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Prefazione

Ricordo benissimo il giorno in cui chiesi ad Anna Capietto un consiglio su
come e dove poter fare una buona tesi di dottorato su equazioni differenziali
e sistemi dinamici. La sua risposta fu netta ed immediata: ”Rafael Ortega,
Granada”. Ora posso dire che non ci fu consiglio piu saggio di quello. Ho
potuto cosl conoscere una persona straordinaria che mi ha dato molto dal
punto di vista umano e professionale. Imparare Matematica da Rafael Ortega
e stata una fortuna ed un onore. Questa tesi ¢ in gran parte merito suo e le
parole non bastano ad esprimergli tutta la mia gratitudine. Posso comunque
sottolineare la sua immensa disponibilita e pazienza (molta pazienza) con cui
mi ha sempre accolto e guidato in questo percorso.

Un grazie va anche al Departamento de Matematica Aplicada de la Uni-
versidad de Granada che mi ha accolto e trattato con molto affetto. Ho tratto
molto profitto dalle conversazioni con Pedro Torres, Antonio Urena e con i
miei compagni di ufficio Jesus, Alfonso, Manuel, Andres, Alexander, Daniel
e Luis con i quali ho anche diviso piacevoli momenti di svago... Il Diparti-
mento di Matematica dell’Universita di Torino mi ha sempre e puntualmente
aiutato con tutti i problemi di carattere burocratico che potevano apparire
dandomi una certa tranquillita e sicurezza. In particolare Anna Capietto e
sempre stata la mio fianco dandomi anche un prezioso aiuto sulla prima parte
di lavoro su questa tesi.

Devo ringraziare la mia famiglia che mi ha sempre sostenuto nella scelta
di dedicarmi alla Matematica in un posto tanto lontano da casa. Anche se
fisicamente distanti, non ho mai sentito la mancanza di quell’appoggio che
solo un padre una madre ed una sorella possono dare.

La mia avventura Granadina inizio nel marzo del 2011 e sta volgendo al
termine ora, nel settembre 2013. Le iniziali paure legate alla nuova vita in
un paese straniero si sono subito dissolte nella serenita che ho incontrato a
Granada. Produrre un buon lavoro dipende strettamente da quelle piccole
grandi cose che rendono piacevole la vita e il lavoro di tutti i giorni. Saranno
quindi indimenticabili le "pausas café” con i colleghi dottorandi di altri di-
partimenti Benjamin, Lourdes, Maria, Esperanza, Mario, Rafeal e Daniel. A



tutto cio bisogna aggiungere tutte le esperienze che una citta come Granada
puo proporre. Ho condiviso momenti indimenticabili con persone provenienti
da ogni parte del mondo e cio mi ha fatto capire, ancora una volta, quanto
e bello ed importante conoscere mondi e realta diverse dalle proprie.

Grazie infine a te, Angela, I’averti conosciuta ed aver passato con te buona
parte di questo periodo mi ha aiutato ad iniziare ogni giornata con il sorriso.
Quel sorriso dato dalla consapevolezza di avere con sé una persona che ti
capisce, ti consola, ti supporta (e sopporta). Quel sorriso che rende tutto pin
facile, compreso il lavoro necessario per una tesi di dottorato. Quel sorriso
che sprero continui a splendere per molto tempo ancora.
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Introduction

This thesis is concerned with the qualitative study of some mechanical
models and is a survey of the results we have in [44] 43|, [42]. More pre-
cisely we are going to study some models whose behaviour can be described
through a so called ”exact symplectic twist” map. This kind of maps appear
in the qualitative study of Hamiltonian systems, impact problems, billiards,
geodesics on surfaces and many other cases. We concentrate on the appli-
cations to Hamiltonian systems and impact problems. Even if these models
show a continuous motion, to understand the dynamics it is sufficient to
study the behaviour of a discrete map. In the case of Hamiltonian systems
it is well known that the so-called Poincaré map is a powerful tool for the
qualitative study. On the other hand, impact dynamics can be described
through a discrete map. Many qualitative properties of the corresponding
map, have a translation to qualitative properties of the model itself.

The study of general maps is very complicated and usually one can get
little informations. So we will restrict our study to some class of maps. First
we assume that the map is a diffeomorphism defined on the cylinder. This is
reflected by the assumption of some regularity and periodicity in the model.
Moreover we will assume that the maps is exact symplectic. This condition
imply the preservation of the area. We will see that it is satisfied by a large
class of Hamiltonian systems and is typical in impact problems. So, the
tool of our work will be an exact symplcetic map f defined on the cylinder
T x R with coordinates (¢, 7). Here 6 is considered as an angle and we denote
f(@,r) = (61,7m1). We also suppose that the twist condition

00,

or
is satisfied. One can understand the meaning of the twist condition through
the following example. Suppose that we are considering the motion of a
pendulum. Let (0,7) represent, respectively, the angular position and the
velocity at an initial time, say ¢ = 0. Analogously, let (6;,71) represent the
position and the velocity at time ¢ = 1. Then the twist condition means that
the displacement 6; — 0 increases as the initial velocity r increases. Exact

>0 (1)
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symplectic twist diffeomorphisms of the cylinder have been widely studied
in literature and many general results exist. See [21] [50} 48] for the general
theory and [I8, 36}, 55, [71], [76] for some applications. The main feature of such
maps is the fact that they can be expressed through a function h = h(6,6;)
that acts as the Hamiltonian function in Hamiltonian systems. Precisely we
have that the diffeomorphism f can be implicitly written as

r = —81]1(&,61)
r = ﬁgh(é’,é’l)

and the function h is called generating function. In this thesis we need to
concentrate on three theorems that can be considered as milestones of this
topic: The Poincaré-Birkhoff fixed point theorem, the KAM theory and the
Aubry-Mather theory. To be precise, one has to cite the fact the the twist
condition in the Poincaré-Birkhoff theorem has to be understood in an other
sense than . We will precise it later on. Before going into the details,
let us introduce the three theorems in an informal way. Consider the twist

integrable map
pR e @)

rn=r.

Suppose the map to be defined in T X [a, b] and the function ¢ to be smooth
in [a,b] with ¢’ > 0. It is easily seen that the map is exact symplectic and
twist. The dynamics is very simple. Every circle r = r, is invariant under
the action of f. Moreover, the dynamics on every such curve is described by
the so-called rotation number w defined as

w= lim O (3)
n—oo 1

where (0,,,7,) = f"(0,r). In this case we simply have w = ¢(r,). If it is
rational, say w = p/q then all orbits are periodic in the sense that 6,, =
0, + p. If w is irrational then every orbit is quasi periodic with frequencies w
and 1. Now consider a small perturbation of f in the class of exact symplectic
maps and call it f,. We have that many invariant sets of f are preserved. This
is a delicate theory, as it depends on the arithmetic properties of w. For any
compact interval [¢_, ¢, ]| with ¢(a) < ¢_ < ¢ < ¢(b), and for any rational
w € [p_, ¢y] there exist at least two periodic orbits with rotation number w.
This a consequence of the Poincaré-Birkhoff theorem. If w is irrational then
we have two cases. Either the invariant curve of f persists and every orbit
on it is quasi-periodic with frequencies w and 1, or the minimal invariant set
become a Cantor set. The dynamics on a Cantor set is of Denjoy type with
rotation number w [48]. The first case is studied by KAM theory, while the
second is considered by Aubry-Mather theory.
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The Poincaré-Birkhoff theorem [65], 13| gives the existence of two fixed
points of an area preserving homeomorphism f defined on a compact strip
Y =T X [a,b] of the cylinder. The strip ¥ is supposed to be invariant. Also
the boundaries are invariant and rotated in opposite directions under the
action of f. More precisely the following condition is required

0p—0<0 onTx{a} A
0, —0>0 onT x {b}. (4)
This condition is called boundary twist condition. In many applications
one has to deal with homeomophisms for which the invariance condition of
the strip is not guaranteed. So a generalization to a non-invariant strip is
needed. This a delicate point and we refer to the beginning of Section for
an historical introduction to the theorem and its variants. In this thesis we
concentrate on Franks version [20]. He was able to remove the hypothesis of
invariance of the strip. This purpose is reached supposing the map f being
an exact symplectic diffeomorphism. Franks proof uses deep and abstract
tools from differential geometry. Based on his work, we will give a complete
and detailed proof of the theorem that can also be understood by people that
are not familiar with differential geometry.
Once one has found fixed points, questions about its stability arise. We will
prove, using a result of Ortega [62], that, if the diffeomorphism f is analytic,
then at least on of the fixed points is unstable. If one also assume that the
twist condition is satisfied, then other informations on the nature of the fixed
points can be deduced.

The main purpose of the KAM theory is to investigate what is preserved
when an integrable system is perturbed. Kolmogorov [30] and Arnold [3]
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studied the case in the framework of Hamiltonian systems while Moser con-
centrated on the discrete version. In this thesis we will use Moser approach,
precisely we study his invariant curve theorem [54]. Moser considers small
perturbations of system and gives sufficient conditions that guarantee
the preservation of some invariant curve. Invariant curves are particularly
important as they act as barriers. This fact is crucial when one deals with
question of stability or boundedness. In Section we will give a brief his-
torical introduction to KAM theory and state Moser invariant curve theorem
in one of its recent versions.

KAM theory does not consider the case of a large perturbation of the
integrable map. Neither gives any information on the invariant curves that
are not preserved. The works of Aubry-LeDaeron [4] and Mather [46] give
an answer to this questions. Precisely, Mather, as in the Poincaré-Birkhoff
theorem, considers an area preserving diffeomorphism of the strip ¥ leaving
invariant the strip itself. The great difference with the Poincaré-Birkhoff
theorem is that Mather supposed the map to be twist in the sense of formula
and not only on the boundaries as in . With these hypothesis he was
able to prove, for every w in the twist interval, the existence of an invariant
set with rotation number w defined as in . This invariant set are called
Aubry-Mather sets. The arithmetic properties of w determine the structure
of the Aubry-Mather set and the dynamics on it. If w is rational then the
minimal invariant set is made of a finite number of points and the orbit
is periodic. If w is irrational then we have two cases: either the minimal
invariant set is a curve and every orbit is quasi-periodic with frequencies w
and 1 or the minimal invariant set is a Cantor set and the dynamics on it
is of Denjoy type. Notice that, as in the Poincaré-Birkhoff theorem, these
results hold in the case of the invariance of the strip and one would need not
to check this condition. This is possible considering the work of Mather [4§]
in which the author considers exact symplectic twist diffeomorphism of the
infinite cylinder T x R and gets the existence of Aubry-Mather sets for every
rotation number w € R. Actually Mather’s result is more general. In fact
he proves it not only for a single exact symplectic twist diffemorphism but
for a finite composition of them. Notice that this result is not trivial, as the
composition of twist maps, in general is not a twist map. This result was
possible using the expression of the diffeomorphism through the generating
function. At this moment two remarks have to be done. First it is worth
mentioning that Mather proved his two results [40, 48] with two different
techniques and the results are formally different. We will show explicitly
that, actually, they are equivalent. Secondly, to prove the result on the
infinite cylinder, the technical hypothesis of an infinite twist at infinity was
considered. Precisely, one needs that 8; — 8 — +o00 as r — +o0. In many
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applications this condition is not satisfied and it is not clear if Mather results
still hold in the case of a finite twist at infinity. We will prove that adding the
hypothesis of the existence a sequence of invariant curves approaching both
the top and the bottom of the cylinder we can get Mather’s conclusions also
in the case of a finite twist at infinity. In the case of a single map it follows
applying iteratively the result in [46]. The case of composition of twist maps
is more delicate and we will need a careful work on the generating functions
to get the result. Section is dedicated to the study of the Aubry-Mather
theory and its variants.

The second part of the thesis is concerned with the application of these
theorems. First we will consider planar Hamiltonian systems. We remember
that we mean systems of ODEs that can be written in the form

{QZ%@mm

()

where H = H(t;q,p) is a continuous real valued function differentiable in
the variables ¢ and p. It is called Hamiltonian function. Moreover ¢ = ¢(t)
and p = p(t) are the variables and ¢ and p stand respectively for %q(t) and
Lp(t). We will be dealing with an Hamiltonian of the form

H(t;q,p) = H(t;q,p) + [(t)q (6)

for a continuous function f. We will impose the following periodicity as-
sumption

H(t;q+1,p) = H(t;q,p). (7)
Given the initial conditions (0) =6
q(0) =

8

{M@ZT ®

we can define the time-t map Iz : R? — R? with components

01 =q(t;0,7)
{7“1 = p(t;0,r). (9)

This map is defined on the cylinder and is exact symplectic if and only if

/0 i F(t)dt = 0.

The choice of the time ¢ is fundamental if one wants to describe the qualitative
properties of the solutions. If the periodicity condition

H(t+T;q,p) =H(t;q,p), ft+T)=[f(t). (10)
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is introduced then the corresponding time-7" map describes the qualitative
properties of the solutions. This map is also called Poincaré map. In sec-
tion [3.1] we made a survey of the properties of the Poincaré map for our
Hamiltonian systems.

As a concrete example we consider the differential equation

d x
— | — | + asinz = f(t), 11
dt (m ) Fe) (1)
where a > 0 is a parameter. Moreover we are going to suppose that f is a
T-periodic continuous function such that

/T F(#)dt = 0. (12)

This is usually called equation of the forced relativistic pendulum. Notice
that it can be written from the pendulum equation

¥+ asinx = f(t)
substituting the velocity & with the relativistic term

T

Despite the name, equation cannot be considered the equation of motion
in a relativistic framework. Indeed it is not invariant under Lorentz transfor-
mation. So this model has been considered as a middle way between the clas-
sical and the relativistic mechanics. See [6l, 29] 28] [73, 27, [40] 51, 53], (72 [74]
for related models involving the relativistic operator. We are going to show
that solutions of share some properties that are typical in restricted
relativity. To show better our results, let us consider the autonomous case
f =0. A standard study gives the phase portrait in figure[I} One can easily
realize that the condition |Z(t)|] < 1 has to be imposed. It means that the
velocity is bounded. Actually the more restrictive condition

(13)

sup |Z(t)] < 1 (14)
teR
holds. It means that the velocity is uniformly bounded and this is in ac-
cordance with the axiom of restricted relativity. We will refer to it as the
relativistic effect. Furthermore, we have two constant solutions given by two
fixed points (up to translations), one stable, the other unstable. When the
energy increases, more periodic solutions appear and tend to a heteroclinc.
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Figure 1: The autonomous case

For high values of the energy, the so called running solutions appear. These
solutions are characterized by the quantity
w = lim @
t—oo

The renormalized quantity 5= is usually known as rotation number. It comes
from the relativistic effect that we can only have w € (—1,1). Moreover, for
every possible w there exists one level of energy whose solutions have rotation
number 5=

When one considers the forced case the condition |#(t)| < 1 is obvi-
ous, while condition is no longer immediate. We will prove that assuming
condition the result it is still true. To prove it we will write the equation
in the Hamiltonian form through the change of variable

&
P= T

The variable p has a precise meaning in restricted relativity as represents the
momentum. We will show that Moser invariant curve theorem applies to the
Poincaré map of the associated Hamiltonian systems. This proves that

sup [p(t)] < o0
teR

that actually is equivalent to condition . This result is the relativistic
counterpart of a known result concerning the classical pendulum [76]. Usually

to apply Moser’s theorem one is lead to many cumbersome estimates in some
norm C*. We will use a refined version of the theorem of differentiability
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with respect to parameters to make these estimates much easier. Moreover
we prove that condition is essential for this result. If condition is
not satisfied we can construct solutions with unbounded momentum.

Once we have proved that motions have bounded momentum we will
investigate what more of the autonomous case is still preserved. Another
consequence of Moser invariant curve theorem is that one can find invariant
curves with diophantine rotation number w. Comparing with the autonomous
case, one has that the curves whose rotation number satisfies the diophantine
condition are preserved. These solutions are quasi-periodic with frequencies
2% and w.

To get solutions with other rotation numbers, we will apply the Poincaré-
Birkhoff fixed point theorem to prove that at least two fixed points of the
Poincaré map exist. These correspond to periodic solutions of the equa-
tions and one can see it as the analogous of the constant solutions of the
autonomous case. Similar results have been obtained also with other tech-
niques, both topological and variational [8) [7, [74] [75], 12], 19, 41]. A simple
change of variable allows to prove the existence of at least two solutions with
rotation number ¥ with N € Z and such that |¥| < 1. Comparing with
the autonomous case, this means that the curves corresponding to running
solutions with rotation number % brakes down but still two solutions (corre-
sponding to two points of the invariant curve) persist. Moreover, using the
analyticity of the equation we can prove that at least one of these solutions
is unstable.

As one can imagine we want solutions for every possible rotation number.
We will fill the missing numbers using Aubry-Mather theory. A first attempt
could be use the theory in [46]. In principle, to apply this theory we need to
known that the Poincaré map has twist. In the paper [44] it was shown that
it does not hold unless a restriction on the parameters is imposed, namely
the condition a < C’;—z is necessary. Since we want to obtain results for arbi-
trary parameters we will use the version for finite composition of twist maps.
The Poincaré map II of equation can be seen as a finite composition
IT= fio---0 fy where every f; is a "small-time-map” that is twist without
any restriction. To apply the result in [48] we need to check that the twist
of each map f; goes to infinity as the action goes to infinity. The relativistic
effect prevents the velocity from being too large and this makes impossible
to satisfy this assumption of large twist. For this reason Mather’s theorem
cannot be applied directly. The presence of small twist also prevents Moser
approach [57] from holding. So we will have to use our version of the theory
using the fact that we also have the existence of invariant curves. With this
modified theorem we can produce, for every w € (—1,1) a solution with ro-
tation number 5= In this way we partially recover the solutions found with



CONTENTS

11

Moser theorem and the Poincaré-Birkhoff theorem and we fill the missing
rotation numbers.

Another example of application of the abstract tool are the impact prob-
lems. As an example we consider the model of a ball bouncing on a racket
that is moving in the vertical direction according to a given periodic function
f(t). Moreover, we suppose that the gravity force is acting on the ball. The
mass of the ball is supposed to be small in comparison to the mass of the
racket, so that the impacts do not affect the motion of the racket itself.

]| O

fit)

This model can be formulated in terms of continuous or discrete dynamics.

Actually, we can follow the continuous motion of the ball or just look at
the sequence of impact times and velocities (t,,w,) produced by successive
impacts. The first approach leads to a differential equation and the second to
a map S(tn, w,) = (tn+1, Wnt1) in the plane. In this context an unbounded
motion has to be understood in the sense of the possibility of speeding up
the ball, i.e. finding an orbit (¢3,w?) of S such that lim,,_, . w’ = +o0 or,
equivalently lim,,_, (5, — t) = +o0.
This model was first considered by Pustil’'nikov, who proved the existence of
an uncountable set of unbounded orbits. Such orbits exist if the velocity of
the racket is sufficiently large since, for small velocity, Moser invariant curve
theorem applies and all the motions are with bounded velocity. See [67, [66]
and the references therein. More recently it has been studied in [69]. We also
mention the paper by Dolgopyat [I7] dealing with non-gravitational forces
and the paper by Kunze and Ortega [34] concerning a non-periodic function
f@).

We will prove that bounded motions with remarkable qualitative charac-
teristics are possible as well. Indeed we will prove that for every real and
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sufficiently big number « there exists an invariant set of orbits with bounded
velocity. Moreover, the mean time between the bounces coincides with «
and orbits with the same mean time between the bounces can be ordered. If
« = p/q is rational, the invariant set contains periodic points of period ¢ that
correspond to p-periodic motions with ¢ bounces in a period. Between two
consecutive of them there is an heteroclinic orbit. If « is irrational, then we
have an alternative: either an invariant curve corresponding to quasi-periodic
motions in the classical sense with frequencies (1, a) or the invariant set is
a Cantor. In the last case the motion is not quasi-periodic in the classical
sense but displays a dynamic of Denjoy-type.

To prove the result we use the classical theory of Aubry-Mather. Precisely,
after replacing the velocity by the energy, the map (t,, E,) — (tni1, Ens1)
becomes symplectic and has an associated variational principle. This means
that the sequence of successive impact times (¢,) satisfies the second order
difference equation

62h<tn—1atn) + 81h(tn7tn+1) =0

where h = h(to, t1) is the so-called generating function. A nice feature of this
model is that the function A can be computed explicitly. This was done in
[34] and we will employ it. The general theory asks for generating function
defined in the whole plane (tg, ), while our function A is only defined in
an half-plane t; — ty > k. Then we have to extend h to the whole plane
preserving the condition Oy, h < € < 0, that is crucial in Aubry-Mather
theory. To achieve this we use a trick based on the D’Alambert formula for
the wave equation

’h

Stoat; ~ Plot):

The use of the Aubry-Mather theory gives more informations on the orbits.

In principle, invariant curves can appear. They would act as barriers

and exclude unbounded motion. We will find some simple conditions on the

function f(¢) implying that there are unbounded motion and this excludes

the presence of invariant curves. There are already results on this line due

to Pustyl'nikov and our results will be an extension of those in [67]. The

main idea in [67] was to find an orbit {(¢},w})} in the plane time/velocity
satisfying

by =ty + 0y, wy o =w, +V

where 0, and V' belongs to N\ {0}. Then

lim w, = +00
n—-4o00
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and the orbit is unbounded (in velocity or energy). In the torus T x T this
orbit becomes a fixed point. Our idea will be to look at N-cycles in the torus.
This means orbits { (¢, w?)} satisfying

* _gx * %
n+N_tn+Un7 wn+N_wn+v

for some N > 2.

Once we know that bounded and unbounded motions coexist, it is nat-
ural to ask for the size of the escape set. This is a very difficult question
and all we can say is that the explicit orbit {(¢;,w})} is immersed on a
one-dimensional continuum of unbounded orbits. This is again based on an
observation by Pustyl’nikov: the stable manifold around {(¢},v})} is com-
posed by unbounded orbits. We extend the analysis to the case of cycles and
present all the details of the proof.
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Chapter 1

Basic notions on maps in the
cylinder

In this introductory chapter we are going to recall some basic facts on
maps in the cylinder. Most of the material comes from [35].

Consider the strip X = R X [a, b] with —0c0 < a < b < +00. We will work
with a C*-embedding f : ¥ — R2, with coordinates

f(0,1) = (©(0,r), R(0,7))
where we suppose that © and R are C* functions satisfying
OO +1,r)=0(0,r)+1, RO+1,r)=R(0,r).

Notice that this generalized periodicity allows to say that the map is the lift
to R? of the corresponding map f : ¥ — € where ¥ = T x [a,b], T = R/Z
and ¢ = T x R; in this case the variable 6 is understood as an angle. We will
denote by f the function and by > the domain in both cases we are working
in the plane or in the cylinder. We will use the notations f and ¥ in cases
of possible confusion. We remember that saying that f is an embedding
means that it is a C*-diffeomorphism on the image. A C°-diffeomorphism
will be understood as a homeomorphism. We will also suppose that f is
isotopic to the inclusion. It means that there exists a function H (A, x) that
is a homeomorphism for every A € [0, 1] and such that H(0,z) = f(x) and
H(1,7) = z. The class of these maps will be indicated by £*(X).
Throughout the text we will consider also finite compositions of maps f; €
EF(R?). We will let F' = fj 0---0 fy and use the notation

F0,r)=(0(0,r),R(0,r))

£i(6,7) = (©9D(9,r), RD(8,r)) (1.1)

15
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1. Basic notions on maps in the cylinder

for the coordinates. Sometimes, for brevity, we will use the notation
6, =0(0,r), rn=RO,r).
We have the following
Lemma 1. If f; and f, belong to E¥(R?), then F' = fio fy belongs to E¥(R?)

Proof. First of all F' is a C*-diffeomorfism onto the image being composition
of C*-diffeomorphisms onto the images. Moreover
O +1,7r) =0@D©OW(0 +1,7), RO + 1,7))

— @(2)(@(1)(9’ 7") +1, R(l)(gﬂa)) _ @(9’ 7“) +1 (1‘2>

and analogously R(6 + 1,7) = R(f,r). Finally we conclude remembering
that the composition of maps isotopic to the inclusion are still isotopic to
the inclusion. O

1.1 Symplectic vs exact symplectic maps

A map in (X)) is said symplectic if it preserves the symplctic form w =
df A dr, that is
dO N dR = df A dr

on Y. Notice that this condition can be reformulated as
det f'=1 onX

that is the classical definition of area-preserving map. This definition has a
well known interpretation in measure theory: for each measurable set ) of
Y, its image € = f(Q) is measurable and () = u(y).

We will be interested in a stronger property than being symplectic. A map
in £Y(X) is said ezact symplectic if the differential form

o= RdO — rdf

is exact in the cylinder, that means that there exists a C?(%) function V (6, 7),
1-periodic in 6, such that

dV = RdO — rdf. (1.3)

This definition needs some comments. We can give a geometrical interpreta-
tion. First of all, by the theory of differential forms, we have that f is exact
symplectic if and only if for every closed path ¢ in ¥ we have

/C’Y = /f(c)v (1.4)
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where v = rdf. Consider a C! non-contractible Jordan curve I'. Being
f an embedding, its image I'; = f(I') is still a Jordan curve in the same
conditions. We can suppose that both curves lie in T x (rg, +00) for some
ro. Let R and R4 be the bounded components of T x (rq, +00) \ IT" and T x
(ro, +00) \ I'y respectively. Moreover, let us call S and S their complements
in T x (rg, +00).

P
S - S,

I' R I

Ra

e

Noticing that w = dy the Stoke’s theorem gives

R OR r=r r=rg T
/ ’7 / |
8]31 ;al

It means that R and R; have the same area. Using this characterization,
it is easy to see that the notions of symplectic and exact symplectic are not

equivalent. The map
0, =10
oo »

is a translation upwards that is clearly symplectic but cannot satisfy the
geometric characterization that we gave. Anyway an exact symplectic map
is always symplectic. Indeed we have that da = —dO A dR + df A dr so
that « is closed if and only if f is symplectic. An exact form on the cylinder
is always closed but the converse is not true as the cylinder is not simply
connected. This is why we have just a one-way implication between the two
notions we are considering. Now we are going to give a criteria to decide
whether the diffeomorphism f is exact symplectic or not. It is based on the
following criteria for the exactness of the differential form

B = A0,r)d0 + B9, r)dr.

(1.5)
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To decide if it is exact on the cylinder or not, one just have to test the integral

&

on the curve T x {r,} for some 7, € [a,b] and prove that it vanishes. This
translates in the condition

1
/ A(6,7,)df = 0.
0

In our case the differential form is Rd© — rdf and, applying this criteria we
have that the diffeomorphism f is exact symplectic if and only if there exists
T« € [a,b] such that

1
/ R0,0)220,r.)d0 = r.. (1.7)
; 9

Concerning the composition we have

Lemma 2. If fi and fs are symplectic, then F' = fi o fy is symplectic.
If fi and fy are exact symplectic, then F = fi o fy is exact symplectic.

Proof. The first assertion comes directly from the fact that
det F' = det(f] o fo)det fy = 1.
The second from

RdO — rdf = R®(©W, RMde@ W RW) — RW4e® + RWJIeW — rdg

= dv@eW RW) +avW(g,r) = d[vP @D, RWY + v (g, r)].
(1.8)

[]

These two concepts are important because they are related to the concept
of intersection property that we are going to define using the same notation
used so far. We say that a map f has the intersection property if for every
non-contractible regular Jordan curve I' C ¥,

rnry #0.
The strong intersection property will hold if

I'NR#AD and T'NRy#0
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unless I' =1T7;.
These two properties are not equivalent, for example the following map

01 :9
r =1 + sin® 276

has the intersection property but not the strong intersection property. In
fact r; > r and = r if and only if § = k/2 for k € Z. Nevertheless the
strong intersection property implies the intersection property. More precisely
we have

Lemma 3. If a map f : ¥ — € has the strong intersection property, then
for every non-contractible Jordan curve I' C % we have that the set I' N 1"y
has at least two points.

Proof. The case I' = I'y is trivial. In the other case the strong intersection
property implies that T N Ry # 0. Moreover, I' N'S; # 0. Indeed, suppose
by contradiction that I' lies in R; and notice that in this case I'1 N R = (.
So I' and I'y must intersect in a point p. Moreover, as I' and I'; are non-
contractible Jordan curves, they must intersect in another point p; # p. O

If we suppose that the map f belongs to £'(X) and is exact symplectic
or symplectic, we can deduce something on the intersection properties.

Lemma 4. If a map f € EX(X) is exact symplectic, then it has the strong
intersection property.

Proof. Fix a non contractible regular Jordan curve I" and consider the sets
R and R, previously defined. By the geometric interpretation of the exact
symplectic condition we have that u(R) = p(R1) where p is the Lebesgue
measure. Suppose that I' # I';. If T NRy = 0, then we have that R; C R.
Suppose that we are in the first case being the second similar. Using the
Jordan-Schonflies theorem one can find a ball B contained in R; \ R (cfr

figure).
So R and Ry cannot have the same area. We can get an analogous
contradiction if I'; N R = 0. O

Notice that if we suppose the map f € £!(X) only to be symplectic, the
map ((1.6) shows that the result is false. In fact the intersection property
fails. We can arrange the result supposing some invariance property of the

map f.

Lemma 5. If a map f € EY(X) is symplectic and there exists a non-contractible
Jordan curve = such that f(Z) = Z, then it is exact symplectic and so it has
the strong intersection property.
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N\ L

Proof. Considering a non-contractible Jordan curve I'; we can proceed as in
the previous lemma considering the set R as the set defined by I' and = and
the set R as the set defined by I'y and =. O]

1.2 The twist condition and the generating
function

A map f € EY(X) is said twist if

00
o 0 for every (0,r7) € X.

If there exists 8 > 0 such that

9 > [ for every (0,r) € X

or
then the map is [-twist. Heuristically, this condition says that if we fix
a vertical segment, then the higher we start, the quicker we rotate. Note
that, despite it is a formally easy definition, its consequences are far from
being easy to study. To have an idea notice that the composition of twist
map, in general, is not twist. As an example, consider the exact symplectic
twist maps f(6,r) = (6 +r,r) and g(8,r) = (0 + r,r +sin27(6 + r)). The
composition F' = f o g has components (0(6,r), R(,r)) given by

O0,r)=0+2r +sin2x(0+r), R(O,r)=r+sin27(0 +r).
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Notice that

00
5 = 2+ 2mcos2m(0 + 1)

and can assume both positive and negative values.
This twist condition is employed in solving the implicit function problem

6, =0(0,r) (1.9)
finding a function R (0, 6;). Notice that it is defined on the set
Q=1{(6,0,) eR*:0(0,a) < 0, <O(0,b)} (1.10)

where

©(0,a) = liin ©(f,r) and ©(0,0) = ligbl ©,r).
Notice that R is C'(Q) and that for every § € R
—00 < 0(6,a) < O(0,b) < +o0.

We call the quantities ©(0,a) and ©(0,b) the amount of twist at the ends.
So, supposing that the map f is also exact symplectic, we are ready to define
its generating function as

hO,0,) =V (0,R(0,6,)), (6,6,) €

where V' comes from ({1.3). We are going to study some properties of h. First
of all notice that, by the uniqueness of the implicit function problem ([1.9))
and the generalized periodicity of the function ©, we have that

So it is easy verify that
h(0+1,61+1) = h(0,01)

remembering the periodicity of V. Now let us compute the partial derivatives
of h. To this aim we notice that condition (|1.3]) is equivalent to

Vo=ROy—r, V,=RO,

so that oh
20 =V + V. Ry = Ry — R+ RO, Ry.
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Differentiating ([1.9)) with respect to 6 we get

oh
—(0,6,) = —R(0,0,).
ae( ) 1) ( ? 1)
Analogously, passing through the differentiation of ([1.9)) with respect to 6;

we get

oh
8_91(0’ 61) = R(6,R(6,0,)).

Notice that we have just proved that h € C?*(2). Moreover, the map f,
expressed by 0; = ©(0,r) and r = R(6,r) can be implicitly be defined by

81h((9, 61) = —T
{5gh(e,el):: - (1.11)

that justifies the name of generating function for h. The twist and the S-twist
condition of the map f translate to the generating function respectively in

1
612h(0,91) <0 and — B < 812h(9, 91) <0

on 2. This is true because, from implicit differentiation we have

1

01210, 01) = Ro, = — 5 (0,R(0,061))

Conversely, let a and 3 be two 1-periodic C? function of R and Q =
{(6,61) : a(0) + 60 < 6, < B(A) + 6}. Consider a C?*(2) function h such that
h(0 + 1,01 4+ 1) = h(0,0;) for every (0,0;) € 2. Suppose that

812]1 < 0. (112)

So we can solve the implicit function problem

— = 81h(0,6)) (1.13)

finding a C! function ©(0, r) defined on ¥ = Rx (—sup,, 01h(0, 01), — infg, O1h(0, 01)).

Define for (0,r) € 3 the map f

(e (L1

where

R(0,r) = :h(8,0(8,1)).
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By the uniqueness of the implicit function problem (1.13]) and the periodicity
of h we can see that

O@+1,r)=0(0,r)+1, R@+1,r)=R(,r)

so that f can be seen as map on the cylinder. Moreover, the condition
d12h < 0 implies that f is one to one, so that f € £'(X). We also have
an estimate on the amount of twist at the top and bottom of ¥, as a(f) <
O(0,r) — 0 < (). Moreover, the map f is exact symplectic: to verify it
consider V' (0,7) = h(6,0(6,7)). One can see that V(0 + 1,7) = V(6,r) and
that condition (1.3)) is satisfied. Furthermore, by implicit differentiation, we

get

00 1

—=- >0 1.15

or algh(e, 6(9,7")) ( )
remembering that d;2h < 0. So f is twist. Throughout the text we will
be concerned with functions h satisfying a condition stronger than ([1.12)),

precisely we will require the existence of 6 > 0 such that

812h < —4.

Notice that from ({I.15) we have that this correspond to a diffeomorphism
such that
00 1

o T
i.e. we have a bound on the twist. Now the following question arise: how
can we get a [-twist diffeomorphism? The answer once again comes from
as we deduce that the S-twist condition corresponds to

0

1
—B < 812h(9,91) < 0.

Summing up, we have the following relations between the twist %—? of an exact
symplectic map f € £Y(X) and the second derivative dioh of its generating
function:

00
812h<00nQ@0<—0nE,

or
1
812h<—ﬂ<00n§2<:)0<§<30n2, (1.16)
1
——<812h<00nQ<:>0<ﬁ<a—@onE,
15} or

where $ > 0 and 2 was defined in ({1.10]).
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Chapter 2

Three symplectic theorems

In this chapter we are going to introduce and comment the main tools
of our work, namely the Poicaré-Birkoff theorem, the Aubry-Mather theory
ant the invariant curve theorem.

2.1 The Poincaré-Birkhoff theorem

In 1912, Poincaré [65], motivated by the study of the restricted three
body problem, conjectured that an area preserving homeomorphism defined
from an annulus onto itself that twisted the boundaries in opposite direction
should have at least two fixed points. He proved the conjecture in several
special cases but could not give a proof in the general case before his dead
that occurred in the same year 1912. Birkhoff [9], one year later, was the
first who gave a complete proof of the existence of one periodic point. In the
same article he claimed to have proven the existence also of the second one.
Anyway, as he too said in [I0] the proof of the second part was incomplete.
In 1925 [I1] he published another proof of the existence of the second fixed
point. However the proof was rather complicated and it was not accepted by
many mathematicians. Subsequently, there were lots of attempts to adjust
Birkhoff proof but every one was carrying some faults. We have to wait until
1977 when Brown and Neumann [I3] published a complete and convincing
proof of the Poincaré conjecture based on Birkhoff ideas.

To state the theorem we have to give a precise meaning to ”twist the bound-
aries in opposite directions”. To do so we will not consider the map defined
in the annulus but we will consider its lift to R2.

Theorem 1 (Poincaré-Birkhoff Theorem). Consider a > 0 and let f : R x
[—a,a] = R X [—a,a] be an area preserving homeomorphism isotopic to the
identity with coordinates f(0,1) = (©(0,1), R(0,1)) satisfying, for every 6 €

25
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R and r € [—a,a]
O0+1,r)=00,r)+1, RO+1,r)=R,r).
Suppose that

O(#,—a) —0 <0 for every 6§ € [0, 1] 2.1)

©(0,a) —0 >0 for every 0 € [0, 1]. .
Then f has at least two fized points p; and py such that py — ps # (k,0) for
every k € 7.

Hypothesis is said boundary twist condition. Notice that by the pe-

riodicity assumptions on the coordinates we can say that f is defined on the
cylinder R x [—a,a] and then f € E%R X [—a,a]). Poincaré introduced the
theorem dealing with maps in the annulus, we will talk about maps on the
cylinder. The annulus is homeomorphic to a cylinder so that considering a
map defined on the cylinder is equivalent to considering a map on the an-
nulus. However, it is important to notice that the area element is dr A df
in the cylinder and rdr A df in the annulus. This plays a role when dealing
with area preserving maps in the sense that an area preserving map in the
annulus is understood to preserve the differential form rdr A df. Once we
have pointed out this we can suppose that there is no difference between
maps in the cylinder and maps in the annulus.
Some remarks on the theorem are needed. The fact that f is an homeomor-
phism isotopic to the identity implies that the boundary circles T x {—a}
and T x {a} are preserved by f. This hypothesis is essential, indeed consider
the following homeomorphism defined for r € [—1, 1] by

{91:9+T+w (2.9)

rn = —T

with w ¢ Z. The homeomorphism satisfies all the hypothesis of the Poincaré-
Birkhoff theorem apart from the preservation of the boundary. In fact the
homemorphism is not isotopic to the identity. Notice that the homeomor-
phism cannot have fixed points. This observation will be crucial when we
will drop the hypothesis of the invariance of the annulus.

With obvious changes the theorem can be stated considering a more general
cylinder R/SZ x [a,b] for arbitrary S > 0 and a < b. Moreover we can
consider the case in which the boundaries are not straight lines but graphs
of continuous functions that are invariant under f. So we can consider the
strip ¥ = {u1(0) < r < puo(f)} where p; are continuous 1-periodic functions
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such that p; < ps for every 6. We suppose that the map f : ¥ — X is area
preserving and defined on the cylinder. Moreover, condition ({2.1)) translates
into

©(0, 1u1(0)) —0 <0 for every 0 € [0, 1]

2.3
O, u2(0)) — 0 > 0 for every 0 € [0, 1]. (23)

The functions p; correspond in the cylinder to non-contractible invariant
Jordan curves parametrized by (6, u;(6)). Consider the change of variables

o= (f) {pe(s) — }ds fo{u2 — 11(s)}ds) !
V'{y:v—mw ) () (24)

Notice that it transforms the strip ¥ into the set A = {(z,y) : 0 <y < 1}
det V'(0, 1) = const and the periodicity condition V(0+1,r) = V(6,r)+(1,0
holds. So that the conjugated homeomorphism

g(z,y) =Vo foV i(z,y)

is defined on the cylinder and area preserving. Let us study the behaviour
on the boundaries. Suppose that y = 1. So we have that r = py(#) for some
0 coming from the change of variable. Remembering the boundary twist
condition we have that 01 > 0 and r = pus(61). Here we have used the
notation #; = ©(0, u2(0)). So

01

o= ([ rals) = o)) / (pals) — pu(s)}yds) ™
> / (1) — ()} s / (pas) — p(8)}ds) ™" =

A similar argument holds for y = 0 so that all the conditions of the Poincaré-
Birkhoff theorem are satisfied.

A serious problem occurs when we are trying to apply the Poincaré-Birkhoff
theorem. In fact the hypothesis of the invariance of the strip ¥ is hard to
verify and not always guaranteed. Birkhoff was already aware of this problem
as he proved in [11] the theorem supposing only the internal boundary of the
annulus to be invariant while the external could vary. It is important that he
needed to suppose that the image of the external boundary were star-shaped
with respect to the origin. Both the star-shapedness of the image of the
external boundary and the invariance of the internal one seem to be hard to
verify in the applications. In 1983 Ding [16] proposed a proof in which he
could drop the invariance of both the boundaries requiring the image of only
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the internal boundary to be star-shaped. In his paper he conjectured that the
condition requiring the inner boundary to be star-shaped depended on the
proof he gave and was not necessary. An attempt of dropping this condition
was given in [39]. Martins and Urena [45] gave an example showing that one
cannot assume both the boundaries not to be star-shaped. Subsequently Le
Calvez and Wang [14] gave an example in which proved that also the image
of the outer boundary has to be star-shaped, contradicting the result of Ding.
There are two possibilities to overcome these problems. Rebelo [68] gave a
convincing arrangement of Ding proposal and Franks [20] proved the theorem
in the case of smooth diffeomorphisms. The smooth case has less difficulties
because extensions are easier to do. Due to this facts we will concentrate in
Franks version. He dealt with an embedding f : R X [—a,a] — R x [—b, ]
with b > a > 0. We are going to state a slightly modified version of his
theorem:

Theorem 2. Consider b > a > 0 and let f : R x [—a,a] — R x [=b, b] be an
exact symplectic diffeomorphism belonging to £? such that f(R x [—a,a]) C
int(R x [=b,b]). Suppose that there exists € > 0 such that

©(0,a) —0 >¢, 0€][0,1)
O, —a)—0 < —e, 0€]0,1).

Then f has at least two fized points p1 and ps in Rx [—a, a| such that py—py #
(k,0) for every k € Z.

Notice that having dropped the hypothesis of the invariance of both the
boundaries we have to strengthen the area preserving condition, so that the
diffeomorphism is supposed to be exact symplctic. This is clear in view of
the following example. Consider the embedding R x [—1,1] — R x [-2, 2]

{01:0+T‘

r=r+1/2. (2.5)

It is clearly area preserving and satisfies the boundary twist condition. How-
ever it cannot have fixed points, and in fact it is not exact symplectic.

The proof of Franks theorem is quite complicated as he deals with general
manifolds, so we are going to repeat it giving a more accessible proof restrict-
ing to the cylinder. During the proof we will use the following notation:

A =R x [—a,a],
B =R x [-b,b],
A=T x [~a,a], (2:6)

B =T x [~b,b].
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The strategy of the proof is to extend f to an homeomorphism ¢ of that
leaves the strip B invariant and the use the Poincaré-Birkhoff theorem. The
periodicity of the components allows to consider the corresponding map f :
A — B. At the beginning we will work in the annuli A and B. We observe
that in this case is not possible to apply the isotopy extension theorem as
stated in [52, p.63] because B should be without boundary. Anyway, by the
hypothesis f(A) C intB it vis possible to slightly modify it in order to extend
ftog : B — B so that g is isotopic to the identity and restricted to a
neighbourhood of @B is the identity (this is achieved in [26, Theorem 1.3,
p.180]). Notice that g; does not preserve the area out of A.

Now choose aq slightly smaller than a and define the following subsets that
we will use during the proof

AO =R x [—CLo, CL()]
1210 =Tx [—(Io,ao].

In order to apply the Poincaré-Birkhoff theorem and get the result, let us
prove the following two lemmas:

Lemma 6. It is possible to alter g : B — B finding a diffeomorphism
Ggo : B — B such that

® (o 1S area Preserving on B,
b g?l;lo = f;
® Jolop = Id.

Lemma 7. It is possible to alter the lift go : B — B finding g : B — B such
that

® g is area preserving on B,

e ¢ has no fixed points out of A,

e ¢ satisfy the boundary twist condition on B,
e g =gy on A.

So theorem [2] will follow from the application of the Poincaré-Birkhoff
theorem to g.

Proof of Lemma [0, To prove this lemma we will use Moser’s ideas, presented
in [56] in a more general framework. Let us break the proof in several steps.
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Step 1. Let BT =T x [ag,b] C B. It results
w(B™) :/ det g1 (0, r)dodr.
B

Let g1(0,7) = (61,71). The 1-form r1dfy — rdf is exact symplectic on A so
its integral over any closed path in A must vanish, in particular we have

/ rdf = / rdf.
Tx{ao} g1(Tx{ao})

Moreover, because g; is the identity over T x {b} we have

/ rdf = / rdf
Tx{b} g1(Tx{b})
/ rd@ :/ 7’1d91.
OB+ OB+

Notice that §; = 6:(6,r) and r; = r1(6,r) so that df; = 2rdf + dr.
Finally, by Green’s formula,

/ d@drz/ det gy (0, r)dOdr
- ,

B

so that

that implies our claim.

Step 2. Define Q(0,r) = 1 — detgy(0,r). Then there exist two C!

functions «(6,r) and (6, r) 1-periodic in # that vanish on 9B and such that

— 98 _ da
Q=35 — %

Consider the two functions
0 r
a0r) = - [ [(©.r) - 2o and 56.1) = [ SAo)dp
0 ao

with Q(r) = fol Q(#,r)df. First of all they are of class C' because g is of
class C?.
Notice that from Step 1 we have that

/Gj/olQ(G,r)der 0, (2.7)

and, remembering that g, is the identity on a neighbourhood of 9B, it results
Q0,0) =0 (2.8)
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Moreover, an exact symplectic map is also area preserving so the determinant
of the Jacobian is 1. It follows that

Q@,r)=0o0n T x [ag, a]. (2.9)

By computation we get () = % — ‘g—‘; on Bt. The fact that a and /3 are
1-periodic with respect to 6 is trivial for 3, while comes from ([2.7) for «.
Moreover, remembering ([2.8]) we have

a(0,b) = — /09[9(@, b) — Q(b)]dO = 0

and by (2.7)

B(6,b) = /ab/ola(e,r)de =0

and, by (2.9), @ and B vanish on T X [ag,a]. We can do the same on
T x [—bo, —ao] and find «(f,r) and B(0,r) with the same property. Finally
we can extend these functions to all B setting a(6,7) = 0 and 3(6,7) = 0 on
Ap and the properties on T X [ag, a] guarantee the regularity.

Step 3. Consider the function, for ¢t € [0,1], Q(0,7) = (1 —t) +
t det g7 (0, r) and define the vector field

1 1
0 Xo(t,0,r) = ————
Qt(e,’f’)a( ar)v 2( ) 7T) Qt(Q,r)

Xy (t,0,r) = B(0,r)

and the associated differential equation
9:X1(t,9,r), 7;:X2<t,9,7")

with solution ¢; = (6;, R;) passing through (6,7) at time ¢ = 0. The solution
is unique because X; and X, are of class C' (this justifies the hypothesis of
f being C?). We claim that

a<@t7 Rt)

Q4(6y, Ry) det( 20,1)

)=1, te][o,1].

Remember that a map isotopic to the identity is also orientation preserving,
while the converse is false in the cylinder (as a counterexample take the
map (0,r) — (—0,—r)). Hence we have that det g; > 0 so that the vector
field is well defined. Notice that if (6,7) € B the solution does not leave
B because the boundary circles of B are continua of fixed points: it implies
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that ¢,(B) = B. Using Liouville formula for the linearized equation we have,
for every t € [0, 1]

(O, Ry)
a(0,r) )

toxX, 09X
= (04, Ry) eXp{/ tr(—1 + —2)(:3, O, Ry)ds}
0

Qt<®t7 Rt) det(

00 or

1o, 109, 109,
= Qt(®t7 Rt) eXp{/O (_Q_%OCW + Q—%ﬁﬁ - ﬁtﬁ)db“}

where in the last equality we used the properties of 2 and the fact that
0 /ot = —Q.

So, we have to prove that

E1oa0, 1 09, 109
Qt<@t7Rt) exp{/o (_Q_%QW + Q—?ﬁW - Q_tﬁ)ds} = 1.

Passing to the logarithm and differentiating with respect to t this equality is
true if and only if

1O O 10 1 O O, O,
2% T2 ar o ot

ol Ot g it g

that is the case remembering the definition of ©, and R;.

Step 4. The function g, = gy o ¢, satisfies the lemma.
Indeed, by the previous step

0(01, Ry)

det g, = det(g; o ¢1) det ¢y = Q1 (O1, Ry) det( 2(0.7)

) =1

that means that is area preserving. Moreover, by the definition of the vector
field (X1, X3) we have ¢1]yp = Id and ¢4z, = Id that imply g»|y5 = Id and
92la, = [ O

With the same notation let us conclude with the proof of Lemmal[7} This
part does not involve differential forms so we report the version by Franks.

Proof of Lemma[7. Let go : B — B be the lift (fixed by the boundary twist
condition) of g, that extends f : A — B. Now consider

My = sup d(g2(x), v)

zeB
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where d is the distance in R? and fix M > M;. So we have that M is greater
than the distance that a point in B could be moved by ¢gs. Now consider the
strip AT = R X [ag, ap + €] C A such that by the boundary twist condition
and continuity we have that for all x € AT

P(ga(x)) — P(x) > € (2.10)

where P(x1,25) = x is the projection on the first component.

Define h : B — B by
h(0,r) = (0 + Mp(r),r)

where p(r) is smooth, monotone such that p(r) = 0 for r < ag and p(r) =1
for r > ag + €. Notice that h is area preserving, it is the identity for r» < ay,
it is a translation by M if r > ag + €, if © € AT then h(z) € AT and
P(h(zx)) > P(x).
Finally consider

g3 = g2 0 h.

For x € A* we have, using
P(gs(x)) — P(z) = P(g2(h(x))) — P(x) > e+ P(h(z)) — P(z) > >0

which means that we do not have fixed points in A™. Moreover, if we take
z = (0,r) € R x [ap + €0b] then g3(z) = go(h(x)) = g2(6 + M,r) and by
definition of M that means that we do not have fixed points in R X [ag + €, b]
and the boundary twist condition is satisfied on R x {b}.

To conclude we consider A~ = R x [~ag — €, —ao] and define analogously
h(0,r) = (0 — Mp(r),r) with similar properties of h. Defining g = g3 o h we
get also the complete boundary twist condition. ]

Let us conclude with a remark on the stability of such fixed points. Re-
member that a fixed point p of a one-to-one continuous map f: U C RY —
R¥ is said to be stable in the sense of Liapunov if for every neighbourhood
V' of p there exists another neighbourhood W C V such that, for each n > 0,
f™(W) is well defined and f™(W) C V. We have:

Corollary 1. If f is analytic, at least one of the fixed points coming from
theorem |4 is unstable.

Proof. For the special case of dimension two, there exists a relation between
the stability of a fixed point and its fixed point index. In fact it was proved
in [62] that if a continuous one-to-one map f which is also orientation and
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area preserving has a stable fixed point p then either f = Id in some neigh-
bourhood of p or there exists a sequence of Jordan curves {I',} converging
to p such that, for each n,

T, NFiz(f) =0, i(f,T,)=1

where I',, is the bounded component of R\ T',.
The set of fixed points can be described by the equation

(O0,1) — 0>+ (R(O,7) —r)> =0

This is an analytic subset of the plane, indeed is the set of the zeros of an
analytic function. The local structure of these sets is described in [32]. There
are two alternative possibilities: they can be isolated points or points with
a finite number of branches emanating from them. Suppose that we are in
the case of a non isolated fixed point and that there exists a sequence of
Jordan curves converging to the point and not crossing the set. Every one
of such curves has index 1 so it must contain a fixed point and this is in
contradiction with the the local structure of the set of fixed points as new
fixed points appear.

Figure 2.1: The contradiction in the non isolated case

In the isolated case by a standard compactness argument we can have only
finitely many fixed points. The Poincaré-Hopf index formula for manifolds
with boundary [22, p.447 Theorem 3.1], shows that

n

A(f) =D ilf.p;)

j=1
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where \(f) denotes the Lefschetz number and py, ..., p, are the fixed points.
Notice that here f is understood as the isotopic extension to the larger strip
B so that f : B — B and A(f) is well defined. Remembering that f is
isotopic to the inclusion, we have that A(f) = A(/d). But from [22, p.233
Proposition 4.5] we have A(Id) = x(B) where x(B) is the Euler characteristic
of the strip B that is null. So

0= Zz’(f,m

J

and at least one fixed point does not have positive index and so it is unstable.
]

So far we have not considered the twist condition and in fact it is not
necessary for the proof of Franks version. Anyway, if we suppose that also the
twist property is satisfied, something more can be said. We are considering
the map f: Q2 — R where Q = {(6,7) € R? : a < r < ¢(0)}, a is a fixed
constant and ¢ : R —]a, +o0] is a 1-periodic, lower semi-continuous function.
We remember that the twist condition reads as

00

ar Y

on 2. Note that the twist condition and the boundary twist condition used
in Franks Theorem or in the Poincaré-Birkhoff theorem are independent.
Indeed, consider the annulus A =T x [—1,1]: the map

{91:6—|—€T

m=r
satisfies the twist condition but not the boundary twist one; the map

0 =041+ 3r
rn=r

satisfies the boundary twist condition but not the twist one. Moreover the
two conditions coexist in the map

{(91:9+T

r =rr

Using the twist condition, a first result that can be proved is the following
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Theorem 3 ([63]). Assume that f is exact symplectic and satisfies the twist
condition. Fix an integer N and assume that for each 0 € R there exists
ro €)a, Y(0)[ with

O(f,a) <0+ N <O(0,rg). (2.11)
Then the system
©,r) =0+ N
{R(Q, ") =, (2.12)

with 0 € [0,1],(0,7) € Q, has at least two solutions.

Notice that the solutions of system can be seen as fixed point of the
map defined on the cylinder. The integer N stands for the number of revo-
lutions given by the point around the cylinder. Some interesting corollaries
of this theorem are given:

Corollary 2. If in theorem @ we require also that f(0,r) is analytic then
the set of the solutions of system is either finite or the graph of an
analytic 1-periodic function.

Proof. By ([2.11]) and the twist condition, we get that for each 6 the equation
O@,r) =0+ N (2.13)

has a unique solution r := ¢(f). By the uniqueness we have that ¢ is
1-periodic. Moreover, because of the twist condition we can apply, for a
fixed €, the analytic version of the implicit function theorem and get an
open neighbourhood Uy and an analytic function ¢ : Uy — R such that
©(0,¢(0)) = 6 + N on Uy. But, by uniqueness, ¢(f) = é(Q) on Uy. Repeat-
ing the argument for each 6, we get that ¢ is also analytic. So, f(6, ¢(0)) is
the graph of an analytic function in the cylinder: let us call it ¢;(6). This
comes from the analyticity and the periodicity of f and the fact that ¢(0)
satisfies equation . So, by Lemma , ¢ and ¢ must intersect in at least
two points of the cylinder that are the solutions of system (2.12)) when lifted.
Moreover, from the theory of analytic functions, we know that either the set
{0 €0,1] : () = ¢1(0)} is finite or ¢(0) = ¢1(0) for every 6.

O

Corollary 3. Suppose that in theorem @ condition (IQ.Z 1) is satisfied for
some N € Z. Let (6,7) be an isolated solution of system (2.19) and define

the map T(0,7) = (0 + 1,r). Then i(T-Nf,(0,7)) is either —1 or 0 or 1.

Proof. First of all notice that i(TN f, (6, 7)) is well defined because (6, ) is
an isolated fixed point of 7= f. To compute the index remember that

W(TNf,(0,7)) =deg(T~Nf — Id, Bs(0,7))
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where deg indicates the Brouwer degree and ¢ could be chosen small enough
by the excision property. So we will deal with the degree of the map

(TNf—1d)0,7)=(©0,7r) — N —0,R(6,r) — )
= (§(87T)7 R(Q’ T)) = f(@, T)

and to compute it we will use a technique by Krasnosel’skii [33] that allows
to reduce the dimension.

By the hypothesis, the point (6,7) is an isolated zero of ©(f,r) and by
the twist condition % = % > 0. So we can apply the implicit function
theorem to the equation ©(#,7) = 0 and find a C* function ¢(6) defined on
a neighbourhood of § such that ©(0, $(#)) = 0 and ¢(f) = 7. Hence it is well

defined the function }

®(0) = R(Y,9(0))
which has 6 as an isolated zero. Now consider the homotopy
A8(0.7) + (1= N)(r — ¢(9))
R(0,r) + (1= X)(0).

We claim that it is admissible i.e. (6,7) is an isolated zero for every A. Indeed
consider the system

H((0,7),\) :{

<

)\(:?(9,7“)—1—(1—)\) r—¢(0)) =0 (2.14)

AR(O,r) + (1 — X\)®(0) = 0. '
Because of the twist condition, if we define F (6,7, X) = AO(6, r) + (1 —\)(r —
®(0)), we have

and so we can apply the implicit function theorem to solve the first equation
in a neighbourhood of # and by the uniqueness the only solution is r = ¢(0).

Substituting it in the second equation we get, because of the definition of
®(0),

AR(0,(0)) + (1 — N®(0) = 0 = AB(0) + (1 — N\)B(0) = 0 = B(6) = 0

that, remember, has 0 as an isolated solution. So (é, 7) is an isolated solution
of system Aand we can choose ¢ small enough such that (6, 7) is the only
solution in Bs(f, 7). So we are led to the computation of the degree of the
map

(0,7) — (r — ¢(0), ©(0))
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that, if ®(6) # 0, can be easily computed by linearization.
However it could happen that ®'(#) = 0. So consider the other homotopy

H((0,r)\) = {g?g()&a r)+ (1= A)(r—¢(0))

where 0 is fixed. To prove that it is admissible, consider the system

{)\é(é,r) +(1=N(r—00)=0
®(0) = 0.

By the definition of ®(#) we have that @ is an isolated solution of the second
equation that, substituted in the first one, gives AO(6, r) + (1 — ) (r —#) = 0.
We have that 7 is a solution and is also the only one, because by the twist
condition we have

%[Aé(é, P+ (1= X\ (r—7)] > 0.

So (é,f’) is an isolated solution of the system, the homotopy is admissible
and we can compute the degree of the function

W (b, r) = (0(8,r), (6)).

To use the factorization property of the degree consider the function L(z,y) =
(y,x). We have

deg(LoW, Bs(6,#)) = deg(L, Bs(0,0)) deg(W, Bs(0, 7)) = — deg(W, Bs(6, 7)).
Now, by the factorization property

. (OF -
= SZQH{W( 77')} deg(q)v [é) = - deg<q)7 [é)

The function ® is defined in dimension 1 so its degree can be either 0 or 1 or
—1. Finally (T~ f, (0,7)) can be either 0 or 1 or —1. O

Remark 1. An intuitive idea of when these cases could occur is given by

figure [1]
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>

N
f \m
(c)i=0,9'(0) =0 (d)i=—1,9'(§) =0

(e) i=—1,®'(0) #0

Figure 2.2: Possibilities of intersections
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2.2 Invariant curves and KAM theory

In the previous section we saw that the classical Poincaré-Birkhoff the-
orem can be applied in the case we have a map of the cylinder that leaves
a strip invariant. Anyway we said that this condition is quite difficult to
verify in the applications. This section is devoted to the study of the invari-
ant curves that guarantee, between other properties, the existence of these
invariant region.

With the notation used so far, let f : ¥ — % be an embedding of the
cylinder. An invariant curve I' is a non-contractible simple Jordan curve
contained in 3 such that f(I') = I'. Notice that there can exist curves I" such
that f(I') = I' that are contractible: we are excluding this kind of curves.
Invariant curves are very important for the dynamics of the homeomorphism
f as they give bounds to the orbits. More precisely suppose that there exists
an invariant curve I' for the homemorphism f. First of all it comes from the
definition that every orbit starting on I' stays on I" so that

sup |r,| < oc.
nez

Moreover, the curve I' divides the cylinder in two connected components,
the upper and the lower one. Being f an homeomorphism, we have that the
image of a connected component is another connected component so that
there cannot exists orbits (6,,r,) such that

liminfr, = —oco0 and limsupr, = +oc.
n——00 n—+00
or
limsupr, =oc and liminfr, = —occ.
n——oo n—+00

It means that there cannot exist orbits connecting the top and the bottom
of the cylinder. Another interesting case occurs when we have two invariant
curves I'; and I'y that do not intersect. Let ¥ be the bounded region delim-
ited by such curves. Once again, from the fact that f is an homeomorphism
we have that f(¥X) = 3. Notice that we have to use the fact that F' sends
connected components to connected components and preserves the bound-
aries. So, if the curves are graphs of two functions p;(#) and us(6) such that
1 < pa, the strip ¥ satisfies the condition on the invariance required by the
classical Poincaré-Birkhoff theorem. Notice that from the fact that f(X) = X
we can also deduce that every orbit starting in X is bounded in the sense
that if (0,7) € ¥ then

sup |r,| < oco.
nez



2.2 Invariant curves and KAM theory

41

We have just seen the importance of invariant curves in the study of the
dynamics of an homeomorphism of the cylinder, so we are going to present a
theory that investigates conditions guaranteeing the existence of such curves:
the so-called KAM theory.

The name KAM comes from the initial of Kolmogorov, Arnol’d and Moser
who initiated the theory. The pioneer was Kolmogorov who in the Interna-
tional Congress of Mathematicians, held in Amsterdam in 1954 [31], gave
a sketch of the proof that a small analytic perturbation of an integrable
analytic Hamiltonian systems preserve most of the invariant tori. In [31],
Kolmogorov refers to the paper [30] for a proof of this result. He gave the
sketch of how to dominate small divisors through the Newton’s method of
convergence. This is the point in which a diophantine condition appears.
We quote that also Siegel [70] dealt with small divisors and diophantine con-
ditions in the context of holomorphic functions. Arnol’d [3], on the line of
Kolmogorov, gave a complete proof of Kolmogorov result. It was Moser [54]
that interpreted the theory in the background of discrete dynamics giving
an analogous result in the case of applications with only a finite number of
derivatives. Moser was the reviewer of the paper [31], and seemed not to be
convinced at all by Kolmogorv argument as he wrote

[...] the convergence discussion does not seem convincing to
the reviewer. [...]

In fact, he proved the result combining Newton method with a different re-
sult by Nash [58].

As we are interested in maps of the cylinder we will consider for the
presentation only Moser framework. Beside Moser’s fundamental theorem
[54], known as invariant curve theorem, we will present some consequences
and generalizations taken from [24], 25| [60], [61].

We are looking for invariant curves of maps f defined from a closed cylinder
A =T X [a,b] to €. Let us start with some example. A first example of a
map having invariant curves is the following

"y (2.15)

{01 =40 +w
with w € R. It is obvious that every curve I of the form r = const is invariant
under f. Moreover, the map f restricted to I' is conjugated to a rotation
R, of angle w, in the sense there exists an homeomorphism v such that the
following diagram



2. Three symplectic theorems

f

N —

r
¢J Jw
T—=-T

commutes. In this case we have that ¥ (0,7) = 6. Note that we can assign
to every invariant curve a rotation number, defined through the diagram.
Note that the map f restricted to I' is still isotopic to the identity so that
preserves the orientation on I'. It allows to say that the rotation number is
well defined. In this case every invariant curve has rotation number w.
Another example is given by the twist map

{&:0+W+a&)

" (2.16)

with o/ > 0. Also in this case we have that the curves of the form r = const
are invariant and the map restricted to them is conjugated to the rotation
Ruta(r)- Notice that in this case we have that for every f € [w+a(a), w+a(b)]
there exists an invariant curve with rotation number ov. Moser invariant curve
theorem deals with the following problem: does some invariant curve of the
twist map survive if a small perturbation of the map is considered? If the
answer is positive, how many of them survive?. We will see that the answer
depends on the arithmetic properties of the rotation number 5. We remember
that a number o € R\ Q is said of constant type if the quantity v defined by

v =inf{¢*|a —p/q| :p,q € Z,q > 1}

is strictly positive. The number 7 is called the Markoff constant of a. Heuris-
tically, the numbers of constant type are the ones that are badly approxi-
mated by rational numbers. One can see that there are infinitely many of
these numbers in every compact interval of R. For more details and com-
ments, see [24].

We first notice that if we want that some invariant curve is preserved, we
need some hypothesis more. Take as an example the map

{91 =0+w+alr)

r =7r-+¢€ <217>

that, for € small can be considered as a small perturbation of the twist map.
It is clear that every orbit leaves the cylinder A in a finite number of iterations
so that there cannot be invariant curves. A way of excluding such maps is to
impose that the map f satisfies the intersection property. In fact map
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does not satisfies this property as, for example, the curve r = (a + b)/2 is
mapped on the curve r = (a + b)/2 + € and clearly does not intersect its
image. Maps ([2.15)) and ([2.16] satisfy the intersection property as they are
exact symplectic.

To state Moser invariant curve theorem it is important to point out the
smoothness. So we will suppose that a € C*[a,b] with o/(r) > 0 for every
r € |a,b], and that the map f has the form

{91 =0 +w+a(r) + Rif,r) (2.18)

ry =1+ Re(0,1)

with Ry, Ry € C*(A). Moreover we will suppose that f has the intersection
property.

Theorem 4. There exists € > 0, depending on b — a and o« such that the
map [ has invariant curves if

| Rl|caay + | Rallcaay < e

Remark 2. The theorem was proved by Moser in [5]|] assuming that f was
of class 333. An analytic version can be find in [71] while this version comes
from the work of Herman [2], [25].

Remark 3. It is known that one can find infinitely many numbers of constant
type a belonging to [w+a(a),w+a(b)]. For each of them, it is possible to find
an invariant curve I' such that f restricted to I' is conjugated to a rotation
Ra- These are some of the curves that survive to the perturbation.

Notice that the role of the twist « is fundamental. Consider the following
map defined from the cylinder A =T X [1,2] to €

ry =1 + esin4n0.

One can prove that it is exact symplectic and that all orbits with 6, €
[0,1)\ {0,1/4,1/2,3/4} escapes from the cylinder A so that there cannot be
invariant curves for € small.

In several applications the map f can be seen as a perturbation of the fol-
lowing Small Twist map

o (2.20)

{91 =0+ w+ da(r)
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where 0 is a small positive parameter. Notice that in this case one cannot
apply directly the previous theorem but a modification, called Small twist
theorem holds. Suppose that f can be written as

{91 =0+ w+da(r) + R(6,r)]
ry =1+ 0Ry(0,r)

where a € C%[a, ], and Ry, Ry € C*(A). The number w € R is arbitrary and
d € (0,1] is a parameter. Suppose that the function « satisfies

cgl <d(r)<ey Vre]a,bl], e capany < co

for some constant ¢y > 1. Moreover, we suppose that f satisfies the intersec-
tion property. In this framework, it comes from the work of Herman [24, 25]
on Moser theorem that

Theorem 5. There exists € > 0, depending on only on ¢y, such that the map
f has invariant curves if

[|[Ryllcaay + || Rallosa) < €

Remark 4. The proof does not come directly from the previous theorem be-
cause € is independent on 6. Moreover, once again we can get many invariant
curves. See [60, Appendiz] for more details.

2.3 Aubry-Mather Theory

The KAM theory provided sufficient conditions for finding invariant curves
of area preserving maps of the cylinder. We saw that the presence of invari-
ant curves is a very strong characteristic of a map and in fact we needed to
impose relatively strong hypothesis, namely regularity and being a small per-
turbation of an integrable case. The latter condition can be a great obstacle
when trying to apply in concrete cases coming from differential equations. If
we try to relax the regularity or we consider large perturbations of the in-
tegrable map then the existence of invariant curves is no longer guaranteed.
The Aubry-Mather theory uses variational techniques to have the require-
ments on the differentiability very moderate and to drop the condition on
proximity of integrability. All these generalizations have a cost: in fact one
can find invariant sets but it is not possible to guarantee that they are curves
as in KAM theory. Actually the case of a Cantor set will be typical. This the-
ory has the origin in the works of Aubry-LeDaeron [4] on solid state physics
and Mather [46] on twist mappings. A good presentation of the theory can
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be find in [5], in which other applications are given, and in [48] in which the
case of composition of twist maps is considered. During the presentation we
will refer mainly to these two works.

The Aubry-Mather theory deals with diffeomorphism of the cylinder be-
longing to the following class:

Definition 1. Let P> = ;. Ps, where Py is the class of maps f € EYE)
that

1. are isotopic to the identity
are exact symplectic

are (-twist

e

preserve the ends of the infinite cylinder, in the sense that R(6,r) —
+o00 as r — Foo uniformly in 0

5. twist each end infinitely, in the sense that ©(0,r) — 0 — +oo asr —
+o00 uniformly in 6.

Consider a map f € P*. Being f exact symplectic and twist one can
consider its generating function h that, by the infinite amount of twist at
infinity is a C? function from R? to R. By a configuration we will mean a
sequence of real numbers (6;);cz. We can extend the definition of A to a finite

segment (0;,...,0;) of a configuration by setting
k-1
h(0j,....0k) = Z h(0;, 0i11).-
i=J
A segment (6, ...,0;) is minimal with respect to h if

h(O;,...,0k) < h(0,....0;)

for all segments (67, ...,0;) such that 65 = 0; and 0; = 0. We say that a
configuration (6;) is minimal if any finite segment is minimal. The importance
of minimal configurations comes from the fact that, as h is differentiable, the
configuration is stationary in the sense that

81h(9i, 9141) + 82h(6i_1, 91) =0 for every 1. (221)
This property allows to construct a complete orbit (6;,7;) of f defining
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that we call munimal orbit. So this emphasizes the importance of minimal
configurations and all this section is dedicated to the study of them. In [47,
§3], Mather proved that the generating function of a map in P satisfies the
following properties

H1) h(6+1,6, + 1) = h(6,6,),

(H1)
(H2) limyg)o0 A(6, 0 + €) = oo uniformly in 0,

(H3) h(7,01) + h(0,7) — h(0,01) — h(v,m) > 0if § < and 6; <y
(H4)

H4) if the segments (0,0,60,) and (£,0,¢,) are minimal and distinct, then
(0 —&)(01 — &) <0.

Remark 5. If h is C? and such that d1oh < —6 < 0, then (H2)-(H{) fol-
low. To obtain (H2) one integrates in the triangle with vertices (0,0), (0,6 +
€), (0+&,0+€), to obtain (H3) on the quadrangle (0,601), (v,61), (0,71), (7, 71)-
Property (H}) follows from the monotonicity of 01 — 01h(0,601) and 0 —
020 (6, 67).

These conditions themselves do not imply the differentiability of A but
Bangert proved that they imply the existence of minimal configurations.
Anyway if h comes from a map f in P> it is differentiable and so we can pass
from a minimal configuration of h to a minimal obit of f. Throughout the
text we will deal with generating functions that are only continuous and so
something more will be needed to generate a stationary configuration. The
results that we are going to quote are valid under the sole hypothesis that A
is continuous and satisfies hypothesis (H1)-(H4).

Given two configurations © = (6;) and I' = (v;) we say that © < I' if
0; < ~; for every i. Two configurations © and I' are comparable if either
O =Tor©® >Tor 6O <TI. From now on we will refer to a configuration
© = (6;). We can define for (p,q) € Z x Z its translate T, ,0 by

(Tp,qe)i = 9i+q —D.

If © = T,,0 then it is said (p,q)—periodic. Note that the translates of a
minimal configuration are minimal, and we have that any two translate of
a minimal configuration are comparable. From this last property it follows
that if © is minimal then either © is constant or is monotone.

We can define the rotation number of © as

lim = (2.22)
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whenever the limit exists and we call it p(©). If the configuration is mini-
mal the limit (2.22]) exists so that the rotation number p(©) is well defined.
Moreover, for every i € Z we have that

10; — 0o — ip(©)] < 1

and if © is (p, ¢)—periodic then p(©) = p/q. Conversely we have the main
theorem of the Aubry-Mather theory

Theorem 6. For every w € R there exists a minimal orbit © = (6;) of h
such that
p(O) =w.

We will call M,, the set of minimal configuration with rotation number
w. The structure of M, depends on the arithmetic properties of w. If it
is irrational then the crucial fact is that the set M, is completely ordered
with respect to the order relation defined before. Moreover, the projection
p: € — T maps M, homeomorphically onto p(M,). We have just the
following two alternatives:

(a) p(Mw> =T,
(b) po(M,,) is a Cantor set.

If w is rational, say w = p/q then M, is the disjoint union of three stets
Mrer - ME M. To describe this sets we start with MP", the set of periodic
configurations in M. We have that it is non-empty, closed, totally ordered
and every configuration has minimal period (p,q). Being the set totally
ordered, it makes sense to say that two configurations of MP" are neighboring
if there does not exist an element of MP¢" between them. So, letting 6~ < 0
be two neighboring elements of MP*" we can define

MEO,07)={0e M, : lim |§;—0;|=0and lim |0; — 0| =0}
1——00 1—+400
and analogously
MS(07,07)={0eM,: lim |, — 6| =0and lim |6, —0; | =0}.
1——00 1—+00

We denote by M, the union of the sets M_ (6, 60%") extended over all pairs
of neighboring elements (6~,0%). Analogously one can define the set M.
One can prove that the existence of two neighboring elements 6~ < 67 is
sufficient to say that the sets M7 (0~,0") and M (67,0") are non-empty.
This is the basic theory of minimal configurations, for more details and proof
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we refer to Bangert [5].

We saw that if we have differentiability of the function h then we can
construct from a minimal configuration (6;), a minimal orbit (;,7;) of the
corresponding diffeomorphism f. The set of minimal orbits is indicated as
M (f) and called Aubry-Mather set. Every minimal orbit inherits the rotation
number of the corresponding minimal configuration so that we can define
M, (f) as the subset of € of all the minimal orbits with rotation number
w. Aubry-Mather sets have a particular structure given by the following
proposition proved in [4§]

Proposition 1. If f € P> is f-twist, then M,(f) is a compact subset of
€. Let 7 denote the projection of € on its first factor R/Z. Then 7|,y
is ingective. Consequently, M,(f) is the graph of a suitable function u :
m(M,(f)) = R. This function is Lipschitz, more precisely for every 0,0, €
R,

[u(01) — u()| < cot 8161 — 0],

Remark 6. We began this section introducing the Aubry-Mather theory as a
generalization of the KAM theory. Hence a question arise: which is the rela-
tion between the invariant curves coming from KAM theory and the Aubry-
Mather set with irrational rotation number? Note that the theorem before
shows that the set M, (f) can be seen as the graph of a Lipschitz function.
In general the domain of this function is not the whole R, actually we saw
that it can be a Cantor set and then M, (f) in general is not an invariant

curve. The answer is given by Mather [{§]: if T is an invariant curve then
I'c M(f).

We stress once more that to pass from a minimal configuration of h to
a minimal orbit of f we needed the differentiability of h that is not guar-
anteed by the sole hypothesis (H1)-(H4). As we will be dealing with non-
differentiable generating functions, this problem cannot be eluded. In [47,
§4], Mather proved that a diffeomorphism f € P> also satisfies the following
two properties:

(H5) There exists a positive continuous function p on R? such that

W(v,6:) + h(0,31) — h(8,6,) — h(7.m) > / ' / h

if @ <~ and 6; <,
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(H6ar) there exists a > 0 such that

0 — ab?/2 — h(0,6,) is convex for every 0,
0, — ab?/2 — h(,0,) is convex for every 6.

Condition (H6) is understood when condition (H66) is satisfied for some 6.

Conditions (H1)-(H6) are not independent, indeed Mather proved in [47, §4]
that (H5) and (H6) implies (H3) and (H4). It means that if we consider hy-
pothesis (H1), (H2), (H5), (H6) then all the results we have cited on minimal
configurations still hold. The advantage of considering stronger assumptions
is that, even if differentiability cannot be guaranteed, it can be proved [47, §4]
that if (6;,...,0) is minimal for h then the partial derivatives 01k (0;,0;11)

and doh(0;_1,0;) both exist and satisfy
th(ﬁ_i, §i+1> + @Qh(e_i_l, H_Z) =0 for every 1. (223)

So as before we can construct minimal orbits and define the Aubry-Mather
sets with the same properties in the case h is only continuous and satisfies
properties (H1), (H2), (H5), (H6). The results we were stating are in the
framework of Mather work [48]. Anyway in the original paper [46] the results
appear in a different form. The following lemma gives the relation between
the two formalisms.

Lemma 8. For every (0;,7;) € M, (f) there exist two functions ¢,n: R — R
satisfying, for everyt € R

p(t+1)=o(t)+1, nt+1)=n(t)

f(o(t),n(t) = (o(t +w),n(t +w)) (2.24)

where ¢ is monotone (strictly if w ¢ Q) and n is of bounded variation. More-
over, (0, 7;) € graph(e(t),n(t)).

Proof. Inspired by [57], let us consider, for every w, the set
Y ={teR: t=jw—k for some (j, k) € Z*}. (2.25)

We have to distinguish whether w is rational or not.

— If w is irrational, ¥ is a dense additive subgroup of R and every pair (7, k)
gives rise to a different number. We proceed by steps.

STEP 1: definition of ¢ on X. If t € ¥ we define

o(t) = 0, — k. (2.26)
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We claim that the function ¢ : ¥ — R is strictly increasing: we have to prove
that B B
Jw—k<jw—kK=0;—k<0;—F

that is, calling r = 7/ — j and s = k' — k,
O<TW—S:>9_]'<§]‘+T—S.

The case r = 0 is obvious, so suppose r # 0. Suppose by contradiction that
for some j € Z -

we have, from the comparison property of the translated, that either
0; > 0;,, —s for every i.

or
0; =0, —s for every 1.

In the second case the orbit would be periodic and this is not compatible with
an irrational rotation number. So, from ([2.27]) we can prove by induction that
for every n € N

éj > éj+nr —ns.
Now suppose that » > 0. Taking the limit for n — oo after having divided
by nr we get

5
0>w—-.
r

that leads to a contradiction as we multiply by r. Notice that we can repeat
the same argument and get the same contradiction for r < 0.
Moreover, ¢ satisfies the periodicity property

o(t+1)=¢(t)+1 foreachte .
STEP 2: extension of ¢ outside X. Given 7 € R — X, the limits

o(r) = lim _¢(t)

t—TE ten

exist and ¢(7—) < @(7+). To extend ¢ to a monotone function on the
whole real line it is sufficient to impose ¢(7) € [¢(7—), #(7+)] and we choose
¢(7) = ¢(7—). In this way ¢ : R — R is strictly increasing and satisfies

o(t+1)=¢(t)+1 foreacht e R.
STEP 3: definition of n on X. Define, for t € ¥

n(t) = :h(d(t —w), 4(t)) (2.28)
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where h is the variational principle associated to F'. We claim that for every
t,s € X
n(s) = n(®)] < alg(s) — (1)) (2.29)

where o comes from (H6«r). Supposing ¢ < s we have from the monotonicity

Pt —w) <P(s —w), o) <o(s), ot +w) < d(s+w).

Inspired by [48, Proposition 2.6], we notice that if in (H5) we set v = ¢(s—w),
0 =0o(t—w), 0 =o(t) —e, 11 = ¢(t) with € > 0, divide by € and let € — 0
we get

Oah(p(s — w), ¢(t)=) < (bt — w), o(1)).

remembering that the partial derivatives exist on the orbits. Moreover, from
(H6a) and remembering that the one side partial derivatives of a convex
function exist and are non decreasing, we have

Oah(p(s — w), ¢(s)) < Bah(e(s — w), o(t)—) + ae(s) — ¢(1)).

Combining these two inequalities we have

n(s) < n(t) + a(d(s) — o).

Using using ([2.23]) we can see that also n(t) = —01h(é(t), d(t+w)) so we can
get analogously

n(t) < n(s) +a(o(s) — é(t))

and conclude.
STEP 4: extension of n outside . If 7 ¢ 3 we define

n(t) = lim_n(t) (2.30)

trT,tex

This is a correct definition. Indeed, from ([2.29) we have that

[n(tntr) = nta)] < ald(tnir) = ¢(En)l,

and, being ¢(t,) a Cauchy sequence, we have that 7(t,) converges and the
limit exists. In principle the limit could depend on the sequence. This
is not the case, indeed in case that n(t1) — I; and n(t?) — I, we can construct
a new increasing sequence (7,,) having (¢!) and (¢2) as sub-sequences. So also
n(7,) has to converge to a limit that is the same as [; and l5. So the definition
(2.30) makes sense. With this definition we have that estimate holds
for every t,s € R. Since ¢ is monotone and hence of bounded variation, we
have that n is of bounded variation.
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Now, from the periodicity property of h and ¢ we get that n(t + 1) = n(t).
STEP 5: property holds. Let us assume first that ¢ € X. Then
t =jw—k and

o) =0;—k, ot+w) =011 —Fk
Moreover,

n(t) = 0h(g(t — w), 6(t)) = 0h(0;-1,0;) =7

and similarly n(t +w) = 7;41. Since (6; — k,7;) is an orbit of F' we conclude
that

F(o(t),n(t)) = (ot +w), n(t + w)).

Let us assume now that ¢ € R\ X. So we select a sequence (t,,) converging
to t with t, € ¥ and ¢, < t. Then we can pass to the limit in the identity

F((tn), n(tn)) = (¢(tn + w), n(tn + w)).

The irrational case is done.

— The case w = § rational is simpler. We can suppose that p and ¢ are

relative primes and that the corresponding sequence (6;) is periodic (in the
sense that 6,,, = 6; + p). First of all notice that in this case, the subgroup
Y defined in ([2.25)) is discrete, precisely,

Z:{g: deZ}.

The representation ¢ = jw — k is not unique, indeed ¢t = j § —k=y § — K
whenever k' — k = Np and j/ — j = Ngq for some N € N. Anyway the

periodicity of (6;) implies that

k= W=, — k=0, —F.
q q

So we can define ¢ on X as in . As before one can prove that ¢ : ¥ — R
is increasing (non strictly). We extend it to a monotone function on the whole
R as a piecewise constant function that is continuous from the left and taking
only the values H_j — k.

Finally, as before, one can prove that ¢(t + 1) = ¢(t) + 1. Moreover,
the fact that ¢ takes only values at points of a minimal orbit, we can define
directly for t € R

n(t) = h(d(t — w), o(1)).
This function is of bounded variation and condition ([2.24)) is satisfied as well.

To prove this we just have to repeat the same arguments as in the irrational
case. Note that this time it is not necessary to pass to the limit. O]
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In many applications one has to consider a map F' that is not twist but
can be written as a finite composition of twist maps. So let F' = fio0---0 fy
with f; € P> for i = 1,...,N. One can easily verify, remembering the
preliminaries discussions we made, that [’ satisfies all the properties of the
class P> apart from the twist condition. If one wants to repeat all the
machinery that holds for one single function, the loss of the twist condition
is a great fault as we cannot define a generating function, the main tool of
the setting. Anyway, every component f; belongs to P> and so possesses a
generating function h; satisfying properties (H1), (H2), (H5), (H6). Mather
proved that this is sufficient to define an analogous to the generating function
for the composition F'. This is based on the notion of conjunction, introduced
in [47, §5]. Let hy and hy be two real-valued continuous functions defined on
R? that satisfy (H2). We set

hl * hg(e, 91) = IHEII](]'L1<0,€) + hg(g, 01))

This operation is called conjunction and hy * hs is defined and continuous.
So, given ' = fy0---0 fy with f; € P> and the corresponding generating
functions hq, ..., hs, it is well defined the function

h="hyx---%xhy.

Notice that h is no longer a generating function but it inherits enough prop-
erties in order to define the Aubry-Mather sets M, (F). The function h is
called variational principle of F. The basic property of conjunction is that if
hi and hy are continuous real valued functions that satisfy properties (H1),
(H2), (H5), (H6), then so is hy * hy. It means that the variation princi-
ple h acts as a generating function and we can repeat all the machinery we
developed for the case of a single twist map f. Summing up we have the
theorem

Theorem 7 ([48]). Let F' = fi0---o fy with f; € P> fori=1,...,N. Then
for every w € R there exists an orbit (0;,7;) of F' such that any two translates

of (0;) are comparable and the sequence (0;) is increasing. Moreover,

and w 1s called rotation number.

Corollary 4. In the hypothesis of the theorem there exist two functions ¢,n :
R — R satisfying the same properties as in Lemma[§.
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Hypothesis 5 in the definition of the class P> gives some problems in
the applications as it is not always satisfied. So we will present a modified
version of theorem [Tl in which we use the class PP+*- defined ad follows

Definition 2. Let PP+*- be the class of maps f € E*(€) that satisfy prop-
erties 1., 2., 4. of the class P> and

3. are twist
5. are such that ©(0,r) — 0 — py as r — Foo uniformly in 6,
6. there exists M such that |R(0,1) —r| < M for every (6,7) € T x R

Having relaxed the hypothesis of an infinite twist at infinite has as a
counterpart the need of adding some hypothesis on the diffeomorphism F.
In particular the presence of invariant curves will be crucial. Hence we give
the following notation: let I'y be a sequence of invariant curves. We say
that I'y T +oo uniformly if there exists a sequence ry — +00 as k — +00
such that I'y C T X (ry, +00). The reader can easily guess the meaning of
[’y | —oo uniformly.

We can prove

Theorem 8. Consider a finite family {f;}i=1.. N where f; € PP+P~. Let
F = fio---o fy. Suppose that F possesses a sequence (I'y) of invariant
curves such that I'y T +o0o uniformly as k — 400 and I'y | —oo uniformly
as k — —oo Then, for every w € (Np_, Np,) there exists an orbit (0;,7;) of
F such that _

b

lim — = w.

i—oo 1
Moreover there exist two functions ¢,n : R — R satisfying the same proper-
ties as in Lemma[8.

We will get the proof of the theorem passing through several lemmas.
First we need to recall some basic facts on the wave equation.

Lemma 9. Consider f € C*(R?), ¢ € C*(R) and ¢ € C'(R). Suppose that
f(to,t1) = f(to+1,t1+1) and that ¢ and v are 1-periodic. Then, for k € R,
the following problem

Ugor, = f(to,t1)
u(to, to + k) = ¢(to) (2.31)
(e, — wgy)(to, to + k) = ¥ (to)

has a unique solution u € C*(R?) such that u(to,t1) = u(to +1,t1 + 1).
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Remark 7. The uniqueness has to be understood in the following sense:
for every (t§,t7), consider the characteristic triangle A defined by the lines
ryito =15, rotty =17, r3 : ty = to+ k and let J be the segment of rs
defined by r1 and ry. See figure [2.9. If f1 = fa on A, ¢1 = ¢2 on J and
1y = by on J then we have that uy(ts, x.) = us(ts, ), where uy and uy are
the corresponding solutions.

Proof. Perform the change of variables to = x —t,t; = x +t. We get

(
z) (2.32)

where f(t,z) = —4f(x —t,z + 1), d(z) = ¢d(z — %) and U(x) = Pz — 5.
Moreover f(t,x 4+ 1) = f(t,z), ¢(x + 1) = ¢(x) and ¥(z + 1) = (z). In
the new variables the characteristic triangle A turns to be defined, for every
(ts,z,) by the lines 7tz —x, =t —t,, To v —xu =t —t, T3: t = % Let J

be the segment on 75 defined by 74 and 7. See figure [2.3]

/ itk

kf2

Figure 2.3: The characteristic triangle

The classical theory of the wave equation guarantee the existence of a
unique solution @ € C*(R?) such that a(t,z + 1) = u(t, ). Here the unique-
ness in understood in a similar way as in the previous remark. Undoing the
change of variables we get the thesis. ]

Now we are ready to start.
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Lemma 10. Consider f € PP+, Fiz an interval [a,b]. Then, there exists
f € P> such that f = f on T x [a,b.

Proof. 1t is convenient to work with the generating function h(6,6;). In this
case it is a C® function defined on the set ¥ = {p_ < 6, — 0 < p,} C R?
such that h(6 + 1,6, + 1) = h(0,60;) and satisfies the Legendre condition
O12h < 0. It generates f in the sense that the map f is defined implicitly by

the equations
81h(¢9,91) = —T
{82h((9, 61) =" <233>
Notice that the strip T x [a,b] of the cylinder corresponds to the set Sy =
{a(f) <0, —0 < 3(0)} C X where a and 8 are implicitly defined by

—01h(6,0 + a(0)) =

—0:h(0,0 + 5(0)) = .

The functions a and 3 are C?, 1-periodic and the Legendre condition implies
that «(f) < B(0). Moreover, we have that a(f) | p- as ¢ — —oo and
B(0) T py as b — +oo. Now take two larger strips Y, = {a<60,-0< b}
and 3. = {a+¢e <0, —0 < b—e€} such that ¥y C B, C Xy C 2 (cfr figure).
Notice that, by compactness, there exists § > 0 such that doh < —§ on ;.
Now, fix ¢ > 0 small and extend 0jph out of {p_ +e <0, —0y < p, —c}tasa
C' bounded function (it is not important how you do it). So we can suppose
that there exists a constant M; > 0 such that

sup |812h| < Ml. (234)
(90,91)€R2

Consider y a C* cut-off function of R? such that

X:loni6
x =0on {0, — 0 > b}.

Moreover we can suppose that x = x(f1 —0), 0 < x < 1 and xy > 0 on
{b—€ <0, — 0 < b}. Define the new function

A= Xamh + (X - 1)5
We notice that A € C', A(0; +1,0 +1) = A(6,0) and

A:alghOnie _
A=—0on{h —0>0b}
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7

Consider the following Cauchy problem for the wave equation

81271, = A(@,@l)
(0,0 +a) = h(0,0+ a)

Applying lemma |§|, the solution h™ is defined on the set {#; — 6 > a + €},
is such that AT € C? h*(0; + 1,0 + 1) = h™(61,0), 1oh™ = A and h™ = h
on X.. Now perform an analogous argument to modify di2h also in the zone
{6, —6 < a} finding h~. Finally glue h™ and h~ through the common part 3,
to get a function h. Notice that d12h < —6 on R2. The function h generates
via a diffeomorphism f(0,r) = (61,r1) such that the relation

00, 1

I O

holds. So the diffeomorphism f is B-twist with 8 =1/ max{—812ﬁ~} and sat-
isfies property 5. Moreover, as h = h on %, the diffeomorphism f coincides
with f on T X [a, b]. O
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It is not hard to guess that we are going to use this lemma to modify
the diffeomorphism F' through its components f;. So, it is worth introducing
some notation. Given f € PP+ and an interval [a, b] then the modified dif-
feomorphism f with support [a, b] is the diffeomorphism coming from lemma
. Given F = fio---o fy with f; € PP~*+, we will call F with support [a, ]
the diffeomorphism given by F = f, 0---o fy where every f; is supported in
[a,b]. Moreover, notice that, if f; € P> then trivially f; = f;. Finally, F' has
coordinates (©(6,r), R(6,r)) while f; has coordinates (0@ (6,r), R¥(0,r))
and the corresponding modifications have coordinates (©(6,r), R(6,r)) and
(098, r), RD(8,r)).

Lemma 11. Consider f € PP=r+. There exists K > 0 such that for every
modified f with support |a, b]

|R(0,7) — 7| < K for every (8,r) € T x R
uniformly in [a,b].

Proof. We have to prove that, given a modification with support [a,b], we
have the estimate with the constant K independent on [a,b]. Consider the
generating function h of f. We have to estimate the quantity

0,1(0,61) + D1h(6,6,)].

Notice that, with the notation of the previous lemma, in [b— €, &+ €] we have
h = h so the estimate comes directly from property 6. in the definition of the
class f € PP—r+. If 0, — 9>l~70r91 9<athenR(9 r)=rand K =0. So
we only have to study the cases b—e <@ —0<banda<b,—0<a+e Let
us study the first, being the second similar. We need d’Alambert formula,
valid for a function V' € C?(R?):

n—=o
V(6,6,) = / dn / OV (€, m)de + V(0,0 + 6)+
0
% (n—d,n)dn
0+9

where § € R. Applying it to & and choosing § = b — € we get

n—b+e B
h(0,0,) = / dn/ A(E,n)dé + h(6,0+D— o)+
O+b—e 0

l/~ Oah(n — b+ e, m)dn
0+b—e
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Let us compute the partial derivatives. The fundamental theorem of calculus
gives

61 5
000, 61) :/ A6, 7)dn + 8:h(0.0 + 1 — ).
0

+l~)fe
Remembering the definition of A we have, integrating by parts
01

/991 A(G,n)dn:/a1 X(”_9>812h(9m)dn+5/

+b—e O+b—e

{x(n—10)—1}dn =

0+b—e
01

(6 — 0)0u1(8,6,) — (6,6 + b — €) — / (g — 0)0h(0, )y
0+b—e

+5/01 {x(n—0) —1}dn

+b—e¢

where we used the fact that y(b—¢) = 1. So

01
010, 6:) =x (6, — )0rh(6,6:) + 6 / {x(n—6) — 1}dy

+b—e
01
- / (1 — 0)2h(0, n)dn.

Similarly,
5 91—5+e
O3(0,0,) =x (61 — 0)0h(0,0) — 6 / (6 — &) — 1}de
0

01—b+e
- [ e - ounis. o
Now we can concentrate on the quantity
0,16, 6,) + 0, h(6,6,)].
To estimate it we first notice that
Ix(01—0)02h(0,61)+x(01—0)01h(0,61)| = |x(01—0)||02h(0, 01)+01h(6,601)] < M

using property 6 in the definition of the class PP+*-. Moreover, with the
change of variable 6; — & =n — 0 we get

01 61 —b+e
i [0 -0 =5 [ -9 - =o

+l~)—e
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So we just have to estimate the quantity

01

91—I;+6
| / V(01 — €)0h(E,0,)de + / ¥ (11— 0): (8, n)d|
0

O+b—e

that, after the change of variable 7 = £ +b— ¢ in the first integral and having
noticed that |x’| is bounded, reduces to an estimate of

0: )
/ Ooh(n — b+ €,01) + Onh(0, )|
0

+b—e
<10, —60—b+el max |Dh(n—Db+e b))+ dih(0,n)].

0+b—e<n<6;
Remembering that we are working in the region b — e < 6; — < b,
0, —0 —b+e|l<e (2.35)
Now, by the Legendre condition, the function
U(n) = Oyh(n —b+e€,61) + d1h(6,n)

is monotone, so maxy, ;< |¥(n)| is either [¥(6;)| or [¥(6 + b—e€)|. Sup-
pose we are in the first case, being the other similar. We have

[W(6))] < [0:h(61 — b+ €,01) — D2h(0,601)] + [010(6,61) + 011(6, 61))|

< [O1ah(c,0,)]|0y — 0 — b+ €| + M

for some ¢ € [0, 0, —b+¢]. Now we can conclude using (2.35) and (2.34). [

Lemma 12. Let F(0,r) be a diffeomorphism of T xR. Assume that F' = f;0
o fy with f; € PP~ fori=1,...,N. Then, for every w € (Np_, Np,)
there exists three non negative constant r,, A and B such that

Ol,r)—0>w+n forr>r,
00,r)—0>w+n forr>r,
0, r)—0<w-—n forr<-r,
0,r)—0<w-n forr<-r,

where F has support [—r, — A*, r, + B*| with A* > A and B, > B.

Proof. For simplicity of notation, let us prove it for N = 2. The proof goes
by induction. If N = 1, then w € (p_, py) and then by property 5 in the
definition of the class P?+*- there exist r, > 0 and n > 0 such that

0@, r)—0>w+n forr>r,
0l,r)—0<w-n forr<-—r,
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Every modified F' outside [—r,,r,] is twist, so

(6(0,r) — )

>0
or

and, remembering that F(0,+r,) = F(0,+r,) for every 6, one can verify
that also

{@((9,7")—(920)—1—77 for r > r,

Ol,r)—0<w-—n forr<-—r,.

Now suppose that F' = f; o fy so that we fix w € (2p_,2p4). From the case
N =1 there exist p, and 7 such that, for 1 = 1,2,

00 (@,r)—0 >t for r > p,

0@, r) -0 > X for r > p,

(j)(i)(ﬁ,r) -0 <51 forr < —p, (2.36)
0w, r) —0 < 1 for r < —p,.

Moreover, as fo preserves the end, there exists r, > p, such that R (6, r) >
ps for r > r,. So, for r > r,

00,r) — 0 =0WOP0,r), R?0,r) -0 @,r) + 03 B,r) —0 >w+n
Analogously we can suppose that
OO,r)—0<w-n forr<—r,.

Now take the modified f; with support bigger than [—r, — K, 7, + K] where
K is the constant coming from lemma [I1] Let us estimate the quantity

0(0,r) —0=0W©O3b,r), RP,r) —6P,r)+ 63 (0,r) -0

for 7 > r,. It comes from (2.36) that ©(6,7) — 6 > I, It remains to
prove that

(@@ (9,r), RO (0,r)) — 62 (0, 1) > “’T”

Ifr, <7 <r.+K then R®(0,r) = R®(0,7) > p, and we get the estimation
through (2.36)). If r > r,+K then, by the definition of K, we have R® (0, r) >

r« > p. and we conclude as before. In an analogous way we have the others
estimates. ]
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Lemma 13. Let F(0,7) be a diffeomorphism of T x R that possesses an
invariant curve I'. Assume that F = f1 0---0 fy with f; € PP~ for
i=1,...,N. Then, for everyw € (Np_, Npy) there exist three non negative
constants r., A and B, such that the following holds. Let (0,,1,) be an orbit
of F or of a modified F with support [—r, — A*,r, + B*] with A* > A and
B, > B. Suppose that for every n > 0 we have

Oy , Oy,
liminf — <w+n and limsup— >w—1n
n—oo n n—00

then there exists n € 7. such that
(0n,ra) € T X (=14, 7).

Proof. Let 1., A and B the constant coming from lemma[12] We can suppose
that r, is large enough to have I' C T X (—r,, 7). The invariant curve divides
the cylinder in two components, the upper and the lower and both are F-
invariant (resp. F-invariant). Notice that to prove it we must use the fact
that F (resp. F) preserves the ends. It means that there cannot exist orbits
that jump from the top to the bottom of the cylinder. So, if an orbit (6,,,7,)
of F or F is such that r, > r, for every n or r, < —r, for every n then

.. .0 .
liminf — >w+n or limsup— <w—1n
n—oo M n—oo N

respectively, in contradiction with the hypothesis. O
Now we are ready for the

Proof of theorem[§. Fix w € (Np_, Np, ), consider the constants r,, A and
B coming from lemma [13] By hypothesis, we can find two invariant curves
[y and I'_ contained, respectively in » > r, or r < r,. Let X be the compact
region defined by such curves. Let FU) = fio---0 fjforj=1,...,N. The
sets FU)(X) are compacts and so one can find a region f], defined by two
invariant curves such that

SUFN(E) UFA(E) U UFM(E) C intS.

Analogously, we can find and a region ¥; = T x [-r, — A*,r, + B*] with
A, > A and B, > B such that

SUFDE)UFI(E)U---UFN(B) C intY,.

Now modify every f; outside the strip ¥, applying lemma [10] and find the
corresponding f;. So we get F' = f10---0 f,,. The diffeomorphisms F' satisfies
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the hypothesis of theorem [7] so we get an orbit (6,,7,) of F' with rotation
number w. By lemma [13 there exists 7 such that (65,7,) € X. Notice that
', and T'_ are also invariant curves for £ and so by the invariance on ¥ we
have that (6,,,7,) € S for every n. But in ¥ we have F = F so that (0, 7)
is also an orbit of F. Remembering corollary [4 we get the thesis. ]
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Chapter 3

Applications to Hamiltonian
systems

In this chapter we are going to give an example of application of the
theorems given in the previous chapter. We consider particular systems of
ordinary differential equations (ODEs) called planar Hamiltonian systems.
These are systems of ODEs that can be written in the form

{q’(t) = S(t;4(t), p(t))
P'(t) = =52 (t;q(t), p(t))
where H(t;q,p) is a continuous real valued function differentiable in the

variables ¢ and p. It is called Hamiltonian function. Throughout the text we
will refer to system (3.1) with the notation

{QZ &L(t:q,p)
p=—%(t:q.p)

(3.1)

(3.2)

Generally, the variables (g, p) are referred as position-momentum coordinates.
A relevant example of Hamiltonian system comes from the so called Euler-
Lagrangian equation. Consider a function L = L(t; ¢, ¢) and the correspond-
ing Euler-Lagrange equation

d (8L) oL _, (33)

dt\aq) 9q
. 0°L
— 4
o 0 (3.4)

we can consider the following change of variable

{q _ 4 (3.5)

P =3

65
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and define a new Hamiltonian through the formula
H(t;q,p) = dp — L(t; 4, 4) (3.6)

where, by (3.4), ¢ = ¢(t; ¢, p).

3.1 The Poincaré map of Hamiltonian sys-
tems

The link between Hamiltonian systems and the maps on the cylinder that
we were discussing is given by a map describing the dynamics of the solutions.
As we want a map defined on a cylinder, some periodicity assumptions have
to be imposed: from now on we will be dealing with an Hamiltonian of the
form

H(t;q,p) = H(t;q,p) + f(t)g (3.7)

for a continuous function f. We will impose the following periodicity as-
sumption

H(t;q+ 1,p) = H(t; q,p). (3.8)

Consider the Hamiltonian system coming from an Hamiltonian H of the form

(3.7)-(3.8). Given the initial conditions
{q(()) _ f (3.9)

we suppose that there exists a unique solution denoted as (q(t;6,r),p(t;0,7))
and defined for every ¢t € R. So, for every t € R, it is well defined the time-t
map Il : R? — R? with components

{@(9, r)=q(t0,7) (3.10)

It follows from (|3.8) and the uniqueness that the solutions are such that
q(t;0+1,r)=¢q(t;0,r)+1 and p(t;0+1,7) =p(t;0,71).
Hence, the components of II; satisfy
OO+1,r)=06(0,r)+1 and RO+ 1,r) = R(0,r)

so that the time-f map is defined on the cylinder 4. Moreover, from the
theorem of differentiability with respect to the initial conditions, we have
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that if all the partial derivatives of H(t;q,p) with respect to the variables
(q,p) of order less than or equal to k + 1 are continuous in the variables
(t,q,p) then IT € C*(R?). By uniqueness and the definition for all ¢, II; is a
diffeomorphism of R? and the function K : [0,1] x R? given by

K(A;0,7r) = (q(A5;0,7), p(AL; 0, 7))

gives the isotopy to the identity. Note that we have to use the generalized
periodicity of the solution to prove that for every A, the function K(X;-,-) is
defined on the cylinder. So we have that II; € E¥(%). Tt is well known that
the time map of Hamiltonian systems is symplectic, but our assumptions
allow to say more:

Proposition 2. Consider t € R. The time-t map of an Hamiltonian system

satisfying and (@ 1s exact symplectic if

/{f(t)dt =0. (3.11)

Proof. Let H = H(t;q,p) be the Hamiltonian and (¢ = ¢(¢;0,7),p = p(t;6,7))
be a solution of the corresponding Hamiltonian system (3.2]). We have to find
a C! function V = V(0,r), 1-periodic in 6, such that

dV = p(t;0,r)dq(t;0,r) — rd

Consider the function

V(6.r) = / [p<%—§> ~ Hldt.

First of all, remembering (3.7)), it follows from the generalized periodicity of
the solution and (3.8]) that

V(O +1r) = / [p<%—;f>—H—f<t>q]dt— / F(t)dt.

Using (3.11]) we have that V(6 +1,7) = V(0,r) so that V is good candidate.
Now let us compute the differential dV. We have

t 9 (OH OH dq
= [ gy (%)‘a—q%”t

f 9 /oH 9 (3.12)
:/0 P54 (a—p) +ppgldt
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using the second equation in (3.2). Now, integrating by parts and using the
first equation in (3.2)) we get

g dq.; L 9g dq. /t o (OH
/ 89dt [86] /aedt [89] Poe p dt
that, substituted in (3.12)) gives
t
= o) 22D~ p(0) 24 (0).

Analogously we can get

= o) 5L() — p(0) 22(0).

Hence dV = p(f)[a—q(f) +3 %4(1)] - p(0 )[8—(1(0) + %(0)], from which we have the

thesis. 0

Remark 8. Notice that if we were dealing with a Lagrangian system with
Lagrangian L of the form

L(t;q,p) = L(t;q,q) + f(t)q

. . 3.13
L(t;q+1,4) = L(t;q,49), (3.13)

then the corresponding time-t map would have been exact symplectic as well.
It would be sufficient considering

t
V(0,r)= / L(t; q,q)dt
0
with the notation used in the proposition.

Remark 9. Notice that we are able to give an explicit formula for the primi-
tive V. If condition fails then the result is no longer guaranteed. Take
as an example the Hamiltonian system

q=p
. 3.14
{p = f(t). (3.14)
We are clearly in the framework given by conditions (m and (@ More-

over the time-t map has the explicit form

O(0,7) = 0+ rt + [ F(t)dt
{R(Q,r) —r 1 F(D) (3.15)
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where F(t fo s)ds. So we can apply condition (n) to say that the
time-t map 15 exact symplectzc if and only if

1
/ F(#)do = 0
0
that is if and only if condition holds.

We saw that the time-t map fits quite well in our theoretical setting of
maps in the cylinder. Now we are going to describe how we can use it to
describe the dynamics of the solutions of the Hamiltonian system.

To this aim add the hypothesis

H(t+T;q,p) = H(t;q,p), [f(t+T)=f(t). (3.16)

for some T' > 0. Consider the corresponding time-7" map and call it TI(6,r) =
(©(0,7),R(0,7)). Due to its importance it is called Poincaré map. Sup-
pose that (6, 7) is a fixed point of II. Consider the corresponding solution
(q(t;0,7),p(t;0,7)). The uniqueness of the solution and the periodicity con-

dition (3.16) implies that
(t+ T:0,7),plt + T:0,7)) = (q(t:0,7),p(t:0,7))  for every ¢

and the solution is said periodic. The Poincaré map also gives informations
in the case we are able to prove that for every (6,r),

sup |r,| < oo
nez

where (0,,,r,) = I1I"(0, 7). If we suppose that
0H
- (t; <C 3.17
& 0D (317)

for some positive constant C' then

sup |p(t; 0, r)| < oc. (3.18)
teR

To see this, notice that every ¢t we can find n such that nT <t < (n+ 1)T.
The mean value theorem implies

p(t) — p(nT)| < |pl|t —nT| < CT.

Condition (i3.18]) follows from the fact that C'T is independent on ¢ and that
p(nT) = r, so that the sequence {p(nT)} is uniformly bounded. Analogously
one can prove that the condition

lim |r,| = oo
n—oo
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for some (0, 7), is equivalent to
lim |p(t;6,7)| = 0o
t—o00
Notice that if we drop condition (3.17) we can only ensure that

limsup |p(t; 0, 7)| = oo.

t—o0

Finally suppose that there exist two functions ¢,n : R — R such that for
every £ € R

p€+1) =0 +1, nE+1)=n() (3.19)
and

I(¢(€), n(€)) = (o(§ +w), n(§ +w)). (3.20)

for some w € R. Moreover we suppose that ¢ is monotone and 7 is of bounded
variation. Let X¢(t) = (ge(t), pe(t)) be the solution of the Hamiltonian system
with initial condition (¢(£),n(€)). Notice that from (3.19) and uniqueness
we have that

Xew(t) = Xe(t) + (1,0)
and from and the definition of II,
Xe(t+T) = Xerult).
To understand in a better way these solutions, we define, inspired by [59],
D¢ (01,02) = Xo,—20,+¢(01)-
It satisfies
Qe(01 4+ T,05) = Pe(01,02), DPe(bh,02+ 1) = e(64,62) + (1,0)

and this says that the function ®, is doubly periodic once it takes values on
the phase space T x R. The solution is recovered by the formula

Xe(t) = Pelt, 1)
when @, is continuous as a function of the three variables (§,6;,6). This
kind of solutions are called quasi-periodic. Again we are assuming that it
takes values on T x R. In the discontinuous case the solution will not be
quasi-periodic in the classical sense but the bounded variation of the initial
conditions implies that quasi-periodicity in the sense of Mather will appear.
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When the number w is rational, say w = ¢ with a and b relatively prime,

b
then

and the solution is periodic with period bT". Once more we are assuming that
X¢ takes values on T x R. Classically these solutions are called subharmonic
solutions of the second kind. When looked in the covering space and b = 1
these solutions are called running solutions. In the general case the solution
is said generalized periodic. Finally, consider the limit

lim 9e\Y) (*) .

t—oo T

We have that, for n7' <t < (n+ 1)T

qe(t) _ ge(t) — ge(nT) N ge(nT) nT
l t nl ¢

where the quantity g¢(t) — g¢(nT) is bounded. So we can compute

lim qﬁ_(t) — lim M — lim q5+”—w<0) — lim [q£+{nw}(0) i [nw]

w
t—oo T n—oo nT n—00 nT n—00 n’T nT ] o f

where [z] denotes the integer part of x and {z} = = — [z]. So, w/T can be
considered as a rotation number of the solution of the Hamiltonian system.

Summing up, we have the following correspondence between an Hamilto-
nian system in our conditions and its Poincaré map II:

Fixed point of II «~ Periodic solution,

Minimal orbit with irrational — Quasi-periodic solution
rotation number of I1 in a generalized sense, (3.21)
Minimal orbit with rational Generalized periodic

rotation number of II — solution.

Moreover, if the Hamiltonian H satisfies

then

Bounded orbit of II «~ Bounded solution,

3.22
Unbounded orbit of IT «~ Unbounded solution. ( )
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3.2 An example: the forced relativistic pen-
dulum

We are going to show how to use all the machinery we developed in
the first chapter in a concrete case. The equation of the so-called forced
relativistic pendulum is

d T .
% (ﬁ) +asmmxr = f(t), (323)
where a > 0 is a parameter. Moreover we will suppose that f : R — R is
continuous, T-periodic and such that

/ " pdt =0 (3.24)

The motivation and the physical meaning of this equation have been dis-
cussed in the introduction. To have a first insight into the problem, consider
the case f = 0, i.e. the autonomous equation

d x .
a (ﬁ) +asinxr = 0 (325)

with a < :’;—z, that can be treated with a phase portrait analysis. Let us
consider the case T' = 27, so that a < 1/4.

First of all it is easily seen that the points (km,0), k € Z are constant solutions

in the phase space (x,%). This analysis is quite simple because the energy

1
E(r,t) = ———= —acos2ntr +a 3.26
R (3:20)

is a first integral and we suddenly reach the conditions
E>1 and —-1<i<]1. (3.27)

Remembering that a < 1/4 we get the phase portrait in figure where we
have the constant solution (0, 0) for E' = 1, periodic orbits for 1 < E' < 1+42a,
the heteroclinic orbits for £ = 1 + 2a and the unbounded solutions for
E > 1+ 2a. Moreover, from the first integral we can see the velocity
as a function of the time and energy and & — +1 as £ — 400 depending on
the sign of @(0).

Now we turn to the study of the period of the periodic orbits, in particular,
we will study the number of 2r-periodic orbits.
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Figure 3.1: Phase portrait

Proposition 3. The only 2w-periodic solutions of equation are the
constant ones (k,0) with k € Z.

Proof. We will prove that the period of every orbit (except for the constants
one) is strictly greater than 27. To do so, by the symmetries of the phase
portrait, it is enough to prove that for every non-constant periodic orbit,
&(m, x,0) > 0 with ¢ < 0.

Let us write the solution z(¢, E') such that z(0, F) = arccos(l — E/a) and
(0, E) = 0 and compute 9% (7, E). Remembering and a < 1/4 we
have Y

8—2 >0 for E>1.

Notice that the point (0,0) is a strict minimum of E(xg, <o) an so
:t(ﬂ-a E<07 O)) < i.(ﬂ-a E(x07 l’o)) V(iEO, $0) 7é (07 O)

Now, remembering that E is constant on the solutions, we have that for every
initial condition (zg, o) such that 1 < E(xq, %) < 1+ £ there exists £ < 0
such that E(z,t¢) = E(z,0) and &(m, E(z,0)) > (7, £(0,0)) = 0.

O

Looking for running solutions can do the following. By the phase portrait
analysis we got that for £ > 1 + 2a the solution is unbounded and the orbit
in the phase plane is the graph of a function. In this case we will show

Proposition 4. Fiz |w| < 1, w # 0. Then there exists exactly one value of
the energy E > 14 2a such that
t,E
lim ot B) =w

t—o00 t
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Proof. Remembering the energy (3.26)) we can define a function 7,(E) such
that x(7,,(E)) = Tw for some T" > 0 (i.e. T,(E) is the time needed by a
solution starting from 0 at ¢t = 0 to reach Tw), namely

T.(E) = /OTw =
(

E+acosz—a)?

dx
1

Notice that it is continuous, monotone decreasing in £ and

lim T,(F)=+o0, lim T,(F)=Tw.

E—1+2a E—+o00

Using the properties just mentioned and the fact that by hypothesis |w| < 1
one has that there exists exactly one value of the energy £ > 1 + 2a such
that T,,(E) = T. We have just found a solution such that

r(t+T,E)=2(t,FE)+Tw. (3.28)
Now let us compute the limit. First of all notice that, for nT' <t < (n+1)T,

z(t,E) z(t,E)—xz(nT,E) N x(nT, E) nT

t t nT t

The quantity z(¢, E) — x(nT, E) is bounded so the limit exists and is equal

to T B
lim —x(n E)

n—00 n’T

Using (3.28)) on gets

lim x(nT, E) ~ lim z(0, E) + nTw o

]

The study of the non autonomous systems is more complicated, and we
will need all the abstract tools we were discussing in the previous chapter.
Our methods allow to consider a more general equation, say

dt \ /1= a2

where g : R — R is a differentiable 27-periodic function such that

d <—) +g(a) = £(0), (3.20)

/027r g(s)ds = 0. (3.30)
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At the moment we do not give more information on the differentiability of the
function g as we will point it out throughout the discussion. To apply directly
the abstract results, avoiding tedious changes of variable ad adjustments, we
will suppose that ¢ is 1-periodic and satisfying

/01 g(s)ds = 0. (3.31)

Equation (3.29) can be seen as the Euler-Lagrange equation coming from the
Lagrangian

L(z,2,t) = —V1— 12 — G(a:) + f(t)x

where G(x fo s)ds is 1-periodic by (3 On the other hand, if we
perform the change of variables given by the Legendre Transform

=X
{q _ 9L _ _ @ (3.32)
P=%: = Vi

we get the Hamiltonian

H(g,p,t) = /p*+1+G(q) — f(t)q

and the new Hamiltonian system

{q = Vi (3.33)
p=—9g(q)+ f(t).

Notice that the vector field (H,,—H,) is bounded so that there exists a
unique solution defined for every t € R. Hence we can define the Poincaré
map I(qo, po) = (©(qo, Po), R(qo, po)), where the coordinates (qq, po) are to be
understood as initial conditions. The Hamiltonian is of the form . .
so, if g € C* then II € £¥(€). Moreover, by (3.24 - we can apply proposition
and say that it is exact symplectic. Moreover, by the boundedness of the
vector field and the T-periodicity of f, we can describe the dynamics of the

solution through II, having in mind (3.21))-(3.22)).
We are going to study the twist condition. We can prove that

Proposition 5. If |||« < then the Poincaré map I1 is B-twist.

T27

Proof. We have to prove that %(T, do,po) > 0.
If we call

0 19)
Z‘(t) aqo(t qo:])()) y(t) = a_]i)(ta(JOapO)
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we know from the elementary theory of ODEs that the vector (z(t),y(t))
satisfies the variational equation

1

T = TP Gaopn) Y

y - g/( (t;QOapo))$
z(0) =0

y(0) =1

that is equivalent to the problem

t($(1 + p*(t, 40, 10))*"*) + ¢'(q(t, qo, o))z = 0
z(0) =0 (3.34)
2(0) = (=£=)%/2.

pg+1

Now consider the equation
2

m
Et iz =0 (3.35)

and first suppose that ||¢'||c < 72/T?. In this case we have that
1+pt)»)*?*>1 and ¢(q) < 7*/T*

then (3.35)) is a strict Sturm majorant of (3.34). So the Sturm theory and
the fact that the function z(t) = sin(¢%) is a solution of (3.35]), prove that
there exists 5 > 0 such that z(7") > > 0 and the thesis will follow.

[

Remark 10. Let us study the case ||¢||cc = Tz in the simpler contest of
equation (3.2 (W So we have to suppose a = w2 /T?. If f(t) # 0 then q = 2km
from being a solution. This means that there exists an open subset of positive
measure of [0,T] on which q # 2km and so

T 2 T 2
m m
/0 Tz €08 q(t)dt < /o ﬁdt.

In this case we can use a generalization of the classical Sturm separation
theorem. It can be achieved adapting the classical proof (cf. [23]) to our
framework. Consider the argumentum 6, and 0y respectively of and
3.85)) coming from the Prufer change of variables; then we can conclude that
1( ) > 05(T). Remembering that in this framework we have that z(t) = 0 <

0(t) = km for some k € Z and we are rotating in the clockwise sense, we can
conclude using the same argumentation of the previous case translated into
the phase-space (x,pi).
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Remark 11. The condition a < ;Ti 1s optimal. Indeed suppose a > ;—z and
consider the autonomous system

(= —F=
1+p2
p = —asin(q).

Notice that (p = 0,q = 0) is an obvious solution. As before consider the
variational equation

d .
2 (@(1+p*(t, 90, p0))™"*) + acos(q(t, a0, po))w = 0.

Notice that evaluated in the above solution it is nothing but
T4+ ax = 0.

Using Sturm comparison with i + ;,%y = 0 we can conclude analogously as
before that x(T) < 0: it means that we do not have the twist condition.
Finally note that in the case a = :’;—z we have x(T) = 0 and again the twist
condition fails.

Boundedness and unboundedness of the momentum

As we saw in the introduction, equation (3.23]) can be seen as a relativistic
counterpart of the classical Newtonian pendulum

I +asinz = f(t). (3.36)

This equation has been analysed from many points of view. In particular
Levi [38] and You [76] proved that all the solutions of have bounded
velocity 4(t) whenever holds. The relativistic framework implies that
|Z(t)| < 1 and so the boundedness of the velocity is automatic. However we
will prove that the results by Levi and You have a relativistic parallel when
the velocity is replaced by the momentum

(1)

p(t) = :
1—&(t)?

The main result of this section says that if f(t) satisfies (3.24)) then all solu-

tions of (3.23)) satisfy

sup |p(t)| < oo. (3.37)
teR

Moreover we will prove that condition (3.24]) is essential for this conclusion.
To achieve these result we will consider the Poincaré map I of system (3.33)),
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in particular the boundedness result will come from Moser invariant curve
theorem.

So remember that, roughly speaking, Moser’s theorem gives the existence of
invariant curves a class of sufficiently regular maps of the cylinder whose lift
has the form

{91 =0+ w+6a(r) + Ri(6,7)] (3.38)

T =7r-+ 5R2(9, T')

supposing that the reminders R; and R, were small in some C* norm. Here
0 plays the role of a small parameter.
First of all some regularity is needed, so we will suppose

g€ C"(R).

The coordinates (g, p) are not the best ones to have the Poincaré map written
in form (3.38]), so perform the following symplectic change of variables

q=0Q
{p:P+G(q)+F(t)

where F(t) is a primitive of f. Note that that F(t) is T-periodic and C*.
We get the system

Q _ P+G(Q)+F(t)
LH(P+G(Q)+F(1))?
P g\{Q)(l ___PHC@iry (3.39)
VIHPGQ+F(1)?

Now we can introduce the small parameter § > 0 through the following
change of scale

Q—u, P- % ve[1/2,7/2. (3.40)

It is important to note that the strip R x [1/2, 7/2] corresponds in the original
variables to the time dependent region

As={(a,p) €R?: o+ Gla)+ F(1) < p< 3 +Gla) + F(t)}

and so from the boundedness of F' and G

p — 00 as § — 0 uniformly in v. (3.41)

System (3.39) transforms into

U= 146v[G(u)+F ()]
52024 (14+6v[G (u)+F (¢)])?
= :/5v2g(u)[1 _ 1+6v[G(u)+F(t)] ] (3.42)
/3202 +(1450[G(u)+F(1)])2
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The change of variables (3.40)) is not symplectic, but the Poincaré map of
systems (|3.42)) is still conjugated to II.
Note that if 6 = 0 system ([3.42]) transforms into

=1
{i} =0
and taking any initial condition (ug,v9) € R x (1/2,7/2) we have that the
solution is well-defined for ¢t € [0,T]. So, by continuous dependence, there
exists A > 0 such that the if § € [0, A] the solution is still well-defined for
t € [0,T]. The coordinates (u,v) are the good ones to have the Poincaré map
written in form ((3.38]). To have a rough idea of why this is true, one can see
trough a formal computation that system has the following expansion
for small ¢
{u =1— 16%0% + O(6%)
0= 0(6°).

Notice the fundamental fact that up to second order F' and G do not play
any role. Now one can obtain the Poincaré map integrating and evaluating
at t ="1T.
We are going to make this argument rigorous and the key is the theory of
differentiability with respect to the parameters. So, inspired by [61], let us
recall some general facts. Consider a differential equation depending on a
parameter

© g1, 5, 0) (3.43)

dt T '
where U : [0,7] x D x [0,A] — R" is of class C%*™2¥*2 1 > 1 and D is
an open connected subset of R" and A > 0. The general theory of differ-
ential equations says that the solution z(t, zg,d) is of class CO*T2¥*2 in its
three arguments. The following lemma will be crucial for our purpose, and
generalizes the result [61, Proposition 6.4].

Lemma 14. Let K be a compact set of D such that for every zy € K and
d € [0,A] the solution is well defined in [0,T). Then, for every (t,z,0) €
[0,7] x K x [0,A] the following ezpansion holds
0z 62 0%z 52
2(t, 20,0) = 2(t, 20,0) + 5%(15, 29,0) + E@(t’ 20,0) + ER(t, 20,0)
where
||R(t7,5)||cu([() -0 asd—0

uniformly in t € [0,T7].
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Proof. For a function ¢ € C***2¥2([0, T] x K x [0, A]), the Taylor formula
with remainder in integral form gives

52

ot 70,0) — (t, 20,0) + g?(tzm(né+—2 aéf@:zm0)+—R2Q,ab6)
where

Ralt.a8) =+ [ 200 0,006 — ¢
T 2/, 063 ’
Integrating by parts one gets
2 2
Rus0,0) = 112 [ 20002000 - €hac — 0000 20,00%)

and through the change of variable £ = ds we get

1 2 2
Rg(t, 20,5) :62/0 ( )[85f< , 07(5 ) adf(t Z(),O)]ds.

from which it is easy to conclude using the regularity of the solution. O

Note that, by means of this lemma we have a semi-explicit formula for the
solution of (3.43)). This is very useful to compute its Poincaré map. So, let
us apply the previous lemma to system (3.42)). First of all, calling Z = (u,v),
system ([3.42)) can be written in the form

Z =Vt Z,9).

The initial condition will be denoted by Z(0) = 2y = (uo,vy) and the cor-
responding solution by z(t;29,0) = (u(t;ug, vo,d), v(t; ug, v, 0)). We will
suppose, by periodicity, that zy € [0, 1] x [1,3]. From (3.2) we have that

2(t; ug, vo, 0) = (ug +t,vy). (3.44)

To compute the first derivative with respect to the parameter let us call
X(t; 20,0) = %(t; 20,0). We need X (¢; 29, 0) that solves the Cauchy problem

{X = A(t)X + a(t)

X(0)=0.
where - .
At) = 8Z<t 2(t; 20,0),0), a(t) = 9 —(t; 2(t; 20, 0),0).
A simple computation gives
ov ov
(9Z(t Z, 0) 0 %(t, Z, 0) =0 (3.45)
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so that

X(t;UO,Uo,O) =0. (346)
Now let us compute the second derivative. Let us call Y (¢; zo,d) = %(t; 20,0)
with components (£(¢; 29, 6),1(t; 20,6)). We need Y (¢; 29,0) that solves the

Cauchy problem '
{Y = A(t)Y + b(t)

Y(0)=0
where
0* 0*v
b{t) = sy (8 2(t 20,0),0) + 2 c(t 2(t 20,0), 0)X (8 20,0)
O e (20, 0), 0)[X (8 20,0), X (5 20, 0)]
aZQ 3 <\ls 20, Y), 320, Y), 3 209
and %(t; 2(t; 20,0),0) is interpreted as a bilinear form from R? x R? into
R2. A simple computation gives
0*U
W(ta Z(ta 20, 0)7 O) = <_Ugv 0)

From (3.45) and (3.46)) we get the system

{f = _U(%v 5(0) =0
=0, n0)=0

leading to
Y(t;uO,Uo,O) = (_Ugt70) (347)
Next we apply lemma |14] using (3.44)), (3.46) and (3.47)). We have that
52 52

Z(t; ug, vo,0) = (ug + t,v) + ?(—vgt, 0) + ER(t; Ug, Vo, 0),
where the remainder R satisfies the estimate
||R(t, ° 5)||C5([0,1}><[1,3]) -0 asd—0

uniformly in ¢t € [0,7]. Finally, evaluating at ¢ = T we get the following
expression for the Poincaré map

{ul = Ug + T — %T’U% + %Rl(UQ,Uo, (S)

2 3.48
V1 = Vg + %RQ(U/O,UO, 5) ( )

and

RL(-, 5 O)leswzxpay + 1R2( -, 0)leswzxpay — 0 asd—0.  (3.49)
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Now it is easy to see that the Poincaré map expressed in the form —
satisfies all the hypothesis of theorem . In this case, 6 = ug, r = vy,
w=T, a(vy) = —%v% and 0 is small enough. Concerning the intersection
property, remember that the Poincaré map associated to system is
exact symplectic and so has the intersection property. Finally we can say
that also map has the intersection property because this property is
preserved by conjugacy. So, an application of theorem [5| proves the existence
of invariant curves for the map as 0 — 0. In view of , we can
find a sequence of invariant curves I',, approaching uniformly the top of the
cylinder. Analogously one can prove the existence of a sequence of invariant
curves approaching the bottom of the cylinder. It means that we can put

every initial condition between two invariant curve and prove (3.37)).

In the proof of the boundedness of the momentum, hypothesis (3.24) was
essential. More prescisely, if, for example, we suppose that

T
7= %/0 £(s)ds > 0,

then we can prove that there exists R sufficiently large such that if |py| > R
then the corresponding orbit of the Poincaré map II is unbounded. This will
lead to solutions with unbounded momentum.

To prove this result, a less subtle expansion of I, coming directly from system

(3.33), will be sufficient. So, integrate (3.33)) and get, for ¢t € [0, 7]

{q(t; o, Do) = qo +t + E(t, o, po)

p(t:d0: o) = po + Jy 9(a(s; d0, po))ds + [y f(s)ds (3.50)

where

t :
é:(t, q07p0) = / p(87 q07p0> —1rds
o | V14 p%(s;q0,p0)
As p(t; g0, po) — 00 as py — oo uniformly in ¢g and ¢ € [0, 7], we have £ — 0
as po — 00, uniformly in qq and t € [0, T].
Adding and subtracting f(fg(qo + s)ds = G(go + t) — G(qo) in the second
equation of we get

p(t; o, po) = po + G(qo +t) — G(qo) + /O f(s)ds +&(t, qo,p0)

where

e(t, g0, p0) = /Ot{g(qo + 5+ £(8,q0,p0)) — 9(qo + s) }ds.
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The mean value theorem implies that ¢ — 0 as py — oo uniformly in ¢y and
t € [0,7]. Evaluating in t = T we get the following expansion of II:

{(h =qo+ T +E&(T, q0, po) )
pr=po+G(q+T)—G(q)+Tf+e(T,q0,po)

where € and € tends to zero uniformly in gy as py tends to 4o0.
Now, inspired by [2], consider the function

Vig,p) =p—G(q).
and notice that
V(Il(g,p)) = V(g,p) + I'(q,p)

where
I'(¢,p) = —G(qg+ T +&(T,q,p)) + Glqg+T) +e(T,q,p) + Tf.

Now, using the fact that G is bounded, one can find V; such that if V' (go, po) >
V. then pyq is sufficiently large in order to have I'(go, po) > TTf For such a py
we have

V(I1(q0, po)) > V (g0, o) + T?f > V*,

So, by induction we can prove that

T,
V(Q’rupn) > V(q07p0) + anv n 2 1.

Finally we have that
lim V(qn,pn) = +00
n—o0

and remembering the definition of V' and the boundedness of G we get that
Pn — +00.

Periodic and running solutions

Once we have proved that all the solutions have bounded momentum, let
us look for some particular kind of solutions. In this chapter we are going to
study the existence of running solutions of equation . For this part it
will be sufficient to assume that

g € C*(R).
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We remember that a running solution is a solution such that
z(t+T)=uxz(t)+ N foreveryteR

where N € Z. First of all notice that physical intuition suggests that it
should not be possible to have such solutions for every N and T, because
of the bound given by the speed of light. This is a necessary condition that
holds for a larger class of equations, namely:

Proposition 6. Let x(t) be a running solution of

% (ﬁ) (L) (3.51)

where F(t,x) is continuous and T-periodic in t.
Then

N
—| <1 3.52
B (352
Proof. By Lagrange theorem we get
[Nl =zt +T) = z(t)] = [&(c)T|

for some ¢ € (t,t + T). But the domain of equation (3.51)) is |Z(¢)| < 1 for
all £, so
IN| <T.

]

In this section we will see why the relativistic condition (3.52)) is also suffi-
cient to have, for every N € Z satisfying (3.52) at least two running solutions.
The proof will be an application of theorem [2| considering to the Poincaré
map 1L

First of all, let us perform the change of variables

y(t) = (t) - . (3.53)

Notice that in this way y(t + T) = y(t) and running solutions of ({3.29))
correspond to classical T-periodic solution of

d y+ I N
— +yly+ =) = f0). (3.54)
dt \/1 — (§+ 2]¥7r)2 T
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We will find T-periodic solutions of equation as fixed points of the
Poincaré map.

Equation can be seen as the Euler-Lagrange equation coming from the
Lagrangian

2N

L(y,y,t) = —\/1 —(y+ T)2 -Gy + %t) + f(t)y.

from which we can get the Hamiltonian system

{q::vfﬁﬁ__¥ (3.55)

p=—glqg+ Ft) + f(1).

It is easily seen that the corresponding Poincaré map IT belongs to £%(%)
and, by proposition [2] is exact symplectic. So to apply theorem [2| we just
need the following

Lemma 15. If |X| <1 then there exists p > 0 and e > 0 such that

O(qo, —p) —qo < —€ and O(qo,p) — qo > €.
for every qo € T.

Proof. Let us prove the first inequality, being the second similar. Let us call
K = % By hypothesis we have |K| < 1. Consider the function, coming
from system (|3.55)),

_ p

We have that A(p) is an odd increasing function such that A(0) =
lim, 1o A(p) = £1. Since |K| < 1, by continuity, we can find p >

that
A(p) > K forp>p
A(p) < K forp < —p.

and

0
0 such

Now, integrating the second equation of (3.55)) we get, for ¢t € [0, 7]

p) == [ ala(s) + K)as+ [ f(s)ds < o+ eC

for some constant C' coming from the boundedness and periodicity of f and
g. So we can find p > 0 large enough so that if py < —p then p(t) < —p for
t € [0,T]. Tt means that

N
— =<0 tel0,T]

q(t) VTR
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that is ¢(t) is decreasing if ¢ € [0, 7] so,

@(Q(M _]5) = Q(T7 qo, _]5) < Q(O, qo, _ﬁ) = qo-
A standard compactness argument concludes the proof. O

Now it is straightforward the application of theorem [2| choosing the strip
A = R x [—p,p] and the fact that solutions of system are globally
defined implies that we can find a larger strip B such that II(A) C intB. It
means that we can find two fixed points of II that corresponds to two running
solutions of . The case N = 0 obviously satisfies condition and

we recover two periodic solutions.

Remark 12. If we suppose that g is analytic, then the right-hand side of
is analytic in (q,p). By analytic dependence on initial conditions,
also the Poincaré map s analytic. Notice that we do not need the analyticity
of f |37, p.44]. So, using corollary we get the instability of one solution.

Remark 13. Similar results on the classical pendulum have been obtained
by Franks in [20, Proposition 5.1]. He proved the existence of fized points
for the Poincaré map using his version of the Poincaré-Birkhoff theorem
and affirmed that they should have positive or negative index. This result
needs some clarification. In fact there is another possibility: there could
be only a continuum of fixed points and the fixed point index could not be
defined. Consider the equation of the classical pendulum: the existence or
not of forcing terms f of null mean value such that the periodic solutions
are represented only by a continuum in still an open problem. Anyway, as a
related example consider the equation

2m
J+asin(y+ —t) =0
T
where the potential depends on time. Its T-periodic solutions correspond, via
the change of variables x = y + Q%t to solutions x(t) of

T+ asinx =0

such that x(t+7T') = x(t) +2n. These solutions forms the graph of a function
in the phase space, so it is impossible to define the indez.

If we suppose that
2

gl < 7
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then the Poincaré map is twist and we can get more informations on the
solutions. To state it remember that a running solution is said to be solated
if there exists § > 0 such that every solution (¢(t),p(t)) satisfying

0 <q(0) = g(0) + [p(0) = p(O)] < &

is not T-periodic with winding number N. Moreover, to state these results,
we adapt a definition given in [64] saying that a planar first order system in
the variables (g, p) is degenerate if there exists a curve (gs(0), ps(0)) such that
the application s — ¢4(0) is defined from R onto R, satisfies ¢s41(t) = ¢s(t)+1
and psy1(t) = ps(t), is bijective in [0, 1) and continuous and for every s € [0, 1)
the point (¢s(0), ps(0)) is the initial condition of a running solution. We have

Theorem 9. If g is analytic and ||g'|| < 7*/T? either the number of isolated
running solutions is finite or we are in the degenerate case and every degen-
erate solution is unstable. Moreover, in the first situation, the index of such
solution s either —1 or 0 or 1.

Proof. By the twist condition we can apply the results of the previous chap-
ter. In particular theorem [3|runs with Q = {(¢,p) € R? : —p < p < p} where
p comes from Lemma [15] Indeed, if we take ry = p — e with e sufficiently
small, condition holds with N = 0 by continuous dependence, and the
Poincaré map is exact symplectic. This is another way to find two periodic
solutions. Notice that it is a weaker result because we need the restriction
on the period T'.

Anyway the Poincaré map is analytic, so, by corollary [2| we have that fixed
points either are isolated or form the graph of an analytic 1-periodic function.
Moreover by corollary [3] we have the informations on the degree.

The translation of these results from the Poincaré map to the differential
equation gives informations on the periodic solutions of system and,
by the change of variables we get analogous results on the running

solutions of system ([3.29). O

Remark 14. As in remark m let us study the case ||| = ;—2 in the
simpler contest of equation (3.25). As we are considering running solutions,
we have to consider system (3.55) where g(s) = sins. Reasoning in a similar
way as in remark [10] we have that the same results as in theorem [9 hold if
we suppose that f(t) # sin(£t).

Quasi periodic solutions

To find generalized quasi-periodic solutions, remembering the discussion
of section it is sufficient to find two functions ¢,n : R — R (the first
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monotone and the second of bounded variation) such that for every £ € R

P +1) =0 +1, n€+1)=n(&) (3.56)

and
I(¢(£).n(§)) = (#(€ +w), n(§ +w)). (3.57)

for some w € R. We will be able to prove the following

Theorem 10. Suppose that g € C7(R). For everyw € (=T, T), there exists a

family of generalized quasi-periodic solutions of (3.35), Xe(t) = (qe(t), pe(t)),
with & € R such that

lim _q5(t) -9
t—o0 t T

Remark 15. If w is rational then we have generalized periodic solutions and
if w is an integer then we recover one of the two running solutions of the
previous paragraph.

To prove theorem [10] consider the change of variable

{820 ro

where F(t fo s)ds. System 1) transforms into

Q _ P+F(t)
{ 1+(P+F(¢))? (3.58)

P=ygQ)

with Hamiltonian

H(t;Q,P)= 1+ (P+F)?-G(Q). (3.59)

Notice that from condition , the function F' is still T-periodic, so that
the Poincaré map II relative to system is still a good tool to study the
properties of the solutions of system (3.33)).

Remembering theorem [§] we will have completed the proof, as soon as we will
have proved that the Poincaré map of system is a finite composition
of maps belonging to the class P~ for some L > 0. Notice that from the
results concerning the boundedness of the momentum we have already proved
the existence of invariant curves for the Poincaré map of system (3.33). It is
not difficult to transfer these invariant curves to the Poincaré map of system
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3.58, so that we have the sequence required by the theorem.
Consider a partition of the interval [0, 7] in N sub intervals of equal length

L™ (3.60)

L=—<
N V9l
and consider the map I1, - (Qo, o) = (Q(7+L; 7, Qo, o), P(T+L; 7,Qo, F)) =

(Q1, P1) where (Q(t;7,Qo, Po), P(t; 7,Qo, Fy)) is the solution of (3.58) with
initial condition (Q, Py) at time 7. The Poincaré map II of the system can
be written as composition of such maps, precisely we have that

II =1y =1y (yv—1)po---ollyollzy.

So let us study such maps. Notice that by the periodicity of (3.58) it can
be seen as a map defined on the cylinder T x R. Moreover we have that
I, € E(¥). For every 7, the map is also exact symplectic. Indeed, the

Hamiltonian (3.59) is of the form (3.7)-(3.8)) with f = 0, so that condition
(3.11)) is trivially verified and proposition [2] applies. This is not the only

property satisfied by the map. In fact we have
Proposition 7. For every 7 € [0,T], we have 11, ;, € P~1F

Proof. The map Il ; is exact symplectic and by a similar argument as in
proposition |5 condition ((3.60)) implies that for every 7 € [0, T, the map IIj, ,
is twist. From equation (3.58) we have

{Q(tv T, QO? PO) = QO + f: P(s;7,Q0,P0)+F(s)

’ V/1+(P(s;7.Q0,Po) + F (s))>
P(t;7,Qo, Po) = Po + [ 9(Q(s: 7, Qo, Fy))ds.

Evaluating the second equation in ¢ = 74 L, the boundedness of g gives that
IL; 1, preserves the end of the infinite cylinder. Moreover, evaluating the first
equation in t = 7 + L and using the second we easily get

li — =+L

Poiril()o(Ql QO)

uniformly in ). Finally, property 6. is a trivial consequence of the bound-
edness of g. ]

So, summing up we have that the Poincaré map of system (3.58)) can be
written as a composition of maps in P~ and we can conclude applying
theorem [§] to the Poincaré map IT of system (3.58)) and undoing the change
of variable.
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Chapter 4

Applications to impact
problems

In this chapter we are going to see an application of some of the abstract
theorem to model of bouncing ball. This model describes the motion of a
free falling ball with mass 1 under the gravity force bouncing on a moving
plate.

]| ©

4.1 Statement of the problem

Consider the model of a free falling ball with mass 1 under the gravity
force g and let z(t) be its vertical position. The plate is supposed to move
according to a C*(R) 1-periodic function f(t) < z(t). We can consider a
system of reference joined with the plate performing the change of variable

91
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x(t) = z(t) — f(t). At an instant 7 of impact, the change of velocity is
assumed to be elastic. So we will consider the problem

i=—(g+ f(t)
z(t) >0 (4.1)
x(r)=0=xz(r") = —2(r7)

As in [34], by a solution we understand a function y € C'(R) and a sequence
(%) of impact times such that

2. y(tr) =0 for every n and y(t) > 0 for t € (t;,¢,)

3. the function y is of class C? on every interval [t} % ] and satisfies the
linear differential equation on this interval.

4 g(ty) = —y(t,)
Moreover, the solution is called bounded if it also satisfies
5. sup,,(tpy1 — tn) < 0.

Notice that in such a case we have

Stulg ly(t)] + esssup,ep |9(t)] < oo.
S

The problem can be formulated in a discrete form. We can solve the initial
value problem

{j: _(g+f(t)) (42)

x(tn—l) =0, x(tn—l) = Wp—1

and impose the conditions

x(t,) =0, i(t,) = —w,

to obtain 5 5 5
tn = tnfl + —Wp—1 — _f[tnﬂfnfl] =+ _f‘.<tn71)
g g g
and ' '
—Wy, = Wy—1 — G(tn —tn1) = ftn) + f(tn1).
where

f(tn) - f(tn—l).

by tno1] =
f[ 1] tn - tn—l
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Substituting the first in the second we get the formulas

{tn = tnfl + %wnfl - gf[tvmtnfl] + %f(tn*1> (4 3)

Wy = Wnp—1 — 2f[tn7 Zfnfl] + f(tn) + f.(tn71>-

Inspired by such formulas we can consider the following map S(to,wo) =
(t1,wq) defined by

{tl =tp+ %UJO - §f[t1, tO] + %f(to) (44)

wy = wy — 2f[t1, to] + f(t1) + f(to)-
Notice that this is an implicit definition but we have

Lemma 16. There exists @ > 0, depending on ||f||se, such that if wy > @
and for ty € R the map S(ty, wo) = (t1,w) is well defined and C3.

Proof. First of all notice that, since f is C* and periodic
2
11 — to = —wo + O(].)
g
so that if wy — oo then t; — tg — oo. Now, considering the function
2 2 2.
F(to, t1, wo) =t —to — gwo + gf[tlato] - ;f(t(J)

we have

L 2 ()t —to) = f(t) + f(to)
amF(tO’tlawO) =1+ E (tl _ t0)2

that is strictly positive for t; — tg — oo. So, taking wy sufficiently big, we
have that for every t, we have a unique t; = t1(tg, wo) > to + 1 that solves
the first equation in . Moreover applying the implicit function theorem
we have, by uniqueness, that ¢; (o, wp) is a C* function. Substituting in the
second we have the thesis. ]

It has been showed in [34] that a good strategy to face this problem is to
take a sequence (t7) of impact time such that inf, (¢, , —t*) were sufficiently
big in order to have a positive solution of the corresponding Dirichlet problem

i=—(g+f(t)
{x(t:z+1)g: z(ty) = 0. (4.5)

Then we have to glue such solutions in a way that the elastic bounce condi-
tion holds. To this aim we have to pass to the discrete version of the problem,
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given by the map S(to,wo) —> (t1,w;) coming from lemma [16] This map is
not exact symplectic but S(tg, Eo) +— (t1, 1) where Ey := %w% is exact sym-
plectic. The coordinates (t,, E,) are conjugate, so the map can be expressed
in terms of a generating function h(ty,t;) such that

alh’<t0>t1) = _EO
{82]1(%, t1) = Ey. (4.6)
and that can be explicitly computed giving
’ _ 2
h(to,t1) 23_4(751 — t0)3 + g(f(tl) + f(to))(ty — to) — (f(;l(zf _ft(t)g))
Ry

—g/totl f(t)dt+%/t:1 F2(t)dt.

So the good sequence (t) giving the elastic bounce condition turns to be one
such that
ahh(t;—la t;) + atoh(t:w thJrl) =0. (48>

See [34] for more details and note the relation with the stationary condition
(2.23]) of the Aubry-Mather theory. Moreover, we can introduce an order
relation between two different bouncing solution z(t) and x(t), saying that
z1(t) < x9(t) if and only if, called (7!); and (77);, the corresponding se-
quences of impact times, we have 7! < 72 for every 1.

4.2 Existence of Aubry-Mather bouncing so-
lutions

Motivated by condition (4.8), We are going apply the Aubry-Mather the-
ory in order to find special orbits. Remember that the theory will apply if
the following hypothesis on the generating function hold:

(H1) h e C2(R?),
(HQ) h(to + 1,t1 + 1) = h(to,tl) for all (to,tl) € R2,
(H3) Op1,h < € <0 for all (ty,t0) € R

We will refer to them as hypothesis (H). In this case we can apply theorem
[6] to have monotone increasing configurations ¢ = (¢},) satisfying condition
(4.8) and characterized by a rotation number defined as

t*
a(t) = lim 2.

n—oo M
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To these configurations correspond orbits (¢}, E') for the diffeomorphism
that are contained in a compact invariant set called Aubry-Mather set. In
our case, the generating function does not satisfies the whole hypothesis
(H), but we have

Proposition 8. The generating function is in C3(R?), satisfies (H2)
and Oy, h < € <0 for ty — to sufficiently large.

Proof. First of all notice that (H2) follows directly by the periodicity prop-
erties of f. The regularity comes from the fact that

(f(t) — f(t0))* _
(t1 — o)

Finally, a direct calculus of the second derivative of h gives

[/01 FOMy + (1= N)to)dA(t — to).

2
8t1t0h: —gz(tl—t())‘i‘O(l) as t;1 —tg = o0

from which we conclude. ]

The fact that our generating function satisfies almost all the hypothesis
that we need suggests the following strategy: to look for a modification h of
the generating function h, that satisfies properties (H1),(H2),(H3) and that
coincide with h for t; — ty sufficiently large. An idea of how to do this is
presented in [49].

Proposition 9. Consider a function h : R*> — R, h € C3(R?), satisfying
property (H2) and such that Oy, h < € < 0 for t; — to sufficiently large.
Suppose that Oy, h and Oy, b are bounded. Then there exists a function
h:R? — R that satisfies property (H1),(H2),(H3) and such that it coincides
with h for ty — ty sufficiently large.

Proof. Let us start considering, for any constant A > 0, C' € R, zy € R, the
function

_ A+ C(x — xo)
(x — x9)?

¢(x)
and notice that ¢(z) is bounded from below and

inf ¢(z) <0.

r<xo

Let us call d(to,t;) = 97, h(to,t1). By hypothesis we have that there exists
k > 0 sufficiently large and ¢ < 0 such that, if ¢; —ty > k then

d(to,tl) <e<O. (49)
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Now choose € such that € < € < 0. In the definition of ¢ let
1
A:g—ﬁ, C:§|]3t1d—8t0d|]00, .7}0:]{'.

Notice that A is positive due to the choice of € and that C is finite due to
the assumption on Oyy¢,¢, h and Oy, h. So we can define

I := inf ¢(z).

<k

As we sald we have —oo < I < 0 so that we can fix H such that H < I. So
let

to+t1—k‘ t0+t1+k
2 ’ 2 )+

1
E(atld(to,tl) — Oy d(to, t1))(t1 —to — k) + H(t; — to — k)?

D(to,t1) =d( (4.10)

and define

(4.11)

x _ fd(to,t) ift—to >k
d(to,t1) = {D(to,tl) ift; —tg < k

It is easily seen that d(to + 1,t; + 1) = d(to, t,). Moreover we claim that
d € C1(R?). Indeed clearly, it comes from the regularity of h that every piece
of the definition is C'. Moreover it is also immediate that

d(to, to + k) - D(to, to + ]{3),

and a long but straight computation of the partial derivatives gives the re-
quested regularity. Now let us study how to satisfy property (H3). We claim
that,

d(to, ;) <E<0 (4.12)
where € comes from the definition of H. Indeed, it is clear by hypothesis
for t; — to > k. For t; — ty < k, noticing that Ltk — fotli=h — g anq
remembering the definition of H and the definition of I as an infimum we
have:

D(to,tl) §€+C|t1—t0—k|+1(t1—to—k’)QS
g-E—f-C(tl—to—k')
(t; —to — k)?

(4.13)

E—C(tl—to—k}>+ (tl—to—k)2:€<0

Now consider the Cauchy problem

ut0t1 - d(t07 tl) 5
u(to, to + k) = h(to, to + k) =: ¢(to) € C? i (4.14)
('Ll,tl — Ut0>(t0,t0 + k’) = (h't1 — ht0)<t0, t(] -+ k) = Q/J(t(]) c Cl.
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We can apply lemma @ to have a solution h € CQ(RQ) that is unique on every
characteristic triangle, such that h(to,tl) = h(to + 1,¢t; + 1) and that, by
construction, satisfies (H3). Finally, since d = d if t; > to + k, we have by
uniqueness that h = h if t; > to + k, so that & satisfies the thesis.

O

Now we are ready to apply Aubry-Mather theory. First of all notice that
Proposition [§ guarantees most of the hypothesis required by Proposition [9}
To verify the boundedness of Jy,+, h and Oy, h consider, first of all, in ,

the term ,
(f(t) — f(to))
2(ty — to)
A direct computation gives the boundedness of the third derivatives for t; —t,
large. If t; — ¢y is small we just have to remember that

(f(t1) — f(t0))?
(t1 — to)

= [/01 FOt+ (1= Nto)dA (8 — o)

and perform a direct computation. The boundedness of the third derivatives
is trivial for the other terms remembering the regularity and the periodicity
of f. So we can apply Proposition |§| to (4.7) to have a generating function
h(to, t1) to which we can apply theorem smg the terminology of Mather
we can find for every o € R a minimal conﬁguratlon t = (&} )nez with rotation
number «(t) = a. Moreover, for this configuration we have that

82 (n 1 n)+81 (n’ n+1) O (415)

and
|tr —t5 — na(t)| < 1. (4.16)

Furthermore h generates a diffeomorphism S in the sense that

81l~z(to tl) - _E() ot
= < S(to, Ey) = (t1, E), 4.17
[t = B e S(to, Bu) = (1. B) (@.17)

so, letting Ef = Ooh(t:_,,t5) = —dih(t:, 5. ), we have that (¢, E¥) is a
complete orbit of S: we call it minimal orbit. Yet, from (4.16]) we have

ty +na(t) —1 <t <t;+na(t)+1

and
to+na(t) +alt) -1 <t <tj+na(t)+alt)+1



98

4. Applications to impact problems

from which we have
alt)—=2<ty  —tr <at)+2 forevery n. (4.18)
It means that there exists «, such that if & > «a, we have that for every n

£ =t >k (4.19)

n

where k > 0 is a large positive constant such that h(to,t;) = h(to, ty) if

ty —to > k. Finally we claim that the orbit (¢, E¥) of S is actually an orbit
of S. Indeed we have, remembering (4.19)), that

* gk _alh<t*at*+1) _alﬁ(t*at*-{-l) * *
= motntt) — UGV It ) — (B B ). (4.2
S(tnatn+1) {th( :L’ jH-l) 82h(tz, Z-‘,—l) ( n’ n+1) ( O)

So, coming back to the physical problem of the bouncing ball we have

Corollary 5. There exists o, such that for every a > a, there exists a
bouncing solution such that

Moreover,

e [fa=p/q is rational then

— there exists a p-periodic bouncing solutions of with q bounces
mn a period,

— the periodic bouncing solutions with the same rotation number o
are totally ordered with respect to <,

— if there exist two different periodic solutions x*(t) and 2*(t), = (t) <
22(t) with the same rotation number o such that there is not an-
other periodic solution x*(t) with the same rotation number such
that x'(t) < x*(t) < x*(t) then there exist two different solutions
xt(t) and x~(t) with rotation number o such that the correspond-
ing sequences of impact times satisfy

dim |t —t;|=0 and lim|tf -t} =0
1—r—00 1—00
and

lim |[t; —#}| =0 and lim |t; —t!| =0
1——00 1—00



4.3 Unbounded orbits

99

o [f « is irrational then

— and the bouncing solutions with the same rotation number o are
totally ordered with respect to <,

— the sequence of impact times t; of the solution x*(t) with rotation

number o is such that the set {tf + Z,i € Z} is either dense in
R/Z or a Cantor set in R/Z.

Proof. Condition (4.15)) is the one that guaranties the condition of elastic
bouncing. So we have that to every minimal orbit of S with rotation number
a > a, corresponds a bouncing solution of problem (4.1)) such that

1 1n—1
lim = = lim — ) (tp,, —t;) =
Jan = Jim 20t —th) =a

where t* represent the time of the n-th bounce on the racket. The thesis
follows directly from the general Aubry-Mather theory, remembering that in
the case of a rational rotation number the periodic minimal orbits (¢}, E})
for S are such that

t;kL+q —t, =D
{ g (4.21)
]

Remark 16. Notice that we can interpret the rotation number of a bouncing
solution as an average of the distance between two consecutive impact times.
The solutions with irrational rotation number can be seen as quasi-periodic
solutions.

Remark 17. Notice that if we suppose that || f||ca is sufficiently small then,
we can apply theorem to the map S written in the form . We have the
ezxistence of a sequence of invariant curves approaching the top of the cylin-
der. Notice that we can recover the intersection property from the fact that
the conjugated map in the variables (t, E) is exact symplectic. The existence
of imwvariant curves implies that the velocity is always bounded. In corollary
[5 we have proved that we can have bounded solutions without smallness as-
sumptions on f We will see in the next section that, however, the existence
of unbounded orbits is also allowed in the general case.

4.3 Unbounded orbits

In this section we will consider the change of variable

U: t=t w=v—f(t)
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applied to the map (4.4). This a diffeomorphism of the cylinder T x R and
represents a shift from the mobile system of reference to the inertial one.
The new coordinate v is nothing but the inertial velocity. The conjugate
map P =V"10S oW turns to be

P : {tl = t(] + S%U() — §f[t1,t0]
V1 = Vg -+ 2f<t1> — 2f[t1,t0]
that, remembering lemma|16|is well defined for vy > v for a certain sufficiently

big v. This is the formulation considered by Pustil’nikov in [67].
Notice that if (¢, v%),ez is a complete orbit satisfying

(4.22)

f(tr) = f(t;) foreveryneZ (4.23)
then f[t:.t7 ;] =0 for every n € Z and (t, v} ),ez becomes a complete orbit
for the generalized standard map

tl = to + 2’(}0
GS : g 4.24
{Ul = Vo + 2f(t1) ( )

Clearly the converse is also true, if (¢%,v}),cz is a complete orbit of GS

n’-n

with v, > v for every n and satisfying condition (4.23) then it is also an
orbit for P. This fact will be crucial in the following. We start constructing
unbounded orbits for G'S.

Proposition 10. Let t§ < t} be real numbers and let (t%, v} )nez be the orbit
of with initial conditions ty = t5,vo = vy = g(t7 — t5)/2. Suppose that
there exist N,W,V € N\ {0} such that

LNt —t5)+ 305 (N = k) f(t) =W,
2. A ) =V,

Then

Unyn = Up + gV.

Moreover, there exists T' > 0 such that if t7 —t5 > T then v, > v for every
n > 0.

Proof. Notice that from (4.24) we obtain the following expression for the
n-th iterate:

Uy = Vg + 2 Z fte) (4.25)
=1
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2 4 .
th ="t + —nvg+— Y (n—k)f(ty). (4.26)
g k=1
We claim that for every j € N, there exists o; € N such that

tho =t +0j. (4.27)

Let us prove it by induction on j The fact that v§ = g(t] — t)/2 and the
hypothesis, together with ( give the first step for j = 0 with oo = W.
Notice that by per10d1c1ty we have also f (ty) = f (t5)-

Now suppose that ty_; = t; + o; for every i < j. Using (4.24)) we have

tNyj = INngjr T g N+ = tia + o+ - g 1 +2 Z G)
(4.28)

N 1

* 2 *
(tj,1+§v D401+ — thkﬂ =t + o5+ - th,w

We just have to prove that the last term is an integer. Notice that for every
k, there exist d € N and r € {0,..., N — 1} such that kK +j = Nd + r.
Moreover, the fact that k£ € {0,..., N — 1} implies that N(d — 1) +r < j.
This allows to use the inductive hypothesis several times and get

thyj = UNapr = t*N—‘,-N(d—l)—i-r = t*N(d—l)—i-r + ON@-1)+r =+ =t + 0,

where 0 € N. Moreover, from the definition, we have that r takes all the
values in {0,..., N — 1} as k goes from 0 to N — 1. Finally we have

—thkﬂ Zf =

and we conclude by hypothesis.
This allows us to write, from (4.25)),

n+N N-—1

Vv = v 42 Y f) =12 f) = v+ 2V

2
k=n+1 k=0

Finally, once more from (4.25) we have the last assertion remembering that
vy = g(t; — t5)/2 and f is bounded. O

Remark 18. This result has a well-known geometrical interpretation. The
map GS satisfies

GS(tO + 1,U0) = GS(to, Uo) + (1, 0)
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GS(to, vo + g) = GS(to,v0) + (1, g).

It means that GS induces a map on the torus R/Z x R/27Z and the orbit

(tk, v ez becomes an N-cycle on this torus.

We shall use this proposition to find unbounded orbit for the original map
P.

Corollary 6. Suppose that the hypothesis of proposition[1( hold. Moreover,
let t7 —t5 > 1T and

3. [(tg) = [(t) = --- = [(ty-),
then (t,v} )n>0 is an unbounded orbit for P.

Proof. The generalized periodicity of the sequence (¢,) implies that the con-
dition (4.23]) holds and we can repeat the discussion of the beginning of this
section. []

Remark 19. For N =1 all the condition are satisfied if

~j(t) €N\ {0}, (4.29)

In this case we can select t] such that t7 — tj is a sufficiently large integer.
The condition was essentially found by Pustyl’nikov in [67]. Next we
show that our result, for N > 2 gives new information.

Remark 20. Consider the function

F(#) =~ sin(4rt)x (1)

where x(t) is a 1-periodic C* bump function such that

1 f0<t<3
xt)=q<1 if2<t<? (4.30)
1 if3<t<1

and |X'| < 1. It easily seen that f(t) satisfies hypothesis 1),2) and 3) of the
preceding pmpositz'on and comllary@ N=21=0andt] = % + k where
k € Z have to be chosen large enough to have vj sufficiently big. In this case
we have W = 2k + 2 and V = 2. Moreover, we have that f has minimal

period 1 and f(t) < 3 so the function does not satisfy Pustil’'nikov’s result,

as he needed a point ty such that f(to) = kg—g with ko a positive integer.
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Remark 21. The existence of an unbounded orbit breaks the invariant curves,
so, in the case of the corollary we have that the Mather sets previously found
are not ivariant curves.

By now we have an unbounded solution. We shall prove the existence of
a continuum of unbounded solutions. The key role is played by the following
theorem. It is a discrete version of a classical theorem of differential equations
and for completeness we report the sketch of the proof.

Theorem 11. Consider the difference equation
Tpr1 = Azp, + Ry ()

where A is a m X m matriz such that k eigenvalues have modulus less than
1 and the remaining m — k have modulus greater than 1. Suppose that R, :
U CR™— R™ is continuous for every n and R,(0) = 0. Moreover suppose
that for every € > 0 there exist 6 > 0 and M > 0 such that for every n > M
and u,v € By
[R(u) — Ru(v)| < elu — v

with Bs representing the ball centred in O with radius 6. Then for every ng
sufficiently large there exists a k-dimensional topological manifold S = S,
passing through zero such that if x,, € S then x, — 0 as n > ny tends to
+00.

Proof. The proof is inspired by [15, Theorem 4.1 pp 330]. First of all there

exists a change of variables such that our system becomes equivalent to

B= ( % 302 ) (4.32)

and By is a k X k matrix with all eigenvalues with modulus less than one and
By is a m — k x m — k matrix with all eigenvalues with modulus greater than
one. Now define

where

Us(n) = ( bt ) (4.33)
" Us(n) = ( 8 E?g ) . (4.34)

Notice that the U(n) = U;(n) + Ux(n) is the matrix solution of the linear
system y,+1 = By,. Moreover, there exist K > 0, oy < 1 and a3 < 1 such
that

Ui(n)] < Kay, (4.35)
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Ua(=n)| < Ko (4.36)

where | - | is the associated matrix norm. Fix oy < a < 1 and choose € such
that e K (2 + 1) < % Using the hypothesis and passing to the variable
PYeY a—aoq

y we can find M, and J. such that
|9 (1) — gn(v)] < €lu— ] (4.37)

for n > M, and u,v € Bs,. Let ng > M, and a € R™ such that 2K|a| < d..

For each [ > 0 consider the sequence {Qg)(a)}nzno defined by induction on I
by

60 (a) = 0
00" (a) = Ui(n —noJa+ 320, Un(n — 5 = 1)gu(05 (@) (4:38)

— 3% Us(n— s — 1)g,(6 (a))

Let us prove by induction on [ that this sequence is well-defined and for
n > ng
U+ () — g < 27
10D (a)] < 6.

n

The first step comes readily from estimate (4.35) and the choice of «.

Notice that the hypothesis | (a)| < 6. permits to say that [65 " (a)| is well
defined because the last sum is dominated by a convergent geometric series.
Moreover, by inductive hypothesis we have that for h =0,...,1,

05D (@)] < 165 (a) = 05 (a)| + 16 (a) = 0V (a)| + -+ + 10 (a)]
h _ 400
K|a|a™m0 1
< ;_0 — < ;:0 K|a\§ = 2K]|a| < 6.
(4.40)

remembering the choice of a. So also |9£Ll +2)| is well defined and we have

n—1
04 (@) = 0 (@) < 37 Kaf g, (00 (@) — (61" (a)]

e (4.41)
=D Koa3 g.(00 (@) — .60 (a).
So, by (4.40) we can use (4.37) and the inductive hypothesis to get
n—ng __ ~N—N0 n—ng
02 0) — 6 (@) < B g O a0

2! oa— o 1 — s
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from which, remembering that o — a; > 0

Klala™ 0 1 o
il ——(eK( +—
2 a—oa; 11— oo

1052 (a) = 6,V (a)] <

that allows us to_conclude remembering the choice of e.
From estimate (4.39) we have that for n > ng the sequence {Hg)(a)}l tends
uniformly to a limit #,,(a) such that

|0, (a)| < b0, (4.42)

Moreover, by the Weierstrass Test the function a — 6,(a) is continuous for

n > ng and |a| < 25;{. Now we want to pass to the limit in 1) Notice that

in order to pass the limit into the last sum we have to use the dominated
convergent theorem noticing that for every s

Us(n — s —1)go(60V(a)) = Us(n — s — 1)g5(As(a)) uniformly

and
Us(n — s — 1)g5(6(a))| < Ca™

So we are lead to the equation

0u(a) = Ui(n—no)a+ 3 Usln — s — 1g,(6,(a)) — 3 Ua(n— s — 1)g,(6,(a)

(4.43)
Now it is easily seen that the just defined sequence {6,(a)},>n, satisfies the
difference equation (4.31)) and by (4.42) tends to 0 as n — oo. Consider, for
|a| sufficiently small

buo(@) = a— Y Us(n— s —1)gs(8(a)).

Notice that, if we consider the decomposition of the ambient space R™ =
R* @ R™~* and suppose a € R¥, then we can see 6,,,(a) in the form

Ono(a) = (a, Pny(a))

where ¢, (a) = =322, Us(n — s — 1)gs(0s(a)) is continuous in a. So, by
continuity, graphe,, defines a k-dimensional manifold in R™*. Coming back
to the x variables we have the thesis. [

In order to apply Theorem [11flet us prove the following technical lemma
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Lemma 17. The equation
2 2
th=t+-v——f[t,t]
g g

has a unique solution t; = T(t,v) > t+1 for large v. Moreover T is of class
C* on {(t,v) : v > v} and

2 1

g
oT 1 aor 2 1
5 = 1100, %ZEJFO(;)

(4.44)

as v — +00.

Proof. The first part follows on the lines of lemma [I6] so let us prove the
validity of the asymptotic expansions. Let A = A(t,v) = T —t so that, from
the definition of T', we have

that is equivalent to the quadratic equation

2 2 np 20HT) — f(8) =
A=A +g(f(T) f@) =0

with roots

Y LT
Aizgvi\/gv (1) - £10)

Then A,y — +ocand A_ — 0 as v — +00. Since we know that A > 1, then
it must coincide with the positive branch for large v. So

1 1 2_2 — :21) 1
a=toe [ -2 - sy = 2o+ o)

that is the expansion for 7.
We can obtain the expansions for the partial derivatives differentiating

the formula
2 25(1) - f(1)

T=t
Jrg g T —t

and remembering the previous expansion of 7T'. O
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Remember that we are considering the map

{thrl t + Un f[tn+17t ]
Up+1 = Up + 2f< n+1) - Zf[ n+1, tn]

and we proved the existence of an unbounded orbit (¢f,v}),>o such that

n’vn

ty =1y, mod 1. Moreover, from condition 3. of corollary [6] we have

(4.45)

fltn,tr ] =0 for every n.

Also

2
by — 1ty = Ev:; — +00  as n — 400. (4.46)
Now we are ready to prove the following

Proposition 11. Consider the matrix

1 2
‘%‘<ﬁ@>rﬁﬂm>

If to the hypothesis of Corollary[f| we add the following
4. |Trace(ApAy ... Ay—1)| > 2

then there exists a one dimensional continuum of initial data leading to un-
bounded solutions.

Proof. Performing the change of variables

et (1.47)

Up = Up — Uy

we have that system (4.45|) transforms into

{Tn-‘rl =Tn + Vn - _)\ (Tn7 Vn) (4 48)
Un41 = Vp + 2¢n(7—n7 Vn) 2f< n—l—l) )‘ (Tna Vn) .
where

(T v) = flr + 65, T(T + 1, v +v,)]
and

On(T, V) = f(T(T +t . v+u))).

Rewriting (4.48]) as a perturbation of the linear map induced by the matrix
A, we get the following map F' defined implicitly by

{Tn_H =171, + yn — —)\ (Tny Vn) (4.49)

Upil = Vp + 2f( n+1)(7'n + Vn) + 27, (Tn, Vn) — 200(T, Vi)
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where
2

ra(Tv) = du(T,v) = f(th ) = F(th ) (7 + 7

The function )\, and 7, are well defined and of class C? in a common neigh-
bourhood U of the origin. Moreover, as T'(t},v;) = t;.,, we have that
An(0,0) = r,(0,0) = 0. From the asymptotic estimates of lemma [L7] we
deduce that

2

1
T(r+t,v+uv,) -t —7—-v=0(—) asn— +o0 (4.50)
9

Un,

uniformly in U. In consequence, remembering ,
T(r+t,v4uv)—t, — 400 asn— +oo
uniformly in U. From this it is easy to verify that
IV AullLe@) =0 as n — +oo.

Now a simple application of the mean value theorem gives, for every e, the
existence of M > 0 such that

[An(2) = Au(y)] < elz —y| (4.51)

for every z,y € U and n > M. To estimate Vr, we have to proceed with
more care. We will consider %T—T”, being the other case similar. We have

or, = oT
T T+, v+ 00) S + v+ 07) — f(t5,)

or 8_7'(
. . 1
= FT(r + 15, 0) = F(602) + O(1) a5 oo

n

(4.52)

where we have used the estimate of lemmal[I7] Now, the mean value theorem
imply that

|F(T(r 4+t v+ 0) = fE5 )] S lleol T =t
2 1

— e Zulro(=
1] |T+gV|+ (-5)

n

(4.53)

where we have used 1) A similar estimates holds for %L;, so, for every €
we can find a neighbourhood U of the origin such that

[|Vr| Loy <€ asn — +oo.
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As before, using the mean value theorem we can find for every ¢, the existence
of M > 0 such that

rn (@) = ra(y)] < el —y| (4.54)

for every x,y € U and n > M. This last estimate, together with , is
sufficient to prove that the condition imposed in thoerem [11jon the remainder
are satisfied in our case.
So, calling x,, = (7, v,) and Q,,(x,,) = (—%An(xn), 2rp(x,) — 2\ (xy,)) we
have
Tt = Ans12n + Qu(xy)

Consider now the map F, we have
Tpen = Axp + Ro(Tpy oo, Tpyn—1)

where remembering (|4.27))
A:ANOAN_l...Al :A()OAN_l...Al

In order to apply theorem [11]we have to prove that the matrix A is hyperbolic
so let us compute its trace. Remembering that the trace operator applied to
a finite product of matrices is commutative if and only if the corresponding
permutation is diedral [1], we have

Trace(A) = Trace(Ago Ay ... Ay_1).

Remembering that a 2 x 2 matrix with determinant 1 is hyperbolic with one
eigenvalue in modulus greater than 1 and the other smaller if |Trace(A)| >
2, by hypothesis, A is hyperbolic. Moreover, the remaining R, is a finite
composition of \;, r; and A;, i = 0,..., N — 1 and, recalling what we said
before about the Lipschitz constants we have, by the chain rule, that for n
sufficiently big, the Lipschitz constant of R, can be made as small as we
want in a sufficiently small ball. So we can apply theorem [11] and get the
thesis coming back to the variables (t,,v,). ]

Remark 22. Consider the function
F(£) = [1 + —L sin(dnt)|O(t)
167

where O(t) is a C*° function with minimal period 1 such that

(4.55)
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It satisfies hypothesis 1),2),3) and 4) of the propositions and and
corollary @ with N = 2 choosing t, = 0 and t; = 5 + k. In this case we
have W = 2k + 2 and V = 2 . Notice that furthermore the points t; and t;
do not satisfy Pustil’nikov’s hypothesis f(t*) >0 or f(t*) < —g.



Bibliography

1]

J.M. Almira and P.J. Torres. Invariance of the stability of Meissner’s
equation under a permutation of its intervals. Ann. Mat. Pura Appl.,
180:245-253, 2001.

J. M. Alonso and R. Ortega. Unbounded solutions of semilinear equa-
tions at resonance. Nonlinearity, 9:1099-1111, 1996.

V. I. Arnol’d. Proof of a theorem of A. N. Kolmogorov on the preserva-
tion of conditionally periodic motions under a small perturbation of the
Hamiltonian. Uspehi Mat. Nauk, 18:13-40, 1963.

S. Aubry and P.Y. LeDaeron. The discrete Frenkel-Kontorova model
and the devil’s staircase. Phys. D, 7:240-258, 1983.

V. Bangert. Mather sets for twist maps and geodesics on tori. In Dynam-
ics reported, Vol. 1, volume 1 of Dynam. Report. Ser. Dynam. Systems
Appl., pages 1-56. Wiley, Chichester, 1988.

A. Beléndez, C. Pascual, D.I. Méndez, and C Neipp. Solution of the
relativistic (an)harmonic oscillator using the harmonic balance method.
J. Sound Vibration, 311:1447-1456, 2008.

C. Bereanu, P. Jebelean, and J. Mawhin. Periodic solutions of
pendulum-like perturbations of singular and bounded ¢-Laplacians. J.
Dynam. Differential Equations, 22:463-471, 2010.

C. Bereanu and P. J. Torres. Existence of at least two periodic solutions
of the forced relativistic pendulum. Proc. Amer. Math. Soc., 140:2713—
2719, 2012.

G. D. Birkhoff. Proof of Poincaré’s geometric theorem. Trans. Amer.
Math. Soc., 14:14-22, 1913.

G. D. Birkhoff. Dynamical systems with two degrees of freedom. Trans.
Amer. Math. Soc., 18:199-300, 1917.

111



112

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21

[22]

23]

[24]

[25]

G. D. Birkhoff. An extension of Poincaré’s last geometric theorem. Acta
Math., 47:297-311, 1926.

H. Brezis and J. Mawhin. Periodic solutions of the forced relativistic
pendulum. Differential Integral Equations, 23:801-810, 2010.

M. Brown and W. D. Neumann. Proof of the Poincaré-Birkhoff fixed
point theorem. Michigan Math. J., 24:21-31, 1977.

P. Le Calvez and J. Wang. Some remarks on the Poincaré-Birkhoff
theorem. Proc. Amer. Math. Soc., 138:703-715, 2010.

E.A. Coddington and N. Levinson. Theory of Ordinary Differential
FEquations. McGraw-Hill Book Company, 1955.

W. Y. Ding. A generalization of the Poincaré-Birkhoff theorem. Proc.
Amer. Math. Soc., 88:341-346, 1983.

D. Dolgopyat. Bouncing balls in non-linear potentials. Discrete and
Continuous Dynamical Systems, 22:165-182, 2008.

D. Dolgopyat. Fermi acceleration. In Geometric and probabilistic struc-
tures in dynamics, volume 469 of Contemp. Math., pages 149-166. Amer.
Math. Soc., Providence, RI, 2008.

A. Fonda and R. Toader. Periodic solutions of pendulum-like Hamilto-
nian systems in the plane. Adv. Nonlinear Stud., 12:395-408, 2012.

J. Franks. Generalizations of the Poincaré-Birkhoff theorem. Annals of
Math. (2), 128:139-151, 1988.

C. Golé. Symplectic twist maps, volume 18 of Advanced Series in Non-
linear Dynamics. World Scientific Publishing Co. Inc., River Edge, NJ,
2001. Global variational techniques.

A. Granas and J. Dugundji. Fized point theory. Springer, 2003.

P. Hartman. Ordinary Differential Equations. John Wiley & Sons, Inc.,
New York, 1964.

M.R. Herman. Sur les courbes invariantes par les difféomorphismes de
l’anneau. Vol. 1, volume 103 of Astérisque. Société Mathématique de
France, Paris, 1983.

M.R. Herman. Sur les courbes invariantes par les difféomorphismes de
I’anneau. Vol. 2. Astérisque, page 248, 1986.



BIBLIOGRAPHY

[26]

[27]

[36]

[37]

[38]

M.W. Hirsch. Differential Topology. Springer-Verlag, 1976.

E. B. Hollander and J. De Luca. Two-degree-of-freedom Hamiltonian
for the time-symmetric two-body problem of the relativistic action-at-
a-distance electrodynamics. Phys. Rev. E (3), 67:026219, 15, 2003.

J.H. Kim and H.-W. Lee. Chaos in the relativistic cyclotron motion of
a charged particle. Phys. Rev. F, 54:3461-3467, Oct 1996.

J.H. Kim, S.W. Lee, H. Maassen, and H.W. Lee. Relativistic oscillator
of constant period. Phys. Rev. A, 53:2991-2997, 1996.

A. N. Kolmogorov. On conservation of conditionally periodic motions for
a small change in Hamilton’s function. Dokl. Akad. Nauk SSSR (N.S.),
98:527-530, 1954.

A. N. Kolmogorov. Théorie générale des systemes dynamiques et
mécanique classique. In Proceedings of the International Congress of
Mathematicians, Amsterdam, 1954, Vol. 1, pages 315-333. Erven P.
Noordhoff N.V., Groningen, 1957.

S. Krantz and H. Parks. A primer of real analytic functions. Birkhauser,
2002.

M. A. Krasnosel’skii, A.I Petrov, A.I Povolotskiy, and P.P. Zabreiko.
Plane Vector Fields. Academic Press, 1966.

M. Kunze and R. Ortega. Complete Orbits for Twist Maps on the Plane:
Extensions and Applications. J Dyn Diff Equat, 23:405-423, 2011.

M. Kunze and R. Ortega. Twist mappings with non-periodic angles. In
Stability and bifurcation theory for non-autonomous differential equa-
tions, volume 2065 of Lecture Notes in Math., pages 267-302. Springer,
Berlin, 2013.

S. Laederich and M. Levi. Invariant curves and time-dependent poten-
tials. Ergodic Theory Dynam. Systems, 11:365-378, 1991.

S. Lefschetz. Differential Equations: Geometric Theory. Dover, New
York, 1977.

M. Levi. KAM theory for particles in periodic potentials. Ergodic Theory
Dynam. Systems, 10:777-785, 1990.

113



114

BIBLIOGRAPHY

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[48]

[49]

Y. Li and Z. H. Lin. A constructive proof of the Poincaré-Birkhoff
theorem. Trans. Amer. Math. Soc., 347:2111-2126, 1995.

L. A. MacColl. Theory of the relativistic oscillator. Amer. J. Phys.,
25:535-538, 1957.

R. Manésevich and J. R. Ward. On a result of Brezis and Mawhin. Proc.
Amer. Math. Soc., 140:531-539, 2012.

S. Maro. Relativistic pendulum and invariant curves. preprint, available
at hitp://www.ugr.es/local /ecuadif/fuentenueva. htm.

S. Maro. Coexistence of bounded and unbounded motions in a bouncing
ball model. Nonlinearity, 26:1439-1448, 2013.

S. Maro. Periodic solutions of a forced relativistic pendulum via twist
dynamics. Topol. Methods Nonlinear Anal., 42:51-75, 2013.

R. Martins and A. J. Urena. The star-shaped condition on Ding’s version
of the Poincaré-Birkhoff theorem. Bull. Lond. Math. Soc., 39:803-810,
2007.

J. N. Mather. Existence of quasiperiodic orbits for twist homeomor-
phisms of the annulus. Topology, 21:457-467, 1982.

J. N. Mather. Modulus of continuity for Peierls’s barrier. In Periodic
solutions of Hamiltonian systems and related topics (Il Ciocco, 1986),
volume 209 of NATO Adv. Sci. Inst. Ser. C' Math. Phys. Sci., pages
177-202. Reidel, Dordrecht, 1987.

J. N. Mather. Variational construction of orbits of twist diffeomor-
phisms. J. Amer. Math. Soc., 4:207-263, 1991.

J.N. Mather and G. Forni. Action minimizing orbits in Hamiltonian

system. Transition to chaos in classical and quantum mechanics, Lecture
Notes in Math., 1589:92-186, 1994.

K. R. Meyer, G. R. Hall, and D. Offin. Introduction to Hamiltonian
dynamical systems and the N-body problem, volume 90 of Applied Math-
ematical Sciences. Springer, New York, second edition, 2009.

R. E. Mickens. Periodic solutions of the relativistic harmonic oscillator.
J. Sound Vibration, 212:905-908, 1998.



BIBLIOGRAPHY 115

[52] J. Milnor. Lectures on the h-Cobordism theorem. Princeton Univ. Press,
1965.

[53] W. Moreau, R Easther, and R. Neutze. Relativistic (an)harmonic oscil-
lator. Am. J. Phys., 62:531-535, 1994.

[54] J. Moser. On invariant curves of area-preserving mappings of an annulus.
Nachr. Akad. Wiss. Gottingen Math.-Phys. Kl. 11, 1962:1-20, 1962.

[55] J. Moser. Stability and nonlinear character of ordinary differential equa-
tions. In Nonlinear Problems (Proc. Sympos., Madison, Wis., 1962),
pages 139-150. Univ. of Wisconsin Press, Madison, Wis., 1963.

[56] J. Moser. On the volume elements on a manifold. Trans. Am. Math.
Soc., 120:286-294, 1965.

[57] J. Moser. Selected chapters in the calculus of variations. Lectures in
Mathematics ETH Ziirich. Birkhauser Verlag, Basel, 2003. Lecture notes
by Oliver Knill.

[58] J. Nash. The imbedding problem for Riemannian manifolds. Ann. of
Math. (2), 63:20-63, 1956.

[59] R. Ortega. Asymmetric oscillators and twist mappings. J. London Math.
Soc. (2), 53:325-342, 1996.

[60] R. Ortega. Invariant curves of mappings with averaged small twist. Adv.
Nonlinear Stud., 1:14-39, 2001.

[61] R. Ortega. Twist mappings, invariant curves and periodic differential
equations. In Nonlinear analysis and its applications to differential equa-
tions (Lisbon, 1998), volume 43 of Progr. Nonlinear Differential Equa-
tions Appl., pages 85-112. Birkhauser Boston, Boston, MA, 2001.

[62] R. Ortega. Retracts, fixed point index and differential equations. Rev.
R. Acad. Cien. Serie A. Mat., 102:89-100, 2008.

[63] R. Ortega. Linear motions in a periodically forced Kepler problem.
Portugal. Math., 68:149-176, 2011.

[64] R. Ortega and M. Tarallo. Degenerate equations of pendulum-type.
Comm. Cont. Math., 2:127-149, 2000.

[65] H. Poincaré. Sur un théoreme de geométrie. Rend. Circ. Mat. Palermo,
33:375-407, 1912.



116

BIBLIOGRAPHY

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

L.D. Pustyl'nikov. Existence of a set of positive measure of oscillating
motions in a certain problem of dynamics. Soviet. Math. Dokl., 13:94-97,
1972.

L.D. Pustyl’'nikov. Poincaré models, rigorous justification of the second
element of thermodynamics on the basis of mechanics, and the Fermi
acceleration mechanism. Russian Math. Surveys, 50:145-189, 1995.

C. Rebelo. A note on the Poincaré-Birkhoff fixed point theorem and
periodic solutions of planar systems. Nonlinear Anal., 29:291-311, 1997.

A. Ruiz-Herrera and P. J. Torres. Periodic solutions and chaotic dynam-
ics in forced impact oscillators. SIAM J. Appl. Dyn. Syst., 12:383-414,
2013.

C. L. Siegel. Iteration of analytic functions. Ann. of Math. (2), 43:607—
612, 1942.

C. L. Siegel and J. Moser. Lectures on celestial mechanics. Springer-
Verlag, New York, 1971.

M. P. Solon and J. P. H. Esguerra. Periods of relativistic oscillators with
even polynomial potentials. Phys. Lett. A, 372(44):6608-6612, 2008.

R. A. Struble and T. C. Harris. Motion of a relativistic damped oscilla-
tor. J. Mathematical Phys., 5:138-141, 1964.

P. J. Torres. Periodic oscillations of the relativistic pendulum with fric-
tion. Phys. Lett. A, 372:6386—-6387, 2008.

P.J. Torres. Nondegeneracy of the periodically forced Liénard differential
equation with ¢-Laplacian. Comm. Comtemporary Math., 13:283-292,
2011.

J. You. Invariant tori and Lagrange stability of pendulum-type equa-
tions. J. Differential Equations, 85:54-65, 1990.



	Introduction
	Basic notions on maps in the cylinder
	Symplectic vs exact symplectic maps
	The twist condition and the generating function

	Three symplectic theorems
	The Poincaré-Birkhoff theorem
	Invariant curves and KAM theory
	Aubry-Mather Theory

	Applications to Hamiltonian systems
	The Poincaré map of Hamiltonian systems
	An example: the forced relativistic pendulum

	Applications to impact problems
	Statement of the problem
	Existence of Aubry-Mather bouncing solutions
	Unbounded orbits

	References

