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Abstract

Let R be a ring with a set of local units, and a homomorphism of groups Θ : G →
Pic(R) to the Picard group of R. We study under which conditions Θ is determined
by a factor map, and, henceforth, it defines a generalized crossed product with a same
set of local units. Given a ring extension R ⊆ S with the same set of local units and
assuming that Θ is induced by a homomorphism of groups G → InvR(S) to the group of
all invertible R-sub-bimodules of S, then we construct an analogue of the Chase-Harrison-
Rosenberg seven terms exact sequence of groups attached to the triple (R ⊆ S,Θ), which
involves the first, the second and the third cohomology groups of G with coefficients in
the group of all R-bilinear automorphisms of R. Our approach generalizes the works by
Kanzaki and Miyashita in the unital case.

Introduction

For a Galois extension R/k of commutative rings with identity and finite Galois group G,
Chase, Harrison and Rosenberg, gave in [5, Corollary 5.5] (see also [6]) the following seven
terms exact sequence of groups

1→ H1(G,U(R))→ Pick(k)→ PicR(R)G → H2(G,U(R))→ B(R/k)

→ H1(G,PicR(R))→ H3(G,U(R)),

where for a ring A with identity, PicA(A) = {[P ] ∈ Pic(A)| ap = pa,∀ a ∈ A, p ∈ P} is a
subgroup of the Picard group Pic(A), and U(A) the group of units. The group B(R/k) is the
Brauer group of Azumaya k-algebras split by R, and the other terms are the usual cohomology
groups of G with coefficients in abelian groups. As one can realize, the case of finite Galois
extension of fields reduces to fundamental theorems in Galois cohomology of fields extensions,
namely, the Hilbert’s 90 Theorem, and the isomorphism of the Brauer group of a field with
the second cohomology group.
∗Research supported by the grant MTM2010-20940-C02-01 from the Ministerio de Ciencia e Innovación

and from FEDER
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The construction of this sequence of groups, as was given in [5, 6], is ultimately based
on the consideration of a certain spectral sequence already introduced by Grothendieck, and
the generalized Amitsur cohomology. The same sequence was also constructed after that by
Kanzaki [13, Theorem, p.187], using only elementary methods that employ the novel notion of
generalized crossed products. This notion has been the key success which allowed Miyashita
to extend in [14, Theorem 2.12] the above framework to the context of a noncommutative
unital ring extension R ⊆ S with a homomorphism of groups to the group of all invertible
sub-R-bimodules of S. In this setting the seven terms exact sequence takes of course a slightly
different form, although the first, the fourth and the last terms remain the cohomology groups
of the acting group with coefficients in the group of units of the base ring. The commutative
Galois case is then recovered by first considering a tower k ⊆ R ⊆ S, where k ⊆ R is a finite
Galois extension and S is a fixed crossed product constructed from the Galois group; secondly
by considering the homomorphism of groups which sends any element in the Galois group to
it corresponding homogeneous component of S (components which belong to the group of all
invertible sub-R-bimodules of S).

In this paper we construct an analogue of the above seven terms exact sequence in the
context of rings with local units (see the definition below). The most common class of examples
are the rings with enough orthogonal idempotents or Gabriel’s rings which are defined from
small additive categories. It is noteworthy that up to our knowledge there is no satisfactory
notion in the literature of morphism of rings with local units that could be, for instance,
extracted from a given additive functor between additive small categories. Here we restrict
ourselves to the naive case of extensions of the form R ⊆ S which have the same set of local
units. This at least includes the situation where two small additive categories have the same
set of objects and differ only in the size of the sets of morphisms, as it frequently happens in
the theory of localization in abelian categories. Our methods are inspired from Miyashita’s
work [14] and use the results of our earlier work [9]. The present paper is in fact a continuation
of [9]. It is worth noticing that, although the steps for constructing the seven terms sequence
in our context are slightly parallel to [14], this construction is not an easy task since it has its
own challenges and difficulties.

The paper is organized as follows. In Section 1 we give some preliminary results on
similar and invertible unital bimodules. Most of results on similar unital bimodules are in
fact the non unital version of [11, 12], except perhaps the construction of the twisting natural
transformations and its weak associativity (Proposition 1.3 and Lemma 1.4). The generalized
crossed product is introduced in Section 2, where we also give useful constructions on the
normalized 2 and 3-cocycles with coefficient in the unit group of the base ring. Section 3 is
devoted to the construction of an abelian group whose elements consist of isomorphic classes
of generalized crossed products. We show that it contains a subgroup which is isomorphic
to the 2-cohomology group (Proposition 3.2). Our main results is contained in Section 4,
which contains a number of exact sequences of groups that culminate in the seven terms exact
sequence that generalizes Chase-Harrison-Rosenberg’s one (Theorem 4.12).

Notations and basic notions:
In this paper ring means an associative and not necessarily unital ring. We denote by Z(R)

(resp. Z(G)) the center of a ring R (resp. of a group G), and if R is unital we will denote by
U(R) the unit group of R, that is, the set of all invertible elements of R.

Let R be a ring and E ⊂ R a set of idempotent elements; R is said to be a ring with set of
local units E, provided that for every finite subset {r1, · · · , rn} ⊂ R, there exists e ∈ E such
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that
e ri = ri e = ri, for every i = 1, · · · , n,

In this way, given a finite set {r1, · · · , rn} of elements in R, we denote

Unit{r1, · · · , rn} =
{
e ∈ E | eri = rie = ri, for every i = 1, 2, · · · , n

}
.

Observe that our definition differs from that in [1, Definition 1.1], since we do not assume
that the idempotents of E commute. In fact, our rings generalize those of [1] since, when the
idempotents are commuting, it is enough to require that for each element r ∈ R there exists
e ∈ E such that er = re = r (see [1, Lemma 1.2]). The Rees matrix rings considered in [2],
are for instance, rings with a set of local units with noncommuting idempotents.

Let R be a ring with a set of local units E. A right R-module X is said to be unital
provided one of the following equivalent conditions holds

(i) X ⊗R R ∼= X via the right R-action on X,

(ii) XR := {
∑

finite xiri| ri ∈ R, xi ∈ X} = X,

(iii) for every element x ∈ X, there exists an element e ∈ E such that xe = x.

Left unital R-modules are analogously defined. Obviously any right R-module X contains
XR as the largest right unital R-submodule.

Let R and S be rings with a fixed set of local units, respectively, E and E′. In the sequel,
an extension of rings φ : (R,E)→ (S,E′) with the same set of local units, stand for an additive
and multiplicative map φ which satisfies φ(E) = E′. Note that since R and S have the same
set of local units, any right (resp. left) unital S-module can be considered as right (resp. left)
unital R-module by restricting scalars. Furthermore, for any right S-module X, we have the
equality XR = XS.

1 Similar and invertible unital bimodules.

Let R be a ring with a set of local units E. In the first part of this section we give some prelim-
inary results on unital R-bimodules, which we will use frequently in the sequel. Most of them
were already formulated by K. Hirata in [11] and [12] when R is unital. For the convenience
of the reader we will give in our case complete proofs. The second part provides a relation
between the automorphism group of an invertible unital R–bimodule and the automorphisms
of the base ring R. This result will be also used in the forthcoming sections.

A unital R-bimodule is an R-bimodule which is left and right unital. In the sequel, the
expression R-bilinear map means homomorphism of R-bimodules. Note that if M is a unital
R-bimodule, then for every element m ∈ M , there exists a two sided unit e for m. That is,
there exists e ∈ E such that m = me = em, see [7, p. 733]. If several R-bimodules are
handled, say M,N,P with a finite number of elements {mi, ni, pi}i, mi ∈ M,ni ∈ N, pi ∈ P ,
then we denote by Unit{mi, ni, pi} the set of common two sided units of the mi’s, ni’s and
the pi’s. This means, that e ∈ Unit{mi, ni, pi} ⊆ E if and only if

emi = mi = mie, eni = ni = nie, epi = pi = pie, for every i = 1, · · · , n.
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Given a unital R-bimodule M , we denote its invariant sub-bimodule, that is, the set of all
R-bilinear maps from R to M , by

MR := HomR−R(R, M).

It is canonically a module over the commutative ring of all R-bimodule endomorphisms Z :=
EndR−R(R). The Z-action is given as follows: for every z ∈ Z and f ∈MR, we have

z.f : RRR → RMR,
(
r 7→ f(z(r)) = z(e)f(r) = f(r)z(e), where e ∈ Unit{r}

)
.

Lemma 1.1. Let R be a ring with local units andM a unital R-bimodule such that M �
� ⊕ / R(n) ,

that is, M is isomorphic as an R-bimodule to a direct summand of direct sum of n copies of
R. Then

(i) MR is a finitely generated and projective Z-module;

(ii) there is an isomorphism of R-bimodules

M ∼= R⊗Z MR,

where the R-bimodule structure of the right hand term is induced by that of R. That is,

r(s⊗Z f)t = (rst)⊗Z f, (s⊗Z f ∈ R⊗Z MR, r, t ∈ R).

Proof. Let us consider the following canonical R-bimodule homomorphisms:

ϕi : M �
� ι / R(n) πi // // R, ψi : R �

� ιi / R(n) π // //M, i = 1, · · · , n,

where πi and ιi are the canonical projections and injections.
(i) It is clear that {(ψi, ψ∗i )}i ∈ MR × HomZ(MR, Z) is a finite dual Z-basis for MR,

where each ψ∗i is defined by the right composition with ϕi, that is, ψ∗i (f) = ϕi ◦ f , for every
f ∈MR.

(ii) We know that there is a well defined R-bilinear map

R⊗Z MR η //M

r ⊗Z f � // f(r).

We can easily show that

M
η−1

// R⊗Z MR

m � //
∑n

i ϕi(m)⊗Z ψi,

is actually the inverse map of η.

We will follow Miyashita’s notation concerning this class of R-bimodules. That is, if we
have an R-bimodule M which is a direct summand as a bimodule of finitely many copies of
another R-bimodule N , we shall denote this situation by M |N . It is clear that this relation
is reflexive and transitive. Furthermore, it is compatible with the tensor product over R, in
the sense that we have M ⊗R Q|N ⊗R Q and Q⊗RM |Q⊗R N , for every unital R-bimodule
Q, whenever M |N . In this way, we set

M ∼ N, if and only if, M |N and N |M, (1)

and call M is similar to N . This in fact defines an equivalence relation which is, in the above
sense, compatible with the tensor product over R.
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Lemma 1.2. Let R be a ring with local units and M , N are unital R-bimodules such that
M |R and N |R as bimodules. Then

(i) for every finitely generated and projective Z-module P , we have an isomorphism of Z-
modules

(R⊗Z P )R ∼= P ;

(ii) there is a natural (on both components) Z-linear isomorphism

(M ⊗R N)R ∼= MR ⊗Z NR.

Proof. (i) Let {(pi, p∗i )}1≤i≤n be a dual Z-basis for P . Given an element f ∈ (R⊗Z P )R, we
define a finite family of elements in Z:

zf, i := (R⊗Z p∗i ) ◦ f : R→ R⊗Z P → R⊗Z Z ∼= R.

Now, an easy computation shows that the following maps are mutually inverse

P // (R⊗Z P )R

p � //
[
r 7−→ r ⊗Z p

]
,

(R⊗Z P )R // P

f � //
∑n

i zf, i pi,

which gives the stated isomorphism.
(ii) By Lemma 1.1(ii) we know that

M ∼= R⊗Z MR and N ∼= R⊗Z NR.

Therefore, we have
M ⊗R N ∼= R⊗Z

(
MR ⊗Z NR

)
.

Since by Lemma 1.1(i),MR ⊗Z NR is a finitely generated and projective Z-module, we obtain
the desired isomorphism by applying item (i) just proved above.

Keep the notations of the first paragraph in the proof of Lemma 1.1.

Proposition 1.3. Let R be a ring with local units and M , N are unital R-bimodules such
that M |R and N |R as bimodules. Then there is a natural R-bilinear isomorphism M ⊗RN ∼=
N ⊗RM given explicitly by

TM,N : M ⊗R N
∼= // N ⊗RM

x⊗R y � //
∑n

i ϕi(x) y ⊗R ψi(e),

where e ∈ Unit{x, y}.

Proof. By Lemmata 1.1 and 1.2, we have the following chain of R-bilinear isomorphisms

M ⊗R N
∼= // R⊗Z MR ⊗Z NR

∼= // R⊗Z NR ⊗Z MR
∼= // N ⊗R (R⊗Z MR)

∼= // N ⊗RM.

Writing down explicitly the composition of these isomorphisms, we obtain the stated one.
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The natural transformation T−,− is associative in the following sense.

Lemma 1.4. Let R be ring with a local units. Consider X,Y, P,Q,U, V unital R-bimodules
which satisfy Q|R, (Y ⊗R V )|R, (X ⊗R U)|R and (P ⊗R Y )|R, all as bimodules. Then the
following diagram is commutative:

X ⊗R U ⊗R P ⊗R Y ⊗R V ⊗R Q
X⊗U⊗P⊗TY⊗V,Q //

TX⊗U, P⊗Y ⊗V⊗Q

��

X ⊗R U ⊗R P ⊗R Q⊗R Y ⊗R V

TX⊗U, P⊗Q⊗Y ⊗V

��
P ⊗R Y ⊗R X ⊗R U ⊗R V ⊗R Q

P⊗TY⊗X⊗U⊗V,Q
// P ⊗R Q⊗R Y ⊗R X ⊗R U ⊗R V.

Proof. Straightforward.

Recall form [9, p. 227] that a unital R-bimodule X is said to be invertible if there exists
another unital R-bimodule Y with two R-bilinear isomorphisms

X ⊗R Y l
∼=

// R Y ⊗R X.r
∼=

oo

As was shown in [9], one can choose the isomorphisms l, r such that

X ⊗R r = l⊗R X, Y ⊗R l = r⊗R Y.

In others words, such that (l, r−1) is a Morita context from R to R. In this way, Y is
isomorphic as an R-bimodule to the right unital part X∗R of the right dual R-module
X∗ = Hom−R(X, R) of X. This isomorphism is explicitly given by

Y
∼=−→ X∗R,

(
y 7−→ [x 7→ r(y ⊗ x)]

)
.

It is worth mentioning that X is not necessarily finitely generated as right unital R-module;
but a direct limit of finitely generated and projective right unital R-modules.

Given e ∈ E consider its decomposition with respect to the invertible unital R-bimodule
X, that is,

e =
∑
(e)

xeye, (i.e. e =
∑
(e)

l(xe ⊗R ye)).

It is clear that the xe’s and the ye’s can be chosen such that

exe = xe, and ye = yee,

which means that e is a right unit for the ye’s and left unit for the xe’s.

Remark 1.5. It is noteworthy that a two sided unit of the set of elements {xe, ye} do not
need in general to coincide with e. However, any two sided unit e1 ∈ Unit{xe, ye} is also a
unit for e. In other words, the elements e and

∑
(e) xe e ye belong to the same unital ring eRe,

but they are not necessarily equal. This makes a difference in technical difficulties compared
with the case of unital rings.

The following lemma gives explicitly the relation between the automorphisms group of uni-
tal invertible R-bimodule and the unit group of the commutative unital ring Z = EndR−R(R).
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Lemma 1.6. Let R be a ring with local units and X an invertible unital R-bimodule. Then
there is an isomorphism of groups, from the group of R-bilinear automorphisms of X, AutR−R(X)
to the unit group of Z, defined by

AutR−R(X)
(̃−) // AutR−R(R) = U(Z)

σ � // σ̃

(2)

where for each r ∈ R with unit e ∈ Unit{r}, we have

σ̃(r) =
∑
(e)

σ(xe)yer =
∑
(e)

rσ(xe)ye.

In particular, for every element t ∈ X and σ ∈ AutR−R(X), we have

σ(t) = σ̃(e)t, whenever e ∈ Unit{t}.

Proof. Follows directly from [4, Lemma 2.1].

The Picard group of R is denoted by Pic(R). It consists of all isomorphisms classes of
invertible unital R-bimodules, with multiplication induced by the tensor product. As in the
unital case [10, Theorem 2.(i)], there is a canonical homomorphism of groups α : Pic(R) →
Aut(U(Z)). This homomorphism is explicitly given as follows. Given [X] ∈ Pic(R) and
u ∈ U(Z), we consider the R-bilinear automorphism of X defined by

σu : X −→ X,
(
t 7−→ tu(e), t ∈ X, and e ∈ Unit{t}

)
.

We clearly have σuv = σu ◦σv, and so σ̃uv = σ̃u ◦ σ̃v, for u, v ∈ U(Z). It follows from Lemma
1.6 that

σu(rt) = σ̃u(r)t, for every t ∈ X, r ∈ R. (3)

This equation implies that the element σ̃u ∈ U(Z) is independent from the choice of the
representative X of the class [X] ∈ Pic(R). We have thus a well defined map

α : Pic(R)→ Aut(U(Z)), [X] 7→ α[X](u) = σ̃u

which is a homomorphism of groups by (3). This is exactly the homomorphism induced by
the map α of [4, p. 135]. We have the formula:

α[X](u)(r) = σ̃u(r) =
∑
(e)

rxeu(e1)ye, (i.e.
∑
(e)

rl(xe ⊗R u(e1)ye)), (4)

where e ∈ Unit{r}, e1 ∈ Unit{xe, ye}, and as before e =
∑

(e) xeye.

2 Generalized crossed products with local units.

Let G be any group with neutral element 1. Consider a ring R with a set of local units E,
and a group homomorphism Θ : G → Pic(R). This is equivalent to give sets of invertible
R-bimodules and isomorphisms of bimodules

{Θx : x ∈ G}, {FΘ
x,y : Θx ⊗R Θy

∼=−→ Θxy, x, y ∈ G},
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where Θ(x) = [Θx] for every x ∈ G. Consider the product on the direct sum
⊕

x∈G Θx

determined by the maps FΘ
x,y. There is no reason to expect that this product, after the choice

of the representatives Θx, will be associative. In fact, it becomes an associative multiplication
if and only if the diagram

Θx ⊗R Θy ⊗R Θz

FΘ
xy⊗Θz //

Θx⊗FΘ
yz

��

Θxy ⊗R Θz

FΘ
xy,z

��
Θx ⊗R Θyz

FΘ
x,yz // Θxyz

(5)

commutes for every x, y, z ∈ G. Even in this case, it is not clear wether this multiplication has
a set of local units. On the other hand, we know that there is an isomorphism of R-bimodules
ι : R→ Θ1, so a natural candidate for such a set should be E′ = ι(E). In fact, this is a set of
local units if and only if, for every x ∈ G, the following diagrams are commutative

Θx ⊗R R ' //

Θx⊗ι ''

Θx

Θx ⊗R Θ1

FΘ
x,1

99 , R⊗R Θx
' //

ι⊗Θx ''

Θx

Θ1 ⊗R Θx

FΘ
1,x

99 (6)

The previous discussion suggest then the following definition.

Definition 2.1. A factor map for the morphism Θ : G → Pic(R) consists of sets of invertible
R-bimodules and isomorphisms of bimodules

{Θx : x ∈ G}, {FΘ
x,y : Θx ⊗R Θy

∼=−→ Θxy, x, y ∈ G},

where Θ(x) = [Θx] for every x ∈ G, and one isomorphism of R–bimodules ι : R → Θ1 such
that the diagrams (5) and (6) are commutative.

Now we come back to our initial homomorphism of groups Θ : G → Pic(R) and its
associated family of isomorphisms {FΘ

x,y}x,y,∈G . Our next aim is to find conditions under
which we can extract from these data a factor map for R and G. First of all we should assume
that the diagrams of (6) are commutative. We can define using the homomorphism of groups
α : Pic(R)→ Aut(U(Z)) given by equation (4), a left G-action on the group of units U(Z),
where Z = EndR−R(R). Written down explicitly the composition α ◦ Θ : G → Pic(R) →
Aut(U(Z)) the outcome action is described as follows. Given a unit e ∈ E, its decomposition
with respect to the invertible R-bimodule Θx is written as e =

∑
(e) xexe ∈ ι−1(Θ1) = R.

Using formula (4), the left G-action on U(Z) is then defined by

G × U(Z) // U(Z)

(x, u) // xu =
[
r 7→

∑
(e) rxeu(e1)xe

]
,

(7)

where e ∈ Unit{r} and e1 ∈ Unit{xe, xe}. Recall that in this case e1 ∈ Unit{e}, and so
e1 ∈ Unit{r}.

The abelian group of all n-cocycles with respect to this action is denoted by ZnΘ(G,U(Z));
while by Bn

Θ(G,U(Z)) we denote the n-coboundary subgroup. The n-cohomology group, is
then denoted by Hn

Θ(G,U(Z)).
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Remark 2.2. To each homomorphism of groups Θ : G → Pic(R), it corresponds as before a
G-group structure on U(Z), and so it leads to the cohomology groups H∗Θ(G,U(Z)). It seems
that this correspondence has not been systematically studied, even in the case of unital rings.
However, as we will see, it is in fact the starting key point of any theory of generalized crossed
products. Following the commutative and unital case, see Remark 2.13 below, here we will
also extract our results from one fixed G-action, this is to say fixed cohomology groups. For
instance, one could start with the cohomology which corresponds to the trivial homomorphism
of groups, that is, I : G → Pic(R) sending x 7→ [R], of course here the cohomology is not at
all trivial.

Here is a non trivial example.

Example 2.3. ([4]) Let R be a ring with E as a set of local units. Assume that there is
a homomorphism of groups Φ : G → Aut(R) to the group of ring automorphisms of R (we
assume that Φ(x)(E) = E, for every x ∈ G). Composing with the canonical homomorphism
Aut(R) → Pic(R) which sends x 7→ [Rx] (i.e. the R-bimodule whose underlying left R-
module is RR and its right module structure is r.s = rx(s)), we obtain a homomorphism
Θ : G → Pic(R). The corresponding family of maps {FΘ

x,y}x, y∈G is given by

FΘ
x,y : Rx ⊗R Ry −→ Rxy, (r ⊗R s 7−→ rx(s)) .

Here of course the associativity and unitary properties of the multiplication of R, both imply
that {FΘ

x,y}x, y∈G is actually a factor map for R and G. A routine computation shows now that
the cohomology H∗Θ(G,U(Z)) which corresponds to this Θ is exactly the one considered in [4,
p. 135], since the G-action (7) coincides for this case with that given in [4].

Lemma 2.4. Keep the above G-action on U(Z). Fix an element x ∈ G.

(1) For every t ∈ Θx and u ∈ U(Z), we have

tu(e) = xu(e) t, where e ∈ Unit{t}. (8)

(2) Given similar bimodules M ∼ Θx; for every m ∈M and u ∈ U(Z), we have

mu(e) = xu(e)m, with e ∈ Unit{m}. (9)

Proof. (1) This is equation (3).
(2) The identity (8) clearly lifts to finite direct sums Θ

(n)
x , and, hence, for subbimodules M of

Θ
(n)
x .

Proposition 2.5. Let R be a ring with a set of local units E and G any group. Assume that
there is a homomorphism of groups Θ : G → Pic(R) whose family of maps {FΘ

x,y}x,y ∈G satisfy
the commutativity of diagrams (6). Denote by αx,y,z : Θxyz → Θxyz the isomorphisms that
satisfy

αx,y,z ◦ FΘ
x,yz ◦

(
Θx ⊗R FΘ

y,z

)
= FΘ

xy,z ◦
(
FΘ
x,y ⊗R Θz

)
. (10)

Then α̃x,y,z defines a normalized element of Z3
Θ(G, U(Z)), where α̃x,y,z is the image of αx,y,z

under the isomorphism of groups stated in Lemma 1.6. Furthermore, if α̃−,−,− is cohomolog-
ically trivial, that is, there is a normalized map σ−,− : G × G → U(Z) such that

α̃x,y,z = σx,yz
xσy,z σ

−1
x,y σ

−1
xy,z,
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for every x, y, z ∈ G, then there is a factor map {FΘ
x,y}x.y ∈G for Θ, defined by

FΘ
x,y : Θx ⊗R Θy

// Θxy

ux ⊗R uy
� // σx,y(e)FΘ

x,y(ux ⊗R uy),

where e ∈ Unit{ux, uy}.

Proof. Consider x, y, z, t ∈ G, and ux ∈ Θx, uy ∈ Θy, uz ∈ Θz and ut ∈ Θt, denote by uxuy the
image of ux⊗R uy under FΘ

x,y. There are several isomorphisms from Θx⊗RΘy⊗RΘz⊗RΘt to
Θxyzt which are defined by the family FΘ

−,−. So it will be convenient to adopt some notations.
In order to do this, we rewrite the stated equation (10) satisfied by the α−,−,−’s, as follows

αx,y,z

(
ux(uyuz)

)
=
(

(uxuy)uz

)
.

Using Lemma 1.6, this is equivalent to

βx,y,z(e)
(
ux(uyuz)

)
=
(

(uxuy)uz

)
,

where e ∈ Unit{ux, uy, uz} and β−,−,− := α̃−,−,− is the image of αx,y,z under the homomor-
phism of groups defined in Lemma 1.6. In this way, if we fix a unit e ∈ Unit{ux, uy, uz, ut},
then we have(

(uxuy)uz

)
ut = βx,y,z(e)

(
ux(uyuz)

)
ut

= βx,y,z(e)βx,yz,t(e)
(
ux

(
(uyuz)ut

))
= βx,y,z(e)βx,yz,t(e)

(
ux

(
βy,z,t(e)

(
uy(uzut)

)))
= βx,y,z(e)βx,yz,t(e)

(
uxβy,z,t(e)

(
uy(uzut)

))
(8)
= βx,y,z(e)βx,yz,t(e)

(
xβy,z,t(e)ux

(
uy(uzut)

))
= βx,y,z(e)βx,yz,t(e)

xβy,z,t(e)
(
ux

(
uy(uzut)

))
= βx,y,z(e)βx,yz,t(e)

xβy,z,t(e)β
−1
x,y,zt(e)

(
(uxuy)(uzut)

)
= βx,y,z(e)βx,yz,t(e)

xβy,z,t(e)β
−1
x,y,zt(e)β

−1
xy,z,t(e)

(
(uxuy)uz

)
ut.

Given h ∈ E, using the above notations, we can consider the following units

h =
∑
(h)

xhxh, h1 ∈ Unit{xh, xh};

h1 =
∑
(h1)

yh1yh1
, h2 ∈ Unit{yh1 , yh1

};

h2 =
∑
(h2)

zh2zh2 , h3 ∈ Unit{zh2 , zh2};

h3 =
∑
(h3)

th3th3 , h4 ∈ Unit{th3 , th3}.

10



It is clear that h4 is a unit for all the handled elements, in particular h4 ∈ Unit{xh, yh1 , zh2 , th3}.
According to the equality showed previously, for every set {xh, yh1 , zh2 , th3}, we have(

(xhyh1)zh2

)
th3 = βx,y,z(h4)βx,yz,t(h4) xβy,z,t(h4)β−1

x,y,zt(h4)β−1
xy,z,t(h4)

(
(xhyh1)zh2

)
th3 .

Using the map FΘ
t,t−1 , and summing up, we get∑

(h3)

(
(xhyh1)zh2

)
th3th3 = βx,y,z(h4)βx,yz,t(h4) xβy,z,t(h4)β−1

x,y,zt(h4)β−1
xy,z,t(h4)

(
(xhyh1)zh2

)
th3th3 ,

which means that

(xhyh1)zh2 = βx,y,z(h4)βx,yz,t(h4) xβy,z,t(h4)β−1
x,y,zt(h4)β−1

xy,z,t(h4)(xhyh1)zh2 , equality in Θxyz.

Repeating thrice the same process, we end up with

h = βx,y,z(h4)βx,yz,t(h4) xβy,z,t(h4)β−1
x,y,zt(h4)β−1

xy,z,t(h4)h

= βx,y,z(h)βx,yz,t(h) xβy,z,t(h)β−1
x,y,zt(h)β−1

xy,z,t(h),

since h4h = hh4 = h and the involved maps are R-bilinear. Therefore, for any unit h ∈ E, we
have

βxy,z,t ◦ βx,y,zt(h) = xβy,z,t ◦ βx,yz,t ◦ βx,y,z(h).

Since the β−,−,−’s are R-bilinear, this equality implies the 3-cocycle condition, that is,

βxy,z,t ◦ βx,y,zt = xβy,z,t ◦ βx,yz,t ◦ βx,y,z, for every x, y, z, t ∈ G.

A routine computation, using equation (8), shows the last statement.

Corollary 2.6. Let R be a ring with local units and G any group, and fix a factor map
{Θx}x∈G for R and G with its associated cohomology groups. Assume that there is a family of
invertible unital R-bimodules {Ωx}x∈G such that Ωx ∼ Θx (they are similar), for every x ∈ G,
with a family of R-bilinear isomorphisms

Fx,y : Ωx ⊗R Ωy −→ Ωxy.

For x, y, z ∈ G, we denote by αx,y,z : Ωxyz → Ωxyz the resulting isomorphisms which satisfy

αx,y,z ◦ Fx,yz ◦
(

Ωx ⊗R Fy,z
)

= Fxy,z ◦
(
Fx,y ⊗R Ωz

)
. (11)

Then α̃x,y,z defines an element of Z3
Θ(G, U(Z)), where α̃x,y,z is the image of αx,y,z under the

isomorphism of groups stated in Lemma 1.6.

Proof. This is a direct consequence of Proposition 2.5 and Lemma 2.4(2).

We need to clarify the situation when two different classes of representatives are chosen.
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Proposition 2.7. Let R be a ring with a set of local units E and G any group. Consider
two factor maps {FΘ

x,y}x,y ∈G and {FΓ
x,y}x,y ∈G such that, for every x ∈ G, there exists an R-

bilinear isomorphism ax : Γx
∼=→ Θx. Denote by τx,y, where x, y ∈ G, the following R-bilinear

isomorphism

τx,y : Θxy

FΘ
x,y
−1

// Θx ⊗R Θy
∼= // Γx ⊗R Γy

FΓ
x,y // Γxy

∼= // Θxy,

That is,
τx,y ◦ FΘ

x,y ◦ (ax ⊗R ay) = axy ◦ FΓ
x,y.

Then τ̃x,y defines a normalized element of Z2
Θ(G, U(Z)), where τ̃x,y is the image of τx,y under

the isomorphism of groups stated in Lemma 1.6.

Proof. Fix a set of elements x, y, z ∈ G. Assume that we have

xτ̃y,z(h)τ̃x,yz(h) = τ̃x,y(h)τ̃xy,z(h), for every unit h ∈ E. (12)

So taking any element r ∈ R with unit f ∈ Unit{r}, we obtain

τ̃x,yz ◦ xτ̃y,z(r) = τ̃x,yz ◦ xτ̃y,z(fr)
= xτ̃y,z(f)τ̃x,yz(r)

= xτ̃y,z(f)τ̃x,yz(f)r

(12)
= τ̃x,y(f)τ̃xy,z(f)r

= τ̃xy,z

(
τ̃x,y(f)r

)
= τ̃xy,z ◦ τ̃x,y(r),

which shows that τ̃−,− is a 2-cocycle. In fact τ̃−,− is by definition a normalized 2-cocycle.
Equation (12) is fulfilled by following analogue steps as in the proof of Proposition 2.5.

Proposition 2.8. The hypothesis are that of Corollary 2.6. Assume further that there are
two families of invertible unital R-bimodules {Ωx}x∈G and {Γx}x∈G as in Corollary 2.6 (i.e.
Γx ∼ Θx ∼ Ωx), together with families of R-bilinear isomorphisms

FΩ
x,y : Ωx ⊗R Ωy −→ Ωxy, FΓ

x,y : Γx ⊗R Γy −→ Γxy.

Assume also that there are R-bilinear isomorphisms ax : Ωx → Γx, x ∈ G. Consider the
associated 3-cocycles βΩ

−,−,−, β
Γ
−,−,− ∈ Z3

Θ(G, U(Z)) given by Proposition 2.5. Then,

βΩ
−,−,− ◦

(
βΓ
−,−,−

)−1
∈ B2

Θ(G, U(Z)).

That is, they are cohomologous, or [βΩ
−,−,−] = [βΓ

−,−,−] in H3
Θ(G, U(Z)).

Proof. Let us denote by αΩ
−,−,− and αΓ

−,−,− the R-bilinear isomorphisms satisfying equation
(11), respectively, for {Ωx}x∈G and {Γx}x∈G . For any pair x, y ∈ G, we consider the R-bilinear
isomorphism bxy : Ωxy → Ωxy defined by the following equation

axy ◦ bxy ◦ FΩ
x,y = FΓ

x,y ◦
(
ax ⊗R ay

)
. (13)
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We denote by γx,y, x, y ∈ G, the image of bxy under the homomorphism of groups defined in
Lemma 1.6.

Fix x, y, z ∈ G, and consider (tx, ty, tz) ∈ Ωx×Ωy×Ωz and (ux, uy, uz) ∈ Γx×Γy×Γz with
a common unit e ∈ Unit{tx, ty, tz, ux, uy, uz}. Using the notation of the proof of Proposition
2.5, we can write

βΩ
x,y,z(e) tx(tytz) = (txty)tz. (14)

βΓ
x,y,z(e) ux(uyuz) = (uxuy)uz. (15)
γx,y(e) axy(txty) = ax(tx)ay(ty). (16)

A routine computation as in the proof of Proposition 2.5 using equation (14), (15) and (16),
show that, for every unit h ∈ E, we have(

βΩ
x,y,z(h)

)−1
βΓ
x,y,z(h) =

(
γx,yz(h)

)−1 (
xγy,z(h)

)−1
γx,y(h)γxy,z(h).

This implies that

βΓ
x,y,z ◦

(
βΩ
x,y,z

)−1
= γxy,z ◦ γx,y ◦

(
xγy,z

)−1
◦
(
γx,yz

)−1
, in U(Z),

which finishes the proof.

Now we are able to give the right definition of generalized crossed product. We hope it
will result cleaner than the one considered in [13, 14] for rings with identity. In the sequel, R
denotes a ring with a set of local units E.

Definition 2.9. Given a factor map as in Definition 2.1

{FΘ
x,y : Θx ⊗R Θy

∼=−→ Θxy, x, y ∈ G},

with an isomorphism of R-bimodules ι : R→ Θ1, we define its associated generalized crossed
product ∆(Θ) =

⊕
x∈G Θx with multiplication

θxθy = FΘ
x,y(θx ⊗ θy), for θx ∈ Θx, θy ∈ Θy.

It follows that Θ1 is a subring of ∆(Θ) and the map ι : R → Θ1 is a ring isomorphism.
Therefore, ι(E) is a set of local units for Θ1 that serves as well as a set of local units for ∆(Θ).
Normally, we will identify R with Θ1, and, thus, E will be a set of local units for the generalised
crossed product ∆(Θ). Obviously, ∆(Θ) is a G–graded ring such that ΘxΘy = Θxy for every
x, y ∈ G (thus, it could be referred to as a strongly graded ring after [15]). For instance, if we
take Θ as in Example 2.3, then ∆(Θ) is the skew group ring R ∗ G, see [4].

Remark 2.10. A factor map as in Definition 2.1 determines a generalized crossed product Γ =⊕
x∈G Γx with ring isomorphism ι : R→ Γ1 and multiplication given by γxγy = FΓ

x,y(γx⊗Rγy)
for γx ∈ Γx, γy ∈ Γy. In other words, generalized crossed products and factor maps are just
two ways to define the same mathematical object. A generalized crossed product Γ gives
clearly a group homomorphism

Γ : G // Pic(R) , (x 7→ [Γx]).

Whether a general group homomorphism G → Pic(R) gives some generalized crossed product
is not so clear. However, as we have seen in Proposition 2.5, this is possible, if the underlying
maps satisfy the commutativity of diagrams (6) and the associated 3-cocycle is trivial or at
least cohomologically trivial.
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Definition 2.11. A morphism of generalized crossed products (∆(Θ), ν), (∆(Γ), ι) is a graded
ring homomorphism f : ∆(Θ)→ ∆(Γ) such that f ◦ ν = ι. Equivalently, it consists of a set of
homomorphisms of R–bimodules

{fx : Θx → Γx : x ∈ G}

such that all the diagrams

Θx ⊗R Θy

fx⊗fy
��

FΘ
x,y // Θxy

fxy
��

Γx ⊗R Γy
FΓ
x,y

// Γxy

commute, and f1 ◦ ν = ι.

Let R ⊆ S be an extension of rings with the same set of local units E. We denote as in
[9] by InvR(S) the group of all invertible unital R-sub-bimodules of S. An R-sub-bimodule
X ⊆ S belongs to the group InvR(S) if and only if there exists an R-sub-bimodule Y ⊆ S
such that

XY = R = Y X,

where the first and last terms are obviously defined by the multiplication of S. Clearly, there
is a homomorphism of groups µ : InvR(S)→ Pic(R).

Remark 2.12. A generalized crossed product Γ of R with G gives in particular the ring
extension ι : (R,E) → (Γ, E′) with local untis. In this way, Γx is a unital R-subbimodule of
Γ for every x ∈ G, and the isomorphism ι : R → Γ1 becomes R–bilinear. We will identify
Γ1 with R and E with E′. Let us denote by FΓ : Γ ⊗R Γ → Γ the multiplication map of the
ring Γ. It follows from [9, Lemma 1.1] that its restriction to Γx ⊗R Γy gives an R-bilinear
isomorphism

FΓ
xy : Γx ⊗R Γy

' // ΓxΓy = Γxy

for every x, y ∈ G, since, obviously, Γx ∈ InvR(Γ) for every x ∈ G. Clearly, our generalized
crossed product determines a factor map in the sense of Definition 2.1. On the other hand,
the associated homomorphisms of groups Γ : G → Pic(R) actually factors throughout the
morphism µ. That is, we have a commutative diagram of groups

G
Γ //

Γ
!!

Pic(R)

InvR(Γ).

µ

::
(17)

As we have seen in Remark 2.12, one can start with a fixed ring extension R ⊆ S with the
same set of local units E, and then work with the Γ’s defined this time by Γ : G → InvR(S)
instead of the Γ’s. In this case the situation becomes much more manageable, in the sense
that each morphism Γ induces automatically a factor map and vice versa.
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Remark 2.13. As was shown in [13, Remarks 1., 2. and 3.], the above notion generalizes
the classical notion of crossed product in the commutative Galois setting. Specifically, given a
commutative Galois extension k ⊆ R with a finite Galois group G, and consider the canonical
homomorphism of groups Φ0 : G → Pick(R), where Pick(R) = {[P ] ∈ Pic(R)| kp = pk, ∀ k ∈
k, p ∈ P}, which sends x → [Rx] to the class of the R-bimodules Rx whose underlying left
R-module is RR and its right R-module structure was twisted by the automorphism x, see
Example 2.3. In this case, the over ring is chosen to be S = ⊕x∈GΦ0(x) defined as the usual
crossed product attached to Φ0, which is not necessary trivial, that is, defined using any 2-
cocycle. Thus, in the Galois theory of commutative rings, the homomorphism of groups which
leads to the study of intermediate crossed products rings, is the obvious homomorphism of
groups Θ which satisfies Φ0 = µ ◦Θ, where µ is as in diagram (17).

3 An abelian group of generalized crossed products.

From now on, we fix a ring extension R ⊆ S with the same set of local units E. Let G be any
group and assume given a morphism of groups

Θ : G −→ InvR(S),
(
x 7−→ Θx

)
,

where we have used the notation of Remark 2.12. The multiplication of S induces then a
factor map

{FΘ
x,y : Θx ⊗R Θy −→ Θxy, : x, y ∈ G}.

Clearly R = Θ1, whence E is a set of local units for ∆(Θ). We introduce in this section
an abelian group C(Θ/R) whose elements are the isomorphism classes of generalized crossed
products whose homogeneous components are similar as R-bimodules to that of ∆(Θ), see
Section 2 for definition. Our definition is inspired from that of Miyashita [14, §2.], however
the proofs presented here are slightly different. This group will be crucial for the construction
of the seven terms exact sequence of groups in the next section.

Let us consider thus the set C(Θ/R) of isomorphism classes of generalized crossed products
[∆(Γ)] such that, for each x ∈ G, we have Γx ∼ Θx, that is they are similar as R-bimodules,
see Section 1.

Proposition 3.1. Consider the set of isomorphisms classes of generalized crossed products
C(Θ/R) defined above. Then C(Θ/R) has the structure of an abelian group. Moreover the
subset C0(Θ/R) consisting of classes [∆(Λ)] such that for every x ∈ G, Λx ∼= Θx as R-
bimodules, is a sub-group of C(Θ/R).

Proof. Given two classes [∆(Ω)], [∆(Γ)] ∈ C(Θ/R), their multiplication is defined by

[∆(Ω)] [∆(Γ)] = [ ⊕
x∈G

Ωx ⊗R Θx−1 ⊗R Γx].

The factor maps of its representative generalized crossed product are given by the following
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composition

Ωx ⊗R Θx−1 ⊗R Γx ⊗R Ωy ⊗R Θy−1 ⊗R Γy

Ωx⊗TΘ
x−1⊗Γx,Ωy⊗RΘ

y−1
⊗Γy

**

FΩΓ
x,y

22

Ωx ⊗R Ωy ⊗R Θy−1 ⊗R Θx−1 ⊗R Γx ⊗R Γy

FΩ
x,y⊗FΘ

y−1,x−1⊗FΓ
x,y

��
Ωxy ⊗R Θ(xy)−1 ⊗R Γxy,

where TΘx−1⊗Γx,Ωy⊗RΘy−1 is the twist R-bilinear map defined in Proposition 1.3. The asso-
ciativity of the FΩΓ

−,−’s is easily deduced using Lemma 1.4. This multiplication is commutative
since for any two classes [∆(Ω)], [∆(Γ)] ∈ C(Θ/R), we have a family of R-bilinear isomorphisms

Γx ⊗R Θx−1 ⊗R Ωx
∼= //

∼=

//

Γx ⊗R Θx−1 ⊗R Ωx ⊗R Θx−1 ⊗R Θx

T⊗Θx

��
Ωx ⊗R Θx−1 ⊗R Γx ⊗R Θx−1 ⊗R Θx

∼=

��
Ωx ⊗R Θx−1 ⊗R Γx,

which is easily shown to be compatible with both factors maps of Γ and Ω. Thus, it induces
an isomorphism at the level of generalized crossed products.

It is clear that the class of [∆(Θ)] is the unit of this multiplication. The inverse of any
class [∆(Ω)] is given by

[∆(Ω)]−1 = [ ⊕
x∈G

Θx ⊗R Ωx−1 ⊗R Θx].

Lastly, the fact that C0(Θ/R) is a sub-group of C(Θ/R), can be immediately deduced from
definitions.

Proposition 3.2. Consider the abelian group C0(Θ/R) of Proposition 3.1. Then there is an
isomorphism of groups

C0(Θ/R) ∼= H2
Θ(G,U(Z)).

Proof. The stated isomorphism is given by the following map:

ζ : C0(Θ/R) −→ H2
Θ(G,U(Z)),

(
[∆(Λ)] 7−→ [τ̃−,−]

)
,
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where τ̃−,− is the normalized 2-cocycle defined in Proposition 2.7 and [τ̃−,−] denotes its
equivalence class in H2

Θ(G,U(Z)). First we need to show that this map is in fact well de-
fined. To do so, we take two isomorphic generalized crossed products χ : ∆(Λ)

∼=→ ∆(Σ)
which represent the same element in the subgroup C0(Θ/R), with R-bilinear isomorphisms
ax : Λx → Θx ← Σx : bx, for all x ∈ G. Then we check that the associated 2-cocycles are
cohomologous. So let us denote these cocycles by τ̃−,− and γ̃−,− associated, respectively, to
∆(Λ) and ∆(Σ). We need to show that [τ̃−,−] = [γ̃−,−]. Recall from Proposition 2.7 that we
have

τx,y ◦ FΘ
x,y ◦

(
ax ⊗R ay

)
= axy ◦ FΛ

x,y, γx,y ◦ FΘ
x,y ◦

(
bx ⊗R by

)
= bxy ◦ FΣ

x,y,

for every x, y ∈ G, where FΛ
−,− and FΣ

−,− are, respectively, the factor maps relative to Λ and
Σ. For each x ∈ G, we set the following R-bilinear isomorphism

βx : Θx
a−1
x // Λx

χx // Σx
bx // Θx ,

where χx is the x-homogeneous component of the isomorphism χ. Then it is easily seen, using
the fact that χ is morphism of generalized crossed products, that, for each pair of elements
x, y ∈ G, we have

βxy ◦ τx,y ◦ FΘ
x,y = γx,y ◦ FΘ

x,y ◦
(
βx ⊗R βy

)
. (18)

We claim that
τ̃x,y(e)β̃xy(e) = γ̃x,y(e)β̃x(e)xβ̃y(e), for all e ∈ E. (19)

So let e ∈ E, and consider its decomposition e =
∑

(e) xexe with respect to Θx, for a given
x ∈ G. Let e1 ∈ Unit{xe, xe}. Using equation (18), we get the following equality in S∑

(e), (e1)

βxy ◦ τx,y(xeye1)ye1xe =
∑

(e), (e1)

γx,y

(
βx(xe)βy(ye1)

)
ye1xe. (20)

Routine computations show that,∑
(e), (e1)

βxyτx,y(xeye1)ye1xe = τ̃x,y(e1)β̃xy(e1)e = τ̃x,y(e)β̃xy(e), and

∑
(e), (e1)

γxy

(
βx(xe)βy(ye1)

)
ye1xe

(8)
= γ̃x,y(e1)β̃x(e1)xβ̃y(e1)e = γ̃x,y(e)β̃x(e)xβ̃y(e),

which by (20) imply that

τ̃x,y(e)β̃xy(e) = γ̃x,y(e)β̃x(e)xβ̃y(e),

which is the claimed equality. On the other hand we define

h : G // U(Z) = AutR−R(R)

x � //
(
hx : r 7−→

∑
(e) rβx(xe)xe

)
where e ∈ Unit{r}, and e =

∑
(e) xexe is the decomposition of e in R = ΘxΘx−1 . It is clear

form definitions that β̃x = hx, for ever x ∈ G. Taking an arbitrary element r ∈ R, we can
show using equation (19) that

τ̃x,y ◦ hxy(r) = γ̃x,y ◦ xhy ◦ hx(r).
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Therefore, τ̃x,y ◦ hxy = γ̃x,y ◦ xhy ◦ hx, which means that τ̃−,− and γ̃−,− are cohomologous.
By the same way, we show that, if τ̃−,− and γ̃−,− are cohomologous, then ∆(Λ/R) and

∆(Σ/R) are isomorphic as generalized crossed products, which means that the stated map ζ
is injective. To show that this map is surjective, we start with a given normalized 2-cocycle
σ−,− : G2 → U(Z), and consider the following R-bilinear automorphisms: for every x ∈ G

ϑx : Θx −→ Θx,
(
u 7−→ σx,x(e)u

)
,

where e ∈ Unit{u}. Now set Σx = Θx as an R-bimodule with the R-bilinear isomorphism
ϑx : Σx → Θx previously defined. We define new factor maps relative to those Σx’s, by

FΣ
x,y : Σx ⊗R Σy → Σxy,

(
ux ⊗R uy 7−→ σx,y(e)FΘ

x,y(ux ⊗R uy)
)
,

where e ∈ Unit{ux, uy}. The 2-cocycle condition on σ−,− gives the associativity of FΣ
−,−, while

the normalized condition gives the unitary property. Thus, ∆(Σ/R) is a generalized crossed
product whose isomorphic class belongs by definition to the sub-group C0(Θ/R).

Lastly, by a routine computation, using the definition of the twist natural map given in
Proposition 1.3, we show that the map ζ is a homomorphism of groups.

4 The Chase-Harrison-Rosenberg seven terms exact sequence.

In this section we show the analogue of Chase-Harrison-Rosenberg’s [5] seven terms exact
sequence, generalizing by this the case of commutative Galois extensions with finite Galois
group due of T. Kanzaki [13, Theorem p.187] and the noncommutative unital case treated by
Y. Miyashita in [14, Theorem 2.12].

From now on we fix a ring extension R ⊆ S with a same set of local units E, together
with a morphism of groups Θ : G → InvR(S) and the associated generalized crossed product
∆(Θ/R) having FΘ

−,− as a factor map relative to Θ.
We denote by Pic(R) and Pic(S), respectively, the Picard group of R and S. There is a

canonical left G-action onPic(R) induced by the obvious homomorphism of groups InvR(S)→
Pic(R) given explicitly by

x[P ] = [Θx ⊗R P ⊗R Θx−1 ], for every x ∈ G, and [P ] ∈ Pic(R).

The corresponding G-invariant sub-group is denoted by Pic(R)G . We will consider the sub-
group PicZ(R) whose elements are represented by Z-invariant R-bimodules, in the sense that

[P ] ∈ PicZ(R), if and only if [P ] ∈ Pic(R), and z(e)pe′ = epz(e′), ∀p ∈ P,

for every pair of units e, e′ ∈ E, and every element z ∈ Z. In this way, we set

PicZ(R)G := PicZ(R) ∩ Pic(R)G .

Recall from [9, Sect. 3] the group P(S/R):

P(S/R) =
{

[P ] [φ] +3 [X] | [P ] ∈ Pic(R), [X] ∈ Pic(S), and a map φ : RPR → RXR

}
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where at least one of the maps φl : P ⊗R S → X, or φr : S ⊗R P → X, canonically attached
to φ, is an isomorphisms of bimodules. For more details on the structure group of this set we
refer to [9, Section 3.]. Obviously there is a homomorphism of groups

Ol : P(S/R) −→ Pic(R),
(

( [P ] [φ] +3 [X] ) 7−→ [P ]
)
. (21)

This group also inherits the above G-action. That is, there is a canonical left G-action on this
group which is induced by Θ and given as follows:

x
(

[P ] [φ] +3 [X]
)

=
(

[Θx ⊗R P ⊗R Θx−1 ] [ψ] +3 [X]
)
,

where ψ := Θx⊗Rφ⊗RΘx−1 (composed with the multiplication of S). The subgroup P(S/R)G

of G-invariant elements of P(S/R) has a slightly simpler description:

Lemma 4.1. Keeping the above notations, we have

P(S/R)G =
{

[P ] [φ] +3 [X] ∈ P(S/R)| φ(P )Θx = Θxφ(P ), for every x ∈ G
}
,

where φ(P )Θx and Θxφ(P ) stand for the obvious subsets of the S-bimodule X, e.g.

φ(P ) Θx =

∑
finite

φ(pi)u
i
x| pi ∈ P, uix ∈ Θx

 .

Proof. Is based up on two main facts. The first one is that the R-bilinear map φ : P → X
defining the given element [P ] [φ] +3 [X] ∈ P(S/R), is always injective, see [9, Lemma 3.1].
The second fact consists on the following equivalence: For a fixed x ∈ G, saying that φ(P )Θx =
Θxφ(P ) in SXS is equivalent to say that there is an isomorphism fx : P ∼= Θx ⊗R P ⊗R Θx−1

which completes the commutativity of the following diagram

P
φ //

fx

��

X

Θx ⊗R P ⊗R Θx−1

ψ

33
Θx⊗φ⊗Θx−1 // Θx ⊗R X ⊗R Θx−1

� � / S ⊗R X ⊗R S // X.

The later means, by the definition of P(S/R), that(
[P ] [φ] +3 [X]

)
=
(

[Θx ⊗ P ⊗ Θx−1 ] [ψ] +3 [X]
)
.

4.1 The first exact sequence.

Now we set
PZ(S/R) =

{
[P ] [φ] +3 [X] ∈ P(S/R)| [P ] ∈ PicZ(R)

}
,
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and
PZ(S/R)G = PZ(S/R) ∩ P(S/R)G .

On the other hand, we consider the group AutR−ring(S) of all R-ring automorphisms of
S (with same set of local units). It has the following subgroup

AutR−ring(S)(G) =
{
f ∈ AutR−ring(S)| f(Θx) = Θx, for all x ∈ G

}
.

There are two interesting maps which will be used in the sequel: The first one is given by

E : AutR−ring(S) −→ P(S/R),
(
f 7−→ ( [R] [ιf ] +3 [Sf ] )

)
,

where ιf is the inclusion R ⊂ Sf , and Sf is the S-bimodule induced from the automorphism
f , that is, the left S-action is that of SS, while the right one has been altered by f , that is,
we have a new left S-action

s.s′ = s f(s′), for all s, s′ ∈ S.

The second connects the group U(Z) with AutR−ring(S), and it is defined by

F : U(Z) = AutR−R(R) −→ AutR−ring(S),
(
σ 7−→

[
F(σ) : s 7→ σ−1(e) s σ(e)

])
, (22)

where e ∈ Unit{s}, s ∈ S.

Proposition 4.2. Keeping the previous notations, there is a commutative diagram whose rows
are exact sequences of groups

U(Z) = AutR−R(R)
F // AutR−ring(S)

E // P(S/R)
Ol // Pic(R)

U(Z) = AutR−R(R) // AutR−ring(S)(G) //
?�

O

PZ(S/R)G //
?�

O

PicZ(R)G .
?�

O

Proof. The exactness of the first row was proved in [9, Proposition 5.1]. The commutativity as
well as the exactness of the second row, using routine computations, are immediately deduced
from the definition of the involved maps.

The conditions under assumption, that is, the existence of Θ : G → InvR(S) a homo-
morphism of groups with a given extension of rings R ⊆ S with the same set of local units
E, are satisfied for the extension R ⊆ ∆(Θ). Precisely, the map Θ factors thought out a
homomorphism of groups Θ

′
: G → InvR(∆(Θ)),

(
x 7→ Θx

)
, as R ⊆ ∆(Θ) is an extension of

rings with the same set of local units E. Thus, applying Proposition 4.2 to this extension, we
obtain the first statement of the following corollary.

Corollary 4.3. Consider the generalized crossed product ∆ := ∆(Θ) of S with G. Then there
is an exact sequence of groups

1 // U(Z) // AutR−ring(∆)(G) // PZ(∆/R)G // PicZ(R)G .

In particular, we have the following exact sequence of groups

1 // H1
Θ(G, U(Z))

S1 // PZ(∆/R)G
S2 // PicZ(R)G .
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Proof. We only need to check the particular statement. So let f ∈ AutR−ring(∆)(G), this
gives a family of R-bilinear isomorphisms fx : Θx → Θx, x ∈ G, which by Lemma 1.6 lead to
a map

σ : G −→ U(Z),
(
x 7−→ f̃x

)
,

as Θx ∈ InvR(S). An easy verification, using (8), shows that, for every unit e ∈ E, we have

f̃xy(e) = f̃x(e)xf̃y(e). (23)

Therefore,
σxy = σx ◦ xσy, for every x, y ∈ G.

That is, σ is a normalized 1-cocycle, i.e. σ ∈ Z1
Θ(G,U(Z)).

Conversely, given a normalized 1-cocycle γ ∈ Z1
Θ(G,U(Z)), we consider the R-bilinear

isomorphisms

gx : Θx −→ Θx,
(
u 7−→ γx(e)u

)
, where e ∈ Unit{u}, u ∈ Θx.

Clearly, the direct sum g := ⊕x∈Ggx defines an automorphism of generalized crossed product.
Hence, g ∈ AutR−ring(∆)(G).

In conclusion we have constructed mutually inverse maps which in fact establish an iso-
morphism of groups

AutR−ring(∆)(G) ∼= Z1
Θ(G,U(Z)). (24)

Now let us consider en element u ∈ U(Z) = AutR−R(R), and its image F(u) under the map
F defined in (22) using the extension R ⊆ ∆. Then, for every element a ∈ Θx, we have

F(u)(a) = u−1(e) a u(e), e ∈ Unit{a}
(8)
= u−1(e) xu(e) a.

Therefore, u defines, under the isomorphism of (24), a 1-coboundary,

G −→ U(Z),
(
x 7−→ xu ◦ u−1

)
.

We have then constructed an isomorphism of groups

AutR−ring(∆)(G)/AutR−R(R) ∼= H1
Θ(G, U(Z)).

The exactness follows now from the first statement which is a particular case of Proposition
4.2.

4.2 The second exact sequence.

For any element [P ] ∈ Pic(R), we will denote by [P−1] its inverse element. Let us consider
the following groups

PicZ(R)(G) :=
{

[P ] ∈ PicZ(R)| P ⊗R Θx ⊗R P−1 ∼ Θx, for all x ∈ G
}
.

A routine computation shows that this is a subgroup of PicZ(R) which contains the sub-
group of all G-invariant elements. That is, there is a homomorphism of groups PicZ(R)G →
PicZ(R)(G).

21



Given an element [P ] ∈ PicZ(R)(G), set Ωx := P⊗RΘx⊗RP−1, for every x ∈ G. Consider
now the family of R-bilinear isomorphisms

FΩ
x,y : Ωx ⊗R Ωy → Ωxy

which is defined using the factor maps FΘ
x,y and the isomorphism P⊗RP−1 ∼= R. This is clearly

a factor map relative to the homomorphism of groups Ω : G → InvR(S) sending x 7→ Ωx.
This gives us a generalized crossed product ∆(Ω), and in fact establishes a homomorphism of
groups

L : PicZ(R)(G) → C(Θ/R),

where the right hand group was defined in Section 3. The proof of the following lemma is left
to the reader.

Lemma 4.4. Keep the above notations. There is a commutative diagram of groups

PicZ(R)G� _

�

L // C0(Θ/R)� _

�
PicZ(R)(G) L // C(Θ/R).

Now we can show our second exact sequence.

Proposition 4.5. Let ∆(Θ) be a generalized crossed product of S with G. Then there is an
exact sequence of groups

PZ(∆(Θ)/R)G
S2 // PicZ(R)G

S3 // C0(Θ/R),

where S2 and S3 are, respectively, the restrictions of the map Ol given in equation (21) attached
to the extension R ⊆ ∆(Θ), and of the map defined in Lemma 4.4.

Proof. Let [P ] ∈ PicZ(R)G such that S3([P ]) = [∆(Ω)] = [∆(Θ)], where for every x ∈ G,
Ωx = P⊗RΘx⊗RP−1. This means that we have an isomorphism ∆(Ω) ∼= ∆(Θ) of generalized
crossed products, and so a family of R-bilinear isomorphisms ιx : Θx⊗RP ∼= P ⊗RΘx, x ∈ G.
We then obtain an R-bilinear isomorphism

ι = ⊕
x∈G

ιx : ∆(Θ)⊗R P −→ P ⊗R ∆(Θ),

which in fact satisfies the conditions stated in [8, Eq. (5.1) and (5.2), p. 161]. This implies
that ∆(Θ)⊗RP admits a structure of ∆(Θ)-bimodule whose underlying left structure is given
by that of ∆(Θ)∆(Θ). In this way, the previous map ι becomes an isomorphism of (∆(Θ), R)-
bimodules, and so we have

(∆(Θ)⊗R P )⊗∆(Θ) (P−1 ⊗R ∆(Θ)) ∼= (∆(Θ)⊗R P )⊗∆(Θ) (∆(Θ)⊗R P−1)

∼= ∆(Θ)⊗R P ⊗R P−1

∼= ∆(Θ),

an isomorphism of ∆(Θ)-bimodules. Whence the isomorphic class of ∆(Θ) ⊗R P belongs to
Pic(∆(Θ)). We have then constructed an element [P ] [φ] +3 [∆(Θ)⊗R P ] of the group
P(∆(Θ)/R), where φ is the obvious map

φ : P −→ ∆(Θ)⊗R P,
(
p 7−→ e⊗R p

)
,
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where e ∈ Unit{p}. It is clear that, for every x ∈ G, the equality φ(P )Θx = Θxφ(P ) holds
true in ∆(Θ)⊗R P . Thus, [P ] [φ] +3 [∆(Θ)⊗R P ] ∈ PZ(∆(Θ)/R)(G) and

S2

(
[P ] [φ] +3 [∆(Θ)⊗R P ]

)
= [P ].

This shows the inclusion Ker(S3) ⊆ Im(S2).
Conversely, let [Q] ∈ Im(S2), that is, there exists an element [Q] [ψ] +3 [Y ] ∈ PZ(∆(Θ)/R)G .

We need to compute the image S3([Q]). From the choice of [Q] we know that [Q] ∈ PicZ(R)
and that, for every x ∈ G, ψ(Q)Θx = Θxψ(Q) in the ∆(Θ)-bimodule Y . As in the proof of
Lemma 4.1, the later means that, there are R-bilinear isomorphisms:

fx : Q⊗R Θx
∼=−→ Θx ⊗R Q, for every x ∈ G,

which convert commutative the following diagrams

Q⊗R Θx ⊗R Θy

Q⊗FΘ
x,y //

fx⊗Θy

��

Q⊗R Θxy

fxy

��

� t

'
Y

Θx ⊗R Q⊗R Θy

Θx⊗fy **

Θxy ⊗R Q
* 


7

Θx ⊗R Θy ⊗R Q
FΘ
x,y⊗Q

55

Coming back to the image S3([Q]) := [∆(Γ)], we know that for every x ∈ G, we have Γx =
Q ⊗R Θx ⊗R Q−1 ∼= Θx, via the fx’s. The above commutative diagram shows that these
isomorphisms are compatible with the factor maps FΓ

x,y and FΘ
x,y. Therefore, ∆(Θ) ∼= ∆(Γ)

as generalized crossed products, and so S3([Q]) = [∆(Θ)] the neutral element of the group
C0(Θ/R).

4.3 Comparison with a previous alternative exact sequence.

Let us assume here that Θ : G σ→ Aut(R) → Pic(R), as in Example 2.3. We consider
the extension R ⊂ RG, where S := RG = ∆(Θ) is the skew group ring of R by G. Thus
Θ : G → InvR(S) factors though out µ as in diagram (17). In what follows, we want to
explain the relation between the five terms exact sequence given in [4, Theorem 2.8], and the
resulting one by combining Proposition 4.5 and Corollary 4.3, that is the sequence

1 // H1
Θ(G, U(Z))

S1 // PZ(∆(Θ)/R)G
S2 // PicZ(R)G

S3 // H2
Θ(G,U(Z)) ∼= C0(Θ/R).

As we argued in Example 2.3, the cohomology H∗Θ(G,U(Z)) coincides with that considered in
[4]. Thus, following the notation of [4], the result [4, Theorem 2.8] says that

1 // H1
Θ(G, U(Z))

ϕσ // G-Pic(R)
Fσ // Pic(R)G

Φσ // H2
Θ(G,U(Z))
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is an exact sequence (of pointed sets). It is not difficult to see that the restriction of Φσ

to PicZ(R)G gives exactly S3. On the other hand, for any element [P ] [φ] +3 [X] ∈
PZ(∆(Θ)/R)G , we will define an object (P, τ) where τ : G → AutZ(P ) (to the group of
additive automorphisms of P ) is a G-homomorphism [4, Definition 2.3]. As in the proof of
Lemma 4.1, we know that there is a family of R-bilinear isomorphisms jx : Rx⊗RP → P⊗RRx,
x ∈ G, so we define τ by the following composition

τx : x
−1P

∼= // Rx ⊗R P
jx // P ⊗R Rx

∼= // P x,

here P y denotes the R-bimodule constructed from P by twisting its right module structure
using the automorphism y, and the same construction is used on the left. To check that τ is
a homomorphism of groups, one uses the equality

jxy ◦ (FΘ
x,y ⊗R P ) = (P ⊗R FΘ

x,y) ◦ (jx ⊗R Ry) ◦ (Rx ⊗R jy), for all x, y ∈ G.

Now, if we take another representative, that is, if we assume that

[P ] [φ] +3 [X] = [P ′] [φ′] +3 [X ′] ∈ PZ(∆(Θ)/R)G ,

then, by the definition of the group P(∆(Θ)/R), see [9, Section 3], there are bilinear isomor-
phisms f : P → P ′ and g : X → X ′ such that

P
φ //

f
��

X

g

��
P ′

φ′
// X ′

commutes. In this way we have also the following commutative diagram

Rx ⊗R P
jx //

Rx⊗f
��

P ⊗R Rx

f⊗Rx
��

Rx ⊗R P ′
j′x

// P ′ ⊗R Rx,

which says that τ ′x ◦ f = f ◦ τx. This implies that [P, τ ] = [P ′, τ ′] in the group G-Pic(R).
We then have constructed a monomorphism of groups PZ(∆(Θ)/R)G → G-Pic(R) such that
the restriction of the map Fσ to PZ(∆(Θ)/R)G is exactly S2. We leave to the reader to check
that we furthermore obtain a commutative diagram

1 // H1
Θ(G, U(Z))

S1 // PZ(∆(Θ)/R)G� _

��

S2 // PicZ(R)G� _

��

S3 // H2
Θ(G,U(Z))

1 // H1
Θ(G, U(Z))

ϕσ // G-Pic(R)
Fσ // Pic(R)G

Φσ // H2
Θ(G,U(Z)).
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4.4 The third exact sequence.

We define the group B(Θ/R) as the quotient group

PicZ(R)(G) L // C(Θ/R) // B(Θ/R) // 1, (25)

where L is the map defined in Lemma 4.4.
The third exact sequence of groups is stated in the following

Proposition 4.6. Let ∆(Θ) be a generalized crossed product of S with G. Then there is an
exact sequence of groups

PicZ(R)G
S3 // C0(Θ/R)

S4 // B(Θ/R),

where S3 and S4 are constructed from the sequence (25) and the commutativity of the diagram
stated in Lemma 4.4.

Proof. The inclusion Im(S3) ⊆ Ker(S4) is by construction trivial. Now, let [∆(Γ)] ∈ C0(Θ/R)
such that S4([∆(Γ)]) = 1. By the definition of the group B(Θ/R), there exists [P ] ∈
PicZ(R)(G) such that L([P ]) = [∆(Γ)]. Therefore, we obtain a chain of R-bilinear iso-
morphisms:

Θx
∼= Γx ∼= P ⊗R Θx ⊗R P−1, for all x ∈ G,

which means that [P ] ∈ PicZ(R)G , and so [∆(Γ)] = S3([P ]) which completes the proof.

Remark 4.7. In the case of a unital commutative Galois extension k ⊆ R with a finite Galois
group, see for instance [3, p. 396], and taking the extension R ⊆ S and Θ as in Remark
2.13. The homomorphism S4 coincides, up to the isomorphism of Proposition 3.2, with the
homomorphism of groups defined in [3, Theorem A 12, p. 406] and where the group B(Θ/R)
coincides with the Brauer group of the k-Azumaya algebras split by R.

4.5 The fourth exact sequence.

Consider the following subgroup of the Picard group Pic(R):

Pic0(R) =
{

[P ] ∈ Pic(R)| P ∼ R, as bimodules
}
.

As we have seen in Proposition 1.3, this is an abelian group. Clearly it inherits the G-module
structure of Pic(R): The action is given by

x[P ] = [Θx ⊗R P ⊗R Θx−1 ], for every x ∈ G.

Lemma 4.8. Keep the above notations. Then the map

C(Θ/R)
ζ // Z1(G,Pic0(R))

[∆(Γ)] � //
[
x 7−→ [Γx][Θx−1 ]

]
defines a homomorphism of groups. Furthermore, there is an exact sequence of groups

1 // C0(Θ/R) // C(Θ/R)
ζ // Z1(G,Pic0(R)).
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Proof. The first claim is immediate from the definitions, as well as the inclusion C0(Θ/R) ⊆
Ker(ζ). Conversely, given an element [∆(Γ)] ∈ C(Θ/R) such that ζ([∆(Γ)]) = 1. This
implies that for every x ∈ G, there is an isomorphism of R-bimodule Γx⊗RΘx−1

∼= R. Hence,
Γx ∼= Θx, for every x ∈ G, which means that [∆(Γ)] ∈ C0(Θ/R).

We define another abelian group, which in the commutative Galois case [13], coincides with
the first cohomology group of G with coefficients in Pic0(R). It is defined by the following
commutative diagram

PicZ(R)(G) //

L &&

Z1(G,Pic0(R)) // H
1
(G,Pic0(R)) // 1

C(Θ/R)

ζ

77

whose row is an exact sequence. Our fourth exact sequence is given by the following.

Proposition 4.9. Let ∆(Θ) be a generalized crossed product of S with G. Then there is an
exact sequence of groups

C0(Θ/R)
S4 // B(Θ/R)

S5 // H
1
(G,Pic0(R)).

Proof. First we need to define S5. We construct it as the map which completes the commuta-
tivity of the diagram

C0(Θ/R)� _

��

S4

))
PicZ(R)(G) L // C(Θ/R)

Lc //

ζ

��

B(Θ/R)

S5

��

// 1

Z1(G,Pic0(R)) // H
1
(G,Pic0(R)) // 1,

whose first row is exact.
The fact that Im(S4) ⊆ Ker(S5) is easily deduced from the previous diagram and Lemma

4.8. Conversely, let Ξ = Lc([∆(Γ)]), for some [∆(Γ)] ∈ C(Θ/R), be an element in B(Θ/R)
(here f c denotes the cokernel map of f), such that S5(Ξ) = S5 ◦ Lc([∆(Γ)]) = 1. Then
(ζL)c ◦ ζ([∆(Γ)]) = 1, which implies that ζ([∆(Γ)]) ∈ ζ

(
L(PicZ(R)(G))

)
. Therefore, there

exists an element [P ] ∈ PicZ(R)(G) such that [∆(Γ)]L([P ])−1 ∈ Ker(ζ) = C0(Θ/R) by
Lemma 4.8. Now, we have

S4

(
[∆(Γ)]L([P ])−1

)
= S4

(
[∆(Γ)]L([P−1])

)
= Lc([∆(Γ)])LcL([P−1])

= Lc([∆(Γ)]) = Ξ,

and this shows that Ξ ∈ Im(S4).
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4.6 The fifth exact sequence and the main Theorem.

Keep from Subsection 4.5 the definition of the group Pic0(R) with its structure of G-module.
Before stating the fifth sequence, we will need first to give a homomorphism of group from
the group H1

(G,Pic0(R)) to the third cohomology group H3
Θ(G,U(Z)).

Given a normalized 1-cocycle g ∈ Z1(G,Pic0(R)) and put gx = [∇x]. Then, for every
pair of elements x, y ∈ G, one can easily shows that

xgy [Θx] = [Θx] gy. (26)

Now, for every x ∈ G, we set

[Ux] := gx[Θx], in Pic(R).

By the cocycle condition, we obtain

[Uxy] = gxy[Θxy]

= gx
xgy[Θx][Θy]

(26)
= gx[Θx] gy[Θy]

= [Ux][Uy].

This means that there are R-bilinear isomorphisms

Fgx,y : Ux ⊗R Uy −→ Uxy, (27)

with Fg1,x = id = Fgx,1 for every x ∈ G. By Proposition 2.5, we have a 3-cocycle in
Z3

Θ(G,U(Z)) attached to these maps Fg−,−, which we denote by αg−,−,−. If there is an-
other class [Vx] ∈ Pic(R) such that [Vx] = gx[Θx], for every x ∈ G, then the families
of invertible R-bimodules {Vx}x∈G and {Ux}x∈G satisfy the conditions of Proposition 2.8.
Therefore, the associated 3-cocycles are cohomologous. This means that the correspondence
g 7→ [αg−,−,−] ∈ H3

Θ(G,U(Z)) is a well defined map. Henceforth, we have a well defined
homomorphism of groups

Z1(G,Pic0(R))
S13 // H3

Θ(G,U(Z))

g � // [αg−,−,−].

(28)

The proof of the fact that S13 is a multiplicative map uses Lemma 1.1(ii) and the twisted
natural transformation of Proposition 1.3. Complete and detailed steps of this proof are
omitted.

Proposition 4.10. Let R ⊆ S be an extension of rings with the same set of local units, and
∆(Θ) a generalized crossed product of S with G. Then the homomorphism of formula (28)
satisfies S13 ◦ ζ = [1], where ζ is the homomorphism of Lemma 4.8. Furthermore, there is a
commutative diagram of groups

PicZ(R)(G) (ζ◦L) // Z1(G,Pic0(R))

S13

��

// H
1
(G,Pic0(R))

S6

vv

// 1

H3
Θ(G,U(Z))

with exact row.
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Proof. We need to check that S13 ◦ ζ([∆(Γ)]) = [1], for any element [∆(Γ)] ∈ C(Θ/R). Set
f = ζ([∆(Γ)]), so we have fx[Θx] = [Γx], for every x ∈ G. Thus, the corresponding maps
Ff−.− of formula (27), are exactly given by the factor maps FΓ

−,− of ∆(Γ) relative to Γ. They
define an associative multiplication on ∆(Γ), and so induce a trivial 3-cocycle, which means
that S13(f) = [1]. The last statement is now clear.

At this level we are ending up with the following commutative diagram

PicZ(R)G� _

��

S3 // C0(Θ/R)� _

��

S4

**
1 // PicZ(R)(G) L // C(Θ/R)

ζ
��

Lc // B(Θ/R) //

S5
��

1

PicZ(R)(G) (ζ◦L) // Z1(G,Pic0(R))

S13
��

(ζ◦L)c // H
1
(G,Pic0(R))

S6tt

// 1

H3
Θ(G,U(Z))

Proposition 4.11. Let ∆(Θ) be a generalized crossed product of S with G. Then there is an
exact sequence of groups

B(Θ/R)
S5 // H

1
(G,Pic0(R))

S6 // H3
Θ(G,U(Z)).

Proof. It is clear from the above diagram that Im(S5) ⊆ Ker(S6) since by Proposition 4.10
S13 ◦ ζ = [1]. Conversely, let us consider a class [h] ∈ H1

(G,Pic0(R)) such that S6([h]) = 1,
for some element h ∈ Z1(G,Pic0(R)). By the same diagram, we also have that the class
S13(h) = [1] ∈ H3

Θ(G,U(Z)). This says that S13(h) = [β], for some β ∈ B3
Θ(G,U(Z)), and so

there exists σ−,− : G × G → U(Z) such that

βx,y,z = σx,yz
xσy,z σ

−1
x,y σ

−1
xy,z,

for every x, y, z ∈ G. Now, for each x ∈ G, we put hx[Θx] = [Ωx], and consider Fh−,− the
associated family of maps as in (27), Fhx,y : Ωx ⊗R Ωy → Ωxy, where x, y ∈ G. By definition
the β−,−,−’s satisfy

βx,y,z ◦ Fhx,yz ◦
(
Fhx,y ⊗R Ωz

)
= Fhxy,z ◦

(
Ωx ⊗R Fhy,z

)
,

for every x, y, z ∈ G. In this way, there are factor maps FΩ
−,− relative to Ω, defined by

FΩ
x,y : Ωx ⊗R Ωy

// Ωxy

ωx ⊗R ωy � // σx,y(e)Fhx,y(ωx ⊗R ωy),

where e ∈ Unit{ωx, ωy}. A routine computation shows that ∆(Ω) is actually a generalized
crossed product of S with G with factor maps FΩ

−,− relative to Ω.
On the other hand, since for each x ∈ G, hx ∈ Pic0(R), we have Ωx ∼ Θx. Thus

[∆(Ω)] ∈ C(Θ/R) with ζ([∆(Ω)]) = h. Whence

(ζL)c(h) = [h] = (ζL)c ◦ ζ([∆(Ω)]) = S5(Lc([∆(Ω)])),

which implies that [h] ∈ Im(S5), and this completes the proof.
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The following diagram summarizes the information we have shown so far.

H1
Θ(G,U(Z))

S1 // PZ(∆/R)
S2 // PicZ(R)G� _

��

S3 // H2
Θ(G,U(Z))

� _

��

S4

))
PicZ(R)(G) L // C(Θ/R)

ζ
��

Lc // B(Θ/R)

S5
��

PicZ(R)(G) (ζ◦L) // Z1(G,Pic0(R))

S13
��

(ζ◦L)c // H
1
(G,Pic0(R))

S6uu
H3

Θ(G,U(Z))

We are now in position to announce our main result.

Theorem 4.12. Let R ⊆ S be an extension of rings with the same set of local units, and
∆(Θ) a generalized crossed product of S with a group G. Then there is an exact sequence of
groups

1 // H1
Θ(G, U(Z))

S1 // PZ(∆/R)G
S2 // PicZ(R)G

S3 // H2
Θ(G,U(Z))

S4 // B(Θ/R)

S5 // H
1
(G,Pic0(R))

S6 // H3
Θ(G,U(Z)).

Proof. This is a direct consequence of Corollary 4.3 and Propositions 4.5, 4.6, 4.9, and 4.11.

Acknowledgement. We thank the referee for a careful reading of our manuscript and
for pointing out the existence of the paper [4].
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