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We study the dynamics of small vortex clusters with few (2–4) co-rotating vortices in Bose-Einstein
condensates by means of experiments, numerical computations, and theoretical analysis. All of
these approaches corroborate the counter-intuitive presence of a dynamical instability of symmetric
vortex configurations. The instability arises as a pitchfork bifurcation at sufficiently large values of
the angular momentum that induces the emergence and stabilization of asymmetric rotating vortex
configurations. The latter are quantified in the theoretical model and observed in the experiments.
The dynamics is explored both for the integrable two-vortex system, where a reduction of the phase
space of the system provides valuable insight, as well as for the non-integrable three- (or more)
vortex case, which additionally admits the possibility of chaotic trajectories.

Introduction. The realm of atomic Bose-Einstein con-
densates (BECs) [1] has offered a pristine setting for stud-
ies on the dynamics of few-vortex clusters [2]. Most inves-
tigations, however, have focused on either a single vortex
or large scale vortex lattices [3–6]. Recently, theoretical
investigations on the study of clusters of 2–4 vortices [7–
15], have appeared, chiefly motivated by the experimen-
tal realizations of such states [16–19]. This focus has been
heretofore centered on the fundamental building block of
the vortex dipole, i.e., a pair of counter-circulating vor-
tices.
Our aim in the present work, in contrast, is to ex-

plore the dynamics of small vortex clusters of 2–4 vor-
tices that belong to the co-rotating (same charge) va-
riety. The original work of Ref. [2] and subsequent ef-
forts [20] have already paved the way for an understand-
ing of symmetric few-vortex configurations rotating as a
rigid body, and their three-dimensional generalizations,
i.e., U- and S-shaped vortices, as well as vortex rings [21].
In this context, our work presents a rather unexpected
twist: we have found that, under suitable conditions, the
usual symmetric, co-rotating vortex configurations (cen-
tered line, triangle, and square) become dynamically un-

stable. More specifically, these states become subject to
symmetry breaking, pitchfork bifurcations that lead to
the spontaneous emergence of stable asymmetric rotat-

ing vortex clusters.
We present our analysis of these features in the in-

tegrable (at the reduced particle level) setting of a co-
rotating vortex pair, and illustrate their generality by
further considering a rigidly rotating vortex triplet and
quadruplet. In the first case, we devise a theoretical for-
mulation that not only explores the instability and man-
ifests its growth rate, but also enables a visualization
of a two-dimensional reduced phase space of the system
in which the pitchfork bifurcation becomes transparent.

In the latter cases, we suitably parametrize the system,
exploring the different regimes of symmetric and asym-
metric periodic orbits. Our theoretical analysis treats
vortices as classical particles, with dynamics governed by
ordinary differential equations (ODEs). This reduction of
the original vortex cluster system allows for the analytical
characterization, numerical observation and experimen-
tal confirmation of the symmetry breaking phenomena.

Theoretical Analysis. As illustrated in Refs. [15,
19], and justified by means of a variational approx-
imation [22], vortex dynamics governed by the two-
dimensional mean-field Gross-Pitaevskii equation,

i∂tψ = −1

2
∆ψ +

1

2
Ω2(x2 + y2)ψ + |ψ|2ψ, (1)

can be reduced to a system of ODEs for the vortex posi-
tions. In the original partial differential equation (PDE)
model (1), the time is measured in units of ω−1

z , while
the positions are measured in units of harmonic oscilla-
tor length along the z-direction and Ω = ωx/ωz = ωy/ωz,
with ωj being the harmonic trap frequency along the j-
direction (see, e.g., Ref. [4]). This ODE reduction is the
starting point for our analysis in the co-rotating case.

The dynamics of vortex m at position (xm, ym) arises
from two contributions: (i) a position-dependent vortex
precession about the trap center with frequency Sm ωpr,
and (ii) a vortex-vortex interaction with vortex n that
induces a velocity perpendicular to their line of sight of
magnitude Sn ωvort/ρ

2
mn, where ρmn is the distance be-

tween vortices m and n, Sm and Sn are their respec-
tive charges, and ωvort is a dimensionless constant; see
Ref. [15, 19]. The equations governing the dynamics of N
interacting vortices embedded in a condensate are there-



2

fore

ẋm = −Smωprym − ωvort

2

∑

n6=m

Sn

ym − yn
ρ2mn

,

ẏm = Smωprxm +
ωvort

2

∑

n6=m

Sn

xm − xn
ρ2mn

.
(2)

The precession about the trap center can be approxi-
mated by ωpr = ω0

pr/(1− r2/R2
TF), where the frequency

at the trap center is ω0
pr = ln

(

A µ

Ω

)

/R2
TF, µ is the chem-

ical potential, RTF =
√
2µ/Ω is the Thomas-Fermi (TF)

radius, and A is a numerical constant [3, 15, 19]. To
describe better the actual vortex dynamics in the trap,
the constant ωvort in Eqs. (2) may be adjusted to ac-
count for the screening of vortex interactions due to the
background density modulation [23].
We now focus on the case of two identical vortices of

unit charge S1 = S2 = 1. We proceed to adimensionalize
Eqs. (2) by scaling (x, y) by RTF and time by 1/ω0

pr, and
use polar coordinates (xn, yn) = (rn cos(θn), rn sin(θn)).
We then seek symmetric stationary states r1 = r2 = r∗
and θ1 − θ2 = π, and find the following frequency of the
co-rotating vortices:

ωorb = θ̇1 = θ̇2 =
c

2r2∗
+

1

1− r2∗
, (3)

where c = 1
2 (ωvort/ω

0
pr) yields a measure of the rela-

tive strength of vortex interaction and spatial inhomo-
geneity. The comparison of the orbital frequency be-
tween the ODE and the PDE models is given in Fig. 1a.
Given the co-rotating nature of this state, consideration
of δmn = θm− θn renders this state a stationary one; lin-
earizing around it using rm = r∗+Rm and δmn = π+δm
yields the following equations of motion for the pertur-
bations about the symmetric equilibrium:

R̈m = −
ω2
ep

2
(Rn −Rm) , δ̈m = −

ω2
ep

2
(δm − δn) ,

with ω2
ep = c2

2r4
∗

− 2c
(1−r

2
∗
)2
. It is then straightforward to ob-

serve that this squared epitrochoidal (motion of a point
in a circle that is rotating about another circle) rela-
tive precession frequency of the two vortex positions and
phases changes sign at r2cr =

√
c/(

√
c + 2). This signals

our first fundamental result, namely the destabilization of
the symmetric 2-co-rotating vortex state for sufficiently
large symmetric distances of the vortices from the trap
center. A comparison of the ODE and PDE models for
the orbital and epitrochoidal precession frequencies for
these two cases is given in Fig. 1a-b.
The dynamical instability of symmetric states suggests

the potential existence of additional, asymmetric, ones.
Seeking states with δmn = π and r∗1 6= r∗2 yields

−r∗1r∗2(r∗1 + r∗2)
2 + c

(

1− r∗21
) (

1− r∗22
)

= 0,

which will be the condition defining our radially asym-

metric co-rotating solutions. The mirror symmetry of
the 2-vortex system predisposes towards the pitchfork,
symmetry breaking nature of the relevant bifurcation, a
feature verified by the diagram of Fig. 1c. This diagram
is given for the angle φ = tan−1 r2/r1 as a function of the
angular momentum L0 = r21 + r22, which is a conserved
quantity for our system. It is interesting to note that if
the single dimensionless parameter of the system is small
(c < 3), then the critical value Lcr for L0 —at which
the bifurcation from symmetric to asymmetric periodic
orbits occurs— is supercritical, while if c is sufficiently
large (c > 3), it becomes subcritical [26] (not shown).
To elucidate the pitchfork nature of the bifurcation, we

develop a phase plane representation for all 2-vortex con-
figurations. The integrability of the reduced 2-particle
description can be understood on the basis of the fact
that this 4-dimensional system has two integrals of mo-
tion, namely the angular momentum L0, defined above,
and the Hamiltonian H, which can be written in polar
coordinates as

H =
1

2
ln
[(

1− r21
) (

1− r22
)]

− c

2
ln
[

r21 + r22 −D)
]

,

whereD ≡ 2r1r2 cos(δ) and δ = θ2−θ1. Using L0 and the
angle φ to express r1 and r2, one can rewrite the Hamil-
tonian as a function of (φ, δ) having thus effectively re-
duced the 4-dimensional system into a 2-dimensional one.
Thus, for different values of L0, we can represent the or-
bits in the effective phase plane of (φ, δ) in which the dif-
ferent orbits correspond to iso-energetic H(φ, δ)=const.
contours. This is done in Fig. 2 for values that are both
below and above than the critical value of L0 at fixed c.
It can then be inferred that the symmetric fixed point
with (φ, δ) = (π/4, π) is stable in the former case, while
it destabilizes in the latter case through the emergence
of two additional asymmetric (φ 6= π/4) states along the
horizontal line δ = π of anti-diametric vortex states.
Remarkably, although the properties of the system dra-

matically change as we go from two vortices to three and
four, the symmetry breaking bifurcation associated with
the symmetric solutions persists. In particular, when
N > 2, the persistence of the two conservation laws
discussed above is not sufficient to ensure integrability
of the system, and its absence is manifested in a dra-
matic form in the resulting 6 (N = 3) and 8 (N = 4)
dimensional systems through the presence of chaotic or-
bits. Nevertheless, one can still theoretically analyze the
highly symmetric co-rotating states of the system.
For N = 3, this state is an equilateral triangle such

that r1 = r2 = r3 = r∗ and δi,i+1 = 2π/3, with an or-
bital frequency predicted as ωorb,3 = c

r2
∗

+ 1
1−r2

∗

. In the co-

rotating frame, the linear stability analysis around this
rigidly rotating triangle can be performed giving rise to

an epitrochoidal frequency ω2
ep,3 = c2

r4
∗

− 2c
(1−r2

∗
)2
. In this

case too, a critical radius exists r2cr,3 =
√
c/(

√
c +

√
2),
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FIG. 1: (Color online) (a) Orbital and (b) epitrochoidal frequency as a function of the radial position from the trap’s center
for two vortices. Both frequency and radial position are in rescaled units. The solid line represents results from the ODE and
the dotted line from the PDE. The vanishing of the latter signals the onset of instability. Here, Ω = 0.05 and µ = 1. Panel
(c) depicts the quantity φ/π, which equals 1/4 when r1 = r2, as a function of the square root of the angular momentum for
c = 0.1. Panels (d) and (e) depict the corresponding phenomena for N = 3 and N = 4 vortices for c = 0.1. Panels (c), (d)
and (e) include a few configurations along the main bifurcation branches ([blue] solid and [red] dashed lines corresponding,
respectively, to stable and unstable configurations) depicting the relative position of the vortices (red triangles) with respect to
the center of the condensate (green crosses).
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FIG. 2: (Color online) (a) Contours from the reduced Hamil-
tonian for vortices close to the center of the trap, i.e. L0 = 0.16
below critical (L0 < Lcr = 0.273), and (b) their corresponding
orbits. Panels (c) and (d) depict, respectively, the same quan-
tities but for vortices further out from the center for L0 = 0.36
above critical (L0 > Lcr = 0.273). The circles and triangles
correspond, respectively, to the initial and final positions of
the two vortices. Each color on the contour plot matches the
corresponding orbit in the position diagram. Here, c = 0.1.

such that the symmetric state is destabilized and asym-
metric orbits arise and are stable past this critical point
as can be seen in Fig. 1d. The dynamical picture is con-
siderably more complicated but the conservation of the
angular momentum ensures that the dynamical evolution
resides on the surface of a Bloch sphere. We thus define
two angular variables tanφ = r2/r1 and cos θ = r3/

√
L0

and depict the associated pitchfork bifurcation in Fig. 1d
for the subspace of solutions constrained to r1 = r2 and
δ12 = δ23. This bifurcation diagram describes a vor-
tex configuration containing a stable symmetric rotat-
ing triangle before the bifurcation and stable asymmet-
ric rotating triangles after the bifurcation. In addition to
the equilibrium and near-equilibrium orbits, we observe

chaotic orbits arising both in a more localized form, ex-
ploring the vicinity of equilibrium orbits, and in a more
extended one spanning all space (not shown).

While the general phenomena for N = 4 are already
rather complex, some basic features can still be inferred
and the symmetry breaking nature of the proposed insta-
bility persists —cf. Fig. 1e. Here, φ = tan−1 r3/r1, and
we have constrained the vortices to be in a cross with
right angles and r1 = r3 and r2 = r4. A general ex-
pression for the orbital frequency of the rigidly rotating

state is ωorb,N = (N−1)c
2r2

∗

+ 1
1−r2

∗

, which is valid for any

N . In the case of the square configuration with ri = r∗
and δi,i+1 = π/2, there emerge two epitrochoidal vibra-
tional motions with frequencies

√
−λ1 and

√
−λ2, where

λ1 = 3c
(1−r2

∗
)2

− 9c2

4r4
∗

, and λ2 = 4c
(1−r2

∗
)2

− 2c2

r4
∗

. These, in

turn, correspond to two critical points: one identical to
the one given above for the N = 3 case, and one that
is always higher, given by r2cr,4 =

√
3c/(

√
3c+ 2); hence,

the same phenomenology persists.

Experimental Observations. We now briefly discuss
experimental manifestations of the symmetry breaking
events discussed above and of the emergence of asym-
metric configurations.

The details of the experimental setup may be found
elsewhere [17, 19]. We begin with a magnetically-trapped
BEC of N ∼ 5–8 × 105 atoms in the |F = 1,mF = −1〉
hyperfine level of 87Rb. The radial and axial trap fre-
quencies are (ωr, ωz)/2π = (35.8, 101.2)Hz. Vortices are
introduced through a process of elliptical magnetic trap
distortion and rotation [24] during evaporation [25]. In
terms of the trap frequencies along the major and minor
axes of the distorted potential, ωx and ωy respectively, an
ellipticity ǫ = (ω2

x −ω2
y)/(ω

2
x +ω2

y) = 0.20 and a rotation
frequency of 8.5Hz usually produces a co-rotating pair.
Higher rotation frequencies are used to generate larger
numbers of co-circulating vortices.

A partial-transfer (5%) imaging method [17] is em-
ployed to create a sequence of atomic density profiles,
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as shown in Fig. 3a–d. The effect of the extractions is
primarily to diminish the number of atoms in the con-
densate [14, 17]. Curiously, atomic losses have little ef-
fect on the calculated coupling parameter c, which scales
only as logN ; thus c falls between 0.11 and 0.10 over the
range N = 0.3–0.8×106 atoms. For convenience, we take
c = 0.1 in the following analysis.

We examine 52 experimental time series, each consist-
ing of 8 snapshots spanning a total time of 240 to 480 ms.
For each snapshot the center of the vortices and the ra-
dius of the BEC cloud are extracted using a least square
fitting algorithm [see panels a)–d) in Fig. 3]. The vortex
positions are then normalized to the BEC radius (i.e.,
TF units) and the angular momentum L0 and Hamilto-
nian H were computed for each frame [see panels e)–h)
in Fig. 3]. For each series, the averaged angular momen-
tum L0 and Hamiltonian H are computed (see horizontal
dashed lines in the middle panels in Fig. 3). Using L0 we
compare the experimental points representing each orbit
in the (φ, δ) plane to the isocontour of H corresponding
to H, as shown in the right column of panels in Fig. 3,
and find good agreement between the two.

The panels a)–d) in Fig. 3 depict a cohort of typical
time series, together with their respective fits, that ex-
emplify the different qualitative cases that we observed
in the experiments. In particular, we find that the dy-
namics of the vortices depends on whether the average
angular momentum is below or above the critical thresh-
old Lcr = 2r2cr. This separates cases where asymmetric
orbits are, respectively, non-existent and possible. The
different qualitative cases that we observe, which are is
displayed in Fig. 3, may be grouped as follows:
• For L0 < Lcr and relatively small H, the experiment
displays symmetric orbits. See rows a) and e) in Fig. 3.
• For L0 > Lcr and moderate H, the experiment dis-
plays (i) symmetric orbits where both vortices (in the
co-rotating frame) are approximately on the same side of
the cloud chasing each other on the same path [see rows
b) and f) in Fig. 3] or (ii) asymmetric orbits [see rows c)
and g) in Fig. 3]. The choice between these two orbits
is determined by the initial conditions. Initial conditions
inside the area delimited by the separatrix (red double-
loop curve in the right panels of Figs. 3.f and Figs. 3.g)
emanating from the saddle point (φ, δ) = (π/4, π) give
rise to asymmetric orbits.
• For L0 > Lcr and large H, the experiment displays or-
bits in which one vortex remains close to the center while
the other orbits around it close to the periphery of the
cloud. See rows d) and h) in Fig. 3.

As is clear from these examples and the remaining 48
data sets that we studied (see supplemental material),
asymmetric orbits are only found when L0 > Lcr and
when the vortex orbits fall inside the asymmetric min-
ima regions of the Hamiltonian picture in the (φ, δ) plane.
Asymmetric solutions absent in all of the cases for which
L0 < Lcr. These results are in good agreement with
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FIG. 3: (Color online) a)–d) Typical experimental series for
the dynamics of two co-rotating vortices (time indicated in
ms). The large (green) circles and the (red) crosses represent,
respectively, the fitted TF radius and center of the cloud while
the small (yellow) dots depict the fitted vortex centers. The
(red) dashed circles represent the critical radius, rcr, above
which symmetric orbits become unstable. e)–h) Manifesta-
tion of the pitchfork bifurcation for the experimental series
depicted in panels a)–d) which correspond to c = 0.1. Left
column: experimental vortex positions and their correspond-
ing orbit from the reduced ODE model (solid line), in TF
units in the co-rotating frame. Middle column: correspond-
ing L0 (blue circles) and −H (green squares) and their av-
erages (horizontal dashed lines) as well as the critical value
for L0 (solid horizontal line). Right column: corresponding
orbits in the (φ, δ) plane along with isocontours for constant
H (highlighted in dark gray is the isocontour corresponding
to the average H and in red is the separatrix delimiting the
area containing asymmetric orbits).

the theoretical prediction of the pitchfork bifurcation de-
picted in Fig. 1c.

To extend our considerations, we briefly present a com-
parison between experiment and theory for N = 3 and
N = 4 vortices. The main phenomenology is depicted
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FIG. 4: (Color online) Experimental series for trios [a) and b)]
and quartets [c) and d)] below [a) and c)] and above [b) and
d)] the critical threshold. e)–h) Corresponding time series for
L0 and −H. Same notation and units as in Fig. 3.

using two examples for each case in Fig. 4. Panels a) and
b) correspond to the N = 3 vortex case below and above
the pitchfork bifurcation [see panel e) and f)]. Panels c)
and d) depict the equivalent scenario for N = 4 vortices.
As the figure illustrates, and is observed in all of the
cases that we studied (17 data sets for N = 3 and 5 data
sets for N = 4; not shown), the main phenomenology for
N = 3 and N = 4 persists in that all configurations with
L0 > Lcr are not symmetric and symmetric configura-
tions, or epitrochoidal oscillations about them, are only
present when L0 < Lcr.
Conclusions. We have revisited the theme of co-

rotating few vortex clusters in atomic Bose-Einstein con-
densates. By a combination of theoretical analysis,
numerical computation and experimental observation,
we have illustrated a strong manifestation of symmetry
breaking through a pitchfork bifurcation, which led to
the destabilization of symmetric solidly rotating config-
urations and gave rise to the the emergence of stable

co-rotating but asymmetric vortex configurations. We
showed that this analysis is fruitful not only for the inte-
grable (at the reduced particle level) two-vortex setting,
where a suitable parametrization of the phase space was
provided, but also for the non-integrable cases of N = 3
and N = 4 vortices where chaotic orbits exist.
Naturally, it would be interesting to provide a more

global characterization of the dynamics of the three-body
problem, which is perhaps the most analytically tractable
and interesting case due to its potential for chaos. An-
other expansion of the present considerations involves
their generalization to higher dimensions. In this case,

it would be interesting to see, upon gradual decrease of
the trapping frequency in the third dimension, whether
the symmetry-breaking phenomena persist for line vor-
tices and vortex rings. These aspects are presently under
study and results will be reported elsewhere.
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