on this
group which is induced by © and given as follows:

PPl == [X]) = ([0s @R P 2RO =li=[X] ),
where ¢ := 0,®r¢®r0,-1 (composed with the multiplication of S). The subgroup P(S/R)Y
of G-invariant elements of P(S/R) has a slightly simpler description:

Lemma 4.1. Keeping the above notations, we have
P(S/R)? = { [P]—li=[X] € P(S/R)| 6(P)O, = ©,6(P), for everyx € G},

where ¢(P)O, and O,¢(P) stand for the obvious subsets of the S-bimodule X, e.g.

¢(P)O; = Z ¢(pz)u;| pi € P, u; €06,

finite

Proof. Is based up on two main facts. The first one is that the R-bilinear map ¢ : P — X
defining the given element [P]=[¢]=>[X]| € P(S/R), is always injective, see |9, Lemma 3.1].
The second fact consists on the following equivalence: For a fixed z € G, saying that ¢(P)0, =
©,¢(P) in gXg is equivalent to say that there is an isomorphism f; : P =2 0, Qg P ®r ©,-1
which completes the commutativity of the following diagram

¢

P
\

fe
¥

08600,
@w KRR P KRR @;571 !

The later means, by the definition of P(S/R), that

( [P] == [X] ) _ ( 0,9 P® 0, 1] == [X] ) .

4.1 The first exact sequence.

Now we set
P2(S/R) = { [Pl=l=[X] € P(S/R)| [P € Picz(R) },
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and
Pz(S/R)Y = Pz(S/R) N P(S/R).

On the other hand, we consider the group Autpg_,ing(S) of all R-ring automorphisms of
S (with same set of local units). It has the following subgroup

Autp_ing(9)9) = { f € Autp_ring(S)| f(02) = O, forall z € g}.
There are two interesting maps which will be used in the sequel: The first one is given by
& AUtRring(S) — P(S/R), (f — ([R] =lsl=[8/])).,

where ¢y is the inclusion R C Sy, and Sy is the S-bimodule induced from the automorphism
f, that is, the left S-action is that of ¢S, while the right one has been altered by f, that is,
we have a new left S-action

s.s' = sf(s), for all s,5" € S.
The second connects the group U(Z) with Autr_,ing(S), and it is defined by
T UZ) = Autp_p(R) — Autp_ning(S), (a — [:f(a) L5 o*l(e)sa(e)]), (22)

where e € Unit{s}, s € S.

Proposition 4.2. Keeping the previous notations, there is a commutative diagram whose rows
are exact sequences of groups

U(Z) = Autr_p(R) —— Autp_ing(S) —— P(S/R) Pic(R)

J | J

U(Z) = Autr_p(R) — Autr_ring(S)9) —= Pz(S/R)9 — Picz(R)“.

Proof. The exactness of the first row was proved in [9, Proposition 5.1|. The commutativity as
well as the exactness of the second row, using routine computations, are immediately deduced
from the definition of the involved maps. O

The conditions under assumption, that is, the existence of © : G — Invg(S) a homo-
morphism of groups with a given extension of rings R C S with the same set of local units
E, are satisfied for the extension R C A(O). Precisely, the map © factors thought out a

homomorphism of groups 0 : G — Invi(A(O)), (:c > @a;), as R C A(O) is an extension of

rings with the same set of local units E. Thus, applying Proposition 4.2 to this extension, we
obtain the first statement of the following corollary.

Corollary 4.3. Consider the generalized crossed product A := A(©) of S with G. Then there
is an exact sequence of groups

1 ——=U(Z) — Autp_ing(A)9) ——= Pz(A/R)9 —— Picz(R)Y.

In particular, we have the following exact sequence of groups

1—— HL(G, U(2)) B, Pz(A/R)Y &, Picz(R)Y.
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Proof. We only need to check the particular statement. So let f € Aut R_rmg(A)(g), this
gives a family of R-bilinear isomorphisms f, : O, — 0., x € G, which by Lemma 1.6 lead to
a map

06— U2Z), (2],
as O, € Invy(S). An easy verification, using (8), shows that, for every unit e € E, we have

fry(e) = Fale)"fy(e). (23)
Therefore,
Oy = 0z 070y, forevery z,y€g.

That is, o is a normalized 1-cocycle, i.e. o € ZL(G,U(Z)).
Conversely, given a normalized 1-cocycle v € Z§(G,U(Z)), we consider the R-bilinear
isomorphisms

gz 1 ©p — Oy, (u — 'ym(e)u) , where e € Unit{u},u € O,.

Clearly, the direct sum g := @©,egg, defines an automorphism of generalized crossed product.
Hence, g € AutR_rmg(A)(g).
In conclusion we have constructed mutually inverse maps which in fact establish an iso-
morphism of groups
Autp_ing(A)9) = ZL(G,U(2)). (24)
Now let us consider en element u € U(Z) = Autr_r(R), and its image F(u) under the map
JF defined in (22) using the extension R C A. Then, for every element a € ©,, we have

Fw)(a) = ul(e)aule), ecUnit{a}

= u!(e)"u(e) a.

—
N

Therefore, u defines, under the isomorphism of (24), a 1-coboundary,
Gg—UZ), (m — zuou’1> .
We have then constructed an isomorphism of groups
Autp_ping(A) 9 /Autp_r(R) = H(G, U(Z)).
The exactness follows now from the first statement which is a particular case of Proposition
4.2. O
4.2 The second exact sequence.

For any element [P] € Pic(R), we will denote by [P~!] its inverse element. Let us consider
the following groups

Picz(R)9 = {[P] € Picz(R)| P®r O, 9 P! ~ O, forall z € g}.

A routine computation shows that this is a subgroup of Picz(R) which contains the sub-
group of all G-invariant elements. That is, there is a homomorphism of groups Picz(R)Y —
Picz(R)9).
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Given an element [P] € Picz(R)(9), set Q, := PRrO, @ P!, for every z € G. Consider
now the family of R-bilinear isomorphisms

fgfy Q@R Q= Uy

which is defined using the factor maps ]-"gy and the isomorphism P@gP~! 22 R. This is clearly
a factor map relative to the homomorphism of groups Q : G — Invg(S) sending z — .
This gives us a generalized crossed product A(£2), and in fact establishes a homomorphism of
groups

£ : Picz(R)Y) — €(O/R),
where the right hand group was defined in Section 3. The proof of the following lemma is left
to the reader.

Lemma 4.4. Keep the above notations. There is a commutative diagram of groups

Picz(R)Y £ Co(6/R)

f [

Picz(R)9 £ C(O/R).

Now we can show our second exact sequence.

Proposition 4.5. Let A(©) be a generalized crossed product of S with G. Then there is an
exact sequence of groups

P2(A(O)/R)9 —2= Picz(R)% 2~ €y(O/R),

where 89 and 83 are, respectively, the restrictions of the map O; given in equation (21) attached
to the extension R C A(©), and of the map defined in Lemma 4.4.

Proof. Let [P] € Picz(R)Y such that 83([P]) = [A(Q)] = [A(O)], where for every x € G,
Q) = PRRO,®@5 P~ This means that we have an isomorphism A(£2) = A(0) of generalized
crossed products, and so a family of R-bilinear isomorphisms ¢, : 0, Qr P &£ PRgr0O,, x € G.
We then obtain an R-bilinear isomorphism

L= @ng : A(@) QrP — P®p A(@),
Tre

which in fact satisfies the conditions stated in [8, Eq. (5.1) and (5.2), p. 161|. This implies
that A(©)®p P admits a structure of A(©)-bimodule whose underlying left structure is given
by that of @)A(©). In this way, the previous map ¢ becomes an isomorphism of (A(©), R)-
bimodules, and so we have

(A(®) ®r P) @0y (P @1 A(O))

(A(®) ®r P) ®a0) (A(O) ®r P71)
A(©)®r Por P!
A(@)7

1

1

an isomorphism of A(©)-bimodules. Whence the isomorphic class of A(©) ®g P belongs to
Pic(A(©)). We have then constructed an element [P]=[¢]=>[A(O)®p P| of the group
P(A(O)/R), where ¢ is the obvious map

¢:P— A(O)®pg P, (pb—>€®Rp>,
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where e € Unit{p}. It is clear that, for every x € G, the equality ¢(P)©,; = ©,¢(P) holds
true in A(©) @ P. Thus, [P]=[=[A(O)®gr P] € ZPZ(A(@)/R)(Q) and

52 (1P)=li=[A@©) @ P] ) = [P].

This shows the inclusion Ker(83) C Im(82).

Conversely, let [Q] € Tm(82), that is, there exists an element [Q] =[¥]=[Y] € Pz(A(O)/R)Y.
We need to compute the image 83([Q)]). From the choice of [Q] we know that [Q] € Picz(R)
and that, for every x € G, ¥(Q)0, = 0,9(Q) in the A(©)-bimodule Y. As in the proof of

Lemma 4.1, the later means that, there are R-bilinear isomorphisms:

fo: Q@R Oy = O, ®r Q, for every x € G,

which convert commutative the following diagrams

QRFL,
Q ®Rr O, ®r Oy Q®R@I\
f2®0y fﬂcy/‘ Y
@x ®RQ®R @y @my ®RQ

O, ®r Oy ¥R Q

Coming back to the image 83([Q]) := [A(T")], we know that for every x € G, we have I', =
Q ®p 0, ®r Q™! = O,, via the f,’s. The above commutative diagram shows that these
isomorphisms are compatible with the factor maps F, y and ]-"gy. Therefore, A(©) = A(T")
as generalized crossed products, and so 83([Q]) = [A(O)] the neutral element of the group
Co(O/R). O

4.3 Comparison with a previous alternative exact sequence.

Let us assume here that © : G % Aut(R) — Pic(R), as in Example 2.3. We consider
the extension R C RG, where S := RG = A(O) is the skew group ring of R by G. Thus
O : G — Invg(S) factors though out p as in diagram (17). In what follows, we want to
explain the relation between the five terms exact sequence given in [4, Theorem 2.8|, and the
resulting one by combining Proposition 4.5 and Corollary 4.3, that is the sequence

1 —— HL(G, U(Z)) —2> P2(A(O)/R)9 —2= Picz(R)9 —2> H2(G,U(Z)) = Co(O/R).

As we argued in Example 2.3, the cohomology HE(G,U(2)) coincides with that considered in
[4]. Thus, following the notation of [4], the result [4, Theorem 2.8] says that

1—— H) (G, U(Z)) —27> G-Pic(R) —=> Pic(R)% —> H3(G,U(Z))
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is an exact sequence (of pointed sets). It is not difficult to see that the restriction of @,
to Picz(R)Y gives exactly 83. On the other hand, for any element [P]=[¢]=[X] €

Pz(A(O)/R)Y, we will define an object (P,7) where 7 : G — Autz(P) (to the group of
additive automorphisms of P) is a G-homomorphism [4, Definition 2.3]. As in the proof of
Lemma 4.1, we know that there is a family of R-bilinear isomorphisms j, : R*®QrP — PRgrR*,
x € G, so we define 7 by the following composition

7 TP —Z. R @R P Poy RT S P

here PY denotes the R-bimodule constructed from P by twisting its right module structure
using the automorphism y, and the same construction is used on the left. To check that 7 is
a homomorphism of groups, one uses the equality

o (ff?y ®rP) = (P ®R]: y) © (e ®@r RY) o (R ®Rjy), foralwxyegd.
Now, if we take another representative, that is, if we assume that
[Pl=ll=[X] = [P|=l¢1=[X'] € Pz(A(©)/R)’

then, by the definition of the group P(A(©)/R), see |9, Section 3|, there are bilinear isomor-
phisms f: P — P’ and g : X — X’ such that

P—%.x

P/ s X/
(z)/

commutes. In this way we have also the following commutative diagram

R*@pP—2~PogR®

R“‘@fl J{f@m

R* ®p P’ — P' ®Rr R”,
Jz

which says that 7, 0 f = fo7,. This implies that [P,7] = [P’,7'] in the group G-Pic(R).
We then have constructed a monomorphism of groups Pz(A(©)/R)Y — G-Pic(R) such that
the restriction of the map Fj, to Pz(A(O)/R)Y is exactly 83. We leave to the reader to check
that we furthermore obtain a commutative diagram

1 —— HY(G, U(Z)) = Pz(A(O)/R)T —2= Picz(R)I —~ H3(G,U(Z))

L [

| —— HL(G, U(Z)) G-Pic(R) — " Pic(R)J —~ H3(G.U(Z)).
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4.4 The third exact sequence.
We define the group B(O/R) as the quotient group

Picz(R)9) —*~C(©/R) —= B(O/R) —> 1, (25)

where £ is the map defined in Lemma 4.4.
The third exact sequence of groups is stated in the following

Proposition 4.6. Let A(©) be a generalized crossed product of S with G. Then there is an
exact sequence of groups

Picz(R)9 —*> Cy(0/R) —*>B(6/R),

where 83 and 84 are constructed from the sequence (25) and the commutativity of the diagram
stated in Lemma 4.4.

Proof. The inclusion Im(83) C Ker(84) is by construction trivial. Now, let [A(T")] € Co(O/R)
such that S4([A(I")]) = 1. By the definition of the group B(O/R), there exists [P] €
Picz(R)@ such that £([P]) = [A(I')]. Therefore, we obtain a chain of R-bilinear iso-
morphisms:

O, 2T, ¥ PRrO,p P! foralzeg,

which means that [P] € Picz(R)Y, and so [A(I")] = 83([P]) which completes the proof. [

Remark 4.7. In the case of a unital commutative Galois extension k C R with a finite Galois
group, see for instance [3, p. 396], and taking the extension R C S and © as in Remark
2.13. The homomorphism 84 coincides, up to the isomorphism of Proposition 3.2, with the
homomorphism of groups defined in |3, Theorem A 12, p. 406] and where the group B(©/R)
coincides with the Brauer group of the k-Azumaya algebras split by R.

4.5 The fourth exact sequence.

Consider the following subgroup of the Picard group Pic(R):
Pico(R) = {[P} € Pic(R)| P ~ R, as bimodules}.

As we have seen in Proposition 1.3, this is an abelian group. Clearly it inherits the G-module
structure of Pic(R): The action is given by

IP] = [0, ®r P ®R O,-1], for every z € G.
Lemma 4.8. Keep the above notations. Then the map

¢

C(O/R) Z'(G, Picy(R))

[AI)] ——— [ — [[][6,1]]
defines a homomorphism of groups. Furthermore, there is an exact sequence of groups

1— > Cy(0/R) —= C(O/R) —= Z(G, Picy(R)).
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Proof. The first claim is immediate from the definitions, as well as the inclusion Cy(0/R) C
Ker(¢). Conversely, given an element [A(I")] € C(©/R) such that (([A(I")]) = 1. This
implies that for every z € G, there is an isomorphism of R-bimodule I', ®p ©,-1 = R. Hence,
I'y = O, for every x € G, which means that [A(T)] € Co(O/R). O

We define another abelian group, which in the commutative Galois case [13], coincides with
the first cohomology group of G with coefficients in Picg(R). It is defined by the following
commutative diagram

Picz(R) 9 - - — - ————_ ~ 7Y(G, Picy(R)) —= H (G, Pico(R)) — 1

whose row is an exact sequence. Our fourth exact sequence is given by the following.

Proposition 4.9. Let A(©) be a generalized crossed product of S with G. Then there is an
exact sequence of groups

Co(6/R) > B(O/R) — 2~ H' (G, Pico(R)).

Proof. First we need to define 85. We construct it as the map which completes the commuta-
tivity of the diagram

Co(O/R)
| T
Picz(R)9 —~ ~ C(O/R) £ B(O/R) 1

\
Cl I 85
4
Z\(G. Picy(R)) —= H' (G, Pico(R)) —= 1,
whose first row is exact.
The fact that Im(84) C Ker(85) is easily deduced from the previous diagram and Lemma

4.8. Conversely, let = = L([A(T)]), for some [A(T)] € G(@/R) be an element in B(O©/R)
(here f¢ denotes the cokernel map of f), such that 85 E) = 850 £C([A( )]) = 1. Then

(CL)¢ o ¢(J[A(T)]) = 1, which implies that {([A ( (Picz(R )) Therefore, there

exists an clement [P] € Picz(R)© such that [ ( NL(P])~! € Ker(¢() = Co(O/R) by
Lemma 4.8. Now, we have

s+ (IAmIeP)™) = 84 ([AmIe(r)
1

and this shows that = € Im(8,). O
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4.6 The fifth exact sequence and the main Theorem.

Keep from Subsection 4.5 the definition of the group Picy(R) with its structure of G-module.
Before stating the fifth sequence, we will need first to give a homomorphism of group from
the group "' (G, Pico(R)) to the third cohomology group Hg (G, U(Z)).

Given a normalized 1-cocycle g € Z'(G,Pico(R)) and put g, = [V.]. Then, for every
pair of elements x,y € G, one can easily shows that

“9y[0z] = [O:] gy (26)
Now, for every x € G, we set
[Us] == ¢5]0z], in Pic(R).

By the cocycle condition, we obtain

Uyl = Gay[Ouy]
= 9:"9y[04][Oy]
= 92(0x] 9y[6,]
= [UL][U]-
This means that there are R-bilinear isomorphisms
Fiy Us ®@r Uy — Uyy, (27)
with ff}w = id = fil for every x € G. By Proposition 2.5, we have a 3-cocycle in
Z§(G,U(Z)) attached to these maps F? _, which we denote by o _ . If there is an-
other class [V;] € Pic(R) such that [V;] = ¢.[Oz], for every = € G, then the families

of invertible R-bimodules {V,},cg and {U,},cg satisfy the conditions of Proposition 2.8.
Therefore, the associated 3-cocycles are cohomologous. This means that the correspondence
g~ [ ] e HG,UZ)) is a well defined map. Henceforth, we have a well defined
homomorphism of groups

7(G. Picg(R)) — 2~ H3(G.U(Z)) (28)

gt [ _ ]

yT

The proof of the fact that 813 is a multiplicative map uses Lemma 1.1(ii) and the twisted
natural transformation of Proposition 1.3. Complete and detailed steps of this proof are
omitted.

Proposition 4.10. Let R C S be an extension of rings with the same set of local units, and
A(O) a generalized crossed product of S with G. Then the homomorphism of formula (28)
satisfies 8130 ¢ = [1], where ¢ is the homomorphism of Lemma 4.8. Furthermore, there is a
commutative diagram of groups

(CoL)

Picz(R)(9) H' (G, Pico(R))

—

ZYG, Picy(R))

with exact row.
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Proof. We need to check that 813 0 (([A(T")]) = [1], for any element [A(T')] € C(©/R). Set
f = C([A)]), so we have f;[©,] = [I';], for every x € G. Thus, the corresponding maps
Ff _ of formula (27), are exactly given by the factor maps .7-":, of A(T") relative to I'. They
define an associative multiplication on A(T"), and so induce a trivial 3-cocycle, which means
that 813(f) = [1]. The last statement is now clear. O

At this level we are ending up with the following commutative diagram

83

PicZJ(R)g Co(O/R) \
84
1 Picz(R)9 £ C(O/R) £ B(O/R) 1
H < L
Picz(R)© — . 71(G Pico(R)) — 2 T (G, Pico(R)) 1
813 /

HE(G,U(2))

Proposition 4.11. Let A(©) be a generalized crossed product of S with G. Then there is an
exact sequence of groups

B(O/R) —2> H'(G, Pico(R)) —= H3(G,U(Z)).

Proof. Tt is clear from the above diagram that Im(85) C Ker(8g) since by Proposition 4.10
8130 ¢ = [1]. Conversely, let us consider a class [h] € Fl(g, Picy(R)) such that 8g([h]) = 1,
for some element h € Z(G,Picy(R)). By the same diagram, we also have that the class
813(h) = [1] € H(G,U(Z)). This says that 813(h) = [3], for some 8 € BE(G,U(Z)), and so
there exists o_ _ : G x G — U(Z) such that
/Bx,y,z = Ozyz mo'y,z 0';,73 U;yl,za

for every z,y,z € G. Now, for each = € G, we put h;[0,] = [Q,], and consider fﬁﬁ the
associated family of maps as in (27), ]—"g’y 1 Qy ®r Qy — Qyy, where x,y € G. By definition
the B_ _ _’s satisfy

Brae© Frge o (Fhy ®r Q) = Flyoo (QenFL.),

for every x,y, z € G. In this way, there are factor maps ]-'97 relative to €, defined by

fﬂ

x?y :

Q; Qr LYy Quy

Wy O Wy > 0ay() 7}, (Wa @R wy),

where e € Unit{w,, wy}. A routine computation shows that A(Q2) is actually a generalized
crossed product of S with G with factor maps F. 97, relative to €.
On the other hand, since for each x € G, h, € Picy(R), we have Q, ~ ©O,. Thus
[A(Q)] € €(©/R) with (([A(Q)]) = h. Whence
(€L)°(h) = [h] = (¢L)° o C([A()]) = 85(L([A(D)])),

which implies that [h] € Im(85), and this completes the proof. O]
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The following diagram summarizes the information we have shown so far.

82

HY(G.U(Z) = Pz(A/R) Picz(R)9 —— H3(G,U(Z))

| i,

Picz(R)9 —~ ~ C(O/R) £ B(O/R)
H . ¢ . \LSS
Picz(R)9) 0 716, Pico(R)) 2 (G, Pico(R))

HE(G,U(2))

We are now in position to announce our main result.

Theorem 4.12. Let R C S be an extension of rings with the same set of local units, and
A(O) a generalized crossed product of S with a group G. Then there is an exact sequence of
groups

1 — = HL(G, U(Z)) 2> P2 (A/R) — 2+ Picz(R)Y — > > H3(G,U(Z)) —2> B(O/R)

% H'(G, Pico(R)) —2= HE(G,U(Z)).

Proof. This is a direct consequence of Corollary 4.3 and Propositions 4.5, 4.6, 4.9, and 4.11. [

Acknowledgement. We thank the referee for a careful reading of our manuscript and
for pointing out the existence of the paper [4].
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