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Resumen

Esta tesis se centra en el estudio de la dinámica de un modelo idealizado
en el campo de la dinámica de fluidos, conocido como el problema del vórtice
puntual. En un fluido ideal, un vórtice puntual es esencialmente una sin-
gularidad de la vorticidad, es decir una delta de Dirac. Los vórtices surgen
naturalmente en la atmósfera o en el océano. Su influencia en el trans-
porte pasivo de partı́culas juega un papel importante en una variedad de
disciplinas relacionadas con la hidrodinámica y la geofı́sica. Este tipo de
dinámica aparece también en la fı́sica de los condensados de Bose-Einstein.

Matemáticamente, nuestro interés también ha sido el estudio de la dinámica
alrededor de una singularidad del campo de velocidades en un sistema
dinámico de baja dimensión. En concreto, hemos estudiado perturbaciones
periódicas a un sistema hamiltoniano integrable en el plano que tiene una
singularidad en una o más variables canónicas.

El modelo estudiado ha sido el siguiente. Consideremos el hamiltoniano
perturbado

Ψ(t, x, y) =
1

2
ln(x2 + y2) + p(t, x, y), (0.0.1)

y el sistema asociado
ẋ = ∂yΨ(t, x, y) = y

x2+y2 + ∂yp(t, x, y)

ẏ = −∂xΨ(t, x, y) = − x
x2+y2 − ∂xp(t, x, y)

(0.0.2)

definido en un entorno U \ {0} del origen.

Fı́sicamente, el sistema puede interpretarse como un modelo de la advección
o transporte de una partı́cula bajo la acción de un vórtice colocado en el ori-
gen con un flujo periódico de fondo. Sin perturbación, p = 0, la dinámica del
sistema es integrable y las soluciones se corresponden con circulos concéntricos
alrededor del origen. La frecuencia de rotación es inversamente propor-
cional al radio del cı́rculo, de tal manera que tiende a infinito cuando nos
acercamos a la singularidad en el origen. A lo largo de la investigación
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hemos estudiado cómo esta dinámica integrable se ve afectada por la super-
posición de una función dependiente del tiempo periódica externa p(t, x, y).
Los resultados se han plasmado en los siguientes artı́culos:

• R. Ortega, V. Ortega, P.J. Torres, Point-vortex stability under the influ-
ence of an external periodic flow, Nonlinearity, 31 (2018) pp. 1849-1867.

• S. Maro, V. Ortega, Twist dynamics and Aubry-Mather sets around
a periodically perturbed point-vortex. J. Differential Equations 269
(2020) pp. 3624-3651.

Metodologı́a y resultados

En el primer artı́culo hemos estudiado la estabilidad (en sentido Lyapunov)
del origen en el sistema perturbado. Sin perturbación presente, el sistema
resulta integrable y el origen es estable en sentido Lyapunov. Mediante un
teorema KAM, el teorema Twist de Moser o también llamado el teorema de
la curva invariante, hemos obtenido condiciones suficientes sobre la pertur-
bación para garantizar la estabilidad de la singularidad. La aplicación del
teorema twist nos permite encontrar una familia de curvas invariantes por
la aplicación de Poincaré asociada al sistema. Esto resulta importante ya
que, debido a la baja dimensionalidad del sistema, éstas actuarán como bar-
reras para las soluciones y por tanto, quedará garantizada la estabilidad del
origen.

En el segundo artı́culo hemos aplicado la teorı́a de Aubry-Mather a nue-
stro problema. Esta teorı́a nos ha dado la existencia de conjuntos invari-
antes para perturbaciones más generales que las consideradas en el artı́culo
anterior. Estos conjuntos invariantes se corresponden con la existencia de
soluciones con un número de rotación definido: periódicas para un número
de rotacion racional y cuasi-periódicas para uno irracional. Para aplicar la
teorı́a necesitamos que la aplicación de Poincaré asociada al sistema sea una
aplicación twist exacto simpléctica definida en el cilindro. Habitualmente,
el teorema de Mather exige que la función generatriz (definida a partir de
la aplicación de Poincaré) esté definida en todo el plano R2, sin embargo, en
nuestra aplicación la función generatriz queda definida en un subconjunto
del plano. Por lo tanto, necesitamos un teorema de extensión para exten-
der el dominio de la función generatriz a todo el plano y ası́ poder aplicar el
Teorema de Mather.
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Contenido de la tesis

Esbozemos el contenido de los capı́tulos que se incluyen en esta tesis.

En el primer Capı́tulo daremos una panorámica general al contenido de la
memoria.

En el Capı́tulo 2, presentaremos el modelo fı́sico: vórtice puntual con per-
turbación. Motivaremos las ecuaciones de movimiento de nuestro modelo y
analizaremos algunas propiedades de interés para el estudio.

El tercer capı́tulo está dedicado a revisar las principales herramientas
matemáticas utilizadas a lo largo de la investigación. En la Sección 3.1 intro-
duciremos algunos hechos básicos de aplicaciones twist exacto simplécticas
definidas en el cilindro y sus propiedades en el correspondiente levantamiento,
es decir, la aplicación definida en el recubrimiento universal del cilindro.

Definiremos las propiedades exacto simpléctica y su interpretación geométrica.
Continuaremos con la definición de la propiedad twist y la propiedad de
intersección. La siguiente sección, 3.2 está dedicada a estudiar algunas
propiedades de la aplicación de Poincaré.

En las siguientes secciones, 3.3 y 3.4, presentaremos las teorı́as aplicadas
en nuestros resultados, la teorı́a de KAM y la teorı́a de Aubry-Mather. En
la Sección 3.3 daremos una breve introducción histórica a la teorı́a KAM
con un significado intuitivo y enunciaremos el teorema de la curva invari-
ante de Moser en la versión analı́tica. La sección 3.4 presenta un teorema
de Aubry-Mather generalizado adaptado al estudio del mapa de Poincaré
correspondiente al problema del vórtice puntual perturbado (0.0.2).

Los siguientes capı́tulos tratan de los resultados de nuestra investigación.
El capı́tulo 4 presentará el resultado relativo a la estabilidad alrededor de
la singularidad a través de la existencia de curvas invariantes alrededor del
origen.

En primer lugar, desde un punto de vista más analı́tico, parece necesario
enunciar una noción matemática precisa de estabilidad en torno a una sin-
gularidad. La Sección 4.1 está dedicada a establecer una definición rigurosa
de estabilidad de una singularidad en este contexto. Consideraremos la esta-
bilidad perpetua en el sentido de Lyapunov, lo que significa que una solución
de (0.0.2) con una condición inicial pequeña permanecerá cerca de la singu-
laridad para siempre.

Las secciones restantes de este capı́tulo están dedicadas a enunciar el teo-
rema de estabilidad para el problema del vórtice puntual perturbado y la
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demostración correspondiente.

El capı́tulo 5 contiene el resultado relativo a la aplicación de la teorı́a de
Aubry-Mather y la existencia de soluciones periódicas y cuasi-periódicas cer-
canas a la singularidad.

Finalmente, en el capı́tulo 6 presentaremos un resumen de las conclusiones
de ambos resultados. También mostraremos algunos posibles trabajos fu-
turos en la dirección de esta tesis.
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Chapter 1

Introduction

In this monograph we present an example of the application of the quali-
tative theory of ordinary differential equations (ODE’s) to a problem with a
clear physical inspiration. Physically, we want to study the dynamics of a toy
model in ideal fluid dynamics known as the point-vortex problem. Vortices
arise naturally in the atmosphere or in the ocean, also they can be created
artificially in stirred fluids. Its influence in the passive transport of particles
plays an important role in a variety of disciplines related to Hydrodynamics
and Geophysics. Furthermore this kind of dynamics appears in the physics
of Bose-Einstein condensates (see [15, 26, 72, 84, 85] for additional informa-
tion).

Mathematically, our interest is also the study of the dynamics near the
singularities in the velocity field of a low dimensional dynamical system.
Specifically, we treat perturbations of an integrable Hamiltonian system
which has a singularity in one or more canonical variables. By singularity
we mean that there exists a jump discontinuity or an essential discontinuity
in the velocity field.

We are concerned with the description of the dynamics of the perturbed
point-vortex problem. Later, we will give the details of this model, but it is
important to note that we only consider classes of time-periodic perturba-
tions. In our work we have studied a stability question in the periodically
perturbed model. Furthermore, we have looked for a description and a clas-
sification of orbits in the same model. So, it is important to fix some ideas
about the mathematical methods that we have used.

Dynamics through symplectic maps. Poincaré map. The dynamics of
our model with a periodic field can be described through a symplectic map.
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As we can see in [9], [14] and [48], this kind of maps appears in the qual-
itative analysis of Hamiltonian systems, convex billiards, and many other
instances. The relation between the continuous motion of a Hamiltonian
system of 2 degrees of freedom with the dynamics of symplectic maps was
shown by Poincaré in the study of periodic orbits in Celestial Mechanics.
This resulted in the so-called Poincaré map, Poincaré return mapping or
first return map and has become an essential tool in the qualitative theory
of ordinary differential equations. More generally, to study the flow in an
n-dimensional phase space near a periodic orbit one can associate a map-
ping of an (n−1)-dimensional neighborhood of a fixed point of this mapping.
So, a Poincaré map can be interpreted as a discrete dynamical system with
a phase space that is one dimension smaller than the original continuous
dynamical system. There is a correspondence between many qualitative
properties of this map with the qualitative properties of the original system.

For example, a periodic orbit of a periodic vector field in the plane corre-
sponds to a fixed point of the associated Poincaré map. Generalized periodic
orbits or solutions with rational frequencies, are associated with cycles of the
Poincaré map. Furthermore, solutions with incommensurable frequencies,
that is, quasi-periodic orbits are associated to certain invariant sets of the
Poincaré map. These invariant sets are the so-called invariant curves or in-
variant tori. In the course notes [67] and [66] we can find more information
about this relation.

A Poincaré map of a Hamiltonian system is an example of a symplectic map.
Hence the importance of the study of these maps in an abstract setting.

Exact symplectic twist maps. Generating function. In this monograph
we restrict our study to maps with specific properties. These properties have
relation with the usual maps coming from a large class of low dimensional
Hamiltonian systems. Specifically, we consider maps that are diffeomor-
phisms defined on the cylinder. The reason is that we can transform our
system to the corresponding action-angle variables, and the phase space
becomes a strip of the cylinder. Also, this is reflected assuming certain hy-
potheses of regularity and periodicity in our model. Furthermore we assume
that the map is exact symplectic. This condition implies the preservation of
the area, and it is related with the Hamiltonian structure of our model. In
addition, it is common for maps coming from a Hamiltonian context to have
the so-called twist property. In fact, it is related with a non-degeneracy con-
dition for the frequency map of the Hamiltonian.
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We denote by C = R× T with T = R/2πZ the cylinder and consider the strip
Σ :=]a, b[×T with −∞ ≤ a < b ≤ ∞. So we consider a Ck embedding

Φ : Σ −→ C

(r, θ) 7−→ (r1, θ1) = (F(r, θ),G(r, θ)) .

We suppose that Φ is exact symplectic with respect to the 1-form rdθ, and
that Φ has the twist property, that is

∂rG(r, θ) > 0 ∀(r, θ) ∈ Σ. (1.0.1)

To understand (1.0.1) suppose that θ is an angle and r a radial variable.
The twist condition means that the evolution of the angular variable θ by
the map Φ depends on the radial variable r. If the initial radial position r

increases then the angular displacement θ1− θ increases. Geometrically, the
twist condition means that Φ maps each vertical segment in the cylinder into
a curve that always twists around the cylinder to the right. For example, the
Poincaré maps associated to the equations of motion of the pendulum or the
integrable point-vortex system have the twist property. In the last case it
is important to note that the twist property has the equivalent definition
∂rG(r, θ) < 0.

On the other hand, the exact symplectic condition is related with the preser-
vation of the area and it is a stronger property than being symplectic with
respect to the symplectic form λ = dr∧dθ. Let us recall that being symplectic
means that

dr1 ∧ dθ1 = dr ∧ dθ, ∀(r, θ) ∈ Σ.

Or equivalently, the Jacobian det Φ′ = 1 on Σ, which is the classical definition
of an area preserving map. However, a map is said exact symplectic if the
differential form

β = r1 dθ1 − r dθ, (r, θ) ∈ Σ.

is exact in the cylinder, that means that there exists a C2 function

S : Σ −→ R
(r, θ) 7−→ S(r, θ)

such that
dS(r, θ) = r1 dθ1 − r dθ, ∀(r, θ) ∈ Σ

and it is 2π-periodic in θ.

Exact symplectic twist maps in the cylinder have become an essential tool
in the modern theory of low dimensional dynamical systems and there is
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an extensive published literature. See for instance [9, 14, 24, 32, 47, 51,
82]. As said before, it is common for these maps to appear in the study of
autonomous Hamiltonian systems with 2 degrees of freedom, or in the case
of 1 degree of freedom and time periodic. In the last case it is also known as
a Hamiltonian system of 1 + 1

2
degrees of freeedom.

Consider the lift map of Φ, that is, the map defined in a subset of the uni-
versal cover of the cylinder (Σ̃ :=]a, b[×R ⊂ R2) with a periodicity condition
and an additional hypothesis for the lifted angular variable x,

Φ̃ : Σ̃ −→ R2

(r, x) 7−→ (r1, x1) = (F(r, x),G(r, x))
(1.0.2)

where

F(r, x+ 2π) = F(r, x),

G(r, x+ 2π) = G(r, x) + 2π.

The previous properties are translated to this lift, nevertheless the exact
symplectic condition deserves an additional comment. The Poincaré lemma
in the context of differential forms says that on a contractible domain, for ex-
ample R2, every closed form is exact. But this is not true on non-contractible
domains or not simply connected domains, as a cylinder: not all closed forms
are exact in these domains. As the condition of area preserving maps or sym-
plectic maps implies that the form β is closed, a symplectic map defined on
the plane implies the exact symplectic condition. Therefore, we can expect
that there are symplectic maps defined on the cylinder which are not exact.
Later, we will illustrate this difference with some examples.

An important fact is that this map Φ̃, can be expressed implicitly through a
function h = h(x, x1): {

∂2h(x, x1) = r1,

∂1h(x, x1) = −r

where ∂i represents the derivative with respect to the i-th argument. In
Lemma 3.1 we will see that h(x, x1) and S(r, θ) are related by the twist con-
dition on the lift map and the implicit function problem x1 = G(r, x). So,
we recover the original map Φ̃ from a single function h. This function h is
called generating function and its role is analogue to the Hamiltonian func-
tion in Hamiltonian systems. More accurately, h can be seen as the discrete
analogous of the Lagrangian function in the continuous system, see [60].
Following this analogy, a variational principle is proposed in this discrete
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setting, constructing an action functional and studying the critical points:∑
n

h(xn, xn+1)

These critical points are in correspondence to some orbits generated by the
symplectic twist map Φ. As a consequence h appears in the discrete Euler-
Lagrange equation

∂1h(xn, xn+1) + ∂2h(xn−1, xn) = 0, ∀n ∈ Z

where (rn, xn)n∈Z is a sequence of iterates of Φ̃. Solutions of this equation
are the orbits that minimize the action functional. We will see that the gen-
erating function is a key tool in the usual formulation of the Aubry-Mather
theory for exact symplectic twist maps.

KAM theory and Aubry-Mather theory. In this thesis we want to apply
a couple of theorems coming from two important theories in the context of
twist maps of the cylinder: the KAM theory and the Aubry-Mather theory.
Let us motivate the two theorems in an informal way. Consider the twist
integrable map

Φ0 : r1 = r, θ1 = θ + η(r). (1.0.3)

Suppose that the map is defined in the strip Σ and the function η is smooth
in [a, b] with η′ > 0. This map is exact symplectic with dS(r) = rη′ dr and
has the twist property. The dynamics is simply the following. Every circle
around the origin r = r∗ is an invariant set for the map Φ0. That is, if
Γ = {(r, θ) ∈ Σ : r = r∗}, the invariance condition means Φ0(Γ) = Γ. In
each invariant circle the angle is rotated according to the expression of η(r∗).
So, the dynamics on every such circle is described by the so-called rotation
number α, defined as

α :=
1

2π
lim
n→∞

θn
n
.

where (rn, θn) = Φn
0 (r, θ). In this example we simply have α = η(r∗)/2π since

θn = θ + nη(r∗) .
If α = s/q ∈ Q, then the solutions are (s, q)-periodic and satisfy θn+q =

θn + 2πs, rn+q = rn. These solutions make s revolutions around the circle
r = r∗ in time q. On the contrary, if α ∈ R \ Q every orbit is quasi-periodic
with frequencies (1, α).

Now consider a small perturbation of Φ0 in the class of exact symplectic
maps,

Φp : r1 = r + f(r, θ), θ1 = θ + η(r) + g(r, θ). (1.0.4)
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Here we assume that f and g are 2π-periodic in θ. So the map is defined
in the strip Σ of the cylinder and is exact symplectic. It occurs that many
invariant sets of Φ0 are preserved. This fact depends on the arithmetic prop-
erties of the rotation number, α.

Firstly, a KAM theorem shows that if the perturbed twist integrable map
Φp is sufficiently Ck-close to Φ0 with k ≥ 3 + ε (we can say that Φp is a small
perturbation in the Ck-topology of the integrable case), then a family of in-
variant curves are preserved and the restriction of Φp to each invariant curve
is conjugate to a rotation by α. Furthermore, for each invariant curve, α sat-
isfies a Diophantine condition∣∣∣∣ α2π − p

q

∣∣∣∣ ≥ C

qµ+1
, ∀ p

q
∈ Q, (1.0.5)

where C is a positive constant and µ > 1.

By an invariant curve Γ for the map Φp we mean a non-contractible simple
Jordan curve contained in Σ such that Φp(Γ) = Γ. Also it could exist curves
Γ such that Φp(Γ) = Γ that are contractible, also called librational invariant
curves: we are not considering this kind of curves and in this monograph by
an invariant curve we will refer to the so-called rotational invariant curve.
See for instance the reviews [48, 49] for more details in the definitions of
librational and rotational curves.

The previous result is known as the Invariant Curve Theorem or Moser’s
Twist Theorem due to the work of Jürgen Moser in the early sixties [56].
Rüssmann, Herman and Moser himself among others gave different ver-
sions of this theorem. For a detailed formulation of different versions of this
theorem see [59, 78] (for k ≥ 5), [22] (for k ≥ 3 + ε) or [33, 77, 82] (for the
analytic case). On the other hand, Takens [83] gave a first counterexample
to Moser’s Twist Theorem in class C1, by showing that one can construct a
sequence of iterates which come close to r = a as well as r = b, that is, the
boundaries of the strip Σ. It is known that an invariant curve separates the
cylinder into two disjoint regions, so this result implies the non-existence
of invariant curves in the strip Σ. Later, Herman [22] improved it giving
another counterexample in class C3−ε where ε is a small positive constant.
Thus it seems that k has to be chosen greater than 3. See also [40] for an-
other counterexample.

Usually, the hypotheses of this theorem are that the map Φ has to be a
“small” perturbation of the integrable twist map Φp defined in the annu-
lus, with the intersection property in Σ and the corresponding regularity
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assumption. The intersection property means that Φ(Γ) ∩ Γ 6= ∅ for every
non-contractible Jordan curve Γ ⊂ Σ. It occurs that being exact symplectic
implies the intersection property, so we can apply the theorem to the map
(1.0.3). Additionally, Diophantine condition (1.0.5) expresses the difficulty
to approximate an irrational number by rational numbers whose denomina-
tors are arbitrarily large, in fact,

∣∣∣ α2π − p
q

∣∣∣ is the distance between the number
α/2π and the rational p/q. The theorem implies that the more differentiable
a system is, the more invariant curves can be produced by the theorem, since
µ can be larger and the inequality (1.0.5) is less restrictive.

In this thesis we are interested in the analytic version of the Moser’s Twist
Theorem applied to the perturbed point-vortex problem. The hypotheses of
this theorem implies some bounds of the perturbation in complexified do-
mains contained in C2.

So, after the application of the Invariant Curve Theorem we have the follow-
ing picture: for a twist map in the cylinder with the intersection property
we can find a family of invariant curves. These invariant curves divide the
phase space into disjoint regions: any motion starting from an initial condi-
tion within a region cannot escape through the invariant curve. This fact is
crucial when one deals with questions of stability or boundedness of orbits.
The result is not entirely obvious: since we are dealing with discrete itera-
tions it might seem possible that the orbit could “hop across” the invariant
curve. However, we know that the invariant curve divides the cylinder in
two connected components and that the Poincaré map is a homeomorphism
isotopic to the identity (the map conserves the +∞ and the −∞ in the cylin-
der). As a consequence the image of a connected component is in the same
connected component. Since there is a continuous deformation H(λ, p) from
the identity map to the Poincaré map, there cannot exist orbits connecting
the top and the bottom of the cylinder.

The KAM theory gives sufficient conditions for finding invariant curves
of area-preserving maps of the cylinder but we need certain regularity as-
sumptions and it follows a perturbative approach, so we need the perturba-
tion to be sufficiently small. The theory does not give any information on
the invariant curves that are not preserved after the perturbation. Never-
theless the Aubry-Mather theory does not need this perturbative approach,
it uses variational techniques to require weaker regularity hypotheses and
to drop the condition on nearly integrability.
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Going back to our example (1.0.4), the usual Mather’s Theorem gives suf-
ficient conditions on the map Φp or on the associated generating function
h(x, x1) in order to get orbits with rotation number α that minimize the ac-
tion. In a version of the theorem by Mather [47], these conditions are that
the exact symplectic map Φp has to be a twist diffeomorphism of the infinite
cylinder C and the technical hypothesis of an infinite twist as r → ∞. In
fact, in this work he proved it not only for a single exact symplectic twist
diffeomorphism but Mather considered a finite composition of them. This
result is not trivial, since the composition of twist maps, in general is not
a twist map. See also [41] for related results in the case of composition of
maps.

The orbits obtained are contained in closed minimal invariant sets, the
Aubry-Mather setsMα. The arithmetic properties of α determine the struc-
ture ofMα and the dynamics on it.

• If α is rational thenMα contains periodic orbits. These periodic orbits
correspond to not elliptic fixed points of the Poincaré map. Also Mα

may contain heteroclinic or homoclinic orbits.

• If α is irrational, then Mather’s Theorem gives us an alternative: either
Mα is an invariant curve of Φ and every orbit on it is quasi-periodic
with frequencies (1, α), or the minimal invariant set becomes a Cantor
set. In the last case the motion is not quasi-periodic in the classical
sense but the dynamics on a Cantor set is of Denjoy type with rotation
number α.

Another important property of Mα is that the “ordering” of an orbit is the
same as for the rotation by α of a circle. This is consequence of the topologi-
cal semi-conjugacy to a rotation. In Section 3.4 we explain what it means a
“dynamics of Denjoy type.”

So, with weaker assumptions, Mather’s Theorem gives an elegant explana-
tion about the “missing” invariant curves from KAM theory and shows how
those curves disappear. In fact one finds invariant sets but it is not possible
to guarantee that they are curves as in KAM theory.

Therefore Aubry-Mather theory gives the existence of orbits classified
and ordered by their rotation number α. See [9, 47, 48, 60] for a detailed ex-
position of the Aubry-Mather theory. This theory has appeared in the eight-
ies and has an almost simultaneous origin in the works of Aubry-LeDaeron
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on solid state physics [7] and Mather on twist mappings [46]. The Aubry-
Mather theory was developed by Aubry and LeDaeron, studying the station-
ary states in the Frenkel-Kontorova model. The Frenkel-Kontorova model
consists of a periodic chain of atoms, coupled in pairs by an elastic poten-
tial. On the other hand, Mather developed independently the theory from a
Percival’s related variational principle for area preserving twist homeomor-
phisms. Percival introduced the variational principle in a numerical work
for the standard mapping [70]:{

r1 = r − λ
2π

sin(2πθ)

θ1 = θ + r1.

An additional related field of applications of the theories of Aubry and
Mather is the study of geodesic flow on 2-dimensional surfaces. Minimal
geodesics on the torus were investigated already by Morse [54] in 1924 and
Hedlund [20] in 1932. In [9], Bangert has extended this results by using the
Aubry-Mather theory.

Therefore, in both theories, we have a point of view in which the orbits
of a symplectic twist map are classified by their rotation number or fre-
quency. In a sense, these two theorems do not have as a purpose to know
what happens to an orbit with a particular initial condition, but to consider
the properties of all orbits with the same frequency. In Chapter 3, we will
give an exposition of the two theories.

Stability. The concept of stability around a point-vortex in our model is
mathematically equivalent to the stability of a singular fixed point. We deal
with perpetual stability in the Lyapunov sense and the definition is anal-
ogous to the one known when studying the stability of solutions near an
equilibrium point. The main difference with the theory of the stability of
the equilibrium is a sharp contrast between equilibria and singularities. In
the second case continuous dependence may be lost. Therefore, a stable sin-
gularity in the continuous framework will produce a stable fixed point of the
Poincaré map. However, the stability of the fixed point of the Poincaré map
is not sufficient to guarantee the stability of the origin as a singularity of
the differential equation. This fact makes necessary to define a kind of con-
tinuous dependence around the singularity. In Section 4.1 of Chapter 4 we
will make a more precise definition of this concept.

Point-vortex model. After taking a glimpse of the mathematical methods
used in this research, now we give an outline of our specific work in point-
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vortex dynamics and the passive transport of particles. Even if we lose infor-
mation in the formulation of the point-vortex model since we are not using
the Euler equation, our point of view has an important advantage: as we
are working with ODE’s, we want to obtain a deep qualitative description of
the physical phenomena.

In Fluid Mechanics, a point-vortex is by definition a singularity of the
vorticity. That is, given by a Dirac delta in the vorticity. In the Lagrangian
description of the dynamics of an ideal 2D fluid, a point-vortex moves subject
to the interaction with other point-vortices present in the fluid. This gives
a formal analogy to the N-body problem in Celestial Mechanics, but with
totally different properties. An important difference is that, in one case
we have first order differential equations, and in the Celestial mechanics
case, we have second order differential equations. That is, in the case of the
N point-vortices, the dynamics does not come from the interaction with a
Newtonian potential.

Hence, each point particle of the fluid is subject to the influence of a point-
vortices configuration present in the flow or to the influence of other back-
ground flows. We call this the passive transport of the particle, or the advec-
tion of the particle. The dynamics follows a Hamiltonian formulation with
the streamfunction Ψ playing the role of the Hamiltonian. These ideas were
introduced in the seminal works of Helmholzt and Kirchoff in the XIXth
century. See [21] and Lecture 20 of [27].

Here a word of caution is necessary, because the notion of point-vortex as a
singularity of the vorticity of a 2D fluid is a highly idealized version of real-
life vortices. From a physical point of view, a vortex is just a concentrated
region of high vorticity, but at the moment the Fluids Dynamics community
works with several (non-equivalent) mathematical definitions of a vortex,
see [18] for a summary of different interpretations available in the litera-
ture. Many definitions require a compact set of finite vorticity (vortex patch)
rather than a singularity, in other cases the effect of a third spatial dimen-
sion is considered (filament or tubular vortices). We refer to [1, 18, 30, 38, 62]
for more information about the existing models and a summary on the vari-
ous definitions.

Given the vorticity ω of an incompressible fluid, the streamfunction is de-
fined as a solution of the Poisson equation −∆Ψ = ω. As it said previously,
we are concerned with a point-vortex, defined as a Dirac delta of the vortic-
ity. Under this definition, the streamfunction is the fundamental solution
of the 2-dimensional Laplacian. So, a point-vortex in the plane induces a
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streamfunction Ψ0 = Γ
4π

ln(x2 + y2) where Γ is the circulation (or strength)
of the vortex and, up to a re-scaling of units, it can be set Γ = 2π. As said
before, the solution of the corresponding Hamiltonian system describes the
trajectories of a passive particle under the influence of the vortex.

It is easy to see that, without the perturbation, the Hamiltonian system is
integrable with periodic solutions and the origin is stable in a Lyapunov
sense. The particle rotates around the vortex on circular paths. The fre-
quency of rotation is inversely proportional to the radius of the path and
tends to infinity as the radius tends to zero.

We study how this integrable dynamics is affected by the superposition of an
external periodic time dependent streamfunction p(t, x, y). More precisely,
we consider the Hamiltonian

Ψ(t, x, y) =
1

2
ln(x2 + y2) + p(t, x, y), (1.0.6)

and the associated Hamiltonian system
ẋ = ∂yΨ(t, x, y)

(x, y) ∈ U \ {0} ,
ẏ = −∂xΨ(t, x, y)

(1.0.7)

defined in a neighborhood U of the origin.

Physically, system (1.0.7) can be interpreted to model the advection of a
particle under the action of a steady vortex placed at the origin and a peri-
odic time dependent background flow. This point of view of looking at the
motion of single particles is known as the Lagrangian description for Fluid
Dynamics, in contrast to the Eulerian perspective, which looks at the global
properties of the flow.

Different aspects of the dynamics of advected particles in non-stationary
flows have been studied in the literature from different perspectives, see
for instance [8, 10, 19, 31, 71, 76, 86]. Numerical studies in related models
[8, 10] strongly suggest the presence of stability (regular) islands around a
point vortex and other complex dynamics. So this physical phenomenon is
well known on a numerical and experimental level, but there are not many
results from a purely analytical perspective.

Chapter 2 will be dedicated to an explanation of this model.

Results and methodology. In this report we include the two results ob-
tained during my research period ([45] and [69]). Considering the perturbed
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system (1.0.7), we have obtained the following results:

1) In [69] we get some sufficient conditions over a class of analytical per-
turbations p(t, x, y) to guarantee the stability of the origin using a KAM
theorem. Specifically, after some transformations and estimates in
subdomains of C2, the analytical version of Moser’s invariant curve
theorem (or twist theorem) applies. Therefore it gives the existence of
invariant curves of the Poincaré map close to the singularity. Due to
a low dimensionality of the phase space, these invariants curves acts
like barriers and give the desired stability of the origin.

The requirement of a low dimensionality in these systems deserves an
additional comment. If we have 2 or 1 + 1

2
degrees of freedom, after the

perturbation the remaining invariant tori act as barriers for the flux.
That is, we have a family of compact level sets in the reduced phase
space of the system that prevents the escape of the trajectories. Arnold
diffusion cannot occur in this scheme.

To obtain this result we have adopted the following methodology: first,
we need to transform the variables (x, y) to action-angle variables by
using symplectic polar coordinates (r, θ). Also the Kelvin transform re-
verses the role of the origin and the infinite. Additionally, introduces
a weighted symplectic form, ω = 1

4r2 dr ∧ dθ. This change of variable
makes it easier for us to treat the singularity. After this, we pass
to complex formulation by considering the system as complex-valued.
This formalism is necessary to apply the invariant curve theorem in
the analytical version. In this framework, we make some estimates to
assure that the Poincaré map is well-defined in a suitable open set of
C2 and the perturbation satisfies the hypothesis of the invariant curve
theorem. Finally, we show the intersection property for the Poincaré
map, therefore the invariant curve theorem, provides the existence of
a sequence of invariant Jordan curves near infinite. After inversion of
the Kelvin transform, such invariant curves surround the vortex, act-
ing as flux barriers. So, the stability is guaranteed. In the last step it is
important to check the continuous dependence around the singularity
over a period.

As a byproduct of this first result, there exist quasi-periodic solutions
of the Hamiltonian systems with (sufficiently large) Diophantine fre-
quencies. These can be seen as a reminiscent of the trajectories of the
unperturbed Hamiltonian with Diophantine frequency.

2) In [45] we prove that, close to the singularity, quasi-periodic solutions
exist for all frequencies sufficiently large. Actually, our solutions are
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a generalization of standard quasi-periodic solutions. In the case of
commensurable frequencies, we get periodic solutions. These solutions
exist also when KAM theory cannot be applied. Indeed, we require
a very low regularity of p(t, x, y) that prevents standard KAM theory
from being applied. This result comes from the application of a suit-
able version of Aubry-Mather theory [6, 46] to the Poincaré map of the
perturbed system. A similar scheme have been used to describe the
dynamics of different systems [43, 39, 65, 80, 87].

For each sufficiently large real number α, we give a proof for the exis-
tence of an invariant set Mα (called Aubry-Mather set) with very in-
teresting dynamical properties, among them, each orbit in Mα has
rotation number α. For irrational rotation numbers, the correspond-
ing Aubry-Mather sets are either curves or Cantor sets. Solutions of
system (1.0.7) with initial conditions in this set are our generalized
quasi-periodic solutions. In the rational case, the Aubry-Mather sets
may contain periodic and heteroclinic orbits.

In suitable variables, the Poincaré map of the perturbed system (1.0.7)
is an exact symplectic twist map of the cylinder. However, it is not de-
fined on the whole cylinder. Hence we cannot apply directly the result
of Mather and we need an adapted version to this situation. Using
an extension theorem, we can formulate a generalized Aubry-Mather
theorem.

To apply this generalized theorem, we only need to show that the
Poincaré map is exact symplectic and twist. The first property comes
from the Hamiltonian character of the system. The twist condition is
more delicate and relies on the behavior of the variational equation. In
Chapter 5 we give a proof following a perturbative approach. Here, we
ask that the perturbation has the origin as a zero of order 4.

From the point of view of dynamics of symplectic diffeomorphisms, we
describe some aspects of the dynamics around a singularity. In the in-
tegrable case, the flow can be continuously extended to the singularity,
defining it as a fixed point. However, this extension is not C1. In the
perturbed case, in general it is not even possible to guarantee the con-
tinuity of this extension. Since the flow is not regular, all the results
coming from the theory of elliptic fixed points and transformation to
Birkhoff normal form cannot be applied directly. As in the first result,
we overcome the problem of the singularity performing a change of
variable that sends the singularity at infinity and makes it easier to
treat the singularity. At this stage, the assumption of having the zero
of order 4 in the perturbation play a fundamental role.
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To sum up, with this result we obtain an invariant setMα which con-
tains periodic points, invariant curves and Cantor sets that give us an
important dynamical information of the orbits in the perturbed system.
Each set has an associated rotation number, α, as we saw in the previ-
ous example concerning the twist integrable map. If α = s/q is rational,
the invariant set contains periodic points of period q that correspond to
s-periodic motions in q iterations. Additionally, this invariant set also
may contain heteroclinic orbits. If α is irrational, then Mather’s theo-
rem give us an alternative: either an invariant curve corresponding to
quasi-periodic motions in the classical sense with frequencies (1;α) or
the invariant set is a Cantor with dynamics of Denjoy type.

Structure of this thesis. The structure of this thesis is the following.

In Chapter 2, we will present the physical model of our thesis, perturbed
point-vortex dynamics. We will motivate the equations of motion of our
model, that is, the system of equations (1.0.7); and we will analyze some
properties of interest for our study.

In Chapter 3 we will review the main mathematical tools used throughout
the research. In Section 3.1 we will introduce some basic facts of exact sym-
plectic twist maps of the cylinder and its properties in the corresponding lift
map, that is, the map defined on the universal cover of the cylinder with
the inheriting periodic condition in the angle variable. We will start with a
definition of the simplectic and exact symplectic properties and its geometri-
cal interpretation. We will continue with the definition of the twist property
and the intersection property. The next Section, 3.2 is devoted to study some
properties of the Poincaré map.

In the following sections, 3.3 and 3.4, we will present the theories applied
in our results, KAM theory and Aubry-Mather theory. In Section 3.3 we will
give a brief historical introduction to KAM theory with an intuitive meaning
and we will enunciate Moser’s invariant curve theorem in the analytic ver-
sion. Section 3.4 presents a generalized Aubry-Mather theorem adapted to
the study of the Poincaré map corresponding to the perturbed point-vortex
problem (1.0.7). The usual Mather’s theorem asks for a generating function
defined in the whole plane R2, however, in our application to the perturbed
point-vortex problem, we will see that the generating function is defined on
a subset of the plane. Therefore, we need an extension theorem to extend the
domain of the generating function to the whole plane and so we can apply
the Mather’s Theorem. In this Section we will give the details.
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The following chapters deal with our research results. Chapter 4 will present
the result concerning the stability around the singularity via the existence
of invariant curves surrounding the origin.

First of all, from a more analytical point of view, it seems necessary to state
a precise mathematical notion of stability around a singularity. To fill this
gap, Section 4.1 is devoted to settle a rigorous definition of stability of a
singularity in this context. We will consider perpetual stability in the Lya-
punov sense, meaning that a solution of (1.0.7) with a small initial condition
will remain close to the singularity forever.

The remaining sections in this Chapter are devoted to enunciate the stabil-
ity Theorem for the perturbed point-vortex problem and the correspondent
proof.

Chapter 5 contains the result concerning the application of Aubry-Mather
theory and the existence of quasi-periodic solutions close to the singularity.

Finally, in Chapter 6 we will present a summary of conclusions of both re-
sults. We also show some possible future works in the direction of this thesis.
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Chapter 2

Physical model: Perturbed
point-vortex dynamics

2.1 Introduction: Point-vortex dynamics

In this chapter we will introduce the physical model used in this monograph:
dynamics of a point-vortex under a periodic perturbation. Point-vortex dy-
namics has been historically used to describe the dynamics of a passive par-
ticle (or test particle) in a particular velocity field given by a configuration
of N point-vortices. Or, in a clear analogy with celestial mechanics, the dy-
namics of a configuration of N point-vortices, also called in a more informal
way the wet N-body problem. This is only a formal analogy since there is
an important difference. In one case we have first order differential equa-
tions, and in the other case, we have second order differential equations.
That is, in the case of the N point-vortices, the dynamics does not come from
the interaction with a Newtonian potential. Also, the integrability proper-
ties are different. The 3-vortex problem is integrable and is well-known the
non-integrability of the 3-body problem.

In this monograph we will follow the point of view of H. Aref and others
authors [1], in which we want to know the evolution of a passive particle
under the action of a prescribed velocity field generated for a configuration
of N point-vortices or an external flow. It is assumed that each point-vortex
does not have a self-interaction. This description follows the movement of
every fluid particle, in analogy with particle mechanics. It is called a mate-
rial description or Lagrangian description. A different point of view, which
we will not treat, is the Eulerian perspective or the field description. In this
framework, instead of following the motion of each particle, we may concen-
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CHAPTER 2 Physical model: Perturbed point-vortex dynamics

trate on the spatial distribution of physical quantities and their temporal
variation at every point x, for example, the velocity of the fluid. Both points
of view give us different and complementary information of the phenomena.

The history of vortex dynamics starts from the works of Helmholtz in
1858, [21]. Specifically, in section V of this paper, Helmholtz introduces the
point-vortex model. We can describe this model as follows. Consider a set
of N infinitely thin, straight and parallel vortex filaments in 3D, with an
invariant amount of circulation Γ :=

∮
C
v · dl where v is the velocity field

and C is a closed path. If one takes perpendicular sections to this family
of vortex filaments, one obtains a set of N points of intersection, that is,
a configuration of N point-vortices in the plane. Later, Kirchhoff [27] has
developed a Hamiltonian formulation, identifying the streamfunction of the
fluid as the Hamiltonian of the system. He also derived some integrals of
motion in the N -vortices configuration. Other authors have contributed in
the historical development of this area. Just to cite a few, Kelvin with his
well-known circulation theorem and the vortical atomic model [25]; Gröbli
[17] with the work for the three point-vortex problem and the four point-
vortex problem with axial symmetry; even Poincaré in 1893 [75] with his
treatise on vortices; also Love [35] with the problem of four point vortex
with axial symmetry and the phenomenon of “leapfrogging” of point-vortex
pairs. For instance, in [2] the authors give an interesting historical context
in this field.

Nowadays, point-vortex dynamics are studied as a branch of Fluid Mechan-
ics with deep connections with Celestial Mechanics and Hamiltonian sys-
tems. Also it is an exciting field of research related with the physics of Bose-
Einstein condensates (see [15, 26, 72, 84, 85]), hydrodynamics, geophysics,
astrophysics, etc.

2.1.1 Equations of motion for a point-vortex

Point-vortex equations of motion can be viewed as a discrete version of the
Euler field equations for a 2D inviscid flow. In [36] the authors give a rigor-
ous derivation of the model.

Is important to say that the notion of point-vortex as a singularity of the
vorticity of a 2D fluid is a highly idealized version of real life vortices. From
a physical point of view, a vortex is a zone of high vorticity. Mathemati-
cally, a point-vortex in the plane can be defined in different ways. It can be
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2.1. Introduction: Point-vortex dynamics

defined as a singularity of the vorticity or through a compact set of finite
vorticity (vortex patch). See [1, 18, 30, 38, 62] for a summary on the various
definitions and more information about the existing models. We will define
a point-vortex as a Dirac delta of the vorticity ω of an incompressible two-
dimensional fluid. With this definition, the associated streamfunction is the
fundamental solution of the 2-dimensional Laplacian, that is, as a solution
of the Poisson equation −∆Ψ0 = ω = δ. In consequence a point-vortex situ-
ated in the origin induces a streamfunction Ψ0 = Γ

4π
ln(x2 +y2) where Γ is the

circulation (or strength) of the vortex. This streamfunction Ψ0(x, y) will be
our Hamiltonian function. The solution of the corresponding Hamiltonian
system describes the trajectories of a passive particle under the influence of
the vortex.

The Hamiltonian associated to a point-vortex with circulation Γ = 2π on the
xy plane is given by

Ψ(x, y) =
1

2
ln(x2 + y2), (2.1.1)

and the correspondent Hamiltonian system is
ẋ = y

x2+y2

(x, y) ∈ U \ {0} ,
ẏ = − x

x2+y2

(2.1.2)

We have an autonomous Hamiltonian system with one degree of freedom
and the canonical variables (x, y) represents the position of the passive par-
ticle on the plane. As it is known, this system is integrable with the Hamil-
tonian function as an integral of motion with radial symmetry. The passive
particle rotates around the vortex on circular paths and the frequency of ro-
tation is inversely proportional to the square of the radius of the path and
tends to infinity as the radius tends to zero (see Figure 2.1). It is easy to
obtain an expression for the period of these paths. Consider the following
transformation from (x, y) to polar symplectic variables

x =
√

2ρ cos θ, v =
√

2ρ sin θ.

Hamiltonian (2.1.1) transforms into

Ψ(x, y) = H(ρ) =
1

2
ln(2 ρ)

and the equations of motion are{
ρ̇ = 0

θ̇ = − 1
2ρ

(2.1.3)
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Figure 2.1: Orbits of system (2.1.2). A larger size of the arrows corresponds
to a higher velocity of rotation.

Integrating this equations we can see explicitly that the solutions have con-
stant ρ, that is, the orbits are circular paths. Additionally, the angular vari-
able changes linearly with time

θ(t) = θ0 −
1

2ρ
t

with a frequency ω := dθ
dt

= − 1
2ρ

. The period of the orbits is T = 2π
|ω| = 4π ρ.

Remark 2.1. Sometimes is useful to write the system (2.1.2) in complex
notation. If we take the complex variable as usual: z = x+ iy, we have:

ż =
1

iz
(2.1.4)

2.1.2 Superposition principle

Our equation for a point-vortex gives a velocity field on the plane so its clear
that we can consider a superposition principle to add different velocity fields,
coming from other configuration of point-vortex or from an external pertur-
bation. In the following examples it is illustrated this superposition princi-
ple.

Example 2.1. Equations of motion for a configuration of N point-
vortices.

Consider a configuration of N point-vortices on the plane, being the posi-
tion and circulation of the j-th point-vortex (xj, yj) and Γj, respectively. The
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Hamiltonian is

ΨN(xj, yj) =
1

4π

N∑
k=1

Γk ln
[
(xj − xk)2 + (yj − yk)2

]
, (2.1.5)

and the equations of motion for the j-th point-vortex are
ẋj = 1

2π

N∑
k 6=j

Γk
yj−yk

[(xj−xk)2+(yj−yk)2]

ẏj = − 1
2π

N∑
k 6=j

Γk
xj−xk

[(xj−xk)2+(yj−yk)2]

(2.1.6)

The equations (2.1.6) represent the dynamical influence of the configuration
of the N − 1 vortices on the j-th point-vortex. That is, the j-th point-vortex is
advected by the superposed velocity field produced by all the other vortices.
Recall that each point-vortex sets up about itself a circular velocity field of
magnitude Γj

2πρj
, where ρj is the radius of the circle centered in that vortex.

Remark 2.2. In complex notation the equations (2.1.6) can be written as

żj =
1

2πi

N∑
k 6=j

Γk
zj − zk
|(zj − zk)|2

=
1

2πi

N∑
k 6=j

Γk

(zj − zk)
. (2.1.7)

Remark 2.3. Integrals of motion and integrability. In contrast with the 3-
body problem in Celestial Mechanics, the 3-vortex problem is integrable in
the Liouville sense. In fact, there are 4 integrals of motion coming from the
following symmetries:

• time-translational invariance, I1 := H;

• translational invariance, I2 + iI3 :=
N∑
j=1

Γjzj;

• rotational invariance, I4 :=
N∑
j=1

Γj|zj|2.

However, these integrals are not in involution. One can find the three inde-
pendent integrals in involution that assure the integrability of the N -vortex
problem for N ≤ 3 and any values of the vortex circulations. The three
integrals are I1, I4 and I2

2 + I2
3 .
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Example 2.2. Equations of motion for a point-vortex with an exter-
nal time-dependent perturbation.

Consider an external flow p(t, x, y) and a point-vortex situated in the ori-
gin. The Hamiltonian of this system is

Ψ(t, x, y) =
Γ

4π
ln(x2 + y2) + p(t, x, y), (2.1.8)

and the associated system
ẋ = ∂yΨ(t, x, y) = Γ

2π
y

x2+y2 + ∂yp(t, x, y)

(x, y) ∈ U \ {0} .
ẏ = −∂xΨ(t, x, y) = − Γ

2π
x

x2+y2 − ∂xp(t, x, y)

(2.1.9)

Physically, system (2.1.9) models the passive advection of particles in a fluid
subjected to the action of a steady point-vortex placed at the origin and a
time-dependent background flow.

2.2 Equations of motion of a periodically per-
turbed point-vortex

Let us take a 1-periodic perturbation in the Hamiltonian (2.1.8). This system
will be our model for the problem in this monograph. Also for simplicity we
will consider a point-vortex, with circulation Γ = 2π, centered at the origin
of the plane. The Hamiltonian is

Ψ(t, x, y) =
1

2
ln(x2 + y2) + p(t, x, y), (2.2.1)

and the associated system
ẋ = ∂yΨ(t, x, y) = y

x2+y2 + ∂yp(t, x, y)

(x, y) ∈ U \ {0} ,
ẏ = −∂xΨ(t, x, y) = − x

x2+y2 − ∂xp(t, x, y)

(2.2.2)

defined in a neighborhood U of the origin.

2.3 Objectives, motivation and results

As we have seen, without the perturbation the system is integrable and the
passive particle rotates around the vortex with a frequency that tends to
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∞ as we approach to the origin. These solutions are trivially stable (in a
Lyapunov sense).

The idea is to see what happens to the integrable system if we introduce
a periodic external flow p(t, x, y). A first question could be: If we want to
preserve the stability in the origin, which are the conditions on p(t, x, y)? We
give the answer: If p(t, x, y) is analytic and the origin is a zero of order 4, then
by means of KAM theory (Invariant Curve Theorem) we obtain a family of
invariant curves of the Poincaré map. Then, these invariant curves act as
barriers and give the stability of the singularity. This result is contained in
the paper [69].

For an analytic perturbation, we have shown the existence of quasi-periodic
solutions, that is, the family of invariant curves. So, a second question mo-
tivated by this first result is: Which are the sufficient conditions on p(t, x, y)

for the existence of periodic and quasi periodic orbits? What can we say
about the periodicity of the orbits after the perturbation? Our answer is: If
p(t, x, y) is C3 in a domain around the origin and satisfies a condition of zero of
order 4, we obtain the existence via Aubry-Mather theory of periodic or gen-
eralized periodic orbits for rational rotation number α, and quasi-periodic
orbits for an irrational α. Observe that with this regularity KAM results
can not be applied. Nevertheless, Aubry-Mather theory does not distinguish
if we obtain invariant curves or Cantor sets for an irrational rotation num-
ber α. In the paper [45] we give a proof of this result.

So, our results would help us to understand the dynamics of this model as
well as the dynamics around a singular point.

In the next Chapter, we give some necessary mathematical tools to prove
these results.
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Chapter 3

Mathematical tools

In this chapter we introduce some mathematical background necessary to
obtain our results. We are studying a dynamical system with a singularity
in the velocity field located at the position of the point-vortex. Our unper-
turbed model is an integrable Hamiltonian system in the plane. Under suit-
able conditions, we can make transformations of the canonical variables to
get the action-angle variables. So the phase map of the system becomes a
cylinder. In Section 3.1 we introduce some properties of maps of the cylinder:
symplectic, exact symplectic, twist condition and intersection property.

The connection between continuous and discrete dynamics is given by the
so-called Poincaré map, in Section 3.2 we give some properties of this map.

Furthermore, we consider perturbations on integrable Hamiltonian systems.
A main result in this field is the theory developed by Kolmogorov, Arnold,
Moser and others authors. This theory is usually known using the acronym
KAM. After an introduction with some historical remarks, in Section 3.3 we
enunciate the analytical version of the Invariant Curve Theorem or Moser’s
Twist Theorem.

Finally, in Section 3.4 we present the Aubry-Mather theory and we give a
generalized theorem. Usually, Aubry-Mather theorem requires the generat-
ing function to be defined in the whole plane R2. But in the perturbed
point-vortex problem the generating function is defined in a subset of R2, so
we give an extension theorem that allows to apply the Aubry-Mather theory
in our problem.
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3.1 Maps in the cylinder

In this section we follow the lines of [32] and [41]. Let us start denoting the
cylinder by C = R×T with T = R/2πZ and we consider the strip Σ :=]a, b[×T
with −∞ ≤ a < b ≤ ∞. The notation related to the quotient set T will be:
the real variable will be denoted by x and the angle variable by θ. So x will
be the lift variable and θ = x+ 2πZ the variable in the covering map.

Consider a Ck(Σ)-embedding with k ≥ 0:

Φ : Σ −→ C

(r, θ) 7−→ (r1, θ1) = (F(r, θ),G(r, θ)) .

We recall than an embedding is a homeomorphism onto its image and a
Ck(Σ)-embedding is a Ck-diffeomorphism onto the image.

Also we work on the plane R2. Consider the lift map of Φ, that is, the map
defined in a subset of the universal cover of the cylinder (Σ̃ :=]a, b[×R ⊂ R2)

Φ̃ : Σ̃ −→ R2

(r, x) 7−→ (r1, x1) = (F(r, x),G(r, x))
(3.1.1)

with a periodicity condition

F(r, x+ 2π) = F(r, x),

and the additional hypothesis for the lifted angular variable x,

G(r, x+ 2π) = G(r, x) + 2π.

We will also suppose that Φ (or Φ̃) is isotopic to the identity. This prop-
erty means that if u is an element of a topological space Y , there exists a
continuous map

H : [0, 1]× Y −→ Y

(λ, u) 7−→ H(λ, u) = Hλ(u)
(3.1.2)

such that:

• H0(u) = Id(u) = u and H1(u) = Φ(u).

• Hλ(u) is a homeomorphism for each λ ∈ [0, 1].

In our context the topological space Y could be Σ or Σ̃.
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To clarify the notation, (r, x) are Cartesian coordinates and (r, θ) coordinates
in the cylinder. We denote both homeomorphisms by Φ. Only in cases of
possible misunderstandings we use the notations Φ̃ (defined on the plane)
and Φ (defined in the cylinder).

The class of these maps in the plane will be denoted by Ek(Σ̃), equivalently
for maps defined in a strip Σ of the cylinder. The case k = 0 is interpreted as
a homeomorphism.

Now, we introduce some definitions and properties for these maps.

3.1.1 Symplectic and exact symplectic properties

Consider the standard symplectic form on the plane

λ̃ = dr ∧ dx. (3.1.3)

Definition 3.1. A map in E1(Σ̃) is said symplectic if it preserves the sym-
plectic form (3.1.3), that is,

dr1 ∧ dx1 = dr ∧ dx ∀(r, x) ∈ Σ̃.

Equivalently, this condition says that the Jacobian det Φ′ = 1 on Σ̃, that is
the classical definition of an area and orientation preserving map.

Remark 3.1. (Interpretation in measure theory) A map Φ ∈ E1(Σ̃) is sym-
plectic if and only if satisfies:

• Φ is orientation-preserving.

• for each (Lebesgue) measurable set Ω ⊂ Σ̃ the image Ω1 = Φ(Ω) is also
measurable and µ(Ω) = µ(Ω1).

Here µ is the usual Lebesgue measure in the plane:

µ(A) =

∫ ∫
A

dr dx

for each measurable set A ⊂ R2.

There is a related stronger property than being symplectic, the exact sym-
plectic property.
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CHAPTER 3 Mathematical tools

Definition 3.2. A map Φ ∈ E1(Σ̃) is exact symplectic with respect to the form
rdθ if the differential form

β = r1 dθ1 − r dθ, (r, θ) ∈ Σ.

is exact in the cylinder, that means that there exists a C2 function

S : Σ −→ R
(r, θ) 7−→ S(r, θ)

such that
dS(r, θ) = r1 dθ1 − r dθ, ∀(r, θ) ∈ Σ.

Note that the function S(r, θ) is defined in the cylinder (is 2π-periodic in θ),
hence the lift S̃(r, x) must be a 2π-periodic function in the variable x such
that

Sr(r, x) = F(r, x)Gr(r, x), Sx(r, x) = F(r, x)Gx(r, x)− r. (3.1.4)

Remark 3.2. (Interpretation in measure theory) The notion of exact sym-
plectic map can also be characterized in terms of measure theory. Infor-
mally, the area under a non-contractible Jordan curve Γ does not change
under the map. Given a non-contractible regular Jordan curve Γ ⊂ Σ which
is C1, the image Γ1 := Φ(Γ) ⊂ C is another Jordan curve with the same prop-
erties. This is a consequence of assuming that Φ is an embedding. Let us fix
some r0 > a such that Γ ∪ Γ1 ⊂]r0,+∞[×T and let Ri(Γ) and Ri(Γ1) denote
the (interior) bounded components of {]r0,+∞[×T} \Γ and {]r0,+∞[×T} \Γ1

respectively.

Then, if Φ is exact symplectic, µ(Ri(Γ)) = µ(Ri(Γ1)).

To prove this, recall that by the theory of differential forms, we have that
Φ is exact symplectic on Σ so its integral over any closed path in Σ must
vanish, then for every closed path c in Σ we have∫

c

rdθ =

∫
Φ(c)

rdθ. (3.1.5)

Now, Stoke’s Theorem gives (γ = rdθ)∫
Ri(Γ)

dγ =

∫
∂Ri(Γ)

γ =

∫
r=r0

γ +

∫
Γ

γ =

∫
r=r0

γ +

∫
Γ1

γ.
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Last equality follows from the previous characterization (3.1.5). Now, again
Stoke’s theorem gives:∫

r=r0

γ +

∫
Γ1

γ =

∫
∂Ri(Γ1)

γ =

∫
Ri(Γ1)

dγ.

This means that µ(Ri(Γ)) = µ(Ri(Γ1)).

Let us compare these properties according to the domain of the map:
plane or cylinder.

A map Φ ∈ E1(Σ̃) is symplectic if and only if the 1-form β̃ = r1dx1 − rdx is
closed. That is, dβ̃ = dr1 ∧ dx1 − dr ∧ dx = 0. We have the equivalent result
for a map in the cylinder.

By Poincaré lemma on a contractible domain, for example R2, every closed
form is exact. But this is not true on non-contractible domains or not simply
connected domains, as a cylinder: not all closed forms are exact in this do-
mains. Therefore, we can expect that there are symplectic maps which are
not exact.

On the other hand, exact symplectic maps are always symplectic. Indeed we
have that, in the cylinder

β = dS(r, θ) = r1 dθ1 − r dθ, (r, θ) ∈ Σ,

and β is a closed form: dβ = d2S(r, θ) = 0.

Example 3.1. Consider the following maps:

• Φ(r, θ) = (r, θ + α) for α ∈]0, 2π[.
In the plane this map is a translation in the horizontal direction. It can
be seen as the lift of a rotation. From r1dθ1 − rdθ = rd(θ + α)− rdθ = 0.
We deduce that rotations are exact symplectic maps with S ≡ 0.

• Φ(r, θ) = (r + ε, θ) for ε ∈ R \ {0}.
This map can be interpreted as a vertical translation. It is clearly
symplectic but it cannot satisfy the measure characterization for exact
symplectic maps that we gave in the previous Remark 3.2.

Alternatively, r1dθ1−rdθ = (r+ε)dθ−rdθ = εdθ. In the plane is an exact
symplectic map with S̃(r, x) = εx. On the contrary the differential form
εdθ is not exact in the cylinder (the periodicity condition fails) and so Φ

is symplectic but not exact.
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Now we are going to give another criterion to decide whether the diffeo-
morphism Φ is exact symplectic or not.

Let us consider the strip immersed in the cylinder Σ. Since Σ̃ is its universal
covering, all 1-forms on Σ of class C1 can be expressed as

β = A(r, θ)dθ +B(r, θ)dr

with A,B ∈ C1(Σ) and 2π-periodic in θ. When β is closed it is possible to find
a function S = S(r, θ) with dS = β. The problem is that sometimes S is not
periodic in θ and so it becomes a multi-valued function when regarded in the
cylinder, as in the previous example.

To decide if it is exact on the cylinder or not, we consider the following inte-
gral over the closed form β: ∫

c

β

on the closed path c = {r∗} × T for some r∗ ∈ [a, b] and we show that it
vanishes. This translates in the condition∫ 2π

0

A(r∗, θ)dθ = 0,

since r = r∗ along the path c.

In our case, the differential form is r1 dθ1 − r dθ. Identifying

A(r, θ) = F(r, θ)Gθ(r, θ)− r, B(r, θ) = F(r, θ)Gr(r, θ).

So, we have that the diffeomorphism Φ is exact symplectic if and only if
there exists r∗ ∈ [a, b] such that∫ 2π

0

F(r∗, θ)Gθ(r∗, θ)dθ = 2πr∗. (3.1.6)

3.1.2 The twist condition and the intersection property

We introduce two key properties in the formulation of the theories presented
in this monograph and also in the framework of symplectic maps.

Twist condition

The twist condition is essential since it is fundamental for the application of
the Aubry-Mather theory and Moser’s Twist Theorem. We have the follow-
ing definition:
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Definition 3.3. A map in the cylinder Φ ∈ Σ has the twist condition if

∂rG(r, θ) > 0 ∀(r, θ) ∈ Σ. (3.1.7)

To understand (3.1.7) let us recall that θ is an angle and r a radial variable.
The twist condition means that the evolution of the angular variable θ by
the map Φ depends on the radial variable r. If the initial radial position
r increases then the angular displacement θ1 − θ increases. Geometrically,
the twist condition means that Φ maps each vertical segment in the cylinder
into a curve that always twists around the cylinder to the right (see Figure
3.1).

Figure 3.1: Twist condition ∂rG(r, θ) > 0.

An equivalent definition of the twist condition is ∂rG(r, θ) < 0. In this case,
each vertical segment in the cylinder is mapped into a curve that twists to
the left.

Considering the lift map Φ̃ ∈ Σ̃, we have a similar definition of the twist con-
dition, ∂rG(r, x) > 0. The equivalent geometrical interpretation is that verti-
cal segments in the universal cover of the cylinder, that is R2, are twisted to
the right. This twist property of the lift map is employed to solve the implicit
function problem

x1 = G(r, x)

to obtain a unique function R(x, x1) in a domain of the plane (x, x1) ⊂ R2.
With the exact symplectic condition, we can define the so-called generating
function

h(x, x1) := S(R(x, x1), x).
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An important fact is that the map Φ̃, can be expressed implicitly through a
function h = h(x, x1): {

∂2h(x, x1) = r1,

∂1h(x, x1) = −r
where ∂i represents the derivative with respect to the i-th argument. In
Lemma 3.1 we will present more details of this program to define the gener-
ating function and its properties.

Intersection property

There is another property of interest in the formulation of the Moser’s Twist
Theorem, the intersection property. We have the following definition:

Definition 3.4. A map Φ ∈ E0(Σ) has the intersection property if for every
non-contractible Jordan curve Γ ⊂ Σ,

Φ(Γ) ∩ Γ 6= ∅.

We give an equivalent definition for maps in the plane. Consider the
punctured domain D ⊂ R2 \ {0} and the homeomorphism H ∈ E0(D). The
equivalent concept of non-contractible Jordan curve Γ in the cylinder is that
the curve surrounds the origin.

Definition 3.5. The mapH ∈ E0(D) has the intersection property if for every
Jordan curve Γ ⊂ D that surrounds the origin,

H(Γ) ∩ Γ 6= ∅.

Remark 3.3. The intersection property is topological in the following sense:
Consider the homeomorphism Ψ, if Φ has the intersection property then
Ψ ◦ Φ ◦Ψ−1 also has the intersection property.

An additional comment is that from the Jordan Curve Theorem we have
that any non-contractible Jordan curve Γ divides the strip of the cylinder
in two connected components: Ri(Γ) the lower one and Re(Γ) the other one.
Similarly the curve image Γ1 := Φ(Γ) divides the strip in other two connected
components, say, Ri(Γ1) for the lower one and Re(Γ1) for the other. Observe
that if a = 0 and b = ∞, the lower components of the cylinder Ri(Γ) and
Ri(Γ1) are bounded, and the others Re(Γ) and Re(Γ1) are unbounded. Fi-
nally, using the characterization in the Remark 3.2, is easy to demonstrate
that if Φ ∈ E1(Σ) is an exact symplectic map then it has the intersection
property.
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In Section 4.3.5 we will check if a map related with the system (2.2.2), the
Poincaré map associated to this system, satisfies the intersection property.

Let us give some examples illustrating the two previous properties of maps
in the cylinder:

Example 3.2. Consider the following maps:

• Φ(r, θ) = ((1 + ε)r, θ + α + β(r)) for β′(r) > 0 and ε > 0.

This map is a twisted dilation. It expands the radial variable and in the
angular variable we have a rotation given by α + β(r). Since β′(r) > 0,
this map has the twist property but there exist some non-contractible
Jordan curves such that the intersection property fails. For instance,
curves with r = rc where rc is a constant.

• Φ(r, θ) = (r + sin2(θ), θ) .

This map has the intersection property since r1 = r if and only if θ =

kπ for k ∈ Z and is impossible to construct a non-contractible Jordan
curve such that the image does not assume some of these values for θ.
Additionally, it is clear that this map is not a twist map.

• From [78], Φ(r, θ) = (r+f(θ+ r), θ+ r) with r ∈ [a, b], f ∈ C1, 2π-periodic
and ∫ 2π

0

f(θ)d θ = 0.

Using (3.1.6) we can check that this map is exact symplectic, for r∗ ∈
]a, b[ ∫ 2π

0

(r∗ + f(θ + r∗))d θ − 2πr∗ = 0,

so it has the intersection property. Also it has the twist property since
∂rG(r, θ) = 1.

3.2 The Poincaré map

In this section we establish the link between the continuous dynamics of
a periodic Hamiltonian system (1.5 degree of freedom) and the discrete dy-
namics of an area-preserving map in the cylinder. Poincaré showed this
relation in the study of periodic orbits in Celestial Mechanics. This map
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is called Poincaré map, Poincaré return mapping or first return map. The
Poincaré map of a T -periodic equation is the mapping P that assign to every
initial point (0, ξ0) the value of the solution at t = T with this initial con-
dition, ξ(T, ξ0). Since there is a correspondence between many qualitative
properties of this map with the qualitative properties of the original system,
the Poincaré map has become an essential tool in the qualitative theory of
ordinary differential equations.

Obviously this process can be generalized, so to study the flow in an n-
dimensional phase space near a periodic orbit one can associate a mapping
of an (n − 1)-dimensional neighborhood of a fixed point of this mapping. In
this text, we concentrate in the definition of this map for a periodic Hamilto-
nian system of 1 degree of freedom or more generally, a Hamiltonian system
of 2 degrees of freedom.

Let us assume that Ω is an open subset of R2. Consider a T -periodic field
X(t, ξ), continuous in t and continuously differentiable in ξ:

X : R× Ω −→ R2

(t, ξ) 7−→ X(t, ξ).

We denote these conditions on the field as X ∈ C0,1(R × Ω,R2). We suppose
also that divxX = 0. This condition comes from the Hamiltonian charac-
ter of the field. Due the regularity of the field there is uniqueness for the
associated initial value problem, for simplicity let us assume t0 = 0:{

ξ̇ = X(t, ξ),

ξ(0) = ξ0, ξ0 ∈ Ω.
(3.2.1)

The corresponding solution will be denoted by ξ(t, ξ0) and we suppose that is
defined on a maximal interval Iξ0. For each t ∈ Iξ0 we can define the time-t
map as

φt : Dt ⊂ Ω −→ R2

ξ0 7−→ φt(ξ0) = ξ(t, ξ0),

with Dt = {ξ0 ∈ Ω : t ∈ Iξ0}. This map gives the evolution to time t of the
solution of the initial value problem (3.2.1).

It is well known that, by the theorem on continuous dependence, Dt is open
and φt is a homeomorphism from Dt onto φt(Dt). In general, as the field
X(t, ξ) is not constant, this map does not define a flow, that is

φt ◦ φs 6= φt+s ∀t, s ∈ R s.t. t+ s ∈ Iξ0 .
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3.2. The Poincaré map

Nevertheless, if the interval Iξ0 is unbounded on the right, the map φt satis-
fies the property

φt ◦ φT = φt+T ∀t ∈ Iξ0 .

Remark 3.4. [68] There exist periodic differential equations such that φt
and φT do not commute for some t ∈ Iξ0. For instance, consider the initial
value problem: {

ξ̇ = ξ + sin t

ξ(t0) = ξ0.

The solution is:

φt(ξ0) = ξ(t, ξ0) =

(
ξ0 +

1

2

)
et−sin(t) + cos(t)

2

and
φt+2π(ξ0) =

(
ξ0 +

1

2

)
et+2π−sin(t) + cos(t)

2
= φt(φ2π(ξ0)).

Nevertheless,

φ2π(φt(ξ0)) =

(
ξ0 +

1

2

)
et+2π−

sin(t) + cos(t)− 1
2

2
e2π 6= φt+2π(ξ0).

for any t ∈ Iξ0 = R.

From the theorem of differentiability with respect to the initial conditions
this map φt is a diffeomorphism onto its image. Additionally, the Liouville
theorem implies that φt is an orientation and area preserving map, that is,
detφ′t(ξ0) = 1. Therefore, the time-t map φt is a symplectic map in the plane.

Let us define the map P̃ := φT as the Poincaré map of (3.2.1). It is clear
that satisfies P̃n := φnT with n ∈ Z. We recall that an important property
of periodic equations is that if ξ(t, ξ0) is a solution then ξ(t + T, ξ0) is also a
solution. From this fact and the uniqueness we deduce that

ξ(t+ T, ξ0) = ξ(t, P̃(ξ0))

whenever it is defined.

Additionally, the Poincaré map is a homeomorphism isotopic to the identity.
The isotopy Hλ would be the time-t map with φ0 = Id and φT = P̃. Starting
at the plane t = 0 and then move in the direction of time until reaching
t = T , the flow will deforms continuously the identity into P̃.

As we said, the dynamics of (3.2.1) can be studied through the Poincaré map
P̃ since many properties of the periodic Hamiltonian system are translated
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to the framework of discrete dynamics via P̃. For example, a fixed point of
the Poincaré map corresponds to the initial condition of a T -periodic solu-
tion. Cycles or periodic points of the Poincaré map are associated with Gen-
eralized periodic solutions or solutions with rational frequencies. Further-
more, solutions with incommensurable frequencies, that is, quasi-periodic
orbits are associated to certain invariant sets of the Poincaré map. These in-
variant sets are the so-called invariant curves or invariant tori and they are
related with questions of stability or boundedness of orbits. The property of
isotopy of the Poincaré map is crucial to prove the stability when one has an
invariant curve. In the course notes [67] and in the works [41, 66, 68] we
can find more information about this relation.

So the Poincaré map P̃ is a symplectic map in the plane. As we work
with the 1-periodic Hamiltonian system (2.2.2), after taking action-angle
variables (r, θ), we can interpret the Poincaré map as a system in a strip
of the cylinder (in Chapters 4 and 5 we have an explicit expression of this
system, equations (4.3.5) or (5.2.2)). Let us introduce the Poincaré map P in
this context as

P : Σ −→ Σ′ ⊂ R× T
(r0, θ0) 7−→ (r1, θ1) = (r(1; r0, θ0), θ(1; r0, θ0)) ,

where (r(t; r0, θ0), θ(t; r0, θ0)) is the solution defined on t ∈ [0, 1] with initial
condition (r(0), θ(0)) = (r0, θ0).

Therefore, we have a connection between a Hamiltonian system and the
discrete dynamics of a map defined in a strip Σ of the cylinder, concretely
is a diffeomorphism of a section of the cylinder and P ∈ E1(Σ). Due to the
orientation and area preserving property of the original field, the Poincaré
map P is a symplectic map in the cylinder.

In the following Chapters we should assure that the Poincaré map is
well defined in each case and has the appropriate properties. The remains
sections of this Chapter are devoted to present the main theorems used in
this research.

3.3 A KAM theorem

The main purpose of the “KAM theory” or the “KAM technique” (Moser
points out that he liked this name better than “KAM theory”, see [58]) in
the context of Hamiltonian Dynamical Systems is to study what is preserved
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when an integrable system is perturbed. In other words, what happens to
the invariant tori that foliate the phase space in an integrable system when
it is perturbed. That is, to study the so-called nearly integrable systems.

According to Poincaré, the investigation of these systems is the “funda-
mental problem of Dynamics” [74]. This problem was studied by Poincaré
motivated by the problem of the stability of the planetary system, but the
appearance of “small denominators” in the formal series expansion (Lind-
stedt series) originated the difficulties to prove the convergence. Over a long
period Poincare, Birkhoff, Siegel and others have not been able to solve the
problems in this perturbative approach. Then, at the International Mathe-
matical Congress of 1954, Kolmogorov presented an important result in the
framework of Hamiltonian systems [29]: a small analytic perturbation of
an integrable analytic Hamiltonian system preserve most of the invariant
tori. This result also appeared in a classic paper [28], where the proof of the
theorem is discussed. He gave the sketch of how to control small divisors
through the Newton’s method of convergence. It is in this point where a
diophantine condition appears. We quote that also Siegel worked with the
onset of small divisors and diophantine conditions in the context of holomor-
phic functions [81]. A few years later, Arnold gave a detailed proof in [3].
See [13] for a historical monograph on KAM theory.

See also [4] where Arnold proved an important result in the N -body prob-
lem of Celestial Mechanics: If the masses of N − 1 “planets” are sufficiently
small in comparison with the mass of the central body, there exists a set
of initial conditions having a positive Lebesgue measure such that, if the
initial positions and velocities of the bodies belong to this set, the distances
of the bodies from each other will remain perpetually bounded and without
collisions, like their Keplerian approximation.

Informally, the theorem of Kolmogorov says that if we have a small analytic
perturbation of an integrable analytic Hamiltonian system with n degrees
of freedom, H(I, ϕ) = H0(I) + εH1(I, ϕ) ∈ Rn × Tn, and a non-degeneracy
condition for the frequency map η(I) := −∂IH0, that is, the map η(I) is locally
a diffeomorphism and we can classify the tori of the integrable system by
their frequencies η. Then many of the invariant tori from the integrable
system do not break but are only slightly deformed. The preserved tori still
carry quasi-periodic motions.

“Many of the invariant tori” means those tori whose frequency satisfies the
following Diophantine condition: For constants µ > n − 1 and γ > 0, it is
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required that ∀p ∈ Zn \ {0},

|〈η, p〉| ≥ γ

|p|µ
, with 〈η, p〉 =

n∑
j=1

ηjpj. (3.3.1)

The relation of γ with the size of the perturbation is

|ε| < γ2δ

with δ > 0. So if ε increases, the Diophantine condition becomes more re-
strictive because γ also has to increase. In the case of a perturbed Hamil-
tonian of finite class, say Ck, the condition for µ is 2n < 2µ + 2 < k. This
implies that the more differentiable a system is, the more invariant tori are
preserved, since µ can be larger and the Diophantine condition is less re-
strictive.

The preserved tori contain a nowhere dense closed set whose complement
has measure that tends to zero if the size of the perturbation also tends
to zero. That is, invariant tori are not isolated objects, on the contrary,
they cover a substantial part of the phase space: their union has positive
Lebesgue measure, although it is usually nowhere dense. In the same way
that the Diophantine numbers are distributed on the real line R.

In the case of a system with n = 2 degrees of freedom the phase space is
4-dimensional. The 3-dimensional invariant manifold where the autonomous
Hamiltonian H is constant, is divided by 2-dimensional deformed invariant
tori of the perturbed system. The complementary domain has the form of
gaps through which the trajectories cannot leave, since they cannot inter-
sect the invariant tori. In this low dimensional case, we can imagine the
“effective phase space” as a book with an infinite number of pages ordered
according to their frequency η(I). The perturbation can tear off the pages
corresponding to a rational frequency and the irrational ones that do not
fulfill a Diophantine condition. If we increase the size of the perturbation,
the Diophantine condition becomes more restrictive and the book will be
losing its pages.

For n > 2 the invariant n-dimensional tori do not separate the (2n − 1)-
dimensional energy levels where H is constant, and trajectories from the
gaps can a priori go to infinity, these phenomena is known as Arnold diffu-
sion.

On the other hand, Moser focused on the discrete version of this theo-
rem. In the sixties, he proved the existence of invariant curves for small
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perturbations of area preserving twist mappings of the annulus [56]. This
result changes the hypothesis of analyticity by a finite regularity for this
mappings, say Ck. The proof of this result combines Newton’s method in ab-
stract linear spaces with an implicit function theorem due to Nash ([61]) to
overcome the “loss of derivatives” in the convergence problem of the iterative
process. In Moser’s own words [55]:

“In many applications this method (Newton’s method) fails, however, be-
cause of a phenomenon which may be described as “loss of derivatives”. To
be more precise, we consider u, v, un as elements of a function space, i.e., as
k-times differentiable functions of the variables x = (x1, x2, ..., xd) ranging in
an open set S. As norm we introduce

|v|k = max
0≤ρ≤k

sup
x∈S
|Dρ v(x)|,

where D denotes any derivative of order ρ. The difficulty frequently encoun-
tered is the following: In the attempt to construct successive approximations
it may occur that one can estimate |un+1− un|k only in terms of |un− un−1|k+l

where the positive integer l designates the loss of derivatives. It is clear that
such a process can not lead to an approximation of the solution, since after
finitely many steps all derivatives are exhausted unless one works with in-
finitely often differentiable or analytic functions. In the latter case, however,
the convergence of the procedure is doubtful and in most cases divergence
prevails.”

In fact, in [56] the regularity hypothesis is that k = 333. Later, Rüssmann,
Herman and Moser himself among others gave different versions of this
theorem with weaker regularity assumptions. For a detailed formulation
of different versions of this theorem see for instance [59, 78] (for k ≥ 5) or
[22, 23] (for k ≥ 3 + ε). Some counterexamples due especially by Herman
[22] suggest that k has to be chosen greater than 3.

So, as we said, this result is related with the previous theorem for Hamil-
tonian systems of n = 2 degrees of freedom. The associated Poincaré map
is an area preserving map, and it has the twist property. Clearly, a small
perturbation of an integrable system results in a small perturbation of the
Poincaré map. Also, the existence of a preserved torus for the perturbed sys-
tem near an invariant torus for the integrable system is equivalent to the
existence of an invariant curve for the perturbed Poincaré map near a circle
r = r0. Additionally, the non-degeneracy condition for the frequency map
turns into the twist condition for the Poincaré map, and the Diophantine
condition (3.3.1) becomes a Diophantine condition for the rotation number
α(r).
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Γ Γ

T T

Φ

ψ ψ

Rβ(r∗)

Figure 3.2: Commutative diagram ψ ◦ Φ = Rβ(r∗) ◦ ψ.

Definition 3.6. The rotation number α of a map Φ(rn, θn) = (rn+1, θn+1), is
defined as

α :=
1

2π
lim
n→∞

θn
n
. (3.3.2)

The Poincaré maps for Hamiltonian systems are area preserving and exact.
This, in particular, implies that it has the intersection property. Moser used
only this weaker property to prove the preservation of invariant curves with
Diophantine rotation number. Thus, his result holds for a more general class
of systems and not only for the associated Poincaré maps of Hamiltonian
systems with 2 degrees of freedom.

Let us illustrate the previous paragraphs. Consider the twist map de-
fined on a strip of the cylinder Σ:

Φ :

{
r1 = r

θ1 = θ + β(r)
(3.3.3)

with β′ > 0. This map leaves invariant each curve Γ of the form r = r∗, ro-
tating it an angle β(r∗). We could say that the map Φ restricted to Γ is conju-
gated to a rotation Rβ(r∗), in the sense that there exists an homeomorphism
ψ such that ψ ◦ Φ = Rβ(r∗) ◦ ψ. That is, the diagram in Figure 3.2 commutes.
In this simple case the homeomorphism is the identity ψ(θ, r) = θ.

Note that we can assign to every invariant curve a rotation number, defined
through the diagram since β′ > 0. The rotation number for each invariant
curve Γ of the form r = r∗ ∈ [a, b] is α = β(r∗)

2π
. Observe that for every α ∈[

β(a)
2π
, β(b)

2π

]
there exists an invariant curve with rotation number α. Also note

that the map Φ restricted to Γ is still isotopic to the identity so that the
orientation is preserved on Γ. Therefore we have that the rotation number
is well defined.

In this context, if we consider a small perturbation of the map (3.3.3), some
questions are relevant: ¿does some invariant curve is preserved? ¿how many
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of them are preserved after the perturbation?. Moser’s Twist Theorem pro-
vides some answers.

Moser’s Twist Theorem

In this thesis we will use Moser approach, precisely we study the analytical
version of his invariant curve theorem. As we said, Moser considers small
perturbations of a twist integrable map and gives sufficient conditions that
guarantee the preservation of some rotational or non-contractible invariant
curves. Rotational invariant curves are particularly important as they act
as barriers in the cylinder. This fact is crucial when one deals with question
of stability or boundedness. Therefore the concept of a (rotational) invariant
curve for a map Φ ∈ E(Σ) is clear:

Definition 3.7. An invariant curve Γ is a non-contractible simple Jordan
curve contained in E such that Φ(Γ) = Γ.

Also could exist curves Γ such that Φ(Γ) = Γ that are contractible, called
librational invariant curves: our definition implies that we are not consider-
ing this kind of curves. See for instance the reviews [48, 49] for more details
in the definitions of librational and rotational curves.

The analytic version of Moser’s Twist Theorem or the Invariant Curve
Theorem is the following, see [77, 82]. Consider a strip Σ of the cylinder of
width 1, i.e b− a = 1, and a perturbation of the map (3.3.3) with β(r) = γr:

Φp :

{
r1 = r + f(r, θ)

θ1 = θ + γr + g(r, θ)
γ > 0.

Assume that f, g are real analytic functions and 2π-periodic in θ, then they
can be extended to a complex domain which we may take to be of the form

DC = K([a, b])× C∆

with
C∆ = {θ ∈ C : |Im (θ)| < ∆}

and being K([a, b]) a complex neighborhood of the interval [a, b].

Moreover, let us assume that this map has the intersection property re-
stricted for non-contractible Jordan curves, which is the graph of an analytic
and 2π-periodic function in θ, ϕ with r = ϕ(θ).
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Theorem 3.1. With the previous setting and considering the positive con-
stants C < 1

2
and µ ≥ 1. For each ε there exists a positive M0 (depending on

ε, C, µ, ∆ and the size of K but not on γ), such that for

|f(r, θ)|+ |g(r, θ)| < γM0, (r, θ) ∈ DC,

the map Φp has an invariant real analytic curve in parameter representation:{
r = u(ζ), u(ζ + 2π) = u(ζ)

θ = ζ + v(ζ) v(ζ + 2π) = v(ζ)
|Im ζ| < ∆

2
, (3.3.4)

such that the induced analytic map on this curve is the rotation

ζ1 = ζ + α

where α ∈ [γa, γb] and satisfies the Diophantine condition:∣∣∣∣ α2π − p

q

∣∣∣∣ ≥ C

qµ+1
, ∀ p

q
∈ Q. (3.3.5)

The functions u and v satisfy ∣∣∣∣v − α

γ

∣∣∣∣+ |u| < ε.

A proof of this theorem can be found in the book by Siegel and Moser [82]
or in the works [33, 77]. In [33], in contrast to the Hamiltonian approach,
where one looks for the invariant curves in the phase space, the authors use
a Lagrangian approach which is based on the search for the solution of a
second-order difference equation in the configuration space.

Remark 3.5. Let us give some additional comments:

• The intersection property is a key hypothesis for the existence of in-
variant curves. It is clear that a smallness condition alone on f and g

is not suffice, as can be seen by taking f to be a small positive constant.
In that case r always increases under application of the map, and no
invariant curve can exist. Recall also the example 3.2 of Subsection
3.1.2.

• The existence of invariant curves for the map Φp is strongly related
with the arithmetic properties of the rotation number α. In fact, each
choice of α in the twist interval [γa, γb] and satisfying the condition
(3.3.5) gives rise to an invariant curve (if we adjust the size of the
perturbation with M0).
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• In this version of the theorem, the invariant curves are analytic and
analytically conjugated to a rotation with rotation number α. In a fi-
nite differentiable version, the regularity is reduced, that is, the the-
orem concludes that there exists an invariant C1-curve and the map
induces a C1-diffeomorphism with rotation number α. See for instance
the books by Moser [59, 60].

• As we said previously, the existence of invariant curves Γ for a per-
turbed twist map Φ ∈ Ek(Σ) with k > 3 guarantees the stability or
boundedness of the orbits with initial conditions p := (r, θ) in the bounded
component of the cylinder. This is consequence of the isotopy to the
identity of the map. After an iteration, the image of a connected com-
ponent will be in the same connected component. Since there is a con-
tinuous deformation H(λ, p) from the identity map to the map Φ, there
cannot exist orbits connecting the top and the bottom of the cylinder.

The following example illustrates the beautiful relation between the in-
variant curves and the condition for Diophantine numbers.

Example 3.3. Last invariant curve for the standard map: Consider the stan-
dard map {

r1 = r − λ
2π

sin(2πθ)

θ1 = θ + r1.

In [16], Greene discovered numerically that the last invariant curve corre-
sponds to a frequency very close to the golden number, α = γ =

√
5−1
2

, and
the value λ ≈ 0.971635.

3.4 A generalized Aubry-Mather theorem

The usual Mather’s Theorem [47, 48] gives sufficient conditions on an exact
symplectic twist diffeomorphism of the infinite cylinder C to get the exis-
tence of Aubry-Mather sets Mα for every rotation number α. This sets are
minimizers of an action functional defined via the generating function h and
contain some orbits of the diffeomorphism classified by its rotation number.
From a topological point of view, Aubry-Mather sets Mα sets are limits of
monotone (p, q)-periodic orbits, see [9, 48]. Also, the first work of Mather
[46] applies to the class of area-preserving twist homeomorphisms of the an-
nulus (or defined in a strip Σ of the cylinder). In both cases, the arithmetic
properties of α determine the structure ofMα and the dynamics on it.
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• If α is rational thenMα contains periodic orbits. These periodic orbits
correspond to not elliptic fixed points of the Poincaré map. Also Mα

may contain heteroclinic or homoclinic orbits.

• If α is irrational, then Mather’s Theorem gives us an alternative: either
Mα is an invariant curve of Φ and every orbit on it is quasi-periodic
with frequencies (1, α), or the minimal invariant set become a Cantor
set. In the last case the motion is not quasi-periodic in the classical
sense but the dynamics on a Cantor set is of Denjoy type with rotation
number α.

All these orbits ofMα have an order preserving property, that is, the points
on the orbit come in the same order as those obtained from a trivial rota-
tion with the same frequency. This is consequence of the topological semi-
conjugacy to a rotation of angle α.

Remark 3.6. [11, 37, 73] The classical results of of Poincaré and Denjoy for
topological classification of homeomorphisms or diffeomorphisms f of the
circle show these two distinct possibilities. If the rotation number is ratio-
nal, say p

q
then one has the following cases:

• f has a periodic orbit, every periodic orbit has period q, and the order
of the points on each such orbit coincides with the order of the points
for a rotation by p/q. Moreover, every forward orbit of f converges to a
periodic orbit. The same is true for backward orbits, corresponding to
iterations of f−1, but the limiting periodic orbits in forward and back-
ward directions may be different.

Nevertheless, given an invariant curve Γ if the rotation number α of f |Γ
is irrational then f has no periodic orbit and one has the following:

• if f |Γ ∈ C2 then f |Γ is topologically conjugate to a rotation of angle α,
Rα and every orbit is dense in Γ.

• (Denjoy counterexamples) There exist examples of f |Γ ∈ C2−ε, ε > 0,
such that is not topologically conjugated to a rotation, no orbit is dense
in Γ and the limit set of the orbit of every point of Γ is the same Cantor
set (Denjoy minimal set). Cantori can be visualized as invariant circles
with deleted “gaps.”

See also [57] or [60] for a presentation of Denjoy’s theory in the context of
the Aubry-Mather theory.
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Therefore Aubry-Mather theory gives the existence of orbits for twist
maps in the cylinder, classified and ordered by their rotation number α. See
for instance [9, 47, 48, 60] for a detailed exposition of the Aubry-Mather
theory. Let us illustrate with the simplest example what does and does not
contain the Aubry-Mather set,Mα.

Example 3.4. Consider the phase map of the pendulum. Aubry-Mather set
Mα contains orbits with a rotation number α. If α = 0, M0 contains the
inestable equilibrioum point, the superior heteroclinic orbit, i.e. the orbit
from (x, x′) = (π, 0) to (x, x′) = (π, 0); and the inferior heteroclinic, i.e. the
orbit from (x, x′) = (π, 0) to (x, x′) = (π, 0). Clearly, if α is irrational, all the
orbits are associated to an invariant curve.

Nevertheless,Mα does not contains these orbits with a rotation number not
well defined: the orbits in the interior region of the union of the heteroclinics.
So, Aubry-Mather set does not contain the stable equilibrium point. This
critical point is not a minimizer of the action.

Now, for our purposes let us consider a different symplectic form, a weighted
symplectic form. Being the weight a C2 function with Lipschitz inverse

f :]a, b[ −→ R
r 7−→ f(r),

such that f ′ never vanishes. Without loss of generality we fix f ′ > 0.

Consider a C2 diffeomorphism defined in a strip of the cylinder

Φ : Σ −→ C

(r, θ) 7−→ (r1, θ1) = (F(r, θ),G(r, θ)) .

and the corresponding lift by

Φ : Σ̃ −→ R2

(r, x) 7−→ (r1, x1) = (F(r, x),G(r, x))
(3.4.1)

where

F(r, x+ 2π) = F(r, x),

G(r, x+ 2π) = G(r, x) + 2π.

We suppose that Φ is exact symplectic with respect to the weighted form
f(r)dθ. That is, there exists a C2 function

S : Σ −→ R
(r, θ) 7−→ S(r, θ)
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such that
dS(r, θ) = f(r1) dθ1 − f(r) dθ, ∀(r, θ) ∈ Σ.

Remark 3.7. Note that the function S(r, θ) is defined in the cylinder, hence
the lift S(r, x) must be a 2π-periodic function in the variable x such that

Sr(r, x) = f(F(r, x))Gr(r, x), Sx(r, x) = f(F(r, x))Gx(r, x)− f(r). (3.4.2)

The weighted symplectic form is:

λ = df(r) ∧ dθ = f ′(r)dr ∧ dθ

We also suppose that Φ is twist, that is

∂rG(r, θ) > 0 ∀(r, θ) ∈ Σ. (3.4.3)

Suppose additionally that the following uniform limits (w.r.t. x) exist

α+(x) :=
1

2π

(
lim
r→b
G(r, x)− x

)
,

α−(x) :=
1

2π

(
lim
r→a
G(r, x)− x

)
.

Note that α±(x) are 2π-periodic C2 functions and define

W+ = min
x
α+(x), W− = max

x
α−(x).

The main result of this section deals with the existence of special orbits
of the diffeomorphism Φ. To state the Theorem, we recall that a sequence
(xn)n∈Z of real numbers is increasing if xn < xn+1 for all n ∈ Z and we say
that any two translates are comparable if for any (s, q) ∈ Z2 only one of the
following alternatives holds

xn+q + 2πs > xn ∀n, xn+q + 2πs = xn ∀n, xn+q + 2πs < xn ∀n.

We are now ready to state the main result of this section:

Theorem 3.2. With the previous setting, suppose that W+ −W− > 8π and
fix α such that 2πα ∈ (W− + 4π,W+ − 4π). Then

• if α = s/q ∈ Q there exists a (s, q)-periodic orbit (rn, xn)n∈Z such that

rn+q = rn, xn+q = xn + 2πs ∀n ∈ Z;
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• if α ∈ R \ Q there exists a compact invariant subset Mα ⊂ Σ (and a
corresponding subset M̃α ⊂ Σ̃ ) with the following properties:

– denoting π : Σ → T the projection, π|Mα is injective and Mα =

graphu for a Lipschitz function u : π(Mα)→ R,

– each orbit (rn, xn)n∈Z ∈ M̃α is such that the sequence (xn) is in-
creasing and any two translates are comparable,

– each orbit (rn, xn)n∈Z ∈ M̃α has rotation number α, i.e.

1

2π
lim
n→∞

xn
n

= α;

– the setMα is either an invariant curve or a Cantor set.

The following corollary gives an equivalent interpretation of the result
and has been proven in Section 6 of [43].

Corollary 3.1. For each α there exists two functions φ, η : R → R such that,
for every ξ ∈ R

φ(ξ + 2π) = φ(ξ) + 2π, η(ξ + 2π) = η(ξ),

Φ(φ(ξ), η(ξ)) = (φ(ξ + 2πα), η(ξ + 2πα))

where φ is monotone (strictly if α ∈ R \Q ) and η is of bounded variation.

The proof of Theorem 3.2 will make use of the generating function. We
introduce it in the following

Lemma 3.1. There exists an open connected set B ⊂ R2 and a function h :

B → R, called generating function such that

o) B is invariant under the translation (x, x1) 7→ (x+ 2π, x1 + 2π);

i) h ∈ C3(B);

ii) h(x+ 2π, x1 + 2π) = h(x, x1) for all (x, x1) ∈ B;

iii) ∂2
xx1
h(x, x1) < 0 for all (x, x1) ∈ B;

iv) a sequence (rn, xn)n∈Z is an orbit of Φ̃ iff for all n ∈ Z

∂1h(xn, xn+1) + ∂2h(xn−1, xn) = 0 and f(rn) = −∂1h(xn, xn+1).
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α+(x) + x

W
+ +

x

W
− +

x α−(x) + x

x

x1

B

Figure 3.3: Domain B.

Proof. By the twist property, α+(x) > α−(x) ∀x ∈ R, so that we can consider
the open connected set (see figure 3.3)

B =
{

(x, x1) ∈ R2 : α−(x) < x1 − x < α+(x)
}
.

The periodic property of the functions α±(x) implies that this set is invariant
under the translation

T2π,2π(x, x1) = (x+ 2π, x1 + 2π).

By the twist condition we can solve the implicit function problem

x1 = G(r, x)

and obtain a unique C2 function R(x, x1) : B −→, ]a, b[ such that

x1 = G(r, x)⇐⇒ r = R(x, x1)

and, by implicit differentiation,

Gr(R, x)Rx + Gx(R, x) = 0, Gr(R, x)Rx1 = 1. (3.4.4)

Moreover, uniqueness implies thatR(x+2π, x1 +2π) = R(x, x1). Analogously
we get

r1 = F(r, x)⇐⇒ r1 = F(R(x, x1), x) := R1(x, x1)

with R1(x+ 2π, x1 + 2π) = R1(x, x1). Hence, the map (5.5.1) is equivalent to{
r1 = R1(x, x1),

r = R(x, x1)
with (x, x1) ∈ B.

Now, we use the exact symplectic condition and define the generating
function

h(x, x1) := S(R(x, x1), x).
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This map is clearly C2(B), and, a posteriori, we will get C3 regularity. From
the periodicity conditions of S andR, one can prove the periodicity condition
ii).
To prove point iii), we use (3.4.2),(3.4.4) to get that for all (x, x1) ∈ B,

∂xh(x, x1) = ∂xS(R(x, x1), x) = Sr(R(x, x1), x)Rx + Sx(R(x, x1), x)

= f(F(R, x))Gr(R, x)Rx + f(F(R, x))Gx(R, x)− f(R) (3.4.5)
= −f(R),

so that the twist condition and the monotonicity of f imply

∂x,x1h(x, x1) = −∂x1f(R(x, x1)) = −f ′(R)∂x1R(x, x1) = − f ′(R)

∂rG(x, x1)
< 0.

To prove the last point, a similar computation as (3.4.5) gives for all
(x, x1) ∈ B,

∂x1h(x, x1) = ∂x1S(R(x, x1), x) = Sr(R(x, x1), x)Rx1

= f(F(R, x))Gr(R, x)Rx1 = f(F(R, x)) (3.4.6)
= f(R1).

Equations (3.4.5)-(3.4.6), together with the regularity of f,R,R1 have the
consequence that h ∈ C3(B), proving point i).

Less formally (3.4.5)-(3.4.6) also imply that the map Φ can be expressed
implicitly: {

∂x1h(x, x1) = f(r1),

∂xh(x, x1) = −f(r)
with (x, x1) ∈ B.

It means that an orbit (rn, xn)n∈Z is such that for every n ∈ Z

{
f(rn+1) = ∂2h(xn, xn+1),

f(rn) = −∂1h(xn, xn+1).

This implies f(rn) = −∂1h(xn, xn+1) = ∂2h(xn−1, xn) so that

∂1h(xn, xn+1) + ∂2h(xn−1, xn) = 0, ∀n ∈ Z.

Remark 3.8. The equation

∂1h(xn, xn+1) + ∂2h(xn−1, xn) = 0, ∀n ∈ Z

is known as discrete Euler-Lagrange equation.
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The usual Mather’s theorem (see Theorem 3.3), gives sufficient condi-
tions on the generating function in order to get orbits with rotation number.
In particular it is required h ∈ C2(R2) and properties ii) and iii) of Lemma
(3.1) should hold in the whole plane. For this reason we need the following
extension lemma. A version of this lemma is stated in [48, chapter 8] and for
the sake of completeness, we report here a detailed proof (see also [42, 39]).

Lemma 3.2. Let B+,B− : R −→ R be Cr diffeomorphisms satisfying

B±(x+ 2π) = B±(x) + 2π

for some r ≥ 2. Suppose that

B+(x) > B−(x) ∀x ∈ R.

Define the following set

W =
{

(x, x1) ∈ R2 : B−(x) ≤ x1 ≤ B+(x)
}

and let h :W −→ R be a Cr+1 function such that:

• h(x+ 2π, x1 + 2π) = h(x, x1), (x, x1) ∈ W;

• ∂x,x1h(x, x1) < 0, (x, x1) ∈ W.

Then there exists h̃ ∈ Cr(R2) such that:

• h̃(x+ 2π, x1 + 2π) = h̃(x, x1), (x, x1) ∈ R2 ;

• ∂x,x1h̃(x, x1) < −δ < 0, with δ > 0 (x, x1) ∈ R2 ;

• h̃ = h onW.

Proof. The domain W is invariant under the translation T2π,2π, in conse-
quence the quotient setW/(2πZ)2 is compact so that

∂x,x1h(x, x1) ≤ −δ′, (x, x1) ∈ W

for some δ′ > 0. Consider the Cr−1-extension of ∂x,x1h(x, x1) to R2 satisfy-
ing the translation invariance under T2π,2π and keep denoting it ∂x,x1h. By
continuity, there exists ε > 0, δ′ ≥ δ > 0 such that ∂x,x1h ≤ −δ in the domain

Wε =
{

(x, x1) ∈ R2 : B−(x)− ε ≤ x1 ≤ B+(x) + ε
}
.
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Consider a C∞ real valued function χ : R2 → [0, 1] such that χ(x+2π, x1+2π) =

χ(x, x1) and {
χ = 1 (x, x1) ∈ W ,

χ = 0 (x, x1) ∈ R2 \Wε.

Let us define the function

D(x, x1) := χ∂xx1h− (1− χ)δ .

Then by the definition of χ we have that D ∈ Cr−1(R2) and D(x+2π, x1+2π) =

D(x, x1). Moreover, {
D = ∂xx1h(x, x1) (x, x1) ∈ W ,

D = −δ (x, x1) ∈ R2 \Wε.

In particular, with the hypotheses on h we have :

D ≤ −δ < 0 (x, x1) ∈ R2.

Now, let us consider the Cauchy problems for the wave equation (with peri-
odic boundary conditions):

∂xx1u(x, x1) = D(x, x1),

u(x,B±(x)) = h(x,B±(x)),

(∂x1u− 1
(B±)′(x)

∂xu)(x,B±(x)) = (∂x1h− 1
(B±)′(x)

∂xh)(x,B±(x)).

(3.4.7)

The change of variable

t =
x1 − B±(x)

2
, y =

x1 + B±(x)

2

conjugates system (3.4.7) to the classical wave equation


vtt − vyy = f(t, y),

v(0, y) = φ(y)

vt(0, y) = ψ(y)

(3.4.8)

where, denoting x(t, y) = (B±)−1(y − t), x1(t, y) = t+ y,

v(t, y) = u (x(t, y), x1(t, y)) , f(t, y) = − 4

(B±)′(x(t, y))
D (x(t, y), x1(t, y)) ,

φ(y) = h(x(0, y), x1(0, y)), ψ(y) =

(
∂x1h−

1

(B±)′(x(0, y))
∂xh

)
(x(0, y), x1(0, y)).

Note that f, ψ ∈ Cr, φ ∈ Cr+1 and r ≥ 2 so that problem (3.4.8) has a unique
solution v(t, y) ∈ Cr (see [52]). Moreover, since f(t, y+2π) = f(t, y), φ(y+2π) =

φ(y) and ψ(y+ 2π) = φ(y), the solution satisfies v(t, y+ 2π) = v(t, y). Undoing
the change of variable, we get a unique solution u ∈ Cr(R2) of problem (3.4.7)
such that u(x+2π, x1+2π) = u(x, x1). Hence, setting h̃ = u proves the lemma.
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Using the terminology introduced in Theorem 3.2, we recall some of the
conclusions of Mather theory.

Theorem 3.3 (Mather [9, 48]). Consider a C2 function h : R2 → R such that
h(x + 2π, x1 + 2π) = h(x, x1) and ∂2

xx1
h ≤ δ̄ < 0 for all (x, x1) ∈ R2. Fix α ∈ R.

Then

(i) if α = s/q ∈ Q there exists an increasing sequence (xn)n∈Z and an home-
omorphism of the circle gα such that

– gα(xn) = xn+1 and |xn − x0 − 2πnα| < 2π for every n ∈ Z,

– ∂1h(xn, xn+1)+∂2h(xn−1, xn) = 0 and xn+q = xn+2πs for every n ∈ Z;

(ii) If α ∈ R \ Q there exists a set M̃α of increasing sequences x = (xn)n∈Z
such that

– if x ∈ M̃α then ∂1h(xn, xn+1) + ∂2h(xn−1, xn) = 0 for every n ∈ Z,
any two translates are comparable and |xn − x0 − n2πα| < 2π for
all n ∈ Z,

– there exists a Lipschitz homeomorphism of the circle gα with rota-
tion number α and a closed set Aα ⊂ R such that x ∈ M̃α iff x0 ∈ Aα
and gnα(x0) = xn for all n,

– the set Rec(gα) ⊂ Aα of recurrent points of gα is either the whole R
or a Cantor set.

Remark 3.9. We recall that the homeomorphism gα satisfies gα(x + 2π) =

gα(x) + 2π for all x ∈ R and the set Rec(gα) is defined as the set of accumu-
lation points of {gnα(x) + 2πk : (n, k) ∈ Z2} and is independent on the choice
of the point x ∈ R. Moreover, the condition |xn − x0 − n2πα| < 2π, ∀n ∈ Z
implies that

1

2π
lim
n→∞

xn
n

= α,

and α is called the rotation number of the orbit.

We are now ready for the proof of our result.

Proof of Theorem 3.2. We apply Lemma 3.1 and get the generating function
h defined on the set

B =
{

(x, x1) ∈ R2 : α−(x) < x1 − x < α+(x)
}
,
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3.4. A generalized Aubry-Mather theorem

and satisfying the corresponding properties o)–iv).
Consider the case in which both W+,W− are finite. Since W+ −W− > 8π,
for every α such that

W− + 4π < 2πα < W+ − 4π,

we can choose ε > 0 such that

W− + ε < 2πα− 4π < 2πα + 4π < W+ − ε.

Now, consider the set

W =
{

(x, x1) ∈ R2 : W− + ε ≤ x1 − x ≤ W+ − ε
}
⊂ B,

and apply Lemma 3.2 with B±(x) := x + W± ∓ ε that clearly are diffeomor-
phisms. We can extend the function h to the whole R2 getting a function h̃

satisfying the conditions in Theorem 3.3 and such that h̃ = h inW.

By applying Theorem 3.3 we obtain sequences (x̃n), such that

∂1h̃(x̃n, x̃n+1) + ∂2h̃(x̃n−1, x̃n) = 0, ∀n ∈ Z

and
|x̃n − x̃0 − n2πα| < 2π, ∀n ∈ Z.

From this inequality we obtain:

2πα− 4π < x̃n+1 − x̃n < 2πα + 4π, ∀n ∈ Z,

that means that for every n ∈ Z, (x̃n+1, x̃n) ∈ W. But since h̃ = h inW,

∂1h(x̃n, x̃n+1) + ∂2h(x̃n−1, x̃n) = 0, ∀n ∈ Z.

Hence, in case of rational α we define

r̃n = f−1(−∂1h(x̃n, x̃n+1)) = f−1(−∂1h(x̃n, gα(x̃n)))

such that (x̃n, r̃n) ⊂ Σ̃ is the (s, q)-periodic orbit of Φ. In the irrational case,
the set M̃α is given by

M̃α = {(ξ, η) ∈ R2 : ξ ∈ Rec(gα), η = f−1(−∂1h(ξ, gα(ξ)))} ⊂ Σ̃.

Note that the Lipschitz regularity of f−1 plays a role at this stage.

In case −∞ < W− < W+ = ∞ is enough to choose α such that 2πα >

W− + 4π and fix M > 2πα + 8π. Fix ε such that

W− + ε ≤ 2πα− 4π

and apply extension lemma with B−(x) = x+W− + ε and B+(x) = x+M , in
order to get the same result.

The other cases are similar.
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The next two chapters are devoted to show the results obtained. The first
one use the KAM theorem introduced in Section 3.3. The second one use the
generalized Aubry-Mather theorem presented in Section 3.4.
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Chapter 4

Stability theorem

Consider the Hamiltonian (2.2.2) in Chapter 2:

Ψ(t, x, y) =
1

2
ln(x2 + y2) + p(t, x, y), (4.0.1)

and the associated system
ẋ = ∂yΨ(t, x, y) = y

x2+y2 + ∂yp(t, x, y)

(x, y) ∈ U \ {0} ,
ẏ = −∂xΨ(t, x, y) = − x

x2+y2 − ∂xp(t, x, y)

(4.0.2)

defined in a neighborhood U of the origin.

The main aim of this chapter is to provide sufficient conditions for the
stability of the particle advection around a fixed point-vortex in a 2-dimensional
ideal fluid under the action of a periodic background flow. This sufficient
conditions are imposed to the perturbative flow p(t, x, y). The proof relies
on the identification of a family of closed invariant curves around the origin
by means of Moser’s Invariant Curve Theorem. This family will converge to
the origin. Due the low dimensionality of the problem, this family will be
a barrier for the evolution of the solutions with initial conditions near the
singularity. This fact guarantees the stability of the singularity.

From a more analytical point of view, it seems necessary to state a precise
mathematical notion of stability. To fill this gap, section 4.1 is devoted to
settle a rigorous definition of stability of a singularity in this context. We
consider perpetual stability in the Lyapunov sense, meaning that a solution
of (4.0.2) with a small initial condition will remain close to the singularity
forever. Once such definition is precisely stated, the main aim of this paper
is to provide a simple sufficient condition for stability.
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CHAPTER 4 Stability theorem

The following Sections are organized as follows. In Section 4.2, the main
result is stated, where we identify a class of functions p(t, x, y) for which the
vortex singularity is stable. The model example would be a polynomial

p(t, x, y) =
∑

4≤h+k≤N

αh,k(t)x
hyk

with 1-periodic coefficients αh,k ∈ C(R/Z) and αh,4−h ∈ C1(R/Z). The proof
is presented in Section 4.3. The first step, performed in Subsection 4.3.1 is
to invert the role of the origin and infinite by the Kelvin transform. Also,
we have to consider symplectic polar coordinates in order to preserve the
symplectic structure of the system. In Subsection 4.3.2, we pass to complex
formulation by considering the system as complex-valued. This formalism
is necessary to apply the Invariant Curve Theorem in the version presented
in Section 32 of [82]. Subsections 4.3.3 and 4.3.4 are devoted to prove that
the Poincaré map is well-defined for a suitable domain. Finally, Subsection
4.3.5 proves the intersection property for the Poincaré map, therefore the
Invariant Curve Theorem provides the existence of a sequence of invariant
Jordan curves near infinite. After inversion of the Kelvin transform, such
invariant curves surround the vortex, acting as flux barriers and giving rise
to the desired stability.

4.1 The stability of a singularity

Assume that Ω is an open subset of Rd with d ≥ 2 and let ξ∗ ∈ Ω be a fixed
point. We consider the punctured region Ω∗ = Ω \ {ξ∗} and a continuous
vector field

X : R× Ω∗ −→ Rd

(t, ξ) 7−→ X(t, ξ).

From now on we assume that there is global uniqueness for each initial
value problem of the type

{
ξ̇ = X(t, ξ),

ξ(0) = ξ0, ξ0 ∈ Ω∗.
(4.1.1)

The corresponding solution will be denoted by ξ(t, ξ0).

The point ξ = ξ∗ will be interpreted as a singularity of the equation.

Definition 4.1. The singularity ξ∗ will be called stable (in a perpetual sense)
if given ε > 0, there exists δ > 0 such that if ξ0 ∈ Ω∗ with

|ξ0 − ξ∗| < δ
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then ξ(t, ξ0) is well defined everywhere and

|ξ(t, ξ0)− ξ∗| < ε for each t ∈ R.

Example 4.1. The model example is the unperturbed system (2.2.2) with

p ≡ 0. Taking z =

(
x

y

)
, it can be written as

ż =
1

|z|2
J z with J =

(
0 1

−1 0

)
.

The explicit solution is

z(t, z0) = R
[

t

|z0|2

]
z0, where R[θ] =

(
cos θ sin θ

− sin θ cos θ

)
.

The stability of the point z∗ = 0 is clear because |z(t, z0)| = |z0|. In contrast,
the derivative satisfies

|ż(t, z0)| = 1

|z0|
→ ∞ as z0 → z∗.

The previous example was autonomous but our definition also works in
time-dependent situations. We will restrict to periodic vector fields satisfy-
ing

X(t+ T, ξ) = X(t, ξ) for some T > 0.

In this case, we can define the Poincaré map

P : E ⊂ Ω∗ −→ Ω∗
ξ0 7−→ P(ξ0) = ξ(T, ξ0)

where E = {ξ0 ∈ Ω∗ : ξ(t, ξ0) is well defined on [0, T ]} .

The standard theorem on continuous dependence implies that E is open.
When ξ∗ is a stable singularity there exists a neighborhood O ⊂ Rd of ξ∗
such that O \ {ξ∗} is contained in E . Then it is natural to define P(ξ∗) = ξ∗
so that P is extended to a one-to-one and continuous map from E ∪ {ξ∗} into
Ω. The standard notion of stable fixed point of a map is now applicable. A
stable singularity ξ = ξ∗ will produce a stable fixed point of the Poincaré
map. This means that for each neighborhood V of ξ∗ there exists another
neighborhoodW ⊂ E ∪{ξ∗} such that all the iterates Pn(W) are well defined
and satisfy Pn(W) ⊂ V , n ∈ Z.
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tt = 0
t = T

z(t, z0)

z0 z0 = P(z0)

1

Figure 4.1: The singularity evolution over a period forces the solution to get
away from z∗ = 0.

The next example will show that the stability of ξ∗ as a fixed point of P
is not sufficient to guarantee the stability of ξ = ξ∗ as a singularity of the
differential equation.

Example 4.2. The equation for z ∈ R2 \ {0},

ż = sin(2t)
z

|z|

is T -periodic with T = π and

z(t, z0) =
(
|z0|+ sin2 t

) z0

|z0|
, z0 ∈ R2 \ {0}.

We observe that P is the identity and so z∗ = 0 is stable as a fixed point of
P. On the other hand,∣∣∣∣z(T2 , z0

)
− z∗

∣∣∣∣ =

∣∣∣∣z(T2 , z0

)∣∣∣∣ = |z0|+ 1 > 1

and so z∗ = 0 is not stable as a singularity (see Fig.4.1).

The reader who is familiar with the theory of the stability of the equi-
librium will notice the sharp contrast between equilibria and singularities.
In the second case continuous dependence may be lost. For this reason we
make the following definition.

Definition 4.2. We say that there is continuous dependence around the sin-
gularity ξ = ξ∗ if given ε > 0, there exists δ > 0 such that if

0 < |ξ0 − ξ∗| < δ
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then ξ(t, ξ0) is well defined on [0, T ] and

|ξ(t, ξ0)− ξ∗| < ε for each t ∈ [0, T ] .

Remark 4.1. Note that the choice of t0 = 0 in the initial value problem 4.1.1
is completely arbitrary. A change in t0 does not affect the continuous depen-
dence around the singularity since the new Poincaré map is conjugated and
by periodicity the continuous dependence is for every t.

The following result is a direct consequence of the previous definitions.

Proposition 4.1. In the previous setting assume that there is continuous
dependence around the singularity ξ = ξ∗ and moreover ξ∗ is stable as a fixed
point of P. Then, ξ = ξ∗ is a stable singularity.

4.2 Main result

For our purpose we will consider the complexification of the variables x and
y. Given ε > 0, consider the disk Dε = {x ∈ C : |x| < ε}. A function

p : R× D2
ε −→ C

(t, x, y) 7−→ p(t, x, y)

belongs to the class Hε if it satisfies the conditions below:

i) p is continuous.

ii) p(t+ 1, x, y) = p(t, x, y).

iii) p extends a real-valued function; that is,

p(t, x, y) ∈ R if x, y ∈ Dε ∩ R.

iv) For each t ∈ R,
(x, y) ∈ D2

ε 7−→ p(t, x, y) ∈ C

is a holomorphic function in two variables.

v) ‖p‖∞ := sup {|p(t, x, y)| : (t, x, y) ∈ R× D2
ε} <∞.
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Example 4.3. A simple example of p(t, x, y) is a polynomial

p(t, x, y) =
∑

h+k≥N

αh,k(t)x
hyk

with αh,k ∈ C(R/Z) .

Definition 4.3. Given a function p in Hε we say that the origin is a zero of
order N if for each t ∈ R,

p(t, 0, 0) = 0 and
∂h+k

∂xh∂yk
p(t, 0, 0) = 0 when h+ k < N.

Now, we are ready to state the main result of the Chapter.

Theorem 4.1. Assume that p ∈ Hε and the origin is a zero of order 4. In
addition, the functions

αh(t) =
∂4

∂xh∂y4−h p(t, 0, 0) (4.2.1)

are of class C1 for each h, 0 ≤ h ≤ 4 . Then, the origin of system (4.0.2) is
stable in the sense of Definition 4.1.

4.3 Proof of the main result

4.3.1 Some transformations: from zero to infinity

The system (4.0.2) is defined on some neighborhood U of the origin. It will
be convenient to transform it into another system defined in a neighborhood
of infinity. To do this we employ the Kelvin transform:

κ : R2 \ {0} −→ R2 \ {0}
(u, v) 7−→ κ(u, v) = (x, y)

where
x =

u

u2 + v2
, y = − v

u2 + v2
.

This map is an analytic involution (κ2 = Id) satisfying

dx ∧ dy =
1

(u2 + v2)2 du ∧ dv. (4.3.1)

Hence it is not a canonical map. To remain in a Hamiltonian framework
we will introduce a new symplectic structure in the phase space. First we
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4.3. Proof of the main result

recall some well known facts, see [63] for more details. Let Ω be our phase
space, an open subset of R2. We consider the symplectic form

ω̂z = Φ (z) dq ∧ dp

where z = (q, p) ∈ Ω and Φ : Ω −→ R is a smooth and positive function.
Given H ∈ C∞(Ω), the Hamiltonian system associated to the triplet (Ω, ω̂, H)

is

ż =
1

Φ(z)
J ∇H(z) with J =

(
0 1

−1 0

)
. (4.3.2)

Let ω = dx ∧ dy be the standard symplectic form in R2, the identity
(4.3.1) implies that κ is a symplectic diffeomorphism between (R2 \ {0} , ω̂)

and (R2 \ {0} , ω). The previous remark can be applied with

Φ (u, v) =
1

(u2 + v2)2

and so the system (4.0.2) is transformed into


u̇ = (u2 + v2)

2
∂vΨ̂(t, u, v)

with Ψ̂ = Ψ ◦ κ.
v̇ = − (u2 + v2)

2
∂uΨ̂(t, u, v)

(4.3.3)

This system is defined in κ(U), a neighborhood of infinity. Let us remark
that the effect of the Kelvin transform is a change by the previous factor
Φ (u, v) of the usual simplectic form.

Next we pass to symplectic polar coordinates, defined by the diffeomor-
phism

ϕ : ]0,∞[× T −→ R2 \ {0}
(r, θ) 7−→ ϕ(r, θ) = (u, v)

where
u =
√

2r cos θ, v =
√

2r sin θ.

We observe that

dx ∧ dy =
1

(u2 + v2)2 du ∧ dv =
1

4r2
dr ∧ dθ,

and so κ◦ϕ is a symplectic diffeomorphism from Ω = ]0,∞[×T with the form
ω̃ = 1

4r2 dr∧dθ onto (R2 \ {0} , ω). Now the original system is transformed into
ṙ = 4r2 ∂θH(t, r, θ)

with H = Ψ ◦ κ ◦ ϕ.
θ̇ = −4r2 ∂rH(t, r, θ)

(4.3.4)
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ω̃ = 1
4r2 dr ∧ dθ

r

θ

r = 1

ϕ

ω̂ = 1
(u2+v2)2 du ∧ dv

u

v

κ

ω = dx ∧ dy

x

y

Figure 4.2: The transformations κ, ϕ and related symplectic forms.

Thus H(t, r, θ) = −1
2

ln(2r) + h(t, r, θ) with h(t, r, θ) = p
(
t, cos θ√

2r
,− sin θ√

2r

)
.

The previous transformations and the different symplectic forms are
illustrated in Fig. 4.2.

4.3.2 The complexified system

System (4.3.4) can be expressed in the form{
ṙ = F (t, r, θ)

θ̇ = 2r +G(t, r, θ)
(4.3.5)

where

F (t, r, θ) = −(2 r)3/2 (p1 sin θ + p2 cos θ) ,

G(t, r, θ) =
√

2 r (p1 cos θ − p2 sin θ)

with
p1 = ∂xp

(
t,

cos θ√
2r
,−sin θ√

2r

)
, p2 = ∂yp

(
t,

cos θ√
2r
,−sin θ√

2r

)
,

and
∂θp

(
t,

cos θ√
2r
,−sin θ√

2r

)
= − 1√

2 r
(p1 sin θ + p2 cos θ) ,

∂rp

(
t,

cos θ√
2r
,−sin θ√

2r

)
= .

1

(2 r)3/2
(p1 cos θ − p2 sin θ) .

This is a periodic planar system defined with coordinates r > 0 and
θ ∈ R or on a cylinder ]0,∞[ × T. As we have announced in Section 4.2, for
convenience we embed it into the complex system. This is understood in the
following sense: the equations are the same but the unknowns r = r(t) and
θ = θ(t) will be complex valued, the independent variable t will remain in R.
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Remark 4.2. To avoid multi-valued functions, w =
√
z will be interpreted as

the holomorphic function defined on the half plane Re(z) > 0 which extends
the positive square root of positive real numbers. Also the function z3/2 =

z
√
z is holomorphic in Re (z) > 0.

From now on, r∗ > 0 and ∆∗ > 0 are two fixed numbers satisfying

cosh (∆∗)√
2r∗

<
ε

2
. (4.3.6)

If we define the domain

D =
{

(r, θ) ∈ C2 : Re (r) > r∗, |Im (θ)| < ∆∗
}

(4.3.7)

then the inequalities ∣∣∣∣cos θ√
2r

∣∣∣∣ < ε

2
,

∣∣∣∣sin θ√2r

∣∣∣∣ < ε

2

holds for any point lying on D. In consequence F,G : R × D −→ C are
continuous functions which are 1-periodic in t and such that F (t, ·, ·), G(t, ·, ·)
are holomorphic for each t ∈ R.

4.3.3 Some preliminary estimates

The main aim of Subsections 4.3.3 and 4.3.4 is to prove that, under the
assumptions of Theorem 4.1, the Poincaré map is well-defined in a suitable
open set. In this subsection we replace the main assumption of Theorem 4.1
by a stronger condition. More concretely, let us assume that the origin is a
zero of order 5 of the function p ∈ Hε. In particular, the functions αh vanish
and so the assumptions of Theorem 4.1 are satisfied. The proof under the
general assumptions will be presented later in Subsection 4.3.4.

The following Lemma states some bounds for functions p ∈ Hε with a
zero of order N + 1.

Lemma 4.1. Assume that p ∈ Hε and the origin is a zero of order N+1. Then
there exists a constant C, depending on ‖p‖∞ and ε, such that

I) |p(t, x, y)| ≤ C
(
|x|N+1 + |y|N+1

)
.

II) |∂x p(t, x, y)|+ |∂y p(t, x, y)| ≤ C
(
|x|N + |y|N

)
if |x| < ε

2
and |y| < ε

2
.
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Proof. From Cauchy estimates for functions of several complex variables it
is easy to find an estimate∣∣∣∣ ∂h+k

∂ xh∂ yk
p(t, x, y)

∣∣∣∣ ≤ 2
h!k! ‖p‖∞
(ε/2)h+k

=: C̃

valid if h+ k ≤ N + 1 and |x| < ε
2

and |y| < ε
2
.

The Taylor formula with integral remainder is valid for holomorphic
functions (see Section 14 of Chapter VIII in [12]). Then, since the origin
is a zero of order N + 1, we have

p(t, x, y) =

(∫ 1

0

(1− ξ)N

N !
p(N+1)(t, ξx, ξy) dξ

)
(x, y)(N+1)

where p(N+1)(t, x, y) is the multilinear form associated to the derivative of
order N + 1 and (x, y)(N+1) stands for the repetition of (x, y) during N + 1

times.

Then we can obtain the first estimate using the norm of a multilinear
form. Note that C only depends on C̃ and N . The second estimate can be
obtained in the same way after applying Taylor formula to the functions ∂x p
and ∂y p.

Using the previous Lemma, we have the estimate

|∂p (t, x, y)| ≤ C(|x|4 + |y|4) if |x| < ε

2
, |y| < ε

2
. (4.3.8)

Here ∂ = ∂x or ∂y and C only depends upon ‖p‖∞ and ε. Then, from the
definition of F and G, we have

|F (t, r, θ)|+ |2r| |G(t, r, θ)| ≤ C1
e5|Im (θ)|

|r|1/2
(4.3.9)

for any t ∈ R and (r, θ) ∈ D. Here C1 is a constant depending upon r∗,∆∗, ε

and C.

Next, we introduce a family of domains in C2 whose geometry is well
adapted to our differential equation.

Given real numbers a, b, R, ∆ such that

b− a = 1 and R > 0, ∆ > 0,

we define
C∆ = {θ ∈ C : |Im (θ)| < ∆}
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4.3. Proof of the main result

and
[a, b]R = {r ∈ C : dist (r, [a, b]) < R}

where dist (z,K) is the distance from a point z to a compact set K ⊂ C. The
set C∆ is a horizontal strip and [a, b]R has the shape of a stadium. We consider
the domain in C2

Ω = [a, b]R × C∆.

Sometimes, to emphasize the dependence on R and ∆, we will write Ω(R,∆).
Obviously this set also depends of the interval [a, b] but this dependence will
not be made explicit.

The domain Ω(R,∆) is contained in D defined by (4.3.7) as soon as

∆ < ∆∗ and a−R > r∗. (4.3.10)

This is important to be sure that the complexified system (4.3.5) is well de-
fined on Ω(R,∆).

For 0 < ρ < R, 0 < δ < ∆ it is clear that Ω(ρ, δ) is contained in Ω(R,∆).
In the next result we will prove that the solutions starting at Ω(ρ, δ) do not
exit Ω(R,∆) in one period (see Fig.4.3). This will require some smallness on
the parameters ρ and δ, and a large enough.

Re (r)

Im (r)

R

ρ
a b

r0

r(1)

Re (θ)

Im (θ)

∆

δ θ0

θ(1)

Figure 4.3: Domains [a, b]R, C∆, subdomains [a, b]ρ, Cδ and solution (r(t), θ(t))

with t ∈ [0, 1].

Lemma 4.2. Let us assume that the origin is a zero of order 5 of the function
p ∈ Hε. Assume that R > ρ > 0, ∆ > δ > 0 are given numbers satisfying
(4.3.10). In addition,

δ + 2ρ < ∆. (4.3.11)

Then there exists a∗ > R such that if a > a∗ the solution of (4.3.5) with initial
condition (r0, θ0) ∈ Ω(ρ, δ) is well defined on t ∈ [0, 1]. Moreover,

(r(t), θ(t)) ∈ Ω(R,∆)
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and
|r(t)− r0|+ |θ(t)− θ0 − 2r0t| ≤

Ke5∆

|r0|1/2
if t ∈ [0, 1]. (4.3.12)

Proof. Let [0, τ ] be a compact sub-interval of [0, 1] where the solution
(r(t), θ(t)) is well defined and remains in Ω(R,∆). The geometry of
[a, b]R implies that

|r(t)| ≥ a−R if t ∈ [0, τ ].

From the first equation in (4.3.5) and the estimate (4.3.9)

|r(t)− r0| ≤
∫ t

0

|ṙ(s)| ds ≤ C1e
5∆

(a−R)1/2
, t ∈ [0, τ ].

Note that for a large enough we can assume

C1e
5∆

(a−R)1/2
< R− ρ.

This inequality guarantees that r(t) does not touch the boundary of [a, b]R.
Also,

|r(t)| ≥ |r0| − |r(t)− r0| ≥ |r0| −R, t ∈ [0, τ ].

After increasing a we can assume that a > ρ+R and |r0| −R is positive.

With this information we go back to the first equation of (4.3.5) to obtain
the new estimate

|r(t)− r0| ≤
C1e

5∆

(|r0| −R)1/2
, t ∈ [0, τ ]. (4.3.13)

Now, let us consider the second equation of (4.3.5). After integrating from
0 to t, some simple manipulations lead to

θ(t) = θ0 + 2r0t+ 2

∫ t

0

[r(s)− r0] ds+

∫ t

0

G(s, r(s), θ(s)) ds.

Using the inequalities (4.3.9) and (4.3.13),

|θ(t)− θ0 − 2r0t| ≤
2C1e

5∆

(|r0| −R)1/2
+

C1e
5∆

2 (|r0| −R)3/2
, t ∈ [0, τ ].

It is the time to employ the condition (4.3.11). It allows to find a∗ large
enough so that

δ + 2ρ+
2C1e

5∆

(a− ρ−R)1/2
+

C1e
5∆

2 (a− ρ−R)3/2
< ∆ if a > a∗.
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Then,

|Im (θ(t))| ≤ |Im (θ0)|+ 2 |Im (r0)|+ |θ(t)− θ0 − 2r0t| < ∆, t ∈ [0, τ ].

We conclude that θ(t) cannot touch the boundary of C∆.

The previous discussions imply that the solution cannot touch the boun-
dary of Ω(R,∆). In particular (r(t), θ(t)) is well defined on [0, 1] and we can
take τ = 1. The estimate (4.3.12) is a consequence of the above estimates
because (|r0| −R)1/2 and |r0|1/2 are of the same order as |r0| → ∞.

4.3.4 Estimates for the general case

As commented in the previous subsection, our intention now is to prove
Lemma 4.2 under the general assumptions of our main result. Then, let
us assume that the function p is in the conditions of Theorem 4.1 and go
back to the setting for the complexified system (4.3.5) proposed in Subsec-
tion 4.3.2. The constants r∗ and ∆∗ satisfying (4.3.6) are determined in the
same way. The first difference appears with the estimate (4.3.9) that can be
replaced by

|F (t, r, θ)|+ |2r| |G(t, r, θ)| ≤ C2e
4|Im (θ)| (4.3.14)

for any t ∈ R and (r, θ) ∈ D. Note that the origin is now a zero of order 4.
The estimate (4.3.14) does not seem to provide enough information in order
to obtain a result in the line of Lemma 4.2.

The new idea will be to split the function F as

F (t, r, θ) = F∗(t, θ) + F̃ (t, r, θ) (4.3.15)

where F̃ satisfies an estimate of the type (4.3.9) and F∗ can be averaged. To
describe this splitting in precise terms we write

p(t, x, y) = T4(t, x, y) + p̃(t, x, y)

where T4 is the Taylor polynomial of degree 4. In consequence the origin is
a zero of order 5 for p̃ and we can assume that the first derivatives ∂p̃(t, x, y)

satisfy (4.3.8).

Going back to the equations in (4.3.5) we observe that

F (t, r, θ) = 4r2∂θ

[
p

(
t,

cos θ√
2r
,
− sin θ√

2r

)]
.
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The homogeneity of T4 allows to write F in the form (4.3.15) with

F∗(t, θ) = ∂θ [T4 (t, cos θ,− sin θ)] ,

F̃ (t, r, θ) = 4r2∂θ

[
p̃

(
t,

cos θ√
2r
,
− sin θ√

2r

)]
.

To average F∗, we will apply the following Lemma of Riemann-Lebesgue
type for the polynomial of degree N = 4

q(t, x, y) = −y∂T4

∂x
(t, x,−y)− x∂T4

∂y
(t, x,−y).

Lemma 4.3. Let q(t, x, y) be a polynomial of degree N ,

q(t, x, y) =
∑

j+h≤N

αj,h(t)x
jyh

with αj,h(t) ∈ C1(R/Z). Assume in addition that for each t∫ 2π

0

q(t, cos θ, sin θ) dθ = 0 . (4.3.16)

Let β : [0, τ ] −→ C be a C1 function defined on [0, τ ] ⊂ [0, 1] and Λ > 0. Then
there exists CRL > 0 such that∣∣∣∣∫ t

0

q(s, cos (λs+ β(s)), sin (λs+ β(s))) ds

∣∣∣∣ ≤ CRLe
NΛ

|λ|

if t ∈ [0, τ ] and λ ∈ C \ {0} with |Im λ| < Λ. Moreover, the constant CRL only
depends upon N , maxj,h

[
‖αj,h‖∞ + ‖α̇j,h‖∞

]
, ‖β‖∞ and ‖β̇‖∞.

Proof. The function q(t, cos θ, sin θ) has a finite Fourier expansion with
respect to θ, say

q(t, cos θ, sin θ) =
∑
|k|≤N

qk(t)e
ikθ.

The coefficients qk can be expressed in terms of the functions αj,h and belong
to C1(R/Z),

qk(t) =
1

2π

∫ 2π

0

q(t, cos θ, sin θ)e−ikθ dθ.

The condition (4.3.16) implies that q0(t) vanishes everywhere and so the in-
tegral I(t) we want to estimate can be expressed as the sum

I(t) =
∑

0<|k|≤N

Ik(t) with Ik(t) =

∫ t

0

qk(s)e
ikβ(s)eikλs ds.

68



4.3. Proof of the main result

where we have used θ(s) = λs+ β(s).

Since we have excluded k = 0 these integrals can be estimated by a standard
procedure in the theory of oscillatory integrals, see for instance [5]. After
integrating by parts

Ik(t) =
1

ikλ

[
qk(t)e

ikβ(t)eikλt − qk(0)eikβ(0)

−
∫ t

0

(
qk(s)e

ikβ(s)
)′
eikλs ds

]
.

Therefore, using that 1 ≤ e|k||Im λ|τ ,

|Ik(t)| ≤
Ck
|k| |λ|

e|k|Λ

with
Ck = [2 ‖qk‖∞ + ‖q′k‖∞ + |k| ‖qk‖∞ ‖β

′‖∞] e|k|‖β‖∞ .

Remark 4.3. The condition (4.3.16) is essential. Consider the polynomial

q(t, x, y) =
N∑
j=1

αj(t)(x
2 + y2)j .

Then

I(t) =
N∑
j=1

∫ t

0

αj(s) ds

does not depend on λ and the conclusion of the lemma cannot hold.

We observe that T4(t, cos θ,− sin θ) is a periodic primitive in the variable
θ of the function q(t, cos θ, sin θ) and so the condition (4.3.16) holds. The as-
sumption (4.2.1) also plays a role since we need to know that q has coeffi-
cients that are C1 in the variable t.

We are ready to prove that Lemma 4.2 is also valid in the assumptions of
Theorem 4.1.

Lemma 1. Under the hypotheses of Theorem 4.1, the conclusion of Lemma
4.2 holds.

Proof. Let [0, τ ] be a compact sub-interval of [0, 1] where the solution (r(t), θ(t))

is well defined and remains in Ω(R,∆). Then r(t) and r0 belong to [a, b]R and
so

|r(t)− r0| ≤ d if t ∈ [0, τ ],
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where d = 1 + 2R is the diameter of [a, b]R. In particular, |r(t)| ≥ |r0| − d and
we will impose a−R > d to guarantee that |r0| − d is positive.

Integrating on the second equation of (4.3.5), we deduce that

|θ(t)− θ0 − 2r0t| ≤ 2d+
C2e

4∆

2(|r0| − d)
.

Here we have employed (4.3.14) and the above estimates on r(t).

Defining β(t) = θ(t) − θ̂0 − 2r0t, where θ̂0 − θ0 ∈ 2πZ and θ̂0 ∈ [0, 2π[. The
previous estimate can be interpreted as a bound of ‖β‖∞. To get a bound of

˙‖β‖∞ we observe that

β̇(t) = θ̇(t)− 2r0 = 2 (r(t)− r0) +G(t, r(t), θ(t)).

Then
˙‖β‖∞ ≤ 2d+

C2e
4∆

2(|r0| − d)
.

and Lemma 4.3 can be applied to deduce that∣∣∣∣∫ t

0

F∗(s, θ(s))ds

∣∣∣∣ ≤ CRLe
4∆

2 |r0|
.

Going back to the first equation in (4.3.5) and taking into account the
splitting (4.3.15) we obtain

|r(t)− r0| ≤
CRLe

4∆

2 |r0|
+

C1e
5∆

(|r0| − d)1/2
, t ∈ [0, τ ].

At this point we have applied that from (4.3.9), F̃ satisfies∣∣∣F̃ (t, r, θ)
∣∣∣ ≤ C1e

5|Im (θ)|

|r|1/2
if t ∈ [0, τ ] and (r, θ) ∈ D.

Going back to (4.3.5) with the improved estimate for |r(t)− r0|, one obtains

|θ(t)− θ0 − 2r0t| ≤
CRLe

4∆

2 |r0|
+

C1e
5∆

(|r0| − d)1/2
+

C2e
4∆

2(|r0| − d)
. (4.3.17)

The rest of the proof follows along the lines of Lemma 4.2.

4.3.5 Existence of invariant curves

Let us fix numbers R > ρ > 0 and ∆ > δ > 0 in the conditions of Lemma 4.2.
The corresponding numbers a∗ and K will be also fixed.
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The Poincaré map associated to the system (4.3.5) is given by the formula

P(r(0), θ(0)) = (r(1), θ(1))

where (r(t), θ(t)) is a solution defined on t ∈ [0, 1]. From the previous section
we know that P is well defined on the open set

Eρ,δ =
{

(r0, θ0) ∈ C2 : dist (r0, [a∗,+∞[) < ρ, |Im (θ)| < δ
}
.

Moreover P maps Eρ,δ into a subset of ER,∆. The standard theory for the
Cauchy problem implies that

P : Eρ,δ ⊂ C2 −→ C2

is a holomorphic diffeomorphism from Eρ,δ onto P (Eρ,δ). System (4.3.5) is
2π-periodic in θ and this property is inherited by P,

P(r0, θ0 + 2π) = P(r0, θ0) + (0, 2π).

Moreover, P can be expressed as{
r1 = r0 + f(r0, θ0)

θ1 = θ0 + 2r0 + g(r0, θ0)

where f, g : Eρ,δ −→ C are holomorphic functions, 2π-periodic in θ and satis-
fying

|f(r0, θ0)|+ |g(r0, θ0)| ≤ Ke5∆

(a− ρ)1/2
(4.3.18)

when a > a∗ is such that dist (r0, [a,+∞[) < ρ. Note that the bound
M(a) := Ke5∆

(a−ρ)1/2 → 0 as a→ +∞.

Let us consider the restriction of the Poincaré map to the real domain

P : Eρ,δ ⊂ R2 −→ R2

where
Eρ,δ =

{
(r0, θ0) ∈ R2 : r0 > a∗ − ρ

}
.

We claim that this map has the intersection property. In the book by Siegel
and Moser [82], this means that

P(Γφ) ∩ Γφ 6= ∅

when φ : R −→ R is any analytic and 2π-periodic function with φ(θ) > a∗ − ρ
and Γφ is its corresponding graph,

Γφ = {(φ(θ), θ) : θ ∈ R} .
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In fact, we will prove that the map P has a stronger intersection property,
with more topological flavour. Keep in mind the Subsection 3.1.2 for the
definitions. Let us interpret system (4.3.5) as a system in the cylinder

C =
{

(r, θ) : r > a∗ − ρ, θ ∈ T
}
.

Similarly, P will be understood as an embedding of the cylinder

P : C ⊂ R× T −→ R× T.

This means that P is a homeomorphism from C onto the open set P(C). We
will prove that

P(Γ) ∩ Γ 6= ∅

for any Jordan curve Γ ⊂ C that is not contractible. The key idea to prove
this claim is to observe that P preserves a finite measure on the cylinder,
namely

µ(A) =

∫ ∫
A

1

4r2
dθ dr

for each measurable set A ⊂ R × T. This is a consequence of the Hamilto-
nian structure of (4.3.5) described in Subsection 4.3.1. Once we know that
µ(P(A)) = µ(A) for each A, we can prove that P has the intersection prop-
erty.

Let Γ ⊂ C be a non-contractible Jordan curve. Then (R × T) \ Γ splits
into two connected components Re(Γ) and Ri(Γ) (see Fig.4.4). Since P is
an embedding, the image Γ1 = P(Γ) is also a non-contractible Jordan curve
with (R×T) \Γ1 = Re(Γ1)∪Ri(Γ1). Assume by contradiction that Γ∩Γ1 = ∅,
then eitherRi(Γ) ⊂ Ri(Γ1) orRi(Γ1) ⊂ Ri(Γ) and the inclusion is strict. This
is impossible because Ri(Γ) and Ri(Γ1) are open subsets of the cylinder with
µ(Ri(Γ)) = µ(Ri(Γ1)) < ∞. Note that, except the last step, the argument
also is true for the connected component Re. Nevertheless we cannot assure
that the measure is finite.

Once we know that the intersection property holds we can go back to the
estimate (4.3.18) in order to apply the Invariant Curve Theorem as stated
in Section 3.3 or in Section 32 of [82]. By taking a large enough we can
assume that the map is in the conditions of the theorem. Then there exists
an analytic and 2π-periodic function ψ : R −→ R with a ≤ ψ(θ) ≤ a + 1 for
each θ ∈ R and such that Γψ is invariant under P; that is P(Γψ) = Γψ. In
this way, we deduce that the map P has a family of invariant Jordan curves
that are non-contractible and converge to r = +∞.
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θ = 0

r

θ = 2π

r = a∗ − ρ Ri(Γ)

Re(Γ)

Γ

Figure 4.4: Splitting (R× T) \ Γ in connected components Re(Γ), Ri(Γ).

4.3.6 Conclusion of the proof

We are ready to prove the stability of the singularity x = y = 0 for the
original system (4.0.2). The Kelvin transform is a diffeomorphism of R2 \{0}
sending neighborhoods of infinity into neighborhoods of the origin. Then
we can transport solutions from (4.3.5) to (4.0.2) and so we know that the
solutions of (4.0.2) are well defined in [0, 1] if the initial condition (x0, y0)

belongs to some small punctured neighborhood of the origin. Let PI be the
Poincaré map associated to (4.0.2). In the previous section we found a family
of invariant curves under PIV , the Poincaré map for (4.3.5).

The corresponding invariant curves under PI are Jordan curves which
are non-contractible in R2 \ {0} and converge to the origin. The stability of
the origin as a fixed point of PI is now standard. According to Proposition
4.1 it remains to check that there is continuous dependence around the sin-
gularity x = y = 0. The successive changes of variables and the estimate in
Lemma 4.2 and Lemma 1 lead to

x(t;x0, y0)2 + y(t;x0, y0)2 =
1

u(t)2 + v(t)2
=

1

2r(t)

≤ 1

2

(
r0 − K1

r
1/2
0

) =
x2

0 + y2
0

1−K1
3
√

2(x2
0 + y2

0)
·

This inequality is valid if (x0, y0) 6= (0, 0) is small enough and t ∈ [0, 1]. The
continuous dependence of the origin follows.
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Chapter 5

Existence of periodic and
quasi-periodic solutions

This result explores the dynamics for a more general perturbation using
Aubry-Mather theory. Let us consider the perturbed Hamiltonian system
given by (2.2.1)-(2.2.2):

Ψ(t, x, y) =
1

2
ln(x2 + y2) + p(t, x, y), (5.0.1)

and the associated Hamiltonian system
ẋ = ∂yΨ(t, x, y),

(x, y) ∈ U \ {0} ,
ẏ = −∂xΨ(t, x, y)

(5.0.2)

defined in a neighborhood U of the origin.

In this Chapter, we will prove that, close to the singularity, quasi-periodic
solutions exist for all frequency sufficiently large. Actually, our solutions
will be a generalization of standard quasi-periodic solutions and in case of
commensurable frequencies, we will get periodic solutions. These solutions
exist also when KAM theory cannot be applied. Indeed, we will require very
low regularity that prevents standard KAM theory from being applied.

To prove our result, we will apply a suitable version of Aubry-Mather theory
(Theorem 3.2) to the Poincaré map of system (5.0.2). A similar scheme has
been used to describe the dynamics of different systems [39, 43, 65, 80, 87].

For each sufficiently large real number α, we will prove the existence of an
invariant setMα (called Aubry-Mather set) with very interesting dynamical
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properties, among them each orbit inMα has rotation number α. For irra-
tional rotation numbers, the corresponding Aubry-Mather sets are either
curves or Cantor sets. Solutions of system (5.0.2) with initial conditions in
this set will be our generalized quasi-periodic solutions. In the rational case,
the Aubry-Mather sets contain a periodic orbit.

In suitable variables, the Poincaré map will be an exact symplectic twist
map of the cylinder. However, it will not be defined on the whole cylinder.
Hence we cannot apply directly the result of Mather and we will use an
adapted version to this situation, Theorem 3.2.

To apply our theorem, we will need to prove that the Poincaré map is exact
symplectic and twist. The first property comes from the Hamiltonian char-
acter of the system. The twist condition is more delicate and relies on the
behavior of the variational equation. We will give a proof following a pertur-
bative approach. Here, we will ask that the perturbation has the origin as a
zero of order 4.

From the point of view of dynamics of symplectic diffeomorphisms, we
will describe some aspects of the dynamics around a singularity. In the inte-
grable case, the flow can be continuously extended to the singularity, defin-
ing it as a fixed point. However, this extension is not C1. In the perturbed
case, in general is not even possible to guarantee continuity of this exten-
sion. Since the flow is not regular, all the results coming from the theory of
elliptic fixed points and transformation to Birkhoff normal form cannot be
applied directly. We will overcome the problem of the singularity performing
a change of variable that sends the singularity at infinity and has a regu-
larizing effect. At this stage, the assumption of having the zero of order 4 in
the perturbation play a fundamental role.

This Chapter is organized as follows. In Section 5.1 we state the problem
and the main result. The definition of generalized quasi-periodic solution
will be given in this section. In Section 5.2 we introduce the regularizing
variables and the Poincaré map together with some preliminary estimates.
In Section 5.3 it is proved the property of exact symplectic and Section 5.4
is dedicated to the proof of the twist property. Previously, in Section 3.4 of
Chapter 3 we have stated and proved a suitable version of the Aubry-Mather
theorem. So, in Section 5.5 we just recall the statement of this Theorem and
a proof of the main result will be given.
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5.1 Statement of the problem and main result

Let us consider the perturbed Hamiltonian system given by (5.0.1)-(5.0.2).
We suppose that the perturbation p(t, x, y) belongs to the following class.

Definition 5.1. Given ε > 0, consider the open disk around the origin Dε =

{(x, y) ∈ R2 : x2 + y2 < ε2}. We say that a continuous function p : R×Dε −→ R
belongs to the class Rk

ε if

i) p(t+ 1, x, y) = p(t, x, y).

ii) p ∈ C0,k(R × Dε) i.e. p is Ck w.r.t. the spatial variables (x, y) and all the
partial derivatives are continuous w.r.t. (t, x, y).

Now, given any N ∈ N we give the notion of zero of order N of a function
p ∈ Rk

ε . Note that it differs from the definition 4.3 in Section 4.2. The
following definition will be of particular interest in the case N > k.

Definition 5.2. Given a function p ∈ Rk
ε we say that the origin is a zero of

order N if there exist TN , p̃ ∈ C0,k(R× Dε) such that,

p(t, x, y) = TN(t, x, y) + p̃(t, x, y)

and satisfying the following properties.

•
TN(t, x, y) =

∑
i+j=N

αi,j(t)x
iyj

is a homogeneous polynomial of degree N with C1 coefficients,

• there exists a constant C such that, for all (t, x, y) ∈ R× Dε,

|p̃(t, x, y)| ≤ C(|x|N+1 + |y|N+1),

|∂(m)p̃(t, x, y)| ≤ C(|x|N−m+1 + |y|N−m+1) for 1 ≤ m ≤ k.

Our result gives the existence of particular families of solutions: periodic
and quasi-periodic solutions in a generalized sense. To define them, given a
solution (x(t), y(t)) of (5.0.2), consider the functions

r(t) =
1

2(x(t)2 + y(t)2)
, θ(t) = −Arg[x(t) + iy(t)], (5.1.1)

having a relation with the standard polar coordinates. Actually θ(t) repre-
sents the angle in the clockwise sense, while r(t) is, up to a scaling constant,
the inverse of the square of the radius.
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Definition 5.3. We say that the solution (x(t), y(t)), defined for t ∈ R

• is non-singular if
sup
t∈R

r(t) <∞;

• is bounded if there exists A > 0 such that

inf
t∈R

r(t) > A;

• has monotone argument if θ(t) is monotone;

• has rotation number α if

1

2π
lim
t→∞

θ(t)

t
= α.

Remark 5.1. A non-singular bounded solution with monotone argument ro-
tates clockwise in a closed annulus around the origin. Moreover, the rotation
number represents the average angular velocity.

We are ready to state the main result.

Theorem 5.1. Suppose that p ∈ R3
ε is such that the origin is a zero of order

4. Then there exists ᾱ sufficiently large such that for every α > ᾱ there exist a
family of non-singular, bounded solutions

{(x(t), y(t))ξ}ξ∈R

with monotone argument and rotation number α. These solutions are such
that the related functions r(t), θ(t) defined by (5.1.1) satisfy, for every t, ξ ∈ R,

(r(t), θ(t))ξ+2π = (r(t), θ(t))ξ + (0, 2π), (5.1.2)
(r(t+ 1), θ(t+ 1))ξ = (r(t), θ(t))ξ+2πα. (5.1.3)

Remark 5.2. If α = s/q ∈ Q, then the solutions satisfy

(r(t+ q), θ(t+ q))ξ = (r(t), θ(t))ξ + (0, 2πs)

and are said (s, q)-periodic. These solutions make s revolutions around the
singularity in time q. If α ∈ R \ Q, solutions satisfying (5.1.2)-(5.1.3) can be
seen as generalized quasi-periodic. Actually, consider the function

Φξ(a, b) = (r(a), θ(a))b−2παa+ξ.

This function is doubly-periodic in the sense that

Φξ(a+ 1, b) = (r(a+ 1), θ(a+ 1))b−2παa+ξ−2πα = Φξ(a, b),

Φξ(a, b+ 2π) = (r(a), θ(a))b−2παa+ξ+2π = Φξ(a, b) + (0, 2π).
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and Φξ(t, 2παt) = (r(t), θ(t))ξ. If the function ξ 7→ Φξ is continuous, then these
solutions are classical quasi-periodic solutions with frequencies (1, α) in the
sense of [82] (see also [67]). We will not guarantee the continuity, however,
the function ξ 7→ Φξ will have at most jump discontinuities and if ξ is a point
of continuity then so are ξ + 2πα, ξ + 2π. Finally, the set Cl{(x(0), y(0))ξ : ξ ∈
R} is either a curve or a Cantor set. In the first case, the invariant curve is
conjugated to a rotation. If we have a Cantor set, it follows a dynamics of
Denjoy type. Recall the remark 3.6 in Section 3.4.

5.2 Some estimates on the solutions
and the Poincaré map

Let us consider system (5.0.2) and, following Section 4.3.1 of Chapter 4 or
Section 4.1 of [69], consider the change of variables (x, y) = ϕ(θ, r) defined
by

x =
cos θ√

2r
, y = −sin θ√

2r
.

These variables comes from applying first the Kelvin transform and subse-
quently the change to symplectic polar coordinates. System (5.0.2) trans-
forms into {

ṙ = 4r2 ∂θH(t, r, θ),

θ̇ = −4r2 ∂rH(t, r, θ)
(5.2.1)

where H(t, r, θ) = −1
2

ln(2r)+h(t, r, θ) and h(t, r, θ) = p
(
t, cos θ√

2r
,− sin θ√

2r

)
. System

(5.2.1) is still a periodic planar Hamiltonian system with symplectic form
λ̃ = 1

4r2 dr ∧ dθ. Moreover, the change of variables ϕ transforms the domain
R× Dε into the domain R×D with

D =

{
(r, θ) ∈]r∗,∞[×T : r∗ =

1

2ε2

}
.

Let us write the Cauchy problem associated to system (5.2.1), in the follow-
ing form:


ṙ = F (t, r, θ),

θ̇ = 2r +G(t, r, θ),

(r(0), θ(0)) = (r0, θ0)

(5.2.2)
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r∗

r

θ

a∗

(r0, θ0)1

(r(1), θ(1))1
(r0, θ0)2(r(1), θ(1))2

Figure 5.1: Domains and evolution of two solutions over a period. (r(t), θ(t))1

represents the solution with (r0, θ0)1 ∈ Σ(a∗) and (r(t), θ(t))2 represents the
solution with (r0, θ0)2 /∈ Σ(a∗). Note that the solution (r(t), θ(t))1 remains in
the domain D.

where,

F (t, r, θ) = 4r2∂θ

[
p

(
t,

cos θ√
2r
,
− sin θ√

2r

)]
,

G(t, r, θ) = −4r2∂r

[
p

(
t,

cos θ√
2r
,
− sin θ√

2r

)]
. (5.2.3)

Since p ∈ R3
ε, the vector field in (5.2.2) is continuous and C2 in the spatial

variables. This guarantees existence and uniqueness of the solution.

Remark 5.3. The change of variables ϕ has the effect to transform the phase
space from the plane to the cylinder. The singularity is moved from the
origin to r → ∞. In this sense, the change of variables has a regularizing
effect since the functions F,G in (5.2.2) are bounded for r →∞. The fact that
the origin is a zero of order 4 plays a fundamental role in this discussion. See
estimate (5.2.5) in the following Lemma 5.1 for more details.

Since the domain D is not invariant, we need to control the growth of the
solutions. For this purpose, given a > r∗ we introduce the set

Σ(a) =]a,∞[×T ⊂ D

and prove the following lemma, whose meaning is illustrated in Fig. 5.1.

Lemma 5.1. Let us assume that the origin is a zero of order 4 of the function
p ∈ R3

ε. Then there exists a∗ > r∗ such that if (r0, θ0) ∈ Σ(a∗), the correspond-
ing solution of (5.2.2) is well defined on t ∈ [0, 1] and (r(t), θ(t)) ∈ D for all
t ∈ [0, 1]. Moreover, the following estimate holds

|r(t)− r0|+ |θ(t)− θ0 − 2r0t| ≤ K if t ∈ [0, 1] (5.2.4)

for some K > 0.
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Proof. Since the origin is a zero of order 4 of p, there exists a constant C > 0

such that

∣∣∂(1)p (t, x, y)
∣∣ ≤ C(|x|3 + |y|3) in R× Dε.

Then, from the definition of Fand G, we have

|F (t, r, θ)|+ |2r| |G(t, r, θ)| ≤ C1 (5.2.5)

for any t ∈ R and (r, θ) ∈ D.

We shall prove that a∗ = r∗ + C1 satisfies the lemma. Fix (θ0, r0) ∈ Σ(a∗)

and consider the corresponding solution (θ(t), r(t)). By continuity there ex-
ists τ such that r(t) is well defined and r(t) > r∗ for t ∈ [0, τ ]. Suppose that
τ < 1, otherwise we are done. Integrating the first equation of (5.2.2) and
using (5.2.5) we have

|r(t)− r0| ≤ C1t if t ∈ [0, τ ].

In particular, r(τ) ≥ r0−C1τ > r∗. Hence, we can continue the solution until
time τ + τ1. Suppose that τ + τ1 < 1, otherwise we are done. Hence, as before
r(τ + τ1) ≥ r0−C1(τ + τ1) > r∗. Repeating this procedure we can reach τ = 1.

Finally, integrating the second equation of (5.2.2), we deduce that

|θ(t)− θ0 − 2r0t| ≤ 2C1 +
C1

2(r0 − C1)
.

Here we have employed (5.2.5) and the above estimates on r(t).

Now, let us introduce the Poincaré map P as

P : Σ(a∗) = ]a∗,∞[× T −→ D ⊂ R× T
(r0, θ0) 7−→ (r1, θ1) = (r(1; r0, θ0), θ(1; r0, θ0))

where (r(t; r0, θ0), θ(t; r0, θ0)) is the solution with initial condition (r(0), θ(0)) =

(r0, θ0). Lemma 5.1 together with existence and uniqueness of the solutions
of problem (5.2.2) guarantee that the Poincaré map is well defined.
Due to the regularity of the vector field of (5.2.1), P ∈ C2(Σ(a∗)), concretely
is a diffeomorphism of a section of the cylinder.

The proof of the theorem will be a consequence of a suitable version of
the so called Aubry-Mather theory applied to the previous Poincaré map.
The following sections is dedicated to prove that the Poincarè map satisfies
the hypotheses of Theorem 3.2, namely, that is an exact symplectic twist
diffeomorphism.
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CHAPTER 5 Existence of periodic and quasi-periodic solutions

5.3 Exact symplectic properties
of the Poincaré map

Fix r ≥ 2 and a Cr+1 function f : ]a, b[−→ R such that f ′(r) never vanishes
and consider the associated differential form λ̃ = df(r) ∧ dθ = f ′(r)dr ∧ dθ

on ]a, b[×R. In local coordinates, the corresponding time dependent Hamil-
tonian system takes the form


ṙ = 1

f ′(r)
∂θH(t, r, θ)

θ̇ = − 1
f ′(r)

∂rH(t, r, θ),

r(0) = r0

θ(0) = θ0.

(5.3.1)

Suppose that H : R×]a, b[×R → R is continuous in t and Cr+1 in the phase
variables (r, θ) and the following periodicity hold

H(t+ 1, r, θ) = H(t, r, θ) and H(t, r, θ + 2π) = H(t, r, θ).

By the periodicity in θ we have the phase space is the cylinder ]a, b[×T.

Remark 5.4. In our problem ]a, b[=]r∗,∞[, f(r) = − 1
4r

and

H(t, r, θ) = −1

2
ln(2r) + p

(
t,

cos θ√
2r
,−sin θ√

2r

)
.

Let us consider the Poincaré map P(r0, θ0) = (r1, θ1) associated to the
Cauchy problem (5.3.1). By the hypothesis on H and f , the map P belongs
to Cr(]a, b[×R) and satisfies:

P(r0, θ0 + 2π) = P(r0, θ0) + (0, 2π).

Lemma 5.2. The Poincaré map P is exact symplectic with respect to the form
λ̃ = f ′(r)dr ∧ dθ.

Proof. To simplify the notation, let us denote (r(t), θ(t)) the solution
(r(t; r0, θ0), θ(t; r0, θ0)) of (5.3.1). Consider the Cr function

S(r0, θ0) = −
∫ 1

0

[
f(r(t))

f ′(r(t))
∂rH(t, r(t), θ(t))−H(t, r(t), θ(t))

]
dt,

and note that by the periodicity assumptions in θ, and the uniqueness, we
have

S(r0, θ0 + 2π) = S(r0, θ0).
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Let us now prove that

dS(r0, θ0) = f(r1) dθ1 − f(r0) dθ0.

We start with

∂r0S(r0, θ0) = −
∫ 1

0

[
−f(r(t))f ′′(r(t))

[f ′(r(t))]2
[∂r0r(t)]∂rH(t, r(t), θ(t))

+
f(r(t))

f ′(r(t))
∂r0 [∂rH(t, r(t), θ(t))]− ∂θH(t, r(t), θ(t)) [∂r0θ(t)]

]
dt. (5.3.2)

Note that the term ∂rH(t, r(t), θ(t))[∂r0r(t)] is canceled. Now, using the first
equation in (5.3.1), and integrating by parts the last term, we obtain∫ 1

0

∂θH(t, r(t), θ(t)) [∂r0θ(t)] dt =

∫ 1

0

ḟ(r(t)) [∂r0θ(t)] dt

= [f(r(t))∂r0θ(t)]
t=1
t=0 −

∫ 1

0

f(r(t))
[
∂r0 θ̇(t)

]
dt.

Replacing in (5.3.2) and using the second equation in (5.3.1), we get

∂r0S(r0, θ0) = [f(r(t))∂r0θ(t)]
t=1
t=0 .

Analogously,
∂θ0S(r0, θ0) = [f(r(t))∂θ0θ(t)]

t=1
t=0 .

Hence,

dS(r0, θ0) = ∂r0S dr0 + ∂θ0S dθ0 = [f(r1)∂r0θ1 − f(r0)∂r0θ0] dr0+

+ [f(r1)∂θ0θ1 − f(r0)∂θ0θ0] dθ0 = f(r1) dθ1 − f(r0) dθ0.

5.4 The twist property for the vortex problem

In this section we consider the Poincaré map P associated to system (5.2.2).
We recall the notation

P : Σ(a∗) =]a∗,+∞[×T −→ R2

(r0, θ0) 7−→ (r1, θ1) = (F(r0, θ0),G(r0, θ0)) .

The following theorem will clearly imply the twist condition (5.5.2).

Theorem 5.2. Suppose that p ∈ R2
ε and the origin is a zero of order 4. Then

∂G
∂r0

−→
r0→∞

2 , uniformly in θ0. (5.4.1)
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To prove the theorem, let us fix a solution (r(t; θ0, r0), θ(t; θ0, r0)) of prob-
lem (5.2.2). Note that, since p ∈ R2

ε, the vector field of system (5.2.2) is C1

in the variables (r, θ) so that the solution is unique and we can consider the
associated variational equation{

Ẏ =M(t, r(t; r0, θ0), θ(t; r0, θ0))Y ,

Y (0) = I2.
(5.4.2)

Here
M(t; r, θ) =

∂ (F (t, r, θ), 2r +G(t, r, θ))

∂ (r, θ)

is the Jacobian of the vector field in (5.2.2). We denote the matrix solution

Y(t; r0, θ0) =

(
∂r0r(t; r0, θ0) ∂θ0r(t; r0, θ0)

∂r0θ(t; r0, θ0) ∂θ0θ(t; r0, θ0)

)
and by the definition of the Poincaré map,

∂G
∂r0

(r0, θ0) = ∂r0θ(1; r0, θ0).

In the integrable case p = 0, the Jacobian matrix is A =

(
0 0

2 0

)
and the

solution of the corresponding variational equation is

Yint(t; r0, θ0) =

(
1 0

2t 1

)
, (5.4.3)

that shows that the Poincaré map of the unperturbed problem is twist.

To prove the result in the non integrable case, we will follow a perturba-
tive approach. More precisely, we will prove that the solution remains close
to that of the integrable case over a period t ∈ [0, 1]. For this purpose we
begin considering the following splitting. To simplify the notation we will
denote a solution of (5.2.2) by (r(t), θ(t)) where we have dropped the depen-
dence on the initial conditions.

Lemma 5.3. Under the hypothesis of Theorem (5.2), we have the following
splitting:

M(t; r(t), θ(t)) = A+B(t, r0, θ0) + C(t, r0, θ0)

where B(t, r0, θ0) is bounded, the entries satisfy b11 = b21 = b22 = 0 and ∀ϕ ∈
C∞([0, 1])∣∣∣∣∫ t

0

b12(s, r0, θ0)ϕ(s) ds

∣∣∣∣ −→r0→∞
0 uniformly in t ∈ [0, 1], θ0 ∈ T. (5.4.4)

Moreover,

‖C(t, r0, θ0)‖ −→
r0→∞

0 uniformly in t ∈ [0, 1], θ0 ∈ T.
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Proof. Since the origin is a zero of order 4 for p, we can split the perturbation
as

p(t, x, y) = T4(t, x, y) + p̃(t, x, y),

where T4 is a homogeneous polynomial of degree 4. From system (5.2.2)

F (t, r, θ) = 4r2∂θp

[(
t,

cos θ√
2r
,
− sin θ√

2r

)]
,

so that p induce the following splitting on F

F (t, r, θ) = F∗(t, θ) + F̃ (t, r, θ),

where, using the homogeneity of T4 w.r.t the variable r,

F∗(t, θ) = ∂θ[T4 (t, cos θ,− sin θ)], F̃ (t, r, θ) = 4r2∂θ

[
p̃

(
t,

cos θ√
2r
,
− sin θ√

2r

)]
.

Therefore we write

M(t, r(t), θ(t)) =

(
∂rF (t, r, θ) ∂θF (t, r, θ)

2 + ∂rG(t, r, θ) ∂θG(t, r, θ)

)∣∣∣∣
(r(t),θ(t))

=

(
0 0

2 0

)
+

[(
0 b12

0 0

)
+

(
c11 c12

c21 c22

)]
(r(t),θ(t))

where b12 = b12(t, r, θ) and cij = cij(t, r, θ) defined as

b12 := ∂θF∗(t, θ) = ∂θθ [T4 (t, cos θ,− sin θ)]

and

c11 := ∂rF̃ (t, r, θ) c12 := ∂θF̃ (t, r, θ)

c21 := ∂rG(t, r, θ) c22 := ∂θG(t, r, θ)

Concerning the matrix C = (cij), one can first explicitly write the expression
of the entries cij recalling that F̃ has just been introduced and G is defined
in (5.2.3). Note that they depend on the derivatives up to second order of the
functions p

(
t, cos θ√

2r
, − sin θ√

2r

)
, p̃
(
t, cos θ√

2r
, − sin θ√

2r

)
w.r.t the variables (r, θ).

The following lemma states some bounds for the derivatives of functions
p ∈ R2

ε with a zero of order N .

Lemma 5.4. Suppose the p ∈ R2
ε and that the origin is a zero of order N .

Consider the decomposition given in Definition 5.2

p(t, x, y) = TN(t, x, y) + p̃(t, x, y)
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and consider the functions

x = x(r, θ) =
cos θ√

2r
, y = y(r, θ) =

− sin θ√
2r

defined for r > 1
2ε2

and θ ∈ T. Then, there exists a constant C > 0 such that

1) r(N+1)/2 (|∂θ p̃(t, x, y)|+ |∂θθ p̃(t, x, y)|) ≤ C,

2) r(N+3)/2 |∂rθ p̃(t, x, y)| ≤ C,

3) r(N+2)/2 (|∂r p(t, x, y)|+ |∂rθ p(t, x, y)|) ≤ C,

4) r(N+4)/2 |∂rr p(t, x, y)| ≤ C.

Proof. To get the estimate 1), let us calculate explicitly the derivatives with
respect to θ:

∂θp̃(t, x(r, θ), y(r, θ)) = − 1

(2r)1/2
[sin θ ∂xp̃(t, x, y) + cos θ ∂yp̃(t, x, y)]

and

∂θθp̃(t, x(r, θ), y(r, θ)) =
1

(2r)1/2
[sin θ ∂yp̃(t, x, y)− cos θ ∂xp̃(t, x, y)]

+
1

2r

[
sin2 θ ∂xxp̃(t, x, y) + 2 cos θ sin θ ∂xyp̃(t, x, y) + cos2 θ ∂yyp̃(t, x, y)

]
.

From the definition of zero of order N we have:

|∂θ p̃(t, x, y)|+ |∂θθ p̃(t, x, y)| ≤ C1

r1/2
(|∂x p̃(t, x, y)|+ |∂y p̃(t, x, y)|)

+
C2

r
(|∂xx p̃(t, x, y)|+ |∂xy p̃(t, x, y)|+ |∂yy p̃(t, x, y)|)

≤ C1

r1/2
(|x|N + |y|N) +

C1

r
(|x|N−1 + |y|N−1)

≤ C1

r(N+1)/2
+

C2

r1+(N−1)/2
≤ C

r(N+1)/2

To obtain 2), 3) and 4), the computations are similar.

Using the previous Lemma we get the following estimate

r3/2 |c11|+ r1/2 |c12|+ r2 |c21|+ r |c22| ≤ K

withK independent on r, θ. We evaluate the entries cij on a solution (r(t), θ(t))

and we remember that from Lemma 5.1 we have that for r0 > a∗,

|r(t)− r0| ≤ K1 ∀ θ0 ∈ T and t ∈ [0, 1]. (5.4.5)
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This proves that ‖C(t, r0, θ0)‖ −→ 0 as r0 →∞ uniformly in θ0 ∈ T, t ∈ [0, 1].

Let us study the matrix B = (bij). Since T4 (t, cos θ,− sin θ) is a trigonometric
polynomial, |b12| ≤ K and B is bounded. To obtain (5.4.4) we note that being
T4 (t, cos θ,− sin θ) a trigonometric polynomial of degree 4, ∂θ [T4 (t, cos θ,− sin θ)]

will be another trigonometric polynomial (of the same degree) that we de-
note by T̃4 (t, cos θ,− sin θ).

To get the estimates of the element b12 of matrix B we need the followimg
result. It is another lemma of Riemann-Lebesgue type but is more general
than Lemma (4.3).

Lemma 5.5. Let q(t, η, ξ) be a polynomial of degree N ,

q(t, η, ξ) =
∑

j+h≤N

αj,h(t)η
jξh

with αj,h(t) ∈ C1(R/Z). Assume in addition that for each t∫ 2π

0

q(t, cos θ, sin θ) dθ = 0 . (5.4.6)

Let β ∈ C1([0, τ ]) with [0, τ ] ⊂ [0, 1] and ϕ ∈ C∞([0, 1]). Then there exists
CRL > 0 such that∣∣∣∣∫ t

0

q(s, cos (λs+ β(s)), sin (λs+ β(s)))ϕ(s) ds

∣∣∣∣ ≤ CRL
|λ|

if t ∈ [0, τ ] and λ ∈ R \ {0}. Moreover, the constant CRL depends upon N ,
maxj,h

[
‖αj,h‖∞ + ‖α̇j,h‖∞

]
, ‖β‖∞, ‖β̇‖∞ ‖ϕ‖∞ and ‖ϕ̇‖∞.

Proof. The function q(t, cos θ, sin θ) has a finite Fourier expansion with
respect to θ, say

q(t, cos θ, sin θ) =
∑
|k|≤N

qk(t)e
ikθ.

The coefficients qk can be expressed in terms of the functions αj,h and belong
to C1(R/Z),

qk(t) =
1

2π

∫ 2π

0

q(t, cos θ, sin θ)e−ikθ dθ.

The condition (5.4.6) implies that q0(t) vanishes everywhere and so the inte-
gral I(t) we want to estimate can be expressed as the sum

I(t) =
∑

0<|k|≤N

Ik(t) with Ik(t) =

∫ t

0

qk(s)e
ikβ(s)eikλs ϕ(s) ds.
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Since we have excluded k = 0 these integrals can be estimated by a standard
procedure in the theory of oscillatory integrals, see for instance [5]. After
integrating by parts

Ik(t) =
1

ikλ

[
qk(t)e

ikβ(t)eikλt ϕ(t)− qk(0)eikβ(0) ϕ(0)

−
∫ t

0

(
qk(s)e

ikβ(s) ϕ(s)
)′
eikλs ds

]
.

Therefore,

|Ik(t)| ≤
Ck
|k| |λ|

with

Ck = ‖qk‖∞
[
2 ‖ϕ‖∞ + |k|

∥∥∥β̇∥∥∥
∞
‖ϕ‖∞ + ‖ϕ̇‖∞

]
+ ‖q̇k‖∞ ‖ϕ‖∞ .

Let us define
P4(t, η, ξ) := T̃4(t, η, ξ).

We show that we can apply Lemma 5.5 choosing the polynomial of degree
N = 4,

q(t, η, ξ) = −ξ ∂P4

∂η
(t, η,−ξ)− η∂P4

∂ξ
(t, η,−ξ).

Since P4(t, cos θ,− sin θ) is a periodic primitive in the variable θ of the func-
tion q(t, cos θ, sin θ) the condition (5.4.6) holds. Moreover, the regularity as-
sumption in Definition 5.2 guarantees that q is C1 in the variable t.

Let us define the function β(t) := θ(t) − 2r0t. The estimate (5.2.4) on the
angular evolution gives a bound of ‖β‖∞. To get a bound of ˙‖β‖∞ we observe
that

β̇(t) = θ̇(t)− 2r0 = 2 (r(t)− r0) +G(t, r(t), θ(t)).

And again from (5.2.4) and (5.2.5), we have

˙‖β‖∞ ≤ 2K +
C1

(r0 −K)
.
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5.4. The twist property for the vortex problem

Finally, Lemma 5.5 can be applied to deduce that for all ϕ ∈ C∞([0, 1]) and
t ∈ [0, 1],∣∣∣∣∫ t

0

b12(s, r0, θ0)ϕ(s)ds

∣∣∣∣ =

∣∣∣∣∫ t

0

b12(s, θ(s))ϕ(s)ds

∣∣∣∣
=

∣∣∣∣∫ t

0

∂θθT4 (s, cos θ(s),− sin θ(s))ϕ(s)ds

∣∣∣∣
=

∣∣∣∣∫ t

0

∂θP4(s, cos θ(s),− sin θ(s))ϕ(s)ds

∣∣∣∣
=

∣∣∣∣∫ t

0

q(s, cos θ(s), sin θ(s))ϕ(s)ds

∣∣∣∣
=

∣∣∣∣∫ t

0

q(s, cos(2r0s+ β(s)), sin(2r0s+ β(s)))ϕ(s)ds

∣∣∣∣
≤ CRL

2r0

.

By the previous discussion, we can write the variational equation (5.4.2)
as

{
Ẏ = (A+B(t, r0, θ0) + C(t, r0, θ0))Y ,

Y (0) = I2.

We claim that the solution Y(t; r0, θ0) converge uniformly, as r0 → ∞, to the
solution Yint(t; r0, θ0) of the integrable case (5.4.3).

To prove it, we need the following Lemma concerning the uniform con-
vergence of the solution of a linear ODE whose time-dependent coefficients
are bounded and converging weak* in L∞. Similar results can be found in
[50] and [64]. For the proof we will follow the lines of the proof of Lemma
2.1 in [64].

Consider the following linear system depending on the parameters
(r, θ) ∈]a, b[×T, a > b {

Ẏ = (A+M(t; r, θ))Y ,

Y (0) = I2,
(5.4.7)

where A, M are 2× 2 matrices, A is constant and M ∈ C1([0, 1]×]a, b[×T).
We denote the matrix solution of this system as Y(t; r, θ).

Lemma 5.6. Suppose that the family {M(t; r, θ)} is uniformly bounded in
L∞([0, 1]) and that M(t; r, θ) converges to M̃(t; θ) ∈ L∞([0, 1]) in the weak*
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CHAPTER 5 Existence of periodic and quasi-periodic solutions

sense as r → b. Then

Y(t; r, θ) −→
r→b
Ỹ(t; θ) uniformly, t ∈ [0, 1] ∀θ ∈ T

where Ỹ(t; η) is the matrix solution of the problem{
Ẏ =

(
A+ M̃(t; θ)

)
Y ,

Y (0) = I2 .
(5.4.8)

Proof. The solution of (5.4.7) can be written as:

Y(t; r, θ) = I2 +

∫ t

0

(A+M(s; r, θ))Y(s; r, θ) ds, t ∈ R, (5.4.9)

from which we get the following estimate on the matrix norm

‖Y(t; r, θ)‖ ≤ 1 +

∫ t

0

‖A+M(s; r, θ)‖ ‖Y(s; r, θ)‖ ds. (5.4.10)

Gronwall lemma applied on the interval [0,1] gives us

‖Y(t; r, θ)‖ ≤ 1 +

∫ t

0

‖A+M(s; r, θ)‖ e
∫ t
s ‖A+M(ξ;r,θ)‖dξ ds, t ∈ [0, 1].

Since {M(t; r, θ)} is uniformly bounded, ‖Y(t; r, θ)‖ is uniformly bounded.
Moreover, from (5.4.9) also ‖Ẏ(t; r, θ)‖ is uniformly bounded. Hence, we can
apply Ascoli-Arzelà theorem to get a subsequence rk → b as k → ∞ and a
matrix Φ ∈ C1([0, 1]× T) such that

Y(t; rk, θ) −→
k→∞

Φ(t; θ), uniformly in t ∈ [0, 1] θ ∈ T.

The matrices Y(t; rk, θ) satisfies

Y(t; rk, θ) = I2 +

∫ t

0

(A+M(s; rk, θ))Y(s; rk, θ) ds

= I2 +

∫ t

0

AY(s; rk, θ) ds+

∫ t

0

M(s; rk, η)Φ(s; θ) ds

+

∫ t

0

M(s; rk, θ)(Y(s; rk, θ)− Φ(s; θ)) ds.

Using the uniform convergence, and the weak* convergence of M(t; r, θ) (re-
call Φ ∈ L1([0, 1])), we have the limit:

lim
k→∞
Y(t; rk, θ) = I2 +

∫ t

0

AΦ(s; η) ds +

∫ t

0

M̃(s; θ)Φ(s; θ) ds, t ∈ [0, 1] ∀θ ∈ T.
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5.5. Proof of the main Theorem

Finally, by uniqueness we observe that this limit is the solution of system
(5.4.8) and we obtain

lim
r→b
Y(t; r, θ) = Φ(t; θ) = Ỹ(t; θ) t ∈ [0, 1] ∀θ ∈ T.

Now we can prove that Y(t; r0, θ0) converge uniformly, as r0 → ∞, to the
solution Yint(t; r0, θ0) of the integrable case (5.4.3). Applying Lemma 5.6 to
the family of matrices M(t, r0, θ0) = B(t, r0, θ0)+C(t, r0, θ0) as r0 → +∞. From
Lemma 5.3 we have that M(t, r0, θ0) is uniformly bounded and C(t, r0, θ0)

converge uniformly to 0 so that it converge also in the weak* topology. To
study the convergence of the matrix B(t, r0, θ0) it is enough to consider the
term b12. From (5.4.4) and using the density of C∞ in L1 we have∣∣∣∣∫ t

0

b12(s, r0, θ0)ϕ(s) ds

∣∣∣∣ −→r0→∞
0, ∀ϕ ∈ L1([0, 1]), t ∈ [0, 1].

Hence, we can apply Lemma 5.6 and get

Y(t; r0, θ0) −→
r0→∞

Yint(t; r0, θ0) uniformly in t ∈ [0, 1], θ0 ∈ T,

from which (5.4.1) follows evaluating in t = 1.

5.5 Proof of the main Theorem

Firstly, we recall the version of the Aubry-Mather theorem in Section 3.4 of
Chapter 3.

Consider a C2 diffeomorphism

Φ : Σ −→ C

(r, θ) 7−→ (r1, θ1) = (F(r, θ),G(r, θ)) .

and the corresponding lift map

Φ : Σ̃ −→ R2

(r, x) 7−→ (r1, x1) = (F(r, x),G(r, x))
(5.5.1)

where

F(r, x+ 2π) = F(r, x),

G(r, x+ 2π) = G(r, x) + 2π.

Consider a C2 function with Lipschitz inverse
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CHAPTER 5 Existence of periodic and quasi-periodic solutions

f :]a, b[ −→ R
r 7−→ f(r),

such that f ′ never vanishes. Without loss of generality we fix f ′ > 0.

We suppose that Φ is exact symplectic with respect to the form f(r)dθ.
The weighted symplectic form is:

λ = df(r) ∧ dθ = f ′(r)dr ∧ dθ

and that Φ is twist, that is

∂rG(r, θ) > 0 ∀(r, θ) ∈ Σ. (5.5.2)

Suppose additionally that the following uniform limits (w.r.t. x) exist

α+(x) :=
1

2π

(
lim
r→b
G(r, x)− x

)
,

α−(x) :=
1

2π

(
lim
r→a
G(r, x)− x

)
.

Note that α±(x) are 2π-periodic C2 functions and define

W+ = min
x
α+(x), W− = max

x
α−(x).

The following Theorem deals with the existence of special orbits of the
diffeomorphism Φ. To state the Theorem, we recall that a sequence (xn)n∈Z
of real numbers is increasing if xn < xn+1 for all n ∈ Z and we say that any
two translates are comparable if for any (s, q) ∈ Z2 only one of the following
alternatives holds

xn+q + 2πs > xn ∀n, xn+q + 2πs = xn ∀n, xn+q + 2πs < xn ∀n.

Theorem 5.3. With the previous setting, suppose that W+ −W− > 8π and
fix α such that 2πα ∈ (W− + 4π,W+ − 4π). Then

• if α = s/q ∈ Q there exists a (s, q)-periodic orbit (rn, xn)n∈Z such that

rn+q = rn, xn+q = xn + 2πs ∀n ∈ Z;

• if α ∈ R \ Q there exists a compact invariant subset Mα ⊂ Σ (and a
corresponding subset M̃α ⊂ Σ̃ ) with the following properties:

– denoting π : Σ→ T the projection, π|Mα is injective and
Mα = graphu for a Lipschitz function u : π(Mα)→ R,
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5.5. Proof of the main Theorem

– each orbit (rn, xn)n∈Z ∈ M̃α is such that the sequence (xn) is in-
creasing and any two translates are comparable,

– each orbit (rn, xn)n∈Z ∈ M̃α has rotation number α, i.e.

1

2π
lim
n→∞

xn
n

= α;

– the setMα is either an invariant curve or a Cantor set.

The following corollary gives an equivalent interpretation of the result.

Corollary 5.1. For each α there exists two functions φ, η : R → R such that,
for every ξ ∈ R

φ(ξ + 2π) = φ(ξ) + 2π, η(ξ + 2π) = η(ξ),

Φ(φ(ξ), η(ξ)) = (φ(ξ + 2πα), η(ξ + 2πα))

where φ is monotone (strictly if α ∈ R \Q ) and η is of bounded variation.

In this section we apply the previous Theorem 5.3 and Corollary 5.1 to
the Poincaré map P of system (5.2.2) and get the so called Aubry-Mather
orbits of rotation number α. These orbits determine the solutions we an-
nounced in our main theorem 5.1.

By Lemma 5.1 the map P is well defined in Σ(a∗) and is a C2-diffeomorphism
since p ∈ R3

ε. For every initial condition in Σ(a∗), the corresponding solution
satisfies |r(t) − r0| ≤ K for all t ∈ [0, 1]. Moreover, from (5.2.5), we can find
a1 > 0 such that, in Σ(a1),

|θ̇| = |2r +G(t; r, θ)| ≥ 2r − C1

2r
> 0.

By theorem 5.2, the map P is twist in Σ(a2) for some a2 large enough. Let
us consider the strip Σ(r̄) where r̄ = max{a∗, a1, a2} + K. Theorem 5.2 also
imply that the following limits hold:

W+ := min
x
{ lim
r→+∞

G(r, x)− x} = +∞,

W− := max
x
{lim
r→r̄
G(r, x)− x} = c < +∞.

so that W+ −W− > 8π.

Since, from Lemma 5.2, the map P is exact symplectic w.r.t the form
λ = 1

4r2dr ∧ dθ = d(− 1
4r

) ∧ dθ and 1/(4r) is Lipschitz for r > r̄, we can apply
Theorem 5.3 and Corollary 5.1 to the Poincaré map restricted to the strip
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CHAPTER 5 Existence of periodic and quasi-periodic solutions

Σ(r̄). For every α > (c + 2)/2π, we get two functions φ, η : R → R such that,
for every ξ ∈ R

φ(ξ + 2π) = φ(ξ) + 2π, η(ξ + 2π) = η(ξ), (5.5.3)
P(φ(ξ), η(ξ)) = (φ(ξ + 2πα), η(ξ + 2πα)). (5.5.4)

For every ξ ∈ R, let us consider the solution of the Cauchy problem (5.2.2)
with initial condition (r(0), θ(0)) = (η(ξ), φ(ξ)) and denote it (r(t), θ(t))ξ. By
(5.5.3) and uniqueness we have that

(r(t), θ(t))ξ+2π = (r(t), θ(t))ξ + (0, 2π),

and from (5.5.4) and the definition of P,

(r(t+ 1), θ(t+ 1))ξ = (r(t), θ(t))ξ+2πα

so that conditions (5.1.2)-(5.1.3) are satisfied.

The function ξ 7→ Φξ(a, b) introduced in Remark 5.2 has the same regu-
larity of the functions φ, η that can have at most jump discontinuities. More-
over, from properties (5.5.3),(5.5.4), if ξ is a point of continuity, so are ξ + 2π

and ξ + 2πα.

Finally, these solutions have rotation number α, actually,

lim
t→∞

θξ(t)

t
= lim

k→∞

θξ(k)

k
= lim

k→∞

θξ+2πkα(0)

k
= lim

k→∞

φ(ξ + 2πkα)

k

= lim
k→∞

φ(ξ + 2π{kα}) + 2π[kα]

k
= 2πα.

where [z] denote the integer part of z and {z} = z − [z].
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Chapter 6

Conclusions

In this thesis we have answer some questions about the dynamical proper-
ties of the perturbed point-vortex problem as well as the dynamics around
a singular point in a more mathematical context. In Chapter 4 we gave a
stability result by means of the KAM theory.

Additionally, in Chapter 5 with other hypothesis for the perturbation and
using the Aubry-Mather theory, we gave an existence result. In this last
result, KAM results can not be applied due the regularity of the perturbation
: p(t, x, y) has to be C3.

Let us comment both results:

Stability result for the perturbed point-vortex problem

The result concerning the stability of the perturbed point-vortex problem
can be seen as a first step on the study of stable singularities in Hamiltonian
systems, in analogy to stable equilibria. To this aim, we have used the basic
point-vortex model as a canonical example of singularity. Our study of the
complex valued version of the system is inspired by Morris approach in [53].

Recently, in [34] the authors prove a similar stability under the action of
a periodic background flow induced by a general polynomial field∑
1≤i+j≤N

aij(t)x
iyj where aij are 2π-periodic continuous differentiable func-

tions. The proof is obtained from a finite differentiable version of the In-
variant Curve Theorem [56]. Additionally, this improved theorem is used in
two applications in the dynamics of point-vortices:

• Planar motion of two point-vortices with arbitrary intensities µ1, µ2 un-
der the effect of an external linear deformation flow f(a(t), b(t). The
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components of the external deformation flow are a(t) (shear compo-
nent) and b(t) (rotational component).

• Advection of fluid particles induced by a prescribed vortex path z(t)

inside a circular domain.

Of course, our initial standpoint admits several generalizations. In princi-
ple, it should not be too difficult to find similar results with a quasiperiodic
perturbation by using the quasiperiodic version of twist theorem by Zhar-
nitsky [88]. Extensions to 3D flows would be more involved because the
Hamiltonian structure is lost, being necessary an extra dimension to re-
cover it, or the use of alternative theorems for volume-preserving maps (see
for instance [79]).

By using a standard symbolic computation package, we have computed
numerically the Poincaré map with different types of perturbations and it
can be said that numerical experiments confirm the main result (see Fig.
6.1).

Let us discuss several alternative paths that we have studied to show the
results.

To verify the twist coefficient, we cannot use the common procedure in el-
liptical fixed points, the Birkhoff normal form. This is because the Poincaré
map is not differentiable in the singularity. This is an important mathemat-
ical aspect of our result.

With respect the complexification. We tried to complexify before the changes
of variables (Section 4.3.1), but it generated two singular planes in C2 whose
intersection is reduced to the singularity at the origin in the real variable,
making things more complicated. Therefore the Kelvin transform is very
useful since it brings the singularity to the point of infinity and there we
can do the estimates.

Another technique that we have tried is to rescale the variables to be able
to treat the degree of perturbation in the critical case where the origin is a
zero of order 4. Finally, the use of the lemma 4.3 helped us with that. In
addition, in order to make estimates that may decrease this critical degree,
we have also worked on proposing other adaptive geometries of the domains
in the complex band. Unfortunately, we did not get any results.
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Figure 6.1: Poincaré sections of system (4.0.2) with two different choices
of the perturbation p(t, x, y). The first row corresponds to p(t, x, y) = ε(1 +

sin(2πt))x2y2 with ε = 0.1, 0.4, 0.7, respectively; the second corresponds to
p(t, x, y) = ε(1 + sin(2πt))x3y with ε = 0.1, 0.2, 0.4; the third one corresponds
to p(t, x, y) = ε(1 + sin(2πt))x2y with ε = 0.1, 0.2, 0.4 and the fourth row corre-
sponds to p(t, x, y) = ε(1 + sin(2πt))xy with ε = 0.1, 0.2, 0.4.
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Existence of periodic and quasi-periodic orbits

Our result can be seen as an example of the study of twist dynamics around
a singularity in Hamiltonian systems. As a paradigmatic example we choose
the point-vortex model. In suitable variables we applied a version of Aubry-
Mather theory to get similar results as in the case of exact area-preserving
maps of the annulus [46].

We suppose that the origin was a zero of order 4 for the perturbation. This
condition played a role in the regularizing change of variable ϕ. For this
reason, it seems unclear how to weaken this assumption.

Our result leaves open the distinction between classical and generalized
quasi-periodic solutions. This relies on the nature of the corresponding
Mather set with irrational rotation number. Actually it can be either a in-
variant curve or a Cantor set.

A possible future development of the present work could be finding con-
ditions that break invariant curves. An example of the breaking of invariant
curves can be found in [44] for the bouncing ball model, where the author
considers the vertical motion of a free falling ball bouncing elastically on a
racket moving in the vertical direction according to a regular periodic func-
tion f. An advantage of this model is that the generating function can be
computed explicitly.

To finish, let us comment that to demonstrate the twist property (Section
5.4) we also tried to apply the Sturm theory on zeros of a solution. Never-
theless, the method with the variational equation gives us a stronger result.

98



Bibliography

[1] H. AREF, Point vortex dynamics: A classical mathematics playground,
J. Math. Phys., 48 (2007), p. 065401, https://doi.org/10.1063/1.
2425103.

[2] H. AREF, N. ROTT, AND H. THOMANN, Gröbli’s Solution of the Three-
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[42] S. MARÒ, Chaotic Dynamics in an Impact Problem, Ann. Henri
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