SUPPORTING INFORMATION

On the existence of -agostic bonds: bond analyses of titanium alkyl complexes

Isaac Vidal,¹ Santiago Melchor,¹ Ibón Alkorta,² José Elguero,² Markku R. Sundberg,³ and José A. Dobado^{1,*}

¹ Grupo de Modelización y Diseño Molecular. Departamento de Química Orgánica. Universidad de Granada. (Spain)

² Instituto de Química Médica C.S.I.C. (Spain)

³ Laboratory of Inorganic Chemistry, Department of Chemistry. University of Helsinki (Finland)

AUTHOR EMAIL ADDRESS: dobado@ugr.es

- **Table S-1.** Selected parameters for **1a-5a** calculated at the MP2/6-311++G(3df,2p). Type of arrangement and main geometric and electronic parameters (bond distance (Å), electron density at the BCP, (r $e a_0^{-3}$), and its Laplacian ² (r $e a_0^{-5}$)) for C-M, C-H, and, when available, QTAIM data for H-H and ring critical point (RCP).
- Figure S-2. Graphical representation of overall minima for all studied compounds, calculated at B3LYP/6-311++G(3df,2p) level.
- Figure S-3. Example of conformational notation used in this work: Newman's projections for possible conformations of 1b, 1c, 2b, 3b, 3c, 4b, 4c and 5b with both H and F substituents, in *eclipsed* and *anti* conformations.
- Figure S-4. PES resulting from the variation of the angle for the different possible conformations of 3 and 5.
- **Table S-5.** Selected BCP parameters for **1-5** calculated at the B3LYP/6-311++G(3df,2p) level. Electron density, (r $e a_0^{-3}$), its Laplacian, ² (r $e a_0^{-5}$), ellipticity, and electron energy density, $E_d(r)$ (*hartree* a_0^{-3})⁻
- **Table S-6.** QTAIM charges integrated over the atomic basins for the minima and frozen geometries at the indicated angles for compounds **1a-5a**, **1d**, **2c**, **3d**, **4d** and **5c**.
- Figure S-7. Plots of the Laplacian of the electron density for 1a-5a, 1d, 2c, 3d, 4d, and 5c, including the bond paths, depicted with bold lines. Solid lines indicate charge concentration zones, while dashed lines indicate charge depletion zones.
- Figure S-8. ELF isosurfaces of compounds 1d, 2c, 3d, 4d, and 5c measured at 0.7. Numbering indicates the population of each basin. Same color convention as in Figure 5.

Table S-1. Selected parameters for **1a-5a** calculated at the MP2/6-311++G(3df,2p). Type of arrangement, and main geometric and electronic parameters: Bond distance (Å), electron density (r) ($e \cdot a_0^{-3}$), and its Laplacian ² (r) ($e \cdot a_0^{-5}$) for C-M, C-H, and, when available, QTAIM data for H-H and ring critical point (RCP).

	1 a	2a	3a	4 a	5a
arrangement	-				
1	108.5	91.3	84.2	83.9	164.0
C-M	2.034	1.811	2.055	2.006	1.793
(r)	0.127	0.179	0.118	0.127	0.181
² (r)	0.013	0.158	0.030	0.069	0.156
C-Hagostic	1.093	1.115	1.149	1.134	1.148
(r)	0.268	0.242	0.239	0.261	0.235
² (r)	-0.908	-0.695	-0.701	-0.879	-0.644
C-H _{non-agostic}	1.093	1.084	1.087	1.084	-
(r)	0.268	0.279	0.282	0.291	-
² (r)	-0.908	-1.015	-1.011	-1.129	-
H-H	2.974	2.534	1.796	1.773	2.141
(r)	-	-	0.037	0.037	-
² (r)	-	-	0.061	0.065	-
RCP					
(r)	-	-	0.037	0.036	-
² (r)	-	-	0.067	0.102	-

Figure S-2. Graphical representation of overall minima for all studied compounds, calculated at B3LYP/6-311++G(3df,2p) level.

Figure S-3. Example of conformational notation used in this work: Newman's projections for possible conformations of **1b**, **1c**, **2b**, **3b**, **3c**, **4b**, **4c** and **5b** with both H and F substituents, in eclipsed conformations. Referencing substituents (agostically distorted bond and the eclipsed ones) are indicated in bold.

S4

Figure S-3. *(Continued)* Example of conformational notation used in this work: Newman's projections for possible conformations of **1b**, **1c**, **3b**, **3c**, **4b**, and **4c** with both H and F substituents, in *anti* conformations. Referencing substituents (agostically distorted bond and that in *anti* position) are indicated in bold.

	bond ^{a,b}	$(r)^{2}(r)$		$E_d(\mathbf{r})$		bond ^{a,b}	(r)	² (r)		$E_d(\mathbf{r})$
1a	C -Ti	0.126 0.018	0.00	-0.060	1d	C -Ti	0.123	-0.002	0.00	-0.057
	Ti-H _x	0.108 -0.014	0.00	-0.049		Ti-F _x	0.153	0.837	0.03	-0.380
	Ti-H _x	0.108 -0.014	0.00	-0.049		Ti-F _x	0.153	0.837	0.03	-0.380
	С-Н	0.269 -0.900	0.05	-0.275		C-H	0.273	-0.930	0.03	-0.281
	С-Н	0.269 -0.900	0.05	-0.275		С-Н	0.273	-0.930	0.03	-0.281
2a	C -Ti	0.173 0.238	0.68	-0.101	2c	C -Ti	0.167	0.199	0.84	-0.095
	$Ti-H_X$	0.097 0.036	0.08	-0.039		$Ti-F_X$	0.137	0.797	0.01	-0.026
	$Ti-H_X$	0.095 0.046	0.02	-0.037		Ti - F_X	0.137	0.797	0.01	-0.026
	C-H	0.254 -0.788	0.03	-0.250		C-H	0.274	-0.952	0.03	-0.284
	С-Н	0.280 -1.008	0.00	-0.295		С-Н	0.274	-0.952	0.03	-0.284
3a	C -Ti	0.120 0.027	0.04	-0.055	3d	C -Ti	0.124	-0.009	0.02	-0.059
	С-С	0.243 -0.513	0.13	-0.198		С-С	0.237	-0.504	0.05	-0.186
	$Ti-H_X$	0.104 0.012	0.12	-0.045		$Ti-F_X$	0.150	0.830	0.03	-0.036
	$Ti-H_X$	0.107 -0.013	0.01	-0.048		$Ti-F_X$	0.150	0.831	0.04	-0.036
	С-Н	0.250 -0.765	0.00	-0.239		С-Н	0.279	-0.971	0.01	-0.288
	С-Н	0.282 -0.997	0.01	-0.294		С-Н	0.273	-0.926	0.05	-0.281
	$H - H_X$	0.0286 0.046	1.45	-0.003		$H - F_X$	-	-	-	-
	RCP	0.0278 0.099	-	-		RCP	-	-	-	-
4 a	C -Ti	0.119 0.083	0.01	-0.053	4d	C -Ti	0.126	0.021	0.08	-0.059
	С-С	0.354 -1.071	0.15	-0.427		С-С	0.347	-1.057	0.24	-0.408
	$Ti-H_X$	0.104 0.011	0.08	-0.045		$Ti-F_X$	0.152	0.833	0.02	-0.037
	$Ti-H_X$	0.108 -0.017	0.01	-0.049		$Ti-F_X$	0.153	0.837	0.02	-0.038
	С-Н	0.261 -0.848	0.02	-0.256		С-Н	0.290	-1.069	0.00	-0.306
	С-Н	0.284 -1.032	0.01	-0.298		С-Н	0.280	-0.994	0.02	-0.292
	$H - H_X$	0.0298 0.057	3.09	-0.002		$H - F_X$	-	-	-	-
	RCP	0.0297 0.079	-	-		RCP	-	-	-	-
5a	C -Ti	0.304 0.277	0.74	-0.095	5c	C -Ti	0.163	0.216	0.95	-0.090
	C-C	0.257 -0.613	0.01	-0.221		C-C	0.251	-0.580	0.00	-0.211
	$Ti-H_X$	0.091 0.056	0.03	-0.034		Ti-F _x	0.135	0.789	0.03	-0.025
	$Ti-H_X$	0.095 0.042	0.09	-0.037		$Ti-F_X$	0.134	0.778	0.01	-0.024
	С-Н	0.281 -0.991	0.01	-0.292		С-Н	0.282	-0.997	0.02	-0.294
	С-Н	0.276 -0.958	0.01	-0.285		С-Н	0.276	-0.954	0.01	-0.284
	С-Н	0.249 -0.744	0.01	-0.240		С-Н	0.270	-0.910	0.03	-0.275

Table S-5. Selected BCP parameters for **1-5** calculated at the B3LYP/6-311++G(3df,2p) level. Electron density, (r) (e·a₀⁻³), its Laplacian, ² (r) (e·a₀⁻⁵), ellipticity, and electron energy density, E_d (r) (hartree·a₀⁻³).

 $^{\rm a}$, and X designate those hydrogen atoms connected to C , C and Ti, respectively.

^b $\|$ and symbols indicate which atom H (or F) lies on the symmetry plane and not, respectively; except in the case of compounds with double bonds, (2 and 5) where $\|$ identifies the atom closest to the area where agostic approach takes place.

	a 1	$H_{\parallel}{}^{b}$	Н	С	H II	Н	С	Ti	$\mathbf{X}_{\mathbb{I}}$	Х
1a	(88)	-	-	-	-0.02	0.02	-0.41	1.84	-0.48	-0.48
	109.0	-	-	-	0.01	0.01	-0.42	1.85	-0.48	-0.48
1d	(88)	-	-	-	0.00	0.03	-0.38	2.25	-0.65	-0.64
	108.9	-	-	-	0.01	0.01	-0.37	2.25	-0.64	-0.64
2a	91.3	-	-	-	-0.01	0.04	-0.67	1.76	-0.54	-0.57
	(120)	-	-	-	0.02	0.02	-0.68	1.75	-0.56	-0.56
2c	(88)	_	-	-	-0.03	0.06	-0.69	2.01	-0.68	-0.67
	123.3	-	-	-	0.02	0.02	-0.65	1.98	-0.69	-0.69
39	88 7	-0.04	0.01	0.00	_	0.01	-0.35	1.82	-0.49	-0.49
Ju	(104)	-0.03	0.00	0.05	_	0.00	-0.37	1.83	-0.50	-0.48
34	(88)	0.02	0.00	0.00		0.01	0.32	2.22	0.67	0.63
Ju	113 5	-0.01	-0.01	0.00	-	-0.01	-0.32	2.23	-0.67	-0.03
40	077	0.00	0.01	0.00	0.06	0.01	0.24	1.02	0.40	0.49
4a	$\frac{8}{.1}$	0.00	0.06	-0.10	0.06	-	-0.54	1.85	-0.49	-0.48
	(120)	0.01	0.02	-0.03	0.02	-	-0.45	1.00	-0.49	-0.40
4d	(88)	0.03	0.05	-0.14	0.07	-	-0.34	2.26	-0.67	-0.63
	121.1	0.03	0.03	-0.01	0.03	-	-0.42	2.26	-0.64	-0.64
5a	(88)	-0.01	-0.01	0.09	-0.04	-	-0.62	1.72	-0.59	-0.55
	(120)	-0.01	-0.01	0.09	-0.04	-	-0.62	1.72	-0.59	-0.54
	160.6	-0.01	-0.01	0.09	-0.04	-	-0.62	1.72	-0.55	-0.59
5d	(88)	0.00	0.00	-0.02	0.04	-	-0.58	1.97	-0.73	-0.68
	137.3	-0.01	-0.01	0.09	0.00	-	-0.60	1.94	-0.70	-0.70

Table S-6. QTAIM charges integrated over the atomic basins for minima and frozen geometries at the indicated _____angle values for compounds **1a-5a**, **1d**, **2c**, **3d**, **4d** and **5c**.

^a Values in parenthesis indicate a frozen valence angle, forcing agostic or non-agostic conformations

^b $\|$ and symbols indicate which H (or X) atom lies on the symmetry plane and which not, respectively, except in the case of compounds with double bonds, (2 and 5), where $\|$ identifies the atom closest to the area where agostic approach takes place.

Figure S-7. Plots of the Laplacian of the electron density for **1a-5**a, **1d**, **2c**, **3d**, **4d**, and **5c**, including the bond paths, depicted with bold lines. Solid lines indicate charge concentration zones, while dashed lines indicate charge depletion zones.

Figure S-8. ELF isosurfaces of compounds **1d**, **2c**, **3d**, **4d**, and **5c** measured at 0.7. Numbering indicates the population of each basin. Same color convention as in Figure 5.

