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EN FÍSICA Y MATEMÁTICAS
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resto del Departamento de Matemática Aplicada en general.
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toda nuestra relación haya sido a través de una pantalla, debido a la pandemia.
Espero que nuestra colaboración haya sido la primera de muchas, y que estas sean
presenciales. Ya es hora de tomarse una cerveza juntos.

I am also very grateful to Alessandro Fonda for his attention and kindness dur-
ing my stay in Trieste. I fondly remember the dinners at your home, with Rodica
and your children. Of course, many thanks for your teaching on the Poincaré-
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que he tenido. Claudia, David, Salva, Vı́ctor, Manuel y Mauricio me acogieron e
integraron desde el primer d́ıa como a uno más, y no tardamos mucho en hacernos
amigos. Me enorgullezco de ello, pues sois gente brillante pero humilde, buena y



ii

divertida. Y es que además sois unos auténticos personajes... Lo mismo digo puedo
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Resumen

La temática de esta tesis doctoral se enmarca en el análisis de sistemas dinámicos
no lineales con origen f́ısico. Para el lector, o lectora, no familiarizado con las
Matemáticas, un sistema dinámico hace referencia a una ecuación, o conjunto
de ecuaciones, cuya incógnita es una función que depende del tiempo. Es decir,
a través del mismo se describe la evolución temporal o dinámica de la función
en cuestión. El planteamiento de este tipo de ecuaciones, llamadas diferenciales,
tienen su motivación natural en nuestro deseo de explicar y predecir multitud de
fenómenos que ocurren en la naturaleza. Es por ello que poseen gran relevancia
en campos de estudios dispares entre śı como son la F́ısica, las distintas Ciencias
Naturales o la Economı́a.

Gran parte de los problemas planteados en la presente memoria se centran en
el estudio de dinámicas periódicas en la ecuación de la fuerza de Lorentz, la cual
describe el movimiento de una part́ıcula cargada en un campo electromagnético,
según la Electrodinámica Clásica. Este área de la f́ısica estudia las interacciones
entre part́ıculas y campos electromagnéticos, a una escala suficientemente grande
tal que los efectos cuánticos son despreciables. De ese modo, notando por q(t) :
[0, T ] → R3 a la posición de la part́ıcula en el instante t, y por q̇(t) a su velocidad,
dados los campos eléctrico y magnético E, B : R×R3 → R3, el sistema a estudiar
es el siguiente:

d

dt

(
q̇(t)√

1− |q̇(t)|2

)
= E(t, q(t)) + q̇(t)×B(t, q(t)),

donde masa y carga han sido normalizadas a 1 sin pérdida de generalidad. El
término de la izquierda es la aceleración, en términos relativistas, de la part́ıcula,
mientras que el lado derecho denota la expresión clásica de la fuerza de Lorentz,
que modela la fuerza que ejerce el campo electromagnético sobre la misma. En esta
situación, se obtiene un movimiento periódico si existe una solución de la ecuación
que cumpla las condiciones de contorno

q(0)− q(T ) = q̇(0)− q̇(T ) = 0.

De ese modo, cada solución se identifica con una órbita cerrada en el sistema.

La ecuación de la fuerza de Lorentz tiene su origen en los trabajos de Poincaré
[101,102] y Planck [100] a comienzos del siglo XX, y constituye, junto a las Ecua-
ciones de Maxwell, los pilares de la Electrodinámica Clásica. Ambos sistemas se
consideran ecuaciones fundamentales de la F́ısica Matemática en particular, y de la
Ciencia en general, debido a su profunda relevancia teórica y experimentalmente.
No obstante, pese a ello existen pocos resultados cualitativos y cuantitativos sobre
la dinámica que describe la fuerza de Lorentz, siendo estos prácticamente inexis-
tentes dos décadas atrás. Hasta entonces, la mayoŕıa de resultados conocidos se
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limitan a identificar soluciones en situaciones simples, como en el caso de cam-
pos uniformes y constantes, o bajo simetŕıas circulares o eĺıpticas. Uno de los
principales motivos de esta ausencia es que las técnicas anaĺıticas necesarias para
ello se desarrollan en el último tercio del siglo XX. Además, estas herramientas se
plantean en el marco abstracto del análisis no lineal, mientras que su aplicación en
la ecuación de la fuerza de Lorentz no data más allá de los últimos 15 años. Concre-
tamente, en 2008, Mawhin y Bereanu aplican argumentos de grado topológico para
lograr resultados de existencia de solución en campos electromagnéticos continuos
bajo condiciones de contorno periódicas, de Dirichlet y de Neumann [14]. Más ade-
lante, en 2019, Arcoya, Bereanu y Torres desarrollan una Teoŕıa de punto cŕıtico
para la ecuación de la fuerza de Lorentz en [7], siguiendo las ideas de los métodos
variacionales de Szulkin [112]. En particular, prueban existencia de solución en una
extensa clase de campos electromagnéticos continuos bajo condiciones de contorno
periódicas y de Dirichlet. Además, en un segundo art́ıculo obtienen resultados de
multiplicidad en el mismo marco funcional de campos continuos [8].

En los trabajos anteriormente citados no se consideran campos que puedan
admitir singularidades, manteniéndose como un problema abierto. La primera
contribución de este manuscrito es la resolución parcial del mismo, para el caso de
condiciones de contorno periódicas. Ello dio lugar a la siguiente publicación:

[62] M. Garzón and P.J. Torres, Periodic solutions for the Lorentz force equation
with singular potentials, Nonlinear Analysis: Real World Applications, 56
(2020), 103162.

Mediante un argumento de grado topológico, en el art́ıculo citado se prueba la exis-
tencia de órbitas cerradas asumiendo que el campo eléctrico es singular en el origen.
Con respecto al magnético, también puede serlo siempre que la singularidad domi-
nante sea la del campo eléctrico. Las hipótesis cubren casos f́ısicamente relevantes
como son los potenciales de tipo Coulomb (que representa a una part́ıcula cargada
y estática), los dipolos magnéticos, o los flujos ABC. Todo ello está extensamente
detallado en la Introducción y en el caṕıtulo 2.

Otros modelos electrodinámicos de interés son aquellos generados por corrientes
eléctricas. Cabe decir que el concepto de corriente es una noción abstracta para
ilustrar el efecto f́ısico que produce el movimiento de las part́ıculas cargadas, acorde
a la ley de Maxwell-Faraday. De esta manera, si imaginamos un hilo que transporta
una corriente de valor constante y uniforme, mediante las ecuaciones de Maxwell
es sencillo probar que se produce un régimen magnetostático. Es decir, no existe
campo eléctrico y la corriente genera un campo magnético autónomo que se obtiene
acorde a ley de Biot-Savart. Como consecuencia, el módulo de la velocidad es una
cantidad conservada del sistema, aśı como también lo es la enerǵıa. Ello implica
que la ecuación de la Fuerza de Lorentz se reduce a una del tipo

q̈ = q̇ ×B(q).
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Luego, en Magnetostática, el marco newtoniano y el relativista son equivalentes.
Este tipo de situaciones son muy relevantes en diversas ramas de la f́ısica ex-
perimental debido al gran número de aplicaciones que suscita el movimiento de
part́ıculas cargadas en campos magnéticos, como la obtención de trampas magné-
ticas para encerrar electrones, entre otros ejemplos [18, 20, 23, 30, 59, 91, 99, 107].
No obstante, generalmente no es posible integrar anaĺıticamente las ecuaciones de
movimiento, con lo que muchos de los estudios existentes se reducen a aproxima-
ciones numéricas de las mismas. No obstante, se han estudiado anaĺıticamente
las dinámicas inducidas por configuraciones de hilo que implican simetŕıas en el
sistema, como el caso de una espira o cable circular, el hilo infinito de corriente, o
la superposición de ambos [3,64,65]. De ese modo, acorde al teorema de Noether,
cada simetŕıa implica la existencia de una cantidad conservada, lo que permite re-
ducir la dimensión del sistema dinámico, facilitando su resolución. En el caso del
hilo infinito, la conservación de la enerǵıa y los momentos, angular y lineal, impli-
can que el sistema es integrable, quedando determinado por la dinámica radial (en
coordenadas ciĺındricas) de la part́ıcula. En particular, se tiene que las part́ıculas
siguen un movimiento periódico en la variable radial, sin alcanzar a tocar el cable,
y tal que existe un único punto de equilibrio en esta variable.

En contraposición, si pasamos de una corriente continua a una alterna, la
dependencia temporal de la misma rompe el régimen magnetostático, generando
un campo eléctrico no autónomo, que a su vez implica una dependencia temporal
en el magnético. Debido a ello, no puede aplicarse la ley de Biot-Savart y el campo
electromagnético ha de calcularse mediante la resolución rigurosa de las ecuaciones
de Maxwell. En particular, asumiendo que la corriente, la cual fijamos en el eje
z sin pérdida de generalidad, es una perturbación de la forma I0 + kI(t), con
I0, k > 0 constantes, e I(t) siendo una función periódica de media nula:∫ T

0

I(t)dt = 0,

entonces el campo electromagnético generado viene dado por las identidades

B(t, q) = ∇× A⃗(t, q), E(t, q) = −∂tA⃗(t, q),

para el potencial A⃗(t, q) = A(t, r)ez, donde

A(t, r) = −µ0

2π
[a0(r) + ka(t, r)],

con

a0(r) = I0 ln r, a(t, r) =

∫ ∞

0

I[t, r, τ ]√
τ 2 + r2

dτ.

Se ha notado por r a la variable radial en el plano XY , ez es el vector unitario
positivo en la dirección z, y el corchete [t, r, τ ] =

(
t−

√
τ 2 + r2

)
muestra el efecto

relativista de retardo que implican las ecuaciones de Maxwell. Nótese que para
k = 0 estamos en la situación magnetostática. En esta ĺınea, nuestra investigación
ha contribuido con las dos siguientes publicaciones:
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[61] M. Garzón and S. Marò, Motions of a charged particle in the electromagnetic
field created by a non-stationary current, Physica D: Nonlinear Phenomena,
424 (2021), 132945.

[63] M. Garzón and P.J. Torres, Relativistic dynamics in the electromagnetic field
created by a non-stationary current. Sometido a publicación, 2022.

En el art́ıculo [61] planteamos el modelo electromagnético generado por el hilo in-

finito de corriente, deduciendo rigurosamente el potencial A⃗ mediante la resolución
de las ecuaciones de Maxwell. Una vez obtenido, como continuación natural del
modelo magnetostático estudiado en [3], nos centramos en el estudio de la dinámica
inducida por la corriente alterna en el marco newtoniano, es decir, la descrita por
la ecuación de Newton-Lorentz

q̈ = E(t, q) + q̇ ×B(t, q).

Aunque la enerǵıa del sistema no se conserva para k > 0, śı lo hacen los momentos
debido a las simetŕıas inducidas por el hilo, lo que permite reducir el sistema
dinámico a la siguiente ecuación escalar para la variable radial

r̈ =
L2

r3
− (pz + I0 ln r + ka(t, r))

(
I0
r
+ k∂ra(t, r)

)
,

donde las constantes L, pz ∈ R denotan los momentos angular y linear respecti-
vamente. En nuestro análisis, aplicamos el teorema clásico de continuación local
de equilibrios [28], junto con el método de la tercera aproximación [114] (intro-
ducido originalmente por Ortega en [94,96]), para probar la existencia de soluciones
periódicas en la ecuación radial que son de tipo twist, lo que implica que son solu-
ciones estables con respecto de las condiciones iniciales. Además, probamos que
la estabilidad se mantiene en el plano de fase de las cantidades conservadas. De-
bido a las técnicas empleadas, nuestro resultado cualitativo es válido para valores
pequeños del parámetro de perturbación k. Por último, cabe decir que las solu-
ciones periódicas de la ecuación escalar se corresponden con órbitas radialmente
periódicas alrededor del hilo en la descripción tridimensional.

Por otra parte, en [63] estudiamos la alteración de la dinámica en el marco
relativista para k > 0, ya que para k = 0 ambos enfoques son equivalentes. Nue-
vamente, las simetŕıas del hilo implican la conservación de los correspondientes
momentos relativistas angular y linear, por lo que la ecuación de la fuerza de
Lorentz se reduce al siguiente sistema diferencial de primer orden

ṙ =
pr√

1 + (pz − A)2 + p2r + L2r−2
,

ṗr =
L2r−3 + (pz − A)∂rA√

1 + (pz − A)2 + p2r + L2r−2
,
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el cual posee estructura hamiltoniana paraH(t, r, pr) =
√

1 + (pz − A)2 + p2r +
L2

r2
.

En este caso, obtenemos un resultado cuantitativo de existencia de soluciones
radialmente periódicas para la ecuación de la fuerza de Lorentz, en un intervalo
expĺıcito del parámetro k, el cual depende de los valores de la corriente y los
momentos. La demostración del mismo sigue un argumento de perturbación global
mediante grado topológico, donde son esenciales unas estimaciones expĺıcitas del
comportamiento asintótico del potencial A(t, r). Estas son obtenidas previamente
en el mismo trabajo, y pueden suscitar interés matemático por śı solas. Con
respecto a la estabilidad de las soluciones, la obtención de un resultado cuantitativo
se mantiene como un problema abierto.

Por último, esta tesis contribuye a la teoŕıa de problemas periódicos en sistemas
Hamiltonianos no lineales con la siguiente publicación, escrita durante mi estancia
en la Universidad de Trieste (Italia) durante los meses de febrero, marzo y abril
de 2022:

[42] A. Fonda, M. Garzón and A. Sfecci: An extension of the Poincaré-Birkhoff
Theorem coupling twist with lower and upper solutions. Sometido a publi-
cación, 2022.

El teorema de Poincaré-Birkhoff es uno de los teoremas de punto fijo más desta-
cados. En su versión original, puede enunciarse como sigue:

Sea Ψ : R → R un homeomorfismo que preserva el área, donde R ⊂ R2 es el
anillo formado por los ćırculos Ca y Cb concéntricos de radios a y b respectivamente,
con 0 < a < b. Supongamos que Ψ satisface la condición twist, es decir, los puntos
de Ca rotan en sentido opuesto a los de Cb. Entonces, la aplicación Ψ tiene al
menos dos puntos invariantes.

A pesar de su aparente sencillez, ha dado lugar a multitud de aplicaciones
en el estudio de dinámicas periódicas en ecuaciones diferenciales escalares, par-
ticularmente en aquellas que tienen estructura hamiltoniana. Originalmente, es
enunciado en 1912 por Poincaré, motivado por su investigación en el problema de
3 cuerpos, quien además lo demuestra para algunos casos particulares [103]. No
obstante, tras su fallecimiento ese mismo año, el teorema permanece como con-
jetura abierta hasta que Birkhoff da una prueba del mismo en [16], pocos meses
después. Concretamente, demuestra la existencia de un punto fijo, mientras que el
segundo sigue de una observación de Poincaré, que establece que el número total de
puntos fijos en la aplicación ha de ser par. Sin embargo, el razonamiento falla si el
primer punto fijo tiene ı́ndice nulo, luego, como el propio Birkhoff observa en [17],
la demostración para la existencia del segundo punto requiere ser más precisa. Por
este motivo, a lo largo del siglo pasado se desarrollaron distintos resultados que
prueban el teorema en condiciones más generales, véase [49,106] para una revisión
histórica más detallada.

Desde los trabajos de Birkhoff, varios autores han extendido el resultado planar
a variedades diferenciables 2N -dimensionales, con N ≥ 1. Citando a Arnold, los
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intentos por generalizar el resultado a dimensiones mayores son importantes para el
estudio de soluciones periódicas en problemas con varios grados de libertad [11, p.
416]. Sin embargo, no existe una generalización apropiada del teorema de Poincaré-
Birkhoff hasta la fechai [92].

No obstante, los resultados de Fonda y Ureña en la pasada década [55–57]
produjeron un gran avance en esta dirección. En sus trabajos extienden el teorema
clásico a sistemas hamiltonianos 2N -dimensionales, asumiendo diferentes generali-
zaciones de la condición twist en dimensiones mayores. Esta ĺınea de investigación
ha sido continuada de forma exitosa por el primer autor y otros colaboradores,
logrando resultados aún más generales y un gran número de aplicaciones, incluso
para sistemas hamiltonianos de dimensión infinita.

El art́ıculo [42] es una de las últimas contribuciones en esta ĺınea, extendiendo
estos resultados a sistemas hamiltonianos que acoplan la condición twist (en sus
diferentes variantes) con una generalización de los conceptos de sub y súper solución
en dimensiones mayores. Las definiciones dadas en [42] están basadas en los tra-
bajos previos de Fonda, Klun, Sfecci y Toader [46, 52], que generalizan el método
clásico de sub y súper soluciones en ecuaciones diferenciales de segundo orden a
sistemas planares periódicos.

Estructura de la tesis.

� Caṕıtulo 1: Introducción del documento. La primera sección se centra en
la Electrodinámica, explicando con detalle los modelos de la ecuación de
Lorentz y las ecuaciones de Maxwell. Respecto a estas, se plantean rigurosa-
mente desde un punto matemático mediante la teoŕıa de las distribuciones,
aśı como se muestra su resolución según si el enfoque adoptado para ello es de
carácter f́ısico o matemático. Por otra parte, se hace una revisión detallada
de los resultados existentes (y previos a este trabajo) sobre el problema
periódico en campos electromagnéticos continuos. Por último, se resumen
los resultados obtenidos para campos electromagnéticos que admiten singu-
laridades puntuales, como también en el modelo del hilo.

La segunda sección se centra en el teorema de Poincaré-Birkhoff, extendiendo
lo comentado en este resumen sobre su historia y los resultados previos al
trabajo aportado en esta memoria. Por último, se explica la situación más
simple planteada en [42], consistente en un sistema diferencial en R4 que
acopla el método planar de sub/súper solución con una generalización del
concepto twist en R2. Dicho resultado es la base a partir del cual se producen
las demás generalizaciones a dimensiones mayores en el citado art́ıculo.

Por último, se comentan las técnicas matemáticas de perturbación local y
global empleadas en estas investigaciones, junto con el método de estabilidad

iSepa el lector que las notas originales de Moser y Zhender datan de los años 1979 y 1980,
mientras que la última versión fue publicada en 2005.
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de la tercera aproximación.

� Caṕıtulo 2: Se corresponde con el art́ıculo [62], que prueba la existencia
de soluciones periódicas en la ecuación de la fuerza de Lorentz para campos
electromagnéticos singulares, cubriendo diversos ejemplos f́ısicamente rele-
vantes.

� Caṕıtulo 3: Se corresponde con el art́ıculo [61]. En el mismo se deduce de
manera rigurosa el campo electromagnético generado por el hilo infinito de
corriente alterna, aśı como la existencia de soluciones radialmente periódicas
en el marco no relativista para valores pequeños en la perturbación. Mediante
el método de la tercera aproximación, se tiene que la dinámica radial de las
mismas es estable en el sentido de Liapunov.

� Caṕıtulo 4: Se corresponde con el art́ıculo [63], que estudia el marco
relativista del modelo del hilo infinito de corriente alterna. Mediante un
argumento de grado topológico, se logra un resultado cuantitativo para
la existencia de soluciones radialmente periódicas en un intervalo expĺıcito
del parámetro de perturbación. Este caṕıtulo incluye también el estudio
asintótico en cero y en infinito del campo electromagnético inducido por el
hilo, para el cual se usan fuertemente ciertas propiedades de las funciones de
Bessel.

� Caṕıtulo 5: Se corresponde con el art́ıculo [42]. En este trabajo se extienden
las recientes generalizaciones del teorema de Poincaré-Birkhoff a sistemas
hamiltonianos que acoplan variantes de la condición twist con el concepto de
sub/súper solución en dimensiones mayores.
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Chapter 1

Introduction

1.1 Electrodynamics

1.1.1 Preliminaries

As far as it is known by Physics, there are four fundamental interactions between
particles in the universe, these are Gravity, Weak and Strong Nuclear forces and
the Electromagnetism. In this thesis we focus on Classical Electrodynamics, that
describes the relations between charged particles and electromagnetic fields, and
holds when the length scale of interactions is large enough to avoid quantum effects.
Mathematically, this is ruled by the Lorentz force equation (LFE) which, together
with Maxwell’s equations, compose the backbone of this branch of knowledge.
Both systems are complementary in the following sense: while the LFE models
the dynamics of a charged particle in an electromagnetic field, Maxwell’s equations
describe the geometry of the field and how it arises from distributions of charged
particles. Therefore, in order to have a complete picture of these phenomena, and
for a rigorous approach to them, it is necessary to understand these two systems
of differential equations, which we introduce below.

The Lorentz force equation

According to Classical Electrodynamics, the motion of a charged particle in an
electromagnetic field is ruled by the Lorentz force equation, where the influence
of the particle on the field is assumed to be negligible, for instance, this includes
the case of a slowly accelerated motion. The classical LFE has its origin in the
pioneering works of Planck and Poincaré [100] - [101,102] and, due to its relevance
in theory and applications, it can be found in many classical textbooks on Physics
and Electrodynamics, see for instance [72, Chapter 12], [67, Chapters 5 and 12], [77,
Chapter 3] or [39]. Denoting by q(t) : [0, T ] → R3 the position of the particle
at time t, and by q̇(t) its derivative, the dynamical system to be studied is the

1
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following:

d

dt

(
q̇(t)√

1− |q̇(t)|2

)
= E(t, q(t)) + q̇(t)×B(t, q(t)), (1.1)

where, without loss of generality, both the speed of light in vacuum and the charge-
to-mass ratio are normalized to 1. The right-hand side of the equation is the
common expression of the Lorentz force, with E : [0, T ]×R3 → R3 and B : [0, T ]×
R3 → R3 being the electric and magnetic field respectively, while the left-hand side
denotes the relativistic acceleration of the particle, implying the characteristic
speed limitation of Special Relativity. Introducing the diffeomorphism

ϕ : B(0, 1) → R3, ϕ(v) =
v√

1− |v|2
,

the left-hand side is also known as a singular ϕ-Laplacian in the related (more
mathematically oriented) literature, see for instance [14].

Although (1.1) is one of the fundamental equations of Mathematical Physics,
there has been a remarkable lack of qualitative and quantitative results about its
dynamics until recently. One of the main reasons is that the proper mathematical
tools for it were developed during the last quarter of the last century. Besides,
such techniques were conceived in an abstract mathematical framework, and their
applications to (1.1) barely appear during the last 15 years. Nevertheless, let us
focus on Maxwell’s equations before to go into detail about these results.

Maxwell’s equations

In 1865, J.C. Maxwell published the celebrated paper [90] where the Electromag-
netism is unified in a set of coupled PDE, describing the nature of the electro-
magnetic field and how it arises from the source, the charged particles distri-
bution. Originally, Maxwell stated 20 equations, but finally there were reduced
to 4 by O. Heaviside, that we present here in the differential formulation in SI
units [31, 39,67,72]:

∇ ·B = 0, (Gauss’s law for magnetism)

∇× E + ∂tB = 0, (Maxwell-Faraday equation)

∇×B = µ0J⃗ + ∂tE, (Ampère’s law)

∇ · E = µ0ρ. (Gauss’s law)

(1.2)

Remark 1. As the speed light in the vacuum c has been normalized to 1, (1.2)
is written only in term of the universal constant µ0 of permeability of free space
(for unitary c) by using the identity c

√
ϵ0µ0 = 1. Then, the vacuum permittivity

constant ε0 is omitted.

Remark 2. Here the divergence and curl operators are defined only with respect
of the variable q. This notation is adopted along this manuscript for any function,
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field or distribution f(t, q), being similar for the laplacian ∆ and the gradient ∇. In
addition, the operator of partial derivative w.r.t an arbitrary variable x is identified
as ∂x.

While the concept of electric charge density is naturally understood as the
distribution of the particles in space-time, the notion of electric current is quite
delicate. In particular, it represents a flow of charged particles crossing a particular
section (like a wire, a circuit or a planar section of the plane) which creates an
electromagnetic field according to the Ampère’s law, it is an abstract notion defined
to illustrate the physical effects of charges in motion. Mathematically, we define
them as scalar and vectorial distributions in space-time, that is as elements of
the duals for the compact supported functions spaces C∞

0 (R4) and C∞
0 (R4;R3).

Concretely, ρ ∈ D (R4) and J⃗ ∈ [D (R4)]3.

Remark 3. Equivalently, from a geometrical perspective, (ρ, J⃗) can be defined by
the theory of currents, i.e., weak duals of the space of the compactly supported
smooth forms on the space-time manifold.

Nevertheless, the pair (ρ, J⃗) cannot be chosen arbitrarily, there exists a neces-
sary condition for it.

Definition 1. A couple ρ ∈ D (R4), J⃗ ∈ [D (R4)]3, denotes a physically admis-
sible charge and current distributions if they satisfy the charge continuity equation

∂tρ+∇ · J⃗ = 0. (1.3)

Notice that (1.3) is a direct consequence of the last two equations in (1.2).
We refer to them as the non-homogeneous part of Maxwell’s equations because
of the presence of the charge and current distributions in the differential system.
This approach considering ρ and J⃗ as data of (1.2) is the natural focus from the
perspective of physicists and engineers, in order to compute the electromagnetic
field in a concrete physical situation. On the other hand, by applying formally the
Helmholtz’s theorem to the homogeneous part of (1.2), the scalar and vectorial

potentials Φ ∈ D (R4), A⃗ ∈ [D (R4)]3 are introduced as follows:

B(t, q) = ∇× A⃗(t, q), E(t, q) = −∂tA⃗(t, q)−∇Φ(t, q), (1.4)

where the derivatives are in the distributional sense. Moreover, taking f ∈ C∞
0 (R4)

arbitrarily, observe that the couple (Φ′, A⃗′) defined as

A⃗′ = A⃗−∇f, Φ′ = Φ+ ∂tf,

gives by (1.4) the same electromagnetic field as (Φ, A⃗), so both pairs describe the
same physical situation. As a consequence, for any electromagnetic field there
exists an infinite number of potentials that generates it, which is consistent since
potentials are not physically observable. This mathematical equivalence is known
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as the Gauge Invariance of Maxwell’s equations and it is the main tool for their
resolution. So, introducing the potentials in the non-homogeneous part, (1.2) is
reduced to ∂

2
t A⃗−∆A⃗+∇

(
∂tΦ +∇ · A⃗

)
= µ0J⃗ ,

−∆Φ− ∂t

(
∇ · A⃗

)
= µ0ρ,

(1.5)

that, in principle, does not seem easier to solve. However, assuming the Lorenz
Gauge for (Φ, A⃗):

∂tΦ +∇ · A⃗ = 0, (1.6)

system (1.5) decouples into the following four-dimensional wave equation:{
∂2t A⃗−∆A⃗ = µ0J⃗ ,

∂2tΦ−∆Φ = µ0ρ.
(1.7)

If the data is compactly supported, i.e. if every component of it belongs to D′ (R4),
the solution can be directly obtained by convolution with the fundamental solution
of the wave operator in R× R3:

F(t, q) = H(t)
δ|q|(t)

4π|q|
.

Here, δ|q|(t) represents the Dirac’s delta in the spherical radial variable at the point
t and H(t) is the Heaviside function. In this way, (1.7) is solved in the sense of
the distributions by the retarded potentials:

A⃗(t, q) =
[
F ∗ J⃗

]
(t, q) =

µ0

4π

∫
R3

J⃗(tr, q
′)

|q − q′|
dq′,

Φ(t, q) = [F ∗ ρ ] (t, q) =
µ0

4π

∫
R3

ρ(tr, q
′)

|q − q′|
dq′,

(1.9)

where
tr = t− |q − q′|

is called retarded time and takes into account the finiteness of the speed of light.
This shows that the Maxwell’s equations are, in fact, relativistic. On the other
hand, it is not difficult to see that if the datum (ρ, J⃗) is physically admissible,
then the retarded potentials satisfy (1.6). To this aim, by the definition of con-
volution between distributions (see [32, Appendix], [75, Chapter 7]), for every

f⃗ ∈ C∞
0 (R4;R3) we have that

A⃗ (f⃗) =
[
J⃗ ∗ F

]
(f⃗) =

〈
J⃗(t, x),

〈
F(s, y), f⃗(t+ s, x+ y)

〉〉
,

where ⟨·, ·⟩ denotes the scalar product in L2. For the same reason,

Φ(f) = ⟨ρ(t, x), ⟨F(s, y), f(t+ s, x+ y)⟩⟩ , for all f ∈ C∞
0

(
R4
)
.
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Then, [
∇ · A⃗− ∂tΦ

]
(f) =

[
(∇ · J⃗ − ∂tρ) ∗ F

]
(f) = 0,

for every f ∈ C∞
0 (R4), and the Lorenz Gauge is satisfied.

Remark 4. In absence of charged particles, (1.2) can be easily reduced to the
homogeneous system in R4:

∂2tE −∆E = ∂2tB −∆B = 0,

whose solutions are the called electromagnetic waves, that are propagating indef-
initely. Their consideration as solutions only has physical sense if the absense
of charged particles is assumed in a certain region, and the electromagnetic field
comes from the complementary set. If this is assumed in all the space-time, then
electromagnetic fields cannot exist without sources that generate them. Mathema-
tically, this can be avoided assuming boundary conditions of decaying at infinity in
order to be physically realistic. In conclusion, despite the Gauge Invariance, the
electromagnetic field given by (1.4) is the unique distributional solution of (1.2) to
be considered.

Under this construction, different cases with physical relevance are covered; like
a static charged particle at some point x ∈ R3, which is represented by (ρ, J⃗) =
(δx, 0⃗) because the particle is fixed, or any finite configuration of a wire carrying
a current along it. Regarding this last example, since to be physically realistic
the current values must be bounded, it is natural to describe them by a compact
support function I(t, q) ∈ L∞ (R4;R). Similarly, the wire is represented as a finite

curve W ⊂ R3, and the current distribution J⃗ ∈ [D′ (R4)]
3
is defined as

J⃗(f⃗) =

∫
R

∫
W

f⃗(t, q)I(t, q)dWdt, for all f⃗ ∈ C∞
0

(
R4;R3

)
.

Since there is no charge density, the scalar potential is assumed to be null and the
electromagnetic field created by the current is given by the derivatives (1.4) of the

retarded potential in (1.9), with J⃗ defined as above. Moreover, notice that the

potential A⃗(t, q) is singular along the wire, as it is the electromagnetic field.

On the other hand, if (ρ, J⃗) /∈ [D′ (R4)]
4
, the convolution with the fundamental

solution (1.8) can be not well defined because both elements are not of compact
support. One example of it is the model of an infinitely long, thin and straight
wire carrying a current, which is commonly understood as a local approximation
of the previous situations. It is a very classical physical model described in many
textbooks of Electrodynamics, see for instance Chapter 5 in [72] and [67]. How-
ever, as the wire has not compact support, the derivation of the corresponding
electromagnetic field cannot be computed directly and needs to be rigorously ob-
tained as limit of approximated problems. This development has been done in
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Chapter 3, together with the Newtonian description of its induced dynamics. Ad-
ditionally, the corresponding relativistic dynamics of a charged particle given by
(1.1) is studied in Chapter 4.

Remark 5. Observe that, for every (Φ, A⃗) ∈ D (R4)× [D (R4)]
3
, a pair (ρ, J⃗) can

be written depending of the potentials computing the corresponding derivatives in
(1.5). Therefore, the electromagnetic field given by (1.4) solves Maxwell’s equa-
tions uniquely for this specific distribution of charge and current, that is physically
admissible because the potentials satisfy the Lorenz Gauge (1.6). Although this does

not mean that the couple (ρ, J⃗) has any physical relevance in general, there is no
lack of rigor in this approach, alternative to the one explained above.

1.1.2 Periodic dynamics of charged particles

One of the research objectives of this thesis is to look for periodic motions of
charged particles in different electromagnetic regimes ruled by (1.2), i.e., to prove
the existence of periodic solutions of the Lorentz force equation for an extensive
class of electromagnetic fields.

Definition 2. Given T > 0, a T -periodic solution of the Lorentz force equation
is a function q(t) in the Sobolev space W 2,1 ([0, T ];R3) such that |q̇(t)| < 1 for all
t ∈ [0, T ],

q(0)− q(T ) = q̇(0)− q̇(T ) = 0,

and that satisfies (1.1) in the Carathéodory sense, i.e, for almost every t ∈ [0, T ].

As motivation, let us consider the case of unidirectional magnetic fields. With-
out loss of generality, consider E = 0 and B = (0, 0, 1). The LFE is in that
case

d

dt

(
q̇√

1− |q̇|2

)
=

(1− |q̇|2)q̈ + (q̇ · q̈)q̇
(1− |q̇|2)3/2

= q̇ ×B.

Taking the scalar product with q̇(t), it follows that q̇q̈ = 0 and then the modulus
of the velocity |q̇| = r ∈ (0, 1) is a conserved quantity. By this, (1.1) is reduced to

q̈1 = q̇2
√
1− r2, q̈2 = −q̇1

√
1− r2, q̈3 = 0.

This system can be solved explicitly and, giving initial conditions, there are solu-
tions of the form

q =
r√

1− r2

(
− cos(t

√
1− r2), sin(t

√
1− r2), 0

)
.

Therefore, in a very simple electromagnetic situation there exist periodic motions
of charged particles, so it is natural to ask for that in more general regimes.

Remark 6. As the modulus |q̇| is a conserved quantity when the magnetic field is
autonomous, in this case the Lorentz force equation is equivalent to a Newtonian
system of the form q̈ − q̇ × B(q) = 0, without loss of generality. This ceases to be
true when the magnetic field is time-dependent.
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Existence results in regular fields

As it was said before, even though the LFE is a very classical equation with
a deep relevance in Physics and Engineering, until recently, most of the results
about its dynamics were limited to identify exact solutions for particular cases
of simple electromagnetic fields (uniform and static fields under symmetries and
other variants [2, 3, 6, 64, 65, 77, 110]). In 2008, the existence of solutions was
proven in [14], by topological degree methods, for periodic, Dirichlet and Neumann
problems associated to the general equation

d

dt
ϕ(q̇(t)) = f(t, q, q̇),

with f continuous. In particular, they provide the next application to (1.1):

Theorem 1. [14, Partially from Theorem 8]. Given T > 0, let E,B ∈ C (R× R3;R3)
be both T -periodic in the first variable. If there exists R > 0 such that

q · [E(t, q) + v ×B(t, q)] ̸= 0,

for all t ∈ [0, T ], |q| ≥ R and |v| < 1, system (1.1) has at least one T -periodic
solution.

A sufficient condition for it is the existence of d > 0, γ ≥ 1, and R > 0 such
that, for all t ∈ [0, T ] and |q| ≥ R, one has

q · E(t, q) ≥ d|q|γ, |B(t, q)| < d|q|γ−1. (1.10)

Thus, for all t ∈ [0, T ], |q| ≥ R and |v| < 1, it is satisfied that

q · [E(t, q) + v ×B(t, q)] ≥ d|q|γ − d|v||q|γ ≥ d(1− |v|)Rγ > 0.

More recently, in 2017, a different approach is given in [7], by developing a critical
point theory for the Lorentz force equation that can be applied to the periodic

and Dirichlet problem for continuous electromagnetic fields, i.e., when
(
Φ, A⃗

)
∈

C1 (R4;R4). Before [7], there was not a neat and rigourous variational approach
for (1.1), even although its relativistic Lagrangian

L(t, q, q̇) = 1−
√
1− |q̇|2 + q̇ · A⃗(t, q)− Φ(t, q),

dates back to Poincaré [101, 102], more than a century ago. This fact gives an
important reason of the lack of qualitative results about the dynamics of charged
particles. Let us show a schedule of the main difficulties for the variational ap-
proach and some applications to the periodic problem. At first, the usual critical
point theory [5,105] is not applicable because the corresponding action functional

I(q) :=

∫ T

0

L(t, q(t), q̇(t))dt,
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is not of class C1. However, when A⃗ = 0, the Szulkin’s critical point theory [112], for
functionals having a regular part plus a lower semi-continuous term, can be applied.
In particular, defining I(q) in the space of T -periodic continuous functions, it can
be proved that every Palais-Smale sequence (in the Szulkin’ sense) has a convergent
subsequence. Nevertheless, if the vectorial potential is not null, the functional
action is not properly defined in that space and the problem needs a reformulation.
Just focusing on the periodic case, let W 1,∞

T be the subspace of all the T -periodic
functions in the Sobolev Space W 1,∞ (R;R3), with its usual norm

∥q∥W 1,∞
T

= ∥q∥∞ + ∥q̇∥∞,

and let K be the convex and closed set defined as

K = {q ∈ W 1,∞
T : ∥q̇∥∞ ≤ 1}.

The Lagrangian action I : W 1,∞
T → (−∞,+∞] associated with (1.1) is given by

I = [Ψ + F ], where

Ψ(q) =


∫ T

0

[
1−

√
1− |q̇(t)|2

]
dt, if q ∈ K,

+∞, if q /∈ W 1,∞
T \K,

represents the relativistic term and is a proper convex function which is continuous
in its closed domain K. On the other hand, F is the restriction to W 1,∞

T of the
functional ∫ T

0

[
q̇(t) · A⃗(t, q(t))− Φ(t, q(t))

]
dt,

that is continuously differentiable by standard arguments, see for instance [89].
Therefore, the concept of critical points in the Szulkin’s sense holds for this situ-
ation and the next result is obtained.

Definition 3. A function q ∈ W 1,∞
T is a critical point of I if q ∈ K and

Ψ(φ)−Ψ(q) + F ′(q)[φ− q] ≥ 0, for all φ ∈ W 1,∞
T .

Theorem 2. [7, Theorem 6]. A function q ∈ W 1,∞
T is a critical point of I if and

only if q is a T -periodic solution of the Lorentz force equation (1.1).

By Theorem 2, a principle of least action for the periodic Lorentz force equation
is provided in [7], where the solutions are minimizers of I.

Theorem 3. [Theorem 7, [7]]. If there exists R > 0 such that

inf
KR

I = inf
K
I,

then I is bounded from below on W 1,∞
T and attains its infimum at some q ∈ KR,

which is a solution of (1.1).
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As an application, assume the existence of γ > β ≥ 1 and d, r > 0, such that

Φ(t, q) ≤ −d|q|γ, and |A⃗(t, q)| ≤ d|q|β, (1.11)

for every (t, q) ∈ [0, T ]× R3 with |q| ≥ r, then the LFE (1.1) admits a T -periodic
solution, which is a minimizer of I. See Theorem 8 in [7] for the computations.

Nevertheless, it cannot be assured that every Palais-Smale sequence in W 1,∞
T

admits a convergent subsequence, so Sulzkin’s critical point theory is not directly
applicable to I in every case. However, the main result in [7] shows that, without
any compactness assumption, there exist Palais-Smale sequences (in the Szulkin’s
sense) for functionals with this decomposition in general Banach spaces, relying
essentially on the geometry and the continuity of the functional in its domain.

Theorem 4. [7, Theorem 1] Assume that V is a Banach space and that the
functional I : V → (−∞,+∞] is the sum of two functionals I = Ψ+ F such that

(i) Ψ : V → (−∞,+∞] is convex and proper, with closed domain Dom Ψ :=
{v ∈ V : Ψ(v) <∞} in V . Moreover, Ψ is continuous in Dom Ψ.

(ii) F : V → R is of class C1.

Let also M be a compact metric space, M0 ⊂M a closed subset and a0 :M0 → V a
continuous map. Consider the set Γ = {a : M → V : a is continuous and a|M0 =
a0}. If

c1 := sup
t∈M0

I(a0(t)) < c := inf
a∈Γ

sup
t∈K

I(a(t)) <∞,

then, for every ε > 0 and a ∈ Γ such that

c ≤ max
t∈M

I(a(t)) ≤ c+
ε

2
,

there exists aε ∈ Γ and qε ∈ aε(M) ⊂ V satisfying:

c ≤ max
t∈M

I(aε(t)) ≤ max
t∈M

I(a(t)) ≤ c+
ε

2
,

max
t∈M

∥ āε(t)− a(t) ∥≤
√
ε,

c− ε ≤ I(qε) ≤ c+
ε

2
,

and

Ψ(φ)−Ψ(qε) + F ′(qε)[φ− qε] ≥ −
√
ε ∥ φ− qε ∥, for all φ ∈ V.

The reader may find this result mathematically interesting by its own, we refer
to Section 2 in [7] for the proof, other details and consequences. In particular, a
non-smooth version of Rabinowitz’s saddle point theorem is derived by choosing
M as the closed ball BR in V̄ of center 0 and radius R, M0 its boundary ∂BR and
a0 the identity function.
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Corollary 1. [7, Corollary 2]. Let V be a Banach space such that V = V̄ ⊕ Ṽ ,
with dim V̄ <∞. If there exists R > 0 such that

sup
∂BR

I < inf
V̄
I, (1.12)

and Γ = {a ∈ C
(
B̄R, V

)
: a(q) = q, for all q ∈ ∂BR}, then there exists a

sequence {qn} ⊂ E such that

lim
n→∞

I(qn) = c := inf
a∈Γ

sup
q∈B̄R

I(a(q)), (1.13)

and there exists 0 < εn → 0 such that

Ψ(φ)−Ψ(qn) + F ′(qn)[φ− qn] ≥ −εn∥φ− qn∥, (1.14)

for all positive integer n and for all φ ∈ DomΨ.

Observe that, because of the usual decomposition: for every q ∈ W 1,∞
T ,

q(t) = q̄ + q̃(t), with q̄ =
1

T

∫ T

0

q(t)dt, q̃(t) = q(t)− q̄,

Corollary 1 can be applied to the periodic action functional and (1.12) is a sufficient
condition for the existence of a Palais-Smale sequence (in the Szulkin’s sense),
according to (1.13) and (1.14). In addition, if the PS-sequence is bounded in
W 1,∞
T , then it has a subsequence converging in C ([0, T ];R3) to a critical point of I

(see Lemma 6 in [7]), that is a T -periodic solution for the Lorentz force equation
by Theorem 2.

Through this reasoning, two different applications are provided in [7]. At first,
a situation symmetric to (1.11) is shown. Concretely, assuming that there exist
γ > β ≥ 1 and d, r > 0, such that

Φ(t, q) ≥ d|q|γ, and |A⃗(t, q)| ≤ d|q|β,

for every (t, q) ∈ [0, T ]× R3 with |q| ≥ r, it follows that

I(q̄) → −∞ when |q̄| → ∞, q̄ ∈ R3.

Consequently, there exists a radiusR > 0 such that (1.12) is satisfied and then (1.1)
has at least one T -periodic solution, which is a saddle point of I. See Theorem 9 in
[7] for the proof. On the other hand, consider the vectorial potential autonomous,

i.e., A⃗(t, q) = A⃗(q), for all q ∈ R3, and that both gradients are uniformly bounded
by a constant C > 0. Thus, by (1.4),

B(q) = ∇× A⃗(q), E(t, q) = −∇Φ(t, q),
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and the electromagnetic field is uniformly bounded by C for all (t, q) ∈ R4. Then,
if the scalar potential is such that

lim
|q|→∞

∫ T

0

Φ(t, q)dt = +∞,

there exists at least a T -periodic solution of (1.1), that is a saddle point of the
functional I. See Proposition 9 in [7].

To conclude, a last result is shown in [7] by applying minimax methods to the
relativistic Hamiltonian H : R× R3 × R3 of the Lorentz force equation, that is,

H(t, q, p) =

√
1 + |p− A⃗(t, q)|2 − 1 + Φ(t, q), (1.15)

with the potentials assumed again of class C1, and the corresponding Hamiltonian
formulation of (1.1) is

q̇ =
p− A⃗(t, q)√

1 + |p− A⃗(t, q)|2
,

ṗ =
p− A⃗(t, q)√

1 + |p− A⃗(t, q)|2
· ∇A⃗(t, q)−∇Φ(t, q).

(1.16)

Historically, it seems that this formulation was presented for the first time by
Planck in [100]. To see the equivalence, let (q(t), p(t)) be a continuous solution of

the above system and observe that q̇ = ϕ−1
(
p− A⃗(t, q)

)
. Then, it is not difficult

to see that q(t) solves the Lorentz force equation, with relativistic momentum p(t):

d

dt
ϕ(q̇) =

d

dt

(
p− A⃗(t, q)

)
= ṗ− ∂tA⃗(t, q)−∇A⃗(t, q) · q̇

= −∇Φ(t, q)− ∂tA⃗(t, q) +
[
q̇ · ∇A⃗(t, q)−∇A⃗(t, q) · q̇

]
= −∇Φ(t, q)− ∂tA⃗(t, q) + q̇ ×

(
∇× A⃗(t, q)

)
.

Moreover, the solution is of class C2 as a consequence of the continuity assump-
tion for (q(t), p(t)). Concerning the last identity, this can be easily proved by a
component by component development, in fact,

v · ∇F (q)−∇F (q) · v = v × (∇× F (q)) ,

for any smooth map F : R3 → R3 and any q, v ∈ R3.

Notice that the action functional associated to (1.15) is strongly indefinite,
which is the main difficulty of the Hamiltonian approach. To overcome this, in [7]
they modify the Hamiltonian in order to apply a suitable version of the well known
generalized mountain pass theorem of Benci and Rabinowitz [105, Theorem 5.29].
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This result, due to Felmer [38], holds for strongly indefinite functionals of class
C1 in a Hilbert space E, that admit a certain “superquadratic” behaviour. In
particular, Φ(t, q) is considered positive in R × R3, T -periodic with respect of t,
and satisfying the following:

i) There exist constants γ > 2 and d, r0 > 0 such that

Φ(t, q) ≤ d|q|γ,
for all (t, q) ∈ R× R3 with |q| ≤ r0.

ii) There exist constants σ > 2 and r1 > 0 such that

0 < σ Φ(t, q) ≤ q · ∇Φ(t, q),

for all (t, q) ∈ R× R3 with |q| ≥ r1.

The above hypotheses were introduced by Rabinowitz in [104], where the existence
of periodic solutions for second order differential systems of the form q̈+∇Φ(t, q) =

0 is studied. On the other hand, the vectorial potential A⃗(t, q) is also T -periodic
with respect of t and satisfies:

iii) There exist constants β > 1 and d, r2 > 0 such that∣∣∣A⃗(t, q)∣∣∣ ≤ d|q|β,

for all (t, q) ∈ R× R3 with |q| ≤ r2.

iv) There exist constants d, r3 > 0 and 1 ≤ θ < min{σ, 2β, γ} such that∣∣∣A⃗(t, q)∣∣∣ ≤ d|q|θ,

for all (t, q) ∈ R× R3 with |q| ≥ r3.

Theorem 5. [7, Theorem 10]. If the potentials satisfy i) − iv), then the Hamil-
tonian system (1.16) posseses a non-constant T -periodic solution (p, q) such that
q ∈ C2 (R;R3), |q̇(t)| < 1, for every t ∈ R, and q verifies the Lorentz force equation
(1.1).

All these applications have in common that, for high values of |q|, the vectorial
potential is controlled in modulus by the absolute value of the scalar potential.
This also happens in the first example (1.10), where the assumptions are taken
over the fields instead of the potentials, and the electric field must be greater
in modulus than the magnetic field outside some ball. In principle, this is just a
mathematical requirement due to the techniques employed, because of the presence
of the magnetic term q̇×B(t, q) in the Lorentz force. So, we cannot say that these
requirements are, in fact, optimal from the physical point of view. We consider
that any achievement in this direction would be interesting.

Remark 7. In a second paper [8], the authors of [7] provide a Lusternik-Schnirelmann
theory for the periodic problem in (1.1) with continuous electromagnetic fields.
However, their results have not been included in this manuscript.
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The singular Lorentz force equation

Despite the novelty of the previous results, they fail to cover the case of fields with
singularities that are fundamental in Electromagnetism, like Coulomb potential or
the magnetic dipole. In fact, the development of effective results based on a critical
point theory for the Lorentz force equation with non-continuous electromagnetic
fields remains an open problem to date. One possibility for it could be to try to
extend the results developed in [4] for second order differential systems arising in
Celestial Mechanics of the form q̈ + ∇Φ(t, q) = 0, where Φ admits singularites.
Again, the main difficulties in adapting these techniques stem from the presence
of the magnetic term, thus requiring a new variational framework for the problem.
Nevertheless, the qualitative results gap on periodic dynamics induced by singular
electromagnetic fields has been partially filled in [62], by using topological degree
methods and covering singular models with physical relevance as Coulomb po-
tentials or the magnetic dipole. This paper was the first research of the thesis,
published in 2020 in the journal Nonlinear Analysis: Real World Applications.
Here we present a brief schedule of it, while the reader may find all the details and
computations of [62] in Chapter 2.

Assume an electric field of the form

E(t, q) = −∇Φ(q) + h(t),

with Φ ∈ C1 (R3 \ {0};R) and h ∈ L1 ([0, T ] ;R3), for which we denote its mean

value as h̄, that is h̄ = 1
T

∫ T
0
h(s)ds. Moreover, the potential Φ satisfies the next

assumptions:

h1) lim|q|→∞ |∇Φ(q)| = 0.

h2) q · ∇Φ(q) is negative for any q and there exist c0, ε0 > 0 and γ ≥ 1 such that
q · ∇Φ(q) ≤ −c0|q|−γ for any |q| < ε0.

Besides, the magnetic field B ∈ C ([0, T ]× R3 \ {0};R3) is required to satisfy the
following:

h3) lim sup
|q|→∞

|B(t, q)| < CB, for some constant CB > 0.

h4) There exist ε1, c1 > 0 and β ∈ (0, γ) such that |B(t, q)| ≤ c1|q|−β−1, for all t
when |q| < ε1.

Notice that the electrical term controls the singularity point, establishing a sim-
ilarity with the examples for regular fields provided above. In principle, as the
reader can see in the proof, this is just a technical requirement. On the other
hand, assumption h3) allows to consider oscillating or bounded fields at infinity,
in contrast with Remark 4. In these cases, as the magnetic field can have infinite
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energy, it only has a local physical meaning. However, as we shall see in Chap-
ter 2, this covers a large class of magnetic field with physical relevance, like the
well-known ABC flows.

Theorem 6. (Garzón, Torres, [62, Theorem 1]). Assume (h1-h4). Then, for any
h ∈ L1 ([0, T ] ;R3) such that

∣∣h∣∣ > CB, the Lorentz force equation (1.1) admits at
least one T -periodic solution.

Remark 8. Notice that, by the Maxwell-Faraday law in (1.2), the magnetic field

must be autonomous because ∇ × E = 0. Then, if B(q) = ∇ × A⃗0(q), for some

potential A⃗0(q), the pair (Φ, A⃗) solves Maxwell’s equations with

A⃗(t, q) = A⃗0(q)−
∫ t

0

h(s)ds.

This observation does not alter Theorem 6, since the time dependence of B(t, q)
plays no role in the proof.

Other models with singularities arise in Electrodynamics assuming a wire car-
rying a current along it, as discussed above. Concerning the dynamics induced by
the wire, if the current is constant, Maxwell’s equations can be rigorously reduced
to the Biot-Savart law for the magnetic field, i.e, there is no electric field and B(q)
is autonomous. The study of the motion of a charged particle in a magnetic field
has long been of interest in several areas of Physics [18, 20, 23, 30, 59, 91, 99, 107],
and the corresponding magnetostatic dynamics has been studied extensively for
some autonomous wire distributions, like the circular loop, the infinite wire or a
particular coupling of both, see for instance [3, 64, 65]. The consideration of sym-
metries implies the existence of first integrals in the dynamical system, according
to Noether’s Theorem. In the case of the infinite wire, the conservation of the en-
ergy, linear and angular momenta imply that the system is totally integrable. In
particular, the particles cannot reach the wire, every solution is radially periodic
and there exists a unique radial equilibrium.

On the other hand, if we assume a time dependence in the current, the elec-
tromagnetic situation changes completely. At first, the Biot-Savart formula does
not hold anymore and the electromagnetic field has to be obtained by solving
Maxwell’s equations for the corresponding non compact supported distribution J⃗ .
Concretely, considering a T -periodic current of the form I0+kI(t) along the z-axis,
with k > 0 and ∫ T

0

I(t)dt = 0,

the associated current density is a vectorial distribution J⃗ = (0, 0, J) such that

J(f) =

∫
R2

[I0 + kI(t)] f(t, 0, 0, z) dt dz, for every f ∈ C∞
0

(
R4
)
,
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for which the PDE system (1.2) admits as unique distributional solution to the

electromagnetic field given by (1.4), with Φ ≡ 0 and A⃗(t, q) = A(t, r)ez, where

A(t, r) = −µ0

2π
[a0(r) + ka(t, r)],

and

a0(r) = I0 ln r, a(t, r) =

∫ ∞

0

I[t, r, τ ]√
τ 2 + r2

dτ.

Here r denotes the radial variable in theXY -plane, ez is the positive unitary vector
in the z-direction, and the bracket [t, r, τ ] =

(
t−

√
τ 2 + r2

)
shows the delay effect

of the potential.

The resolution of (1.2) for this specific distribution is done in [61], a joint work
with Stefano Marò published in 2021 at Physica D: Nonlinear Phenomena, and it
is included in Chapter 3 of this document. In the same paper the non-relativistic
model for the above T -periodic time-dependent perturbation is studied, that is
ruled by the Newton-Lorentz equation

q̈ = E(t, q) + q̇ ×B(t, q),

and it holds when the velocity of the particle is small in comparison with the light
speed constant. Although the energy is not conserved for k > 0, the moments
still are, due to the symmetries induced by the wire. Through this, the Newton-
Lorentz equation is reduced to the following second order differential equation for
the radial component of the particle:

r̈ =
L2

r3
− (pz + I0 ln r + ka(t, r))

(
I0
r
+ k∂ra(t, r)

)
.

The above equation has structure as a two-dimensional Hamiltonian system with
one degree of freedom for

H(t, r, ṙ) =
ṙ2

2
+
L2

2r2
+

1

2
(pz + I0 ln r + ka(t, r))2,

with L, pz ∈ R denoting angular and linear momentum respectively. Properly ap-
plying the local continuation theorem [28], together with the third approximation
method [114] (previously introduced by Ortega in [96]), it is shown the existence of
solutions such that the radial component is T -periodic and stable in the Liapunov
sense, not just with respect of the radial initial conditions, but also in the phase
plane of conserved quantities. Because of the techniques employed, both results
are qualitative and hold only for small values of the perturbation. It can be seen
as a complementary study to [78], where the case of an infinite wire with no cur-
rent density and a time-dependent charge density is considered. In that case, the
dynamic equation for the radial component is of the form r̈ + g(t)r−3 = 0, with
g(t) a T -periodic function, dealing with a different situation.



16 CHAPTER 1. INTRODUCTION

The last research on the Lorentz force equation included in this document
corresponds to Chapter 4 and refers to the relativistic dynamics induced by the
time-dependent wire, which was studied in [63], as a continuation of [61]. It is a
paper developed together with P.J. Torres and currently submitted for publication.

Just like in the Newtonian case, the cylindrical symmetry is still present in
(1.1) and the corresponding linear and angular relativistic momenta are conserved
quantities when k > 0. Thought this, the Lorentz force equation is reduced to the
following planar Hamiltonian system with one degree of freedom

ṙ =
pr√

1 + (pz − A)2 + p2r + L2r−2
,

ṗr =
L2r−3 + (pz − A)∂rA√

1 + (pz − A)2 + p2r + L2r−2
,

whose Hamiltonian is H(t, r, pr) =
√
1 + (pz − A)2 + p2r + L2r−2. There is shown

the existence of radially periodic solutions for an explicit interval of the pertur-
bation, that depends on the values of the current and the conserved momenta.
While [61] used a perturbation argument, here the mathematical procedure is dif-
ferent, based on a global continuation by using the topological degree, for which
some delicate estimations of the asymptotic behaviour of A⃗ are essential. These
were developed in the same paper and may have mathematical interest of their
own. Regarding the radial stability, we are sure that it holds for small values of
the perturbation, by using the third approximation method like in the Newtonian
case. However, to provide a quantitative result in this regard remains an open
problem.

1.2 Poincaré-Birkhoff Theorem and non-autonomous

Hamiltonian systems

It could be asserted that the Poincaré-Birkhoff Theorem is one of the most remark-
able fixed point results ever achieved. Despite the simplicity of the statements,
there has been provided a large number of applications on the study of periodic
dynamics in scalar differential equations, particularly for those with Hamiltonian
formulation. Moreover, since Birkhoff’s works, some authors have extended the
planar result to certain 2N -dimensional manifolds. Quoting Arnold, attempts to
generalize it to higher dimensions are important for the study of periodic solutions
of problems with many degrees of freedom [11, Page 416]. Nevertheless, as it was
stated in [92], there is no genuine generalization of the Poincaré-Birkhoff Theorem
to higher dimension until the datei.

iIt is important to know that the original notes of Moser and Zhender come from the years
1979-80, while the last version was published in 2005.



1.2. THE POINCARÉ-BIRKHOFF THEOREM 17

More recently, during the last decade, a further step in this direction has been
made by Fonda and Ureña [55–57]. In their work, the classical result is generalized
for 2N -dimensional Hamiltonian systems with different natural variants of the
twist condition in higher dimensions. This line has been succesfully continuated
in several works by the first author and others, obtaining more general results and
applications, even covering the cases of infinite-dimensional Hamiltonian systems.

This manuscript includes a recent contribution in this line. Coauthored by
Fonda and Sfecci, in [42] we extend these generalizations of the Poincaré-Birkhoff
Theorem for Hamiltonian systems coupling the twist with lower and upper solu-
tions in higher dimensions. These are the first results obtained for the existence of
periodic solutions in systems where these two different and very classical methods
are linked. Concerning the case of upper and lower solutions, we have followed the
recent works of Fonda, Klun, Sfecci and Toader [46, 54], that extend the classical
concept for second order differential equations to periodic planar systems.

1.2.1 The original theorem

Also known as the Poincaré’s last geometric theorem, it was conjetured in 1912 mo-
tivated by his research on the restricted three body problem [103], where Poincaré
also proved the result in several cases. Unfortunately, he passed away shortly after,
so the theorem remained an open conjecture until G.D. Birkhoff provided a proof
for it in [16], just a few months later. Let us state it in a similar way as it was
formulated originally:

Theorem 7. [Poincaré-Birkhoff Theorem.] Let Ψ : R → R be an area-preserving
homeomorphism, where R ⊂ R2 is the ring formed by concentric circles Ca and
Cb of radii a and b respectively, with 0 < a < b. Suppose that Ψ satisfies the twist
condition, that is, the points in Ca rotate in the opposite direction as the points in
Cb. Then, Ψ has at least two invariant points.

In its proof, Birkhoff showed that the map has an invariant point, while the
second exists as a consequence of an observation made by Poincaré in [103]. Ac-
cording to the index theory applying to Ψ, the number of fixed points must be
even. However, this reasoning is true only if the first point has nonzero index, as
Birkhoff himself declared in [17], so the proof for a second fixed point need to be
made more precise. This fact has given rise to an extensive literature on proving
the result under more general assumptions, we refer to the reader to [49, 106] for
a complete historical review and more details.

1.2.2 The generalized Poincaré-Birkhoff Theorem for Hamil-
tonian flows in higher dimensions

At first, let us state Theorem 7 in a modern version like in [56]:
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Theorem 8. [Poincaré-Birkhoff Theorem.] Let P : R × [a, b] → R × [a, b] be an
area-preserving homeomorphism of the form

P(x, y) = (x+ ϑ(x, y), r(x, y)),

where the functions ϑ(x, y) and r(x, y) are 2π-periodic in their first variable x,
with r(x, a) = a and r(x, b) = b, for every x ∈ R. Assume the boundary twist
condition

ϑ(x, a)ϑ(x, b) < 0, for every x ∈ R. (1.17)

Then, P has at least two invariant points in [0, 2π]× (a, b).

Concerning the study of periodic dynamics in Hamiltonian systems, in 1983,
C.C. Conley and E.J. Zehnder [29] proved two remarkable results on the periodic
problem associated to the general system

Sż = ∇H(t, z) , (1.18)

giving a partial answer to a conjecture by V.I. Arnold [9,10]. Here, S =
(

0 −IN
IN 0

)
is the standard symplectic matrix, H : R × R2N → R is T -periodic in t, and
∇H(t, z) denotes its gradient with respect to z. Let us write z = (q, p), with
q = (q1, . . . , qN) and p = (p1, . . . , pN), so that the system reads as

q̇ = ∂pH(t, q, p) , ṗ = −∂qH(t, q, p) .

In a first theorem, assuming the Hamiltonian function H(t, z) to be periodic in
all variables q1, . . . , qN and p1, . . . , pN , they prove that system (1.18) has at least
2N + 1 geometrically distinct T -periodic solutions. In a second theorem, they
assume H to be periodic in q1, . . . , qN and to have a quadratic behaviour in p;
namely, that there exist a constant R > 0 and a symmetric regular matrix A such
that H(t, q, p) = 1

2
⟨Ap, p⟩ + “lower order terms”, when |p| ≥ R. In this setting,

they prove that system (1.18) has at least N +1 geometrically distinct T -periodic
solutions. They also mention a possible relation of this second result with the
Poincaré-Birkhoff Theorem (the title of the paper is however a bit misleading).

The pioneering results in [29] have been extended in different directions by
several authors, see for instance [25,37,48,60,74,79,86,88,105,112].

More recently, a deeper relation between these results and the Poincaré-Birkhoff
Theorem has been established by Fonda and Ureña in [56]. Taking D = B(0, R) as
the closed ball with radius R, and assuming H to be periodic in the qi-variables,
the existence of N + 1 geometrically distinct T -periodic solutions is established
under the following hypothesis: there exist a constant R > 0 and a symmetric
regular matrix A such that the solutions z(t) = (q(t), p(t)) of (1.18) starting with
p(0) ∈ D are defined on [0, T ] and satisfy a “twist condition” like〈

q(T )− q(0) ,Ap(0)
〉
> 0 , when p(0) ∈ ∂D . (1.19)
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Remark 9. Observe that (1.19) generalizes to R2N the twist boundary condition
(1.17). Moreover, it is easily checked that this result generalizes the second Conley-
Zehnder Theorem described above. Variants of the twist condition were also pro-
posed in [56,57].

The results in [56] have been extended in [43] by Fonda and Gidoni in order
to include both the above quoted Conley-Zehnder theorems, assuming H to be
periodic in q1, . . . , qN and possibly also in p1, . . . , pL, for some L ∈ {1, . . . , N},
together with a very general twist condition, thus finding N +L+1 periodic solu-
tions. The same authors further extended the theory in [44] to the case when the
Hamiltonian function includes a nonresonant quadratic term. Possible resonance
has also been investigated in [26], assuming some Ahmad-Lazer-Paul conditions.

These general existence results have found so far several applications in [21,41,
44, 50, 51, 53, 56], thus generalizing some previously established results for second
order equations [24, 34, 35, 47, 52, 69, 73]. They have even been extended to the
study of infinite-dimensional systems [19,45].

1.2.3 Coupling Poincaré-Birkhoff Theorem with upper and
lower solutions

In our particular case, the main tools for the achievement in [42] are provided
by the results of [44], once we are able to truncate the Hamiltonian such that we
obtain a bounded side plus a nonresonant quadratic term. However, the results
of [44] are written in a very technical way and we have omitted them here.

To conclude, let us state the simplest situation considered in [42]. At first, we
assume the four dimensional Hamiltonian system{

q̇ = ∂pH(t, q, p, u, v) , ṗ = −∂qH(t, q, p, u, v) ,

u̇ = ∂vH(t, q, p, u, v) , v̇ = −∂uH(t, q, p, u, v) ,

where the function H(t, q, p, u, v) is continuous and T -periodic w.r.t. t, continuosly
differentiable in the (q, p, u, v) variables, and 2π-periodic in q. As usual, we say
that two T -periodic solutions are geometrically distinct if they do not differ in the
q-variable by an integer multiple of 2π.

On the other hand, there exist some constants δ > 0 and α ≤ β such that

v ∂vH(t, q, p, u, v) > 0 , when u ∈ [α− δ, α] ∪ [β, β + δ] and v ̸= 0 ,

and {
∂uH(t, q, p, u, 0) ≥ 0 , when u ∈ [α− δ, α] ,

∂uH(t, q, p, u, 0) ≤ 0 , when u ∈ [β, β + δ] .
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These considerations come from the definition of lower and upper solutions
given in [46,54]. We require here that these lower and upper solutions are constant.
More precisely, all constants in [α − δ, α] are lower solutions, and all constants in
[β, β + δ] are upper solutions. Moreover, with the aim of the planar upper and
lower solution referenced above, we assume the following Nagumo kind condition:

There exist d > 0 and two continuous functions f, φ : [d,+∞) → (0,+∞) ,
with ∫ +∞

d

f(s)

φ(s)
ds = +∞ ,

satisfying the following property. If u ∈ [α− δ, β + δ], then{
∂vH(t, q, p, u, v) ≥ f(v) , when v ≥ d ,

∂vH(t, q, p, u, v) ≤ −f(−v) , when v ≤ −d ,

and
|∂uH(t, q, p, u, v)| ≤ φ(|v|) , when |v| ≥ d .

In addition, for every K > 0 there is a constant CK > 0 such that

|∂qH(t, q, p, u, v)| ≤ CK(|p|+ 1) , when u ∈ [α− δ, β + δ] and |v| ≤ K .

Finally, assume also the existence of a < b and ρ > 0 such that, for any two
continuous functions U, V : [0, T ] → R satisfying

α− δ ≤ U(t) ≤ β + δ , for every t ∈ [0, T ] ,

the solutions of the system

q̇ = ∂pH(t, q, p, U(t), V (t)) , ṗ = −∂qH(t, q, p, U(t), V (t))

satisfy the twist condition:{
q(T )− q(0) < 0 , when p(0) ∈ [a− ρ, a] ,

q(T )− q(0) > 0 , when p(0) ∈ [b, b+ ρ] .

Notice that these solutions are well defined in [0, T ]. Then, in the above situ-
ation, there exist at least two geometrically distinct T -periodic solutions of the
Hamiltonian system such that

p(0) ∈ (a, b), and α ≤ u(t) ≤ β , for every t ∈ R .

Moreover, the same conclusion holds if the twist condition is replaced by{
q(T )− q(0) > 0 , when p(0) ∈ [a− ρ, a] ,

q(T )− q(0) < 0 , when p(0) ∈ [b, b+ ρ] .

Other variants of this theorem are detailed in Chapter 5. Several higher-dimensional
generalizations at different levels of abstraction are also included.
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1.3 Perturbative methods and stability criteria

in Dynamical Systems

Concerning the existence results developed in the papers [61–63], they have in
common their achievent by continuation methods for periodic perturbations of
nonlinear differential systems. However, the techniques applied in this monograph
are essentially different between them from a mathematical point of view. At first,
the classical local continuation [28, Theorem 1.1, Chapter 14] relies on the Implicit
Function Theorem, while the topological degree of a nonlinear differential equation
is commonly computed through its invariance by homotopy, previously obtaining
an invariant bounded set for the solutions. Concretely, for periodic perturbations
of autonomous systems, we use the celebrated global continuation theorems due
to Capietto, Mawhin and Zanolin [22, Theorem 1-2]. As a consequence, a charac-
terization of the Leray-Schauder degree for certain periodic Hamiltonian systems
is given in [63], whose formulation generalizes the planar case of the relativistic
dynamics induced by the current along the infinite wire.

Complementarily, a brief schedule of the third approximation method for the
stability of elliptic periodic solutions in time-dependent Newtonian equation ẍ +
f(t, x) = 0 has been included. In these cases, the first method of Lyapunov
fails, so the stability analysis relies on the nonlinear terms of the Taylor series
for f(t, x). This procedure is used in [61] to achieve a stability result in the
non-relativistic regime induced by the time-dependent current along the wire. Al-
though the method was originally introduced by Ortega in [94, 96], here we recall
a generalization given in [114] that fits in the commented model.

In order to be mathematically rigourous, this section provides the necessary
notions for their understanding and application.

1.3.1 Local continuation of periodic solutions

For the sake of convenience we recall here the classical theorem taken from [28].
To this aim, let us consider the differential equation

ẋ = f(t, x, µ), (1.20)

where f : V × B(µ0) → Rn having denoted by V a domain of R × Rn and by
B(µ0) the open ball of radius µ0 in Rm. The function f is continuous in (t, x, µ)
and has first-order derivatives w.r.t. the components xi of x. Moreover, assume
f(t+ T, x, µ) = f(t, x, µ) and that, for µ = 0, equation (1.20) admits a T -periodic
solution p(t) such that (t, p(t)) ∈ V for every t. We also introduce the first variation
of (1.20) with respect to the solution p(t) as the differential system:

ẏ = ∇xf(t, p(t), µ) · y. (1.21)

Under these assumptions, we can state the following.
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Theorem 9. [28, Chapter 14, Theorem 1.1] Suppose that the first variation (1.21)
for µ = 0 has no solution of period T . Then, there exists µ1 < µ0 such that for
every |µ| < µ1, equation (1.20) has a unique T -periodic and continuous solution
q = q(t, µ), such that q(t, 0) = p(t).

Remark 10. It comes from the proof of Theorem 9 that, for every |µ| < µ1,
the functions q(t, µ) are solutions of (1.20) with initial condition x(0) = α(µ)
where α(·) is a continuous function defined in a neighbourhood of 0 such that
α(0) = p(0). Since p(t) is a solution of (1.20) for µ = 0 and initial condition
x(0) = p(0), by continuous dependence with respect to parameters (see [70, Chapter
V, Theorem 2.1]), we have that actually

lim
µ→0

q(t, µ) = p(t), uniformly in t ∈ [0, T ].

1.3.2 Stability of twist type solutions by KAM theory

Let us consider the scalar Newton’s equation

ẍ = f(t, x), (1.22)

where f ∈ C (R/TZ× R) is sufficiently smooth in x.

Let us also define, in some open subset O ⊆ R2, the Poincaré map associated
to (1.22) as the operator

P(υ) = (x(T ; υ), ẋ(T ; υ)) , (1.23)

where x(t; υ) is the solution of (1.22) with initial datum υ ∈ O. It is well known
that (1.23) is area-preserving, see for instance [12, Chapter 1]. Moreover, for
any non-resonant fixed point υ0, there exist a β ∈ R and a sympletic map Ψ ∈
C∞ (R2;R2), with Ψ(υ0) = υ0, such that

Ψ−1 ◦ P ◦Ψ(υ) = R[θ + β|υ − υ0|2] (υ − υ0) +Θ
(
|υ − υ0|4

)
,

when υ → υ0. Here we are denoting by R[θ] to the rotation matrix of angle θ ∈ R.
Furthermore, the number β does not depend on the map Ψ. More technical details
are shown in [12, Theorem 6.1.2] or [111, Section 23].

Now, let x(t) be a non-resonant, T -periodic and elliptic solution of (1.22). As
the initial data of the T -periodic solutions in (1.22) are fixed points in P , we say
that x is of twist type if the associated β is not null. In that case, by Moser twist
theorem [111, Section 32] it follows that any T -periodic solution of twist type is
accumulated by P-invariant curves, and so it is Lyapunov stable. In particular,
every point in the invariant curves of P corresponds to the initial datum for a
quasiperiodic solution of (1.22). Moreover, KAM theory shows that the Poincaré-
Birkhoff Theorem can be locally applied between two invariant curves, finding
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the existence of subharmonic solutions surrounding the fixed point. Consequently,
every T -periodic solution of twist type in (1.22) is accumulated by this two kind
of solutions. We refer to the reader to [111] for the mathematical procedure and
the proper definitions.

To conclude, it comes from [94,96] that the twist character of a periodic solution
can be deduced by the third approximation of the equation. To this aim, let us
move the solution to the origin via the change of variable y = x − x(t) in (1.22)
and compute the development up to third order around x = 0. This expression
has the form

ÿ + A(t)y +B(t)y2 + C(t)y3 = 0.

The results in [94, 96] do not fit in the model considered in Chapter 3, hence we
recall the next theorem by Torres and Zhang.

Theorem 10. [114, Theorem 3.1] The T -periodic solution x(t) is of twist type if
the three following assertions are true:

(i) 0 < A∗ ≤ A∗ <
(
π
2T

)2
,

(ii) C∗ > 0,

(iii) 10(B∗)
2(A∗)

3/2 > 9C∗(A∗)5/2,

where f ∗ and f∗ respectively represent the supremum and infimum of f ∈ C ([0, T ];R).

1.3.3 Global continuation of equilibria in autonomous Hamil-
tonian systems

Here we particularize the Leray-Schauder degree theory for periodic Hamiltonian
systems that are homotopic with an autonomous one. Concretely, consider a
system of the form

Sẋ(t) = ∇Hλ(t, x(t)), x(0) = x(T ), λ ∈ [0, 1],

where S is the standard symplectic matrix in R2N , Hλ : R×O → R is T -periodic
in t, O ⊆ R2N is an open set, and the gradient operator is computed in x. Fur-
thermore, Hλ is a homotopy in λ verifying that:

i) H1(t, x) is such that its gradient is a Carathéodory function.

ii) H0(x) is autonomous and of class C2 in O.

The construction of the topological degree for this kind of systems is a particular
case of the general theory for nonlinear perturbations of Fredholm operator, we
refer to the reader to Section 2 in [87] for more details. To this aim, let X be the
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Banach space of T -periodic functions in C
(
R;R2N

)
with the uniform norm, and

consider the metric space

XO = {x ∈ X : Im(x) ⊂ O}.

As usual, the subspace of constant functions in X is naturally identified with R2N .
In addition, given any subset Ω of X, we denote by clR2NΩ to the closure of Ω in
R2N , and by ∂XΩ to the boundary of the set in X. Moreover, let ZΩ(H0) be the
set of critical points of H0 in Ω ∩R2N . Then, denoting by sg to the sign function
and by |Hessf(x)| to the determinant of the Hessian matrix of f(x), we present
the next result, which we prove at the end of the section.

Theorem 11. (Garzón, Torres, [63, Theorem 4]) Let Ω ⊂ XO be open, bounded
and such that:

a) There is no x ∈ ∂XΩ solving (1.24), for any λ.

b) All the critical points of H0 in clR2NΩ are non-degenerate.

c)
∑

x∈ZΩ(H0)

sg |HessH(x)| ≠ 0.

Then, (1.24) admits at least one T -periodic solution xλ(t), for any λ ∈ [0, 1].

Remark 11. Observe that the last two assertions hold when the set ZΩ(H0) has an
odd number of points and they are all non-degenerate. Moreover, b) is equivalent to
assume that 0 is a regular value for ∇H0 in clR2NΩ, which is a necessary condition
to define the Brouwer degree of a function of class C1 in Ω ∩ R2N .

On the other hand, if the homotopy is of the form

Hλ(, t, x) = fλ(t, x)
α, with α ∈ R \ {0},

Theorem 11 is adapted as follows.

Corollary 2. (Garzón, Torres, [63, Corollary 2]) Let Ω ⊂ XO be open, bounded
and such that there is no x ∈ ∂XΩ solving (1.24) for any λ. Moreover, let f0(t, x)
be a function without critical points at level 0 in clR2NΩ and that verifies b and
c in Theorem 11. Then, (1.24) admits at least one T -periodic solution xλ(t), for
any λ ∈ [0, 1].

Proof. The proof relies on the fact that the hypotheses about f0(x) are equivalent
to assume thatH0(x) = fα0 (x) verifies b and c. To this aim, it is enough to compute
the Hessian of H0(x) and make some observations. Firstly, computing the partial
derivatives of first order, we have that

∂xiH0 = ∂xif
α
0 = αfα−1

0 ∂xif0 = αH1−α−1

0 ∂xif0.
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Then, if there is no x ∈ ZΩ (f0) such that f0(x) = 0, the set of critical point ZΩ(·)
coincides for f0(x) and H0(x). On the other hand,

∂2xjxiH0 = α(α− 1)H1−2α−1

0 ∂xjf0∂xif0 + αH1−α−1

0 ∂2xjxif0,

and
HessH0(x) = αH1−α−1

0 (x)Hessf0(x).

Therefore,
HessH0(x) = 0 ⇔ Hessf0(x) = 0,

and Corollary 2 follows directly from this identity.

To conclude, we prove Theorem 11.

Proof. Firstly, some definitions are needed in order to rewrite (1.24) in an abstract
form. To this aim, let L be the derivative operator, that is Fredholm and of index
0, and is defined in the subspace D(L) = X ∩ C1

(
R;R2N

)
. We also introduce the

mean value projector in X as Q, i.e.

Qx =
1

T

∫ T

0

x(t)dt,

which verifies that L+Q : D(L) → X is a bijection. To calculate (L+Q)−1, let K
be the inverse of L|D(L)∩KerQ, defined in the subspace of X of functions with null
mean value. Then, it is standard to see that (L+Q)−1 = Q+K(I −Q), where I
is the identity projector.

On the other hand, the Nemitsky operators Nλ : XO → X associated to (1.24)
are the symplectic orthogonal gradients of Hλ(t, x), i.e.

Nλx = −S∇Hλ(t, x), ∀x ∈ XO.

For any λ, the good properties of Hλ and the Arzelà-Ascoli Theorem imply the L-
compactness of Nλ and then (1.24) can be reformulated as the fixed point problem:

x = Fλx := Q(I +Nλ)x+K(I −Q)Nλx, x ∈ D(L) ∩XO.

Note that Fλ : XO → X is completely continuous by the same arguments.
Therefore, for any λ and any open and bounded subset Ω in XO such that 0 /∈
(I−Fλ) [D(L) ∩ ∂XΩ], the coincidence degree of L−Nλ in D(L)∩Ω is well defined
as the Leray-Schauder degree of I −Fλ:

d (L−Nλ, D(L) ∩ Ω) := d (I −Fλ, D(L) ∩ Ω) . (1.25)

Furthermore, if Ω is such that 0 /∈ ∪λ∈[0,1](I − Fλ) [D(L) ∩ ∂XΩ], (1.25) is well
defined for all λ. Then, as the degree is invariant by homotopy, we have that

d (L−Nλ, D(L) ∩ Ω) = d (L−N0, D(L) ∩ Ω) = dB
(
g,R2N ∩ Ω

)
, (1.26)
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where the right term denotes the 2N -dimensional Brouwer degree of the function
g(x) = −S∇H0(x). Moreover, the last equality follows from [22, Theorem 1].
Assume now that 0 is a regular value of g, i.e. H0 satisfies b). Then (1.26) is easily
computed by classical properties of Brouwer degree:

dB
(
g,R2N ∩ Ω

)
=

∑
x∈ZΩ(H0)

sg|∇g(x)| = −
∑

x∈ZΩ(H0)

sg|HessH0(x)|.

To conclude, if this sum is not null, 0 ∈ (L−Nλ) [D(L) ∩ Ω] for all λ ∈ [0, 1] and
the theorem is proven.



Chapter 2

Periodic solutions for the singular
Lorentz force equation

The present chapter corresponds to the first article of this manuscript: Periodic
solutions for the Lorentz force equation with singular potentials, published in the
scientific journal Nonlinear Analysis: Real worlds applications, [62]. The cited
research, co-authored with Pedro J. Torres, provides sufficient conditions for the
existence of periodic solutions of the Lorentz force equation for a long class of elec-
tromagnetic fields assuming isolated singularities at the origin. The basic assump-
tions cover relevant physical models with singularities like Coulomb-like electric
potentials or the magnetic dipole.

2.1 The main result

We consider the electric field such that

E(t, q) = −∇Φ(q) + h(t),

with Φ ∈ C1 (R3 \ {0},R) and h ∈ L1 ([0, T ] ,R3). Moreover, the scalar potential
Φ satisfies the assumptions:

h1) lim|q|→∞ |∇Φ(q)| = 0.

h2) q · ∇Φ(q) is negative for any q and there exist c0, ε0 > 0 and γ ≥ 1 such that
q · ∇Φ(q) ≤ −c0|q|−γ for any |q| < ε0.

The canonical model verifying both hypotheses is the Coulomb potential Φ(q) =

c0|q|−1, which solves (1.2) for J⃗ = 0 and ρ = c0δ0, i.e. it gives the electromagnetic
field generated by a static charge placed at the origin. On the other hand, the
magnetic field B ∈ C ([0, T ]× R3 \ {0}) is required to satisfy the next hypotheses:

27
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h3) lim sup
|q|→∞

|B(t, q)| < CB, for some constant CB > 0.

h4) There exist ε1, c1 > 0 and β ∈ (0, γ) such that |B(t, q)| ≤ c1|q|−β−1, for all t
when |q| < ε1.

These conditions are fulfilled in particular by a bounded magnetic force, like for
instance an ABC magnetic field. In fields like Astrophysics and Plasma Physics,
ABC magnetic fields play an important role and may serve as a relevant example
of bounded magnetic fields. Even in the absence of electric field, it is known that
ABC magnetic fields may generate complex dynamics, including chaotic motion
and Arnold diffusion, see for instance [36,80,81]. Other examples of bounded mag-
netic fields have been studied in the literature [13, 27], revealing a rich dynamics.
Moreover, condition h4 enables a singularity of the magnetic field near the origin,
and for instance the magnetic dipole field (in its many variants [109]) is covered
by our assumptions.

Theorem 12. Assume (h1-h4). Then, for any h ∈ L1 ([0, T ] ;R3) such that
∣∣h∣∣ >

CB, the Lorentz force equation (1.1) admits at least one T -periodic solution.

The proof relies on the previously named global continuation theorem for pe-
riodic perturbations of autonomous systems due to Capietto, Mawhin and Zano-
lin [22]. To this purpose, it is necessary to derive a priori bounds for the position
and momentum of any eventual T -periodic solution of a suitable homotopic sys-
tem that drives the original problem to an autonomous system. This is developed
in Section 2.2 by means of similar techniques to that employed in [68, 115]. In
our case, the dissipative effect assumed in the cited references is replaced by the
relativistic effect. The proof finishes in Section 2.3 with the computation of the
Brouwer degree of the vector field.

2.2 A priori bounds

We begin by defining the homotopic system:

d

dt
ϕ(q̇(t)) = −∇Φλ(q(t)) + hλ(t) + λ (q̇(t)×B(t, q(t))) , λ ∈ [0, 1], (2.1)

where Φλ(q) = λΦ(q) + (1 − λ)c0|q|−1, hλ(t) = λh(t) + (1 − λ)h. It is clear that
the original LFE corresponds to λ = 1.

The objective of this section is to find uniform (not depending on λ) a priori
bounds for the T -periodic solutions of (2.1).
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Upper bound

By h1) and h3), there exists R > 0 (not depending on λ) such that

|B(t, q)| < CB and |∇Φλ(q)| < |h| − CB

for all t ∈ [0, T ] and any |q| > R. Suppose that q(t) is a solution of (2.1) such
that doesn’t belong to BR(0), for all t. Note that BR(0) denotes the ball of radius
R and centered at the origin. Then, by integrating (2.1) in the whole period, we
obtain

0 = −
∫ T

0

∇Φλ(q(t)) dt+ λ

∫ T

0

q̇(t)×B(t, q(t)) dt+ Th,

so ∣∣∣∣∫ T

0

∇Φλ(q(t))dt

∣∣∣∣ = ∣∣∣∣Th+ λ

∫ T

0

q̇(t)×B(t, q(t)) dt

∣∣∣∣ .
Now, bounding both sides we get a contradiction:∣∣∣∣∫ T

0

∇Φλ(q(t))dt

∣∣∣∣ ≤ ∫ T

0

|∇Φλ(q(t))| dt < T
(∣∣h∣∣− CB

)
,∣∣∣∣Th+ λ

∫ T

0

q̇(t)×B(t, q(t))dt

∣∣∣∣ ≥ T
∣∣h∣∣− λ

∣∣∣∣∫ T

0

q̇(t)×B(t, q(t))dt

∣∣∣∣ > T
(∣∣h∣∣− CB

)
.

Here we have used that |q̇(t)| < 1 for all t. Thus, there exists at least an instant t̃
such that |q(t̃)| ≤ R. By using again the bound for the derivative, we get

|q(t)| =
∣∣∣∣q(t̃) + ∫ t

t̃

q̇(s)ds

∣∣∣∣ < R + T :=M.

Hence every T -periodic solution of (2.1) belongs to the open ball BM(0).

Lower bound

It’s clear that, by condition h2), exists a number ε > 0 small enough such that

−q · ∇Φ(q) ≥ c0|q|−1 + c1|q|−α, for |q| < ε,

with γ > α > 0. Note that ε depends of the constants α, c0 and c1. In particular,
taking α = β we get:

−q · ∇Φλ(q) + λq · v ×B(t, q) ≥ c0
(
λ |q|−1 + (1− λ) |q|−1) = c0 |q|−1 , (2.2)

for |q| ≤ ε and any |v| ≤ 1.
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On the other hand, integrating the scalar product of (2.1) with a solution q(t)
over [0, T ], we obtain∫ T

0

q(t) · d
dt

q̇(t)√
1− |q̇(t)|2

dt =

∫ T

0

q(t) · [hλ(t) + λq̇(t)×B(t, q(t))] dt

−
∫ T

0

q(t) · ∇Φλ(q(t))dt.

Integrating by parts on the left-hand side and using the periodicity of the solution,
we see that it is a negative number, i.e:

0 ≥
∫ T

0

[−q(t) · ∇Φλ(q(t)) + λq(t) · q̇(t)×B(t, q(t))] dt

+

∫ T

0

q(t) ·
[
λh(t) + (1− λ)h

]
dt.

Thus, applying inequality (2.2) we can write the following relation:

Iε(q(t)) =

∫
|q(t)|≤ε

q(t) · [−∇Φλ(q(t)) + λq̇(t)×B(t, q(t))] dt

≤

∣∣∣∣∣
∫
|q(t)|>ε

q(t) · [−∇Φλ(q(t)) + λq̇(t)×B(t, q(t))] dt

+

∫ T

0

q(t) ·
[
λh(t) + (1− λ)h

]
dt

∣∣∣∣∣
< Tcoε

−1 + TC∇Φ,B +M∥h∥1,

where
C∇Φ,B := max

ε<|q|<M
(|∇Φ(q)|+ |B(t, q)|) ,

and ∥ · ∥1 denotes the L1 norm on [0, T ]. This quantity is finite because ε is fixed
and the fields ∇Φ and B are continuous in that set. Furthermore, this estimation
is independent of λ.

Assume now that there is an interval [t1, t2] where the particle enters the ball
Bε(0), i.e: ∣∣q(t1)∣∣ = ε, |q(t)| < ε, for every t ∈ (t1, t2].

Then, taking t ∈ (t1, t2) we can write:∣∣∣ ln |q(t)| ∣∣∣ = ∣∣∣∣ln |q(t1)|+ ∫ t

t1

q(t) · q̇(t)
|q(t)|2

dt

∣∣∣∣ ≤ ∣∣∣ ln |ε|∣∣∣+ ∫ t

t1

|q(t)|−1 dt

≤ |ln ε|+
∫
|q(t)|≤ε

|q(t)|−1 dt ≤ |ln ε|+ 1

c0
Iε(q(t))

< |ln ε|+ Tε−1 +
TC∇Φ,B +M∥h∥1

c0
.
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Since it is a finite bound, it follows the existence of a strictly positive lower estimate
for the module of q(t). More concretely,

|q(t)| > m := exp

[
− |ln ε| − Tε−1 − TC∇Φ,B +M∥h∥1

c0

]
.

Hence, we conclude that every periodic solution of (2.1) is bounded from below by
m and, in particular, the singularity point is always avoided.

Bound for the momentum

For a given T -periodic solution q(t) of the homotopic system (2.1), the quantity
p(t) = ϕ(q̇(t)) has a neat physical interpretation as the relativistic momentum of
the particle. For our purposes, explicit bounds for the momentum will be needed
as well.

At first, it is easy to verify that

|−∇Φλ(q) + λ (q̇(t)×B(t, q(t)))| ≤ |∇Φ(q)|+ c0

|q|2
+ |B(t, q)| =: H(t, q).

Then, by making use of the bounds obtained for the position of the particle q(t),
one has

|−∇Φλ(q) + λ (q̇(t)×B(t, q(t)))| ≤ L =: max
m≤|q|≤M,
t∈[0,T ].

H(t, q).

Assume now that t0 ∈ [0, T ] is a critical point of q(t). Then,

|p(t)| = |ϕ(q̇(t))| =
∣∣∣∣∫ t

t0

[−∇Φλ(q) + hλ(s) + λ (q̇ ×B(s, q))] ds

∣∣∣∣
≤

∫ T

0

|−∇Φλ(q) + hλ(s) + λ (q̇ ×B(s, q))| dt

< TL+ 2 ∥h∥1 =: P.

Of course, this estimation is independent of λ.

2.3 Global continuation and topological degree

In this section, we are going to prove the main result by the global continuation
theorem [22, Th 2]. Firstly, let us write (2.1) as a first-order system with position
q(t) and relativistic momentum p(t) = ϕ(q̇(t)) as the new coordinates,

q̇(t) =ϕ−1(p(t)),

ṗ(t) =−∇Φλ(q(t)) + hλ(t) + λ
(
ϕ−1(p(t))×B(t, q(t))

)
.

(2.4)
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This is a system of six differential equations. On the other hand, let us define the
Banach space X = {x ∈ C([0, T ],R6) : x(0) = x(T )}. By the results of Section
2.2, every T -periodic solution of (2.4) is contained into the open and bounded set

Ω = {(p, q) ∈ X : m < |q(t)| < M, |p(t)| < P for all t ∈ [0, T ]} .

Now, by defining x = (p, q) and the function

f(t, x;λ) = (ϕ−1(p),−∇Φλ(q) + hλ(t) + λ
(
ϕ−1(p)×B(t, q)

)
,

system (2.4) reads simply
ẋ(t) = f(t, x(t);λ).

To apply the theorem, it remains to prove that

dB(f0,Ω ∩ R6, 0) ̸= 0,

where

f0(x) = f(t, x; 0) =

(
ϕ−1(p), h+ c0

q

|q|3

)
.

Note that
ϕ−1(p) =

p√
1 + |p|2

,

hence f0 is of class C∞ in the domain Ω ∩ R6, and its partial derivatives can be
calculated explicitly:

∂f i0
∂pj

(p, q) = δij
(
1 + |p|2

)−1/2 − pipj
(
1 + |p|2

)−3/2
,

∂f 1+i
0

∂qj
(p, q) = δij |q|−3 − 3qiqj |q|−5 , i, j = 1, 2, 3,

where δij denotes the Kronecker delta function. As the other derivatives are iden-
tically zero, the Jacobian matrix ∇f0 is a block matrix with determinant

|∇f0| (p, q) = −2 |q|−9
[(
1 + |p|2

)−3/2 − |p|2
(
1 + |p|2

)−5/2
]
. (2.5)

On the other hand, it is easy to check that x0 :=
(
0,−h

∣∣h∣∣−3/2√
c0

)
is the unique

zero of f0. Replacing it in (2.5), we see that the determinant is negative, which
implies that 0 is a regular value for f0. Then, by a classical property of the Brouwer
degree, we get that

dB(f0,Ω ∩ R6, 0) = sg |∇f0(x0)| = −1 ̸= 0.

Finally, applying the global continuation theorem [22, Theorem 2], we conclude
the proof.



Chapter 3

The wire model. Existence of
radially periodic solutions of twist
type

Essentially, this chapter corresponds to the paper Motions of a charged particle in
the electromagnetic field induced by a non-stationary current, co-authored with
Stefano Marò and published in the scientific journal Physica D, Nonlinear Phe-
nomena, [61]. There it is studied the non-relativistic dynamics of a charged particle
in the electromagnetic field induced by a time-periodic oscillating (AC-DC) cur-

rent J⃗ along an infinitely long and infinitely thin straight wire. The motions are
described by the Newton-Lorentz equation

q̈ = E(t, q) + q̇ ×B(t, q). (3.1)

We shall prove that many features of the integrable time independent case are
preserved. More precisely, introducing cylindrical coordinates, we obtain the ex-
istence of (non-resonant) radially periodic motions that are also of twist type. In
particular, these solutions are Lyapunov stable and accumulated by subharmonic
and quasiperiodic motions. Furthermore, the corresponding electromagnetic field
is rigourously obtained by solving the Maxwell’s equations with the noncompact
supported current distribution J⃗ as data.

The chapter is organized as follows. In Section 3.2 we present the problem
in a rigorous way and state our main results in Proposition 1 and Theorems 13-
14. Section 3.3 is dedicated to prove Proposition 1, where we get a formulation
and some properties of the electromagnetic field for the time dependent case,
in terms of the vectorial potential, that solves Maxwell’s equations (1.2) in the
distributional sense. The Hamiltonian structure of the problem is discussed in
Section 3.4 together with the reduction to a time dependent problem with one
degree of freedom. Finally, the proofs of the theorems are given in Section 3.5.

33



34 CHAPTER 3. NEWTONIAN APPROACH FOR THE WIRE MODEL

3.1 Introduction

Given a current density, finding an explicit formulation for the associated elec-
tromagnetic field is a major problem. However, assuming stationary currents in
electrically neutral wires, it turns out that the electric field vanishes and the mag-
netic field can be computed via the Biot-Savart law. In particular, the field B(q)
has an explicit formulation in the case of a straight wire, and the magnetic lines
are circles around it. In this case, equation (3.1) turns out to be an autonomous
integrable Hamiltonian system and the corresponding dynamics have been studied
extensively in [3, 64, 65]. More precisely, the conservation of energy, linear and
angular momenta implies that the particle cannot collide with the wire. Moreover,
the motions of particles with non-null angular momentum are helicoidal: radially
periodic, turning around the wire and linearly definitely increasing in the direction
parallel to the wire, having that each motion is confined between two cylinders and
radially stable.

The introduction of a periodic dependence upon time in the current produces
complications both in the computation of the electromagnetic field and in the
dynamics given by the Newton-Lorentz equation. First of all, even if there is
no charge density, the oscillations of the current generate an electric field and,
therefore, the regime is no longer magnetostatic. In particular, Biot-Savart law
does not hold in the non stationary case. Solutions of time dependent Maxwell’s
equations can be rigorously obtained by (1.4) and (1.9) for compactly supported
current distributions, via the introduction of retarded potentials. In our case the
wire does not have compact support being infitely long, but we shall prove that the
corresponding retarded potential still gives a solution of Maxwell’s equations, at
least in the distributional sense. This is performed by an approximation procedure
and gives a rigorous justification of the model we are considering.

From the point of view of dynamics, equation (3.1) is still Hamiltonian, but
time dependent and no more integrable. As a consequence of the periodic depen-
dence, resonances are introduced and collisions with the wire cannot, in principle,
be avoided. In general, the motions induced by a time dependent electromagnetic
field have not been studied extensively. In the first chapter of this manuscript were
discussed some of the results obtained through variational techniques in relativistic
regimes in [7, 8], where critical point and Lusternik-Schnirelman theories are de-
veloped for periodic and Dirichlet boundary conditions. However, in these works,
the electromagnetic fields are assumed to be regular. This is not satisfied by our
problem since collisions with the wire produce singularities. Concerning singular
fields, in the second chapter we developed the paper [62], where periodic solutions
are found. However, only isolated singularities are considered there, not covering
the present case of an infinite wire. This case has been studied in [71, 76, 78] for
a polarized neutral atom under the presence of an electromagnetic field, which is
given by a time dependent charge density without current.
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In the present research, we show that several aspects of the integrable dynamics
can be recovered in the time dependent case, at least when the current is supposed
to be a small perturbation of a constant one. We prove that there exist many
motions of the particle with periodic and Lyapunov stable radial component. As
a byproduct of our analysis we will also get the existence of solutions that are
subharmonic or quasiperiodic in the radial component.

The cylindrical symmetry of the problem is still present in the time dependent
case, so that angular and linear momentum are still preserved. Therefore, equation
(3.1) can be reduced to a time dependent Hamiltonian system with one degree of
freedom describing the radial component of the solutions. Considering this fact,
stability will be understood as Lyapunov stability of the radial component in the
whole phase space, not restricting to fixed levels of angular and linear momenta.

To prove the result we will first work on the reduced system describing the radial
component of the motion for fixed values of the momenta. We get the existence
of periodic solutions for the time dependent current, through local continuation
of equilibria for the (integrable) case of constant current. At this stage we will
exclude some resonances and it will be important the assumption of the time
dependent current being a small perturbation of a constant one. The stability of
the just obtained periodic solutions is proved via the third approximation method,
introduced by Ortega in [96] and generalized in [114] to a version that will fit
in our problem, that it is included in Chapter 1.3.2 of this manuscript. More
precisely, we shall get that the periodic solutions are of twist type, getting also
the existence of subharmonic and quasiperiodic solutions. At this stage, it will be
necessary to exclude other resonances. We recall here that a periodic solution of
twist type corresponds to an elliptic fixed point of the associated Poincaré map,
that is accumulated by KAM invariant curves. Hence, it is Lyapunov stable and
accumulated by subharmonic and quasiperiodic solutions, see [111]. This technique
has also been used in [78] for the case of a time dependent charge density in the
wire. Finally, adapting an argument in [111] we also prove that stability of twist
type for fixed values of the momenta implies stability in the whole phase space,
allowing variations of the momenta. In conclusion, we gave an analytical study of
the dynamics and some stability properties induced by a time dependent current.
This represents a counterpart of the well known results for constant currents. We
believe that our techniques could be adapted to the study of different configurations
of the wire, such as the case of a circular wire.

3.2 Statement of the main results

Let us consider an infinitely long straight wire carrying a current of the form
I0+kI(t), where I0 > 0, k ≥ 0 are constants and I(t) ∈ Cn(R/TZ), with arbitrary
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n ∈ N, satisfies ∫ T

0

I(t)dt = 0. (3.2)

Without loss of generality, let us assume the wire centered in the z-axis. From a
mathematical perspective, it is natural to define the current density J⃗ = (0, 0, J)
as the following vectorial distribution in the space-time:

J(f) =

∫
R2

[I0 + kI(t)] f(t, 0, 0, z)dtdz, for every f ∈ C∞
0

(
R4
)
. (3.3)

Remark 12. Observe that (3.3) can be understood as a generalization of the Dirac
delta concept for the present situation of a straight thin wire.

On the other hand, we also assume the wire electrically neutral, i.e., at every
time, every segment of it contains as many electrons as protons, and so the charge
density ρ is null. Regarding the charge continuity equation (1.3), we have

∇ · J⃗(f) = ∂zJ(f) = J(∂zf) = 0, for every f ∈ C∞
0

(
R4
)
.

Thus the couple (0, J⃗) is physically admissible. According to this, Maxwell’s equa-
tions are reduced to {

∇ ·B = 0, ∇× E + ∂tB = 0,

∇ · E = 0, ∇×B = µ0J⃗ + ∂tE,
(3.4)

with the boundary conditions of decaying at infinity:

lim
|q|→∞

E(t, q) = lim
|q|→∞

B(t, q) = 0, uniformly in t.

As said in Chapter 1, since J⃗ is not compactly supported, (3.4) cannot be solved
directly by its convolution with (1.8). Here we overcome this through a sequence
of approximated problems with compact supported data that gives (1.2) in the
limit, see Section 3.3 for the details.

To state our results, let us introduce the cylindrical coordinates
q = (r cos θ, r sin θ, z) and its associated basis {er, eθ, ez}. Moreover, we shall
use the next notation to illustrate the delay effects:

f [α (t, r, τ)] := f
(
α
(
t−

√
τ 2 + r2

))
, for α ∈ R,

denoting by f [t, r, τ ] the case α = 1.

Proposition 1. Suppose I(t) ∈ Cn(R/TZ) with n ≥ 1, and satisfying (3.2). Then,
(3.4) admits as unique distributional solution to the electromagnetic field given by

(1.4), with Φ ≡ 0 and A⃗(t, q) = A(t, r)ez, where

A(t, r) = −µ0

2π
[a0(r) + ka(t, r)],
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and

a0(r) = I0 ln r, a(t, r) =

∫ ∞

0

I[t, r, τ ]√
τ 2 + r2

dτ. (3.5)

Moreover, the function a(t, r) in (3.5):

� is well defined and belongs to Cn (R× R+);

� is T -periodic in t;

� if n ≥ 2, satisfies the following estimate: there exists a constant C > 0 such
that

|a(t, r)| ≤ C| ln(r)|, when r ≪ 1.

Concerning the dynamical system (3.1), it is well known that in the stationary
case corresponding to k = 0, there exist solutions that move around the wire
along cylindrical helices, see for instance [3, 64, 65]. More generally, the motions
of the particle with non-null angular momentum are helicoidal: periodic in the
r-coordinate, turning around the z-axis and linearly increasing in the z-coordinate
as t → ∞. This comes from the fact that the angular momentum L = r2θ̇, the
linear momentum pz = ż − µ0(2π)

−1a0(r) and the energy E = 1
2
(ṙ2 + r2θ̇2 + ż2)

are first integrals. In particular, the motion is confined between two cylinders of
radii r1, r2 depending on the value of the integrals L, pz, E and the period of the
radial variable depends continuously on these values.

We are going to show how this picture is modified in the non stationary case
k > 0. To state the results, we note that the energy is no more preserved, while
the angular momentum L = r2θ̇ and the linear momentum pz = ż + A(t, q) are
first integrals in the present case also (see Section 3.4). Note that in the expression

of pz we have introduced the potential A(t, q) such that B = ∇× A⃗ (see Section
3.3).

Let us first introduce the kind of solutions that we shall study.

Definition 4. A solution q(t) = (r(t), θ(t), z(t)) of (3.1) with angular momentum
L and linear momentum pz is called a (L, pz)-solution. Moreover it is

(i) radially T -periodic if r(t+ T ) = r(t), for every t ∈ R;

(ii) radially stable if for every ϵ > 0 there exists a neighborhood U of
(r(0), ṙ(0), L, pz) such that, for every (r̃0, ˙̃r0, L̃, p̃z) ∈ U , each (L̃, p̃z)-solution
q̃(t) with r̃(0) = r̃0, ˙̃r(0) = ˙̃r0 satisfies

|r̃(t)− r(t)|+ | ˙̃r(t)− ṙ(t)| < ϵ, for every t > 0.

(iii) radially (r̄, p, q)-subharmonic, for given (q, p) ∈ N2 and r̄ > 0, if r(t) is qT -
periodic, not lT -periodic for every l = 1, . . . , q−1 and such that the function
r(t)− r̄ has 2p zeros in [0, qT ];
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(iv) radially (generalized) quasiperiodic with frequencies (1, ω), for some positive
ω ∈ R, if the function r(t) is (generalized) quasiperiodic.

Remark 13. 1. Condition (ii) means Lyapunov stability in the radial direction
w.r.t. small variations of the initial radial coordinates (r0, ṙ0) and values
of the integrals L, pz. Since L and pz do not depend on the variables θ, z,
stability is also guaranteed w.r.t. arbitrary variations of (θ0, z0).

2. The standard definition of quasiperiodic solution can be found in [111]. We
decided not to include it to avoid some technicality. We just say that quasiperi-
odic solutions come in families parametrised by some ξ ∈ R. The solution is
generalized quasiperiodic if the dependence on ξ is not continuous and this
depends on the arithmetic properties of the number ω. See [84,85,95,97] for
further discussions on it.

Moreover, we will have to restrict the set of parameters, so that we introduce
also the following:

Definition 5. The triplet (r̄, L, pz) with r̄ > 0 and L ̸= 0 is admissible if

r̄2
[
pz +

µ0

2π
I0 ln r̄

]
=

2π

µ0

L2

I0
.

An admissible triplet is non-resonant if

T /∈

{
n

r̄

√
2L2

r̄2
+

µ2
0

4π2
I20 , n ∈ N

}
.

If in addition √
2L2 +C 2r̄2

r̄2
<

π

2T
, (3.6)

with C = µ0I0(2π)
−1, then the admissible resonant triplet (r̄, L, pz) is said strongly

non-resonant.

Remark 14. Fixing r̄ > 0, it is easy to show that L2 = C 2r̄2, pz = C(1 − ln r̄)
complete an admissible triplet. In this case, the non resonant condition reads as

r̄ /∈

{
n

√
3µ0I0
T

, n ∈ N

}
and the strong non-resonant condition becomes

r̄

µ0I0
>

√
3
T

2π2
.

Now we are ready to state our first result concerning the existence of radially
T -periodic solutions
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Theorem 13. Consider a current density J⃗ of the form (3.3) with I(t) ∈ C2(R/TZ)
satisfying (3.2). Then, for every admissible non-resonant triplet (r̄, L, pz) there ex-
ists a number k0 > 0 such that, for every |k| < k0, equation (3.1) admits a radially
T -periodic (L, pz)-solution (rk(t), θk(t), zk(t)) continuous in (t, k) with r0(t) = r̄
for every t ∈ R. Moreover, ż(t) = I0 + ξk(t) where ξk(t) → 0 as k → 0 uniformly
in t ∈ [0, T ].

We will also show that under the strong non-resonant condition we can describe
the dynamics close to the just introduced solutions.

Theorem 14. Consider a current density J⃗ of the form (3.3) with I(t) ∈ C4(R/TZ)
satisfying (3.2). Then, for every admissible strongly non-resonant triplet (r̄, L, pz)
there exists a number k1 > 0 such that, for every |k| < k1, the radially T -
periodic (L, pz)-solution (rk(t), θk(t), zk(t)) coming from Theorem 13 is radially
stable. Moreover, there exists h > 0 such that

� for every (q, p) ∈ N2 with p/q < h, there exists a radially (r̄, p, q)-subharmonic
(L, pz)-solution;

� for every positive irrational ω < h, there exists a radially (generalized)
quasiperiodic (L, pz)-solution with frequencies (1, ω).

The radial component r(t) of all these solutions converge uniformly to r̄ as k → 0.

Remark 15. The following picture comes from Theorem 14. For every admissible
strongly non-resonant triplet (r̄, L, pz) there exist a number k1 > 0 such that:

� There exist two sequences r
(0)
k → r̄ and ṙ

(0)
k → 0, defined for |k| < k1, such

that every (L, pz)-solution (rk(t), θk(t), zk(t)) of (3.1) with initial position in

the cylinder Ck = {(r, θ, z) ∈ R3 : r = r
(0)
k } and initial radial velocity equal

to ṙ
(0)
k is radially T -periodic.

� The cylinders Ck define trapping regions in the following sense. For every
ε > 0 there exists δ such that all the (L̃, p̃z)-solutions with |L− L̃|, |pz− p̃z| <
δ, initial position in the cylinder Cδk = {(r, θ, z) ∈ R3 : |r − r

(0)
k | < δ} and

initial radial velocity ṙ0 satisfying |ṙ0− ṙ(0)k | < δ, are contained in the cylinder

Cεk = {(r, θ, z) ∈ R3 : |r − r
(0)
k | < ε} for every time.

� Each cylinder Ck is accumulated by radially subharmonic and radially
quasiperiodic solutions.

Remark 16. In the unperturbed case k = 0, the conservation of the energy E im-
plies that, for fixed values of the momenta pz, L, there exists one radially constant
solution and all the other solutions are radially periodic with period depending con-
tinuously on the values of E,L, pz (see [3]). In the perturbed case, the T -periodic
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dependence on time implies that the only admissible periods are integer multiples
of T . Theorems 13 and 14 show that the radially constant solution is continued for
k > 0 to a radially T -periodic solution. Moreover, there exist radially qT -periodic
(for large q ∈ N) and quasiperiodic solutions. This latter class of solutions is not
present in the unperturbed case.

3.3 The electromagnetic potential

In this section, the electric and magnetic fields generated by the current density
J⃗ are deduced. At first, introducing the potential notation (1.4)-(1.6) in (3.4),
the system is uncoupled into the wave equation (1.7), where we can take Φ ≡ 0
because there is no charge density. Consequently, we are left to solve

∂2t A⃗−∆A⃗ = µ0J⃗ , ∇ · A⃗ = 0, (3.7)

with the condition of decaying at infinity

lim
|q|→∞

|∇qA⃗(t, q)| = 0, uniformly in t.

As it was explained in Chapter 1, we cannot proceed here like for compact sup-
ported data. Actually, using (1.9) we get

A⃗(t, r) =
µ0

2π

[∫ ∞

0

I0√
τ 2 + r2

dτ + k

∫ ∞

0

I[t, r, τ ]√
τ 2 + r2

dτ

]
ez,

and the first integral is clearly divergent. On the other hand, by linearity of
Maxwell’s equations, the solution for (3.4) can be expressed as the sum of the
particular solutions for the constant and non constant part in (3.3), that is:

J0(f) =

∫
R2

I0f(t, 0, 0, z)dtdz, Jk(f) = k

∫
R2

I(t)f(t, 0, 0, z)dtdz,

for every f ∈ C∞
0 (R4) . Therefore, we shall solve separately the magnetostatic and

the time-dependent regime.

3.3.1 Magnenostatic regime. The Biot-Savart law.

Firstly, computing the rotational in the Maxwell-Faraday equation, as the term
∇ · E is zero, one has that

−∆E(t, q) = −∂t (∇×B(t, q)) = −∂2tE(t, q),

where the second equality follows from the Ampère’s law for J⃗0 = (0, 0, J0). There-
fore, E satisfies the homogeneous wave equation, whose unique distributional so-
lution decaying at infinity is the zero. Consequently, (3.4) is reduced to the next
curl-divergence system

∇ ·B = 0, ∇×B = µ0J⃗0, lim
|q|→∞

|B(q)| = 0. (3.8)
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Remark 17. Observe that we just assumed that the current is autonomous, thus
system (3.8) is common to any magnetostatic situation. Moreover, without loss of
generality we can redefine J0 as follows:

J0(f) =

∫
R
I0f(0, 0, z)dz, for every f ∈ C∞

0

(
R3
)
.

Concerning (3.8), the magnetic field B(q) can be formally obtained via the
Biot-Savart law for the Newtonian potential in R3, that is

B(q) = ∇× A⃗(q), where A⃗(q) =
−µ0

4π

∫
R3

J⃗0(q
′)

|q − q′|
dq′, (3.9)

and it solves Poisson’s equation assuming certain conditions of decaying at infinity.
See for instance [31, Chapter II-Laplace Operator] or [82, Chapter 2.4] for more
mathematical details. Nevertheless, applying (3.9) for the non-compact supported

distribution J⃗0, we get A⃗(q) = (0, 0, A(r)) with

A(r) =
−µ0

2π

∫ ∞

0

I0√
τ 2 + r2

dτ,

that gives a divergent integral for any r ≥ 0. However, in this case the magnetic
field B(q) can be measured and it is well known that

B(q) =
µ0

2πr2
(−x2, x1, 0), (3.10)

which can be obtained by the Biot-Savart formula in R2 for A(r) = −µ0
2π

ln r. In
fact,

− 2π

I0µ0

∆A(f) =

∫
R3

ln(r)∆f(q)dq =

∫
R3

ln(r)∆x,yf(q)dq

= 2π

∫
R
f(0, 0, z)dz =

2π

I0
J0(f), for every f ∈ C∞

0

(
R3
)
,

where we have used the logarithm as fundamental solution for the Laplace operator
in R2.

Despite the above heuristic check, let us deduce (3.10) properly using the po-
tential theory in R3. To this aim, we normalize the constants I0, µ0 = 1, without
loss of generality. Then, for any m > 0, we define the map δm : C (R3) → R as
follows:

δm(f) =

∫ m

−m
f(0, 0, z)dz.

Clearly, {δm}m>0 is a sequence in D′ (R3) that tends to J0 in the sense of distri-

butions when m → ∞. Besides, let A⃗m = (0, 0, Am) be the sequence of potentials
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given by the convolution of the Newtonian potential in R3 with (0, 0, δm). Distri-
butionally, that is

4πAm(f) = −δm
(∫

R3

f(q + q′)

|q′|
dq′
)

= −
∫ m

−m

∫
R3

f(x′, y′, z + z′)

|q′|
dq′dz,

for every f ∈ C∞
0 (R3). As f has compact support, from Fubini and the Funda-

mental theorem of calculus, it follows that ∂zAm → 0 when m→ ∞.

On the other hand, consider the rotational Bm = (∂yAm,−∂xAm, 0). Comput-
ing (3.9), we have that

∇×Bm(f) =

(
∂x3∂x1Am(f), ∂x3∂x2Am(f),−

2∑
i=1

∂2xiAm(f)

)
= ∇(∂x3Am(f))− (0, 0,∆Am(f)),

for every f ∈ C∞
0 (R3). Assuming that the limit when m→ ∞ exists, then

lim
m→∞

Bm(f) = lim
m→∞

(0, 0,−∆Am(f)) = J⃗0(f), (3.11)

for every f ∈ C∞
0 (R3), and B(q) = lim

m→∞
Bm(q) would solve (3.8) in the sense of

distributions.

In order to justify the above limit, observe that Am has associated the following
function in L1

loc (R3):

Am(q) = − 1

4π

∫ m

−m

dz′√
x2 + y2 + (z − z′)2

.

This means Am(f) = ⟨Am, f⟩ , for every f ∈ C∞
0 (R3). Concerning its partial

derivatives, it is not difficult to see that they exist for almost every q ∈ R3 and
that they are locally integrable functions in R3, so they can also be defined distri-
butionally. Furthermore,

−4πAm(q) =

∫ m

z

dz′√
r2 + (z − z′)2

+

∫ z

−m

dz′√
r2 + (z − z′)2

=

∫ z−m

0

dz̄√
r2 + z̄2

+

∫ −z−m

0

dz̄√
r2 + z̄2

=

∫ √
r2+(z−m)2

r

dτ√
τ 2 − r2

+

∫ √
r2+(z+m)2

r

dτ√
τ 2 − r2

= ln
(√

τ 2 − r2 + τ
) ∣∣∣√r2+(z−m)2

r
+ ln

(√
τ 2 − r2 + τ

) ∣∣∣√r2+(z+m)2

r

=− 2 ln r + ln
(
z −m+

√
r2 + (z −m)2

)
+ ln

(
z +m+

√
r2 + (z +m)2

)
.
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Clearly, the terms depending on m diverge when m → ∞, and so does Am(q).
Nevertheless, observe that their partial derivatives are of the order of O(m−1),
then

∂xAm −→ −1

2π
∂x ln(r), ∂yAm −→ −1

2π
∂y ln(r), when m→ ∞,

puntually for r > 0, and also in the sense of distributions. In particular,

Bm(x) −→ B(x) =
1

2πr2
(−x2, x1, 0), when m→ ∞,

recovering then (3.10), that solves (3.8) for J⃗0 according to (3.11).

3.3.2 Proof of Proposition 1

Let us begin by studying the properties of a(t, r). Firstly, to prove that the function
is well defined, let us see that the integral converges writing it as

a(t, r) =

∫ ∞

0

I[t, r, τ ]√
τ 2 + r2

dτ =

∫ r

0

I[t, r, τ ]√
τ 2 + r2

dτ +

∫ ∞

r

I[t, r, τ ]√
τ 2 + r2

dτ.

So, the first integral is finite since∣∣∣∣∫ r

0

I[t, r, τ ]√
τ 2 + r2

dτ

∣∣∣∣ ≤ ∥I∥∞
∫ r

0

1√
τ 2 + r2

dτ = ∥I∥∞ ln
(
1 +

√
2
)

and I is bounded. For the second, through integration by parts and denoting I(t)
as a primitive of I(t), we get∫ ∞

r

I[t, r, τ ]√
τ 2 + r2

dτ = −
[
I[t, r, τ ]

τ

]∞
r

+

∫ ∞

r

I[t, r, τ ]
τ 2

dτ.

Since I(t) has null average, then I(t) is periodic, so that∣∣∣∣∫ ∞

r

I[t, r, τ ]√
τ 2 + r2

dτ

∣∣∣∣ = ∣∣∣∣− [I[t, r, τ ]τ

]∞
r

+

∫ ∞

r

I[t, r, τ ]
τ 2

dτ

∣∣∣∣
≤
∣∣I(t−√

2r)
∣∣

r
+

∣∣∣∣∫ ∞

r

I[t, r, τ ]
τ 2

dτ

∣∣∣∣ ≤ 2∥I∥∞
r

. (3.12)

Hence, a(t, r) is well defined for (t, r) ∈ [0, T ]× (0,+∞). Let us now consider the
regularity, by proving that a(t, r) is Ck on [0, T ]× (a, b) for every 0 < a < b < +∞.
The integrand function in a(t, r) is continuous for (t, r, τ) ∈ [0, T ]× [a, b]× [0,+∞)
hence, to prove the continuity of a(t, r) is enough to prove that the improper
integral is uniformly convergent on [0, T ]× [a, b]. This follows integrating by parts,
actually, for any m > 0 one has:∣∣∣∣∫ +∞

m

I [t, r, τ ]√
τ 2 + r2

dτ

∣∣∣∣ = ∣∣∣∣[I[t, r, τ ]τ

]∞
m

+

∫ ∞

m

I[t, r, τ ]
τ 2

dτ

∣∣∣∣ ≤ 2∥I∥∞
m

. (3.13)
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Concerning the derivatives, let us denote by Fij(t, r, τ) the derivatives of the in-
tegrand function w.r.t (t, r) of order (i, j) such that i + j ≤ n. It can be checked
that they are all continuous in (t, r, τ) ∈ [0, T ] × [a, b] × [0,+∞). As before, we
need to check that the corresponding improper integrals converge uniformly. This
can be seen by the following observations. First of all, by considering the cases Fi0
(i.e. the derivatives involve the sole variable t) the uniform convergence is proved
as in (3.13), since

Fi0(t, r, τ) =
I(i) [t, r, τ ]√
τ 2 + r2

.

On the other hand, if a derivative involves the variable r, fixing t and r we have:

Fij(t, r, τ) ∼ O
(
τ−2
)

when τ → ∞,

with j > 0. Therefore, uniform convergence follows from the fact that r belongs
to a compact set. Finally, the periodicity in t of a(t, r) follows from the periodicity
of I.

Note that estimate (3.12) does not imply that a(t, r) is a locally integrable
function in r, however, it allows to define it as a distribution in R4. As usual,
considering f ∈ C∞

0 (R4), we establish a(f) as the scalar product in L2 (R4) of
a(t, r) with f(t, q). Then,

a(f) =

∫
R4

f(t, q)

∫ r

0

I[t, r, τ ]√
τ 2 + r2

dτdtdq +

∫
R4

f(t, q)

∫ ∞

r

I[t, r, τ ]√
τ 2 + r2

dτdtdq

≤ ln
(
1 +

√
2
)
∥I∥∞∥f∥L1 + 2∥I∥∞

∫
R4

|f(t, q)|
r

dtdq.

Passing to cylindrical coordinates, we obtain the bound

a(f) ≤ Cf∥f∥L∞ (∥I∥∞ + ∥I∥∞) ,

where Cf is a constant that depends on the measure of the support of f .

To study the asymptotic behaviour of a(t, ·) near to the singularity, assume
I ∈ C2 and consider its (uniformly absolutely-convergent) Fourier expansion

I(t) =
∑
j≥1

[αj cosλjt+ βj sinλjt]

where λj = j2πT−1 and {αj, βj}j≥1 are the corresponding Fourier coefficients that,
by the regularity of I, satisfy

|αj|, |βj| ≤
C

j2
for some C > 0. (3.14)

Moreover, α0 = 0 because I has null mean value. Inserting this expansion in the
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definition of a(t, r) and using the absolute convergence, we get

a(t, r) =

∫ ∞

0

∑
j≥1

[αj cos [λj (t, r, τ)] + βj sin [λj (t, r, τ)]]

√
τ 2 + r2

dτ

=
∑
j≥1

[
αj

∫ ∞

0

cos [λj (t, r, τ)]√
τ 2 + r2

dτ + βj

∫ ∞

0

sin [λj (t, r, τ)]√
τ 2 + r2

dτ

]
.

Note that these integrals can be solved explicitly. Actually, performing the change
of variable τ 2 + r2 = r2 cosh2 ξ:∫ ∞

0

cos [λj (t, r, τ)]√
τ 2 + r2

dτ =

∫ ∞

0

cos (λj (t− r cosh ξ)) dξ

= cos(λjt)

∫ ∞

0

cos (λjr cosh ξ) dξ + sin(λjt)

∫ ∞

0

sin (λjr cosh ξ) dξ

=
π

2
[cos(λjt)Y0 (λjr) + sin(λjt)J0 (λjr)] ,

where J0(x),Y0(x) are the Bessel functions of order zero of first and second kind
respectively. Reasoning analogously for the second integral, we obtain:

a(t, r) =
π

2

∑
j≥1

[αj cos(λjt) + βj sin(λjt)]Y0 (λjr)

+
π

2

∑
j≥1

[αj sin(λjt)− βj cos(λjt)]J0 (λjr) .

Using (3.14),

|a(t, r)| ≤ Cπ

2

∑
j≥1

1

j2
[|Y0(jr)|+ |J0(jr)|] , (3.15)

where the constant 2π
T

in λj has been normalized without loss of generality. In-
equality (3.15) gives the desired estimate. Actually, J0 is bounded so that it is
enough to estimate, for fixed r << 1,∑

j≥1

|Y0(jr)|
j2

.

Since Y0(x) ∼ ln(x) for x≪ 1, if jr << 1 we have that

|Y0(jr)|
j2

≤ C̃
| ln(jr)|
j2

≤ C̃
| ln r|
j2

, for some C̃ > 0.

Using also the fact that Y0(x) is bounded in the rest of its domain and the con-
vergence of the series

∑
j−2, we can prove the existence of a constant C such

that
|a(t, r)| ≤ C| ln(r)|, for all t and r ≪ 1.



46 CHAPTER 3. NEWTONIAN APPROACH FOR THE WIRE MODEL

Finally, we deduce that the potential generated by the time-dependent current
distribution is a(t, r). We recall that it is the solution of (3.7) for J⃗k = (0, 0, Jk)
such that

Jk(f) = k

∫
R2

I(t)f(t, 0, 0, z)dtdz, for every f ∈ C∞
0

(
R4
)
.

Again, we cannot compute directly the solution for Jk as a convolution with (1.8),
because the data is not of compact support, as it was said many times before. For
that reason, we define the sequence {Jk,m}m∈N in D′ (R4) as

Jk,m(f) = k

∫
[−m,m]2

f(t, 0, 0, z)J(t)dtdz,

which clearly converges to Jk when m ↗ ∞. Fixed k > 0, we also denote by am
the corresponding solution of the wave equation (3.7). By computing (1.9) we can
deduce the expression

am(t, r, z) =
µ0

4π

∫ m

−m

I
(
t−
√
r2 + (z′ − z)2

)
√
r2 + (z′ − z)2

dz′.

Again, by the change of variable τ = z − z′ and integrating by parts, it is proved
that am converges uniformly to a when m↗ ∞, which implies its convergence in
the distributional sense. Due to this, the function a(t, r) solves the wave equation

for the datum Jk. To conclude, we have to see that the retarded potential A⃗(t, r)
defined in (3.5) satisfies the Lorenz Gauge, and then it is a solution of Maxwell’s

equations (3.4). But this is trivial because the two first components of A⃗ and the
scalar potential Φ are zero. So, we only have to compute the derivative ∂zA, which
is clearly null.

Remark 18. Note that when I(t) is a linear combination of sines and cosines, then
the function a(t, r) has an explicit representation by means of Bessel functions.

3.4 Hamiltonian formulation and reduction

From Proposition 1, system (3.1) reduces to

q̈(t) = −∂tA⃗(t, q(t)) + q̇(t)×
[
∇× A⃗(t, q(t))

]
, (t, q) ∈ R4,

that is Hamiltonian with

H(t, q, p) =
1

2

∣∣∣p− A⃗(t, q)
∣∣∣2 .

From q̇ = ∂pH we get that the momenta p = (px, py, pz) are

p = q̇ + A⃗(t, q).
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With these assumptions, the Hamilton equations read

H(t, q, p) =
p2x + p2y

2
+

1

2

(
pz +

µ0

2π
(I0 ln r + ka(t, r))

)2
,

and 

ṗx = −µ0
2π

(
pz +

µ0
2π

(I0 ln r + ka(t, r))
) (

I0
r2

+ k ∂ra(t,r)
r

)
x,

ṗy = −µ0
2π

(
pz +

µ0
2π

(I0 ln r + ka(t, r))
) (

I0
r2

+ k ∂ra(t,r)
r

)
y,

ṗz = 0,

ẋ = px,

ẏ = py,

ż = pz +
µ0
2π

(I0 ln r + ka(t, r)) .

From this,
ẍ = −µ0

2π

(
pz +

µ0
2π

(I0 ln r + ka(t, r))
) (

I0
r2

+ k ∂ra(t,r)
r

)
x,

ÿ = −µ0
2π

(
pz +

µ0
2π

(I0 ln r + ka(t, r))
) (

I0
r2

+ k ∂ra(t,r)
r

)
y,

ż = pz +
µ0
2π

(I0 ln r + ka(t, r)) .

Observe that the linear momentum pz is a first integral. Passing in polar coordi-
nates, (x, y) = r(cos θ, sin θ), we get that the norm of the angular momentum is
another first integral:

ẏx− ẋy = r2θ̇ = L.

Differentiating twice the equation r2 = x2+y2, and noting that ẋ2+ ẏ2 = ṙ2+r2θ̇2,
we get

r̈ =
L2

r3
− µ0

2π

(
pz +

µ0

2π
(I0 ln r + ka(t, r))

)(I0
r
+ k∂ra(t, r)

)
. (3.16)

Hence, we will consider the equations
r̈ =

L2

r3
− µ0

2π

(
pz +

µ0

2π
(I0 ln r + ka(t, r))

)(I0
r
+ k∂ra(t, r)

)
,

r2θ̇ = L,

ż = pz +
µ0

2π
(I0 ln r + ka(t, r)) .

(3.17)

Note that r̈ = −∂rV (t, r) with

V (t, r) =
L2

2r2
+

1

2
(pz +

µ0

2π
(I0 ln r + ka(t, r)))2,

and, if k = 0, then also the energy

E =
1

2
ṙ2 + V0(r) =

1

2
ṙ2 +

L2

2r2
+

1

2

(
pz +

µ0

2π
I0 ln r

)2
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is preserved. If L ̸= 0, then V0(r) has only one minimum r̄ and V0(r) → ∞
as r → 0,+∞. Hence, in the magnetostatic regime, every solution of (3.16) with
nonzero angular momentum is periodic. In that case, using the equilibrium r(t) = r̄
in system (3.17), we get θ̇(t) = L/r̄2 and ż(t) = pz +

µ0
2π
I0 ln r̄. Consequently, the

particle moves on a cylindrical helix when L ̸= 0 and ż(0) = pz +
µ0
2π
I0 ln r̄ ̸= 0.

We want to study how this dynamics is perturbed for k > 0.

Remark 19. In [78] it is considered the induced motion of a polarized neutral
atom (i.e. a dipole) under the electromagnetic field generated by a time dependent
charge density (and no current) along the infinity wire. As in our case, the motion
can be reduced to the radial component given a singular equation of the form

r̈ =
L2 − C + ρ(t)

r3

where L is the angular momentum, C a constant depending on the physical prop-
erties of the atom and ρ(t) represents the charge density. Note that this equation
and (3.16) have different singularities.

3.5 Existence of solutions with periodic radial

oscillations of twist type

Here we conclude proving the two theorems in [61] about the Newtonian dynamics
of charged particles induced by the time-dependent current (3.3).

3.5.1 Proof of Theorem 13

At first, we shall apply the local continuation theorem (see Theorem 9 in 1.3.1) to
equation (3.16), in order to get the following result.

Proposition 2. Suppose I(t) ∈ C2(R/TZ) satisfying (3.2). Then, for every ad-
missible non-resonant triplet (r̄, L, pz) there exists a positive k0 such that, for every
|k| < k0, equation (3.16) admits a unique positive T -periodic (L, pz)-solution rk(t).
Moreover, it is continuous in (t, k) and such that

rk(t) → r̄, uniformly in t ∈ [0, T ], when |k| → 0.

Consequently, for any admissible non-resonant triplet (r̄, L, pz), Proposition 2
guarantees the existence of a positive solution rk(t) of (3.16) continuous in (t, k)
such that rk(t+ T ) = rk(t), r0(t) = r̄. Inserting this solution in (3.17) we get the
thesis. Concerning the sign of ż we have

ż = I0 + I0[ln(rk(t))− ln r̄] + ka(t, rk(t)).
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Hence, since rk(t) → r̄ uniformly in t as k → 0 and a(t, r) is continuous in a
neighbourhood of r̄, we get the result for some eventually smaller k0 recalling that
I0 ̸= 0.

Proof of Proposition 2. Let us fix an admissible non-resonant triplet (r̄, L, pz) and
consider only the case I0 > 0, being the other case similar. In order to apply
Theorem 9 to equation (3.16), we note that it can be written in the form (1.20)
as a system of first order, where the regularity assumptions are satisfied in a
neighbourhood of r̄ by Proposition 1. For k = 0, equation (3.16) reduces to

r̈ =
L2

r3
− C

r
(pz +C ln r) ,

that admits the constant solution r(t) = r̄ since r̄, L, pz belong to an admissible
triplet. Here we are denoting C = µ0I0(2π)

−1.

Writing pz = pz(r̄, L), the first variation w.r.t. r of (3.16) at the point (r, k) =
(r̄, 0) can be written as

ẏ =

(
0 1

− 1
r̄2

(
2L2

r̄2
+C2

)
0

)
y,

whose solutions are T0-periodic with

T0 =
1

r̄

√
2L2

r̄2
+C2.

Since by hypothesis T /∈ {nT0, n ∈ N}, Theorem 9 and Remark 10, give the
existence of k0 > 0 such that for every |k| < k0 there exists a unique T -periodic
solution rk(t) of (3.16), and rk(t) → r̄ as k → 0 uniformly in t. Finally, by the
uniform convergence to r̄ > 0 one can eventually decrease the value of k0 in order
to guarantee that, for every fixed |k| < k0, rk(t) > 0 for every t ∈ [0, T ].

3.5.2 Proof of Theorem 14. Stability by twist analysis.

At first, we shall study when the T -periodic solution rk(t) of (3.16) coming from
Proposition 2 is of twist type.

It comes from [96] that the twist character of a periodic solution can be deduced
by the third approximation of the equation. To this aim, let us move the solution
to the origin via the change of variable y = r − rk(t) in (3.16) and compute the
development up to third order around y = 0. This expression has the form

ÿ + Ak(t)y +Bk(t)y
2 + Ck(t)y

3 = 0.

By Theorem 10 in Chapter 1.3.2, we get the following:
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Proposition 3. Suppose I(t) ∈ C4(R/TZ) satisfying (3.2). For every admissible
strongly non-resonant triplet (r̄, L, pz) there exists k1, such that the solution rk(t)
of (3.16) coming from Proposition 2 is of twist type for k < k1.

Proof. As before, let us consider only the case I0 > 0, for which we are denoting
again C = µ0I0(2π)

−1. Fixing the strongly non resonant triplet (r̄, L, pz) we can
apply Theorem 13 and consider, for k < k0, the T -periodic solutions rk(t) of (3.16).
We recall that rk(t) = r̄+ξr(t, k) where ξr(t, k) is a continuous function, T -periodic
in t and such that ξr(t, k) → 0 as k → 0 uniformly in t.

To compute the coefficients Ak(t), Bk(t), Ck(t) of Theorem 10, it is convenient
to rewrite equation (3.16) as:

r̈ − L

r3
+

C

r
(pz +C ln r)− kC∂r (a(t, r)g(t, r, k)) = 0,

where g(t, r, k) := pz+C ln r+kC
I0
a(t, r). Using this, the calculus is simplified and

we obtain the expressions:

Ak(t) =
3L2

r4k(t)
− Cpz
r2k(t)

+
C2(1− ln rk(t))

r2k(t)
+ k∂rr (a(t, rk(t))g(t, rk(t), k)) ;

Bk(t) = − 6L2

r5k(t)
+

Cpz
r3k(t)

− C2(3− 2 ln rk(t))

2r3k(t)
+ k∂rrr (a(t, rk(t))g(t, rk(t), k)) ;

Ck(t) =
10L2

r6k(t)
− Cpz
r4k(t)

+
C2(11− 6 ln rk(t))

6r4k(t)
+ k∂rrrr (a(t, rk(t))g(t, rk(t), k)) .

Since the triplet is admissible Cpz = L2

r̄2
− C2 ln r̄, so that we can write the

coefficients as follows:

Ak(t) = Ā+ ξA(t, rk(t), k), with Ā =
2L2

r̄4
+

C2

r̄2
,

Bk(t) = B̄ + ξB(t, rk(t), k), with B̄ = −5L2

r̄5
− 3C2

2r̄3
,

Ck(t) = C̄ + ξC(t, rk(t), k), with C̄ = 9
L2

r̄6
+

11

6

C2

r̄4
.

Note that, as rk(t) converges to r̄ uniformly in time, then the residual functions
ξA, ξB, ξC converge to 0 uniformly in t as k → 0. Moreover, C̄ is trivially posi-
tive, the strong non-resonant condition implies that Ā < π2

4T 2 , and a direct com-
putation shows that 10B̄2Ā3/2 > 9C̄Ā5/2, for which it is enough to check that
10B̄2 > 9C̄Ā.

Therefore, using the fact that the remainders ξA, ξB, ξC converge to 0 uni-
formly in t as k → 0, we have that there exists k1 > 0 such that the coefficients
Ak(t), Bk(t), Ck(t) satisfy the hypothesis of Theorem 10 for k < k1.

We conclude proving the result.
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Proof of Theorem 14. Let us fix an admissible strongly non-resonant triplet
(r̄, L, pz). From Proposition 3 we consider for every k < k0 the T -periodic so-
lution of twist type of (3.16). Lyapunov stability is a known property of solutions
of twist type. Moreover there exist, for ω and p/q small, (generalized) quasi peri-
odic solutions with frequencies (1, ω) and solutions r(t) with minimal period qT .
These periodic solutions are such that the function r(t) − rk(t) has 2p zeros in a
period [0, qT ].

Note that, since rk(t) → r̄ uniformly for k → 0, we also have that r(t)− r̄ has
2p zeros in a period [0, qT ].

Inserting these solutions into system (3.17) we get the thesis, for fixed values
of L and pz. In particular we get stability restricted to the integral levels. It
remains to prove the stability in the whole phase space. We will proceed adapting
an argument in [111]. Consider the map P (r0, ṙ0, L, pz) = (r(T ), ṙ(T ), L, pz) that
maps one of these solutions with initial condition (r0, ṙ0) and integrals L, pz to
the corresponding values at time T . To prove stability it is enough to prove
that q0 = (r0, ṙ0, L0, pz0) is a stable fixed point for the map P . Let us fix a
neighbourhood U of q0. Since the point (r0, ṙ0) is the initial condition of a periodic
solution of (3.16) of twist type for fixed values of L, pz, we can find in U an invariant
planar region bounded by a closed curve surrounding (r0, ṙ0) of the form

U1 = {(r − r0)
2 + (ṙ − ṙ0)

2 ≤ R(Θ), L = L0, pz = pz0} ⊂ U ,

where Θ = Θ(r, ṙ) represents the angle cantered in (r0, ṙ0). Equation (3.16) de-
pends continuously on the parameters L, pz, hence by continuous dependence, we
can find a family of curves

(r − r0)
2 + (ṙ − ṙ0)

2 ≤ R(Θ, L, pz)

depending continuously on L, pz and with the properties above. Note that here
we have used the fact that the strongly non resonant condition (3.6) is an open
condition (for fixed r̄). Therefore, for sufficiently small δ, the region

U2 = {(r − r0)
2 + (ṙ − ṙ0)

2 ≤ R(Θ, L, pz), |L− L0| < δ, |pz − pz0 | < δ}

is invariant and contained in U . Therefore, the point q0 is stable under the map
P and the solutions are radially stable.
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Chapter 4

A quantitative result about the
existence of relativistic charged
particles with radially periodic
orbits

Complementarily to Chapter 3, here we focus on the relativistic dynamics induced
by the infinite wire model previously introduced. This research was done together
with P.J. Torres and it corresponds to the paper Periodic dynamics in the rela-
tivistic regime of an electromagnetic field induced by a time-dependent wire [63],
actually submitted for publication.

We shall consider the Lorentz force equation (1.1), where the electromagnetic
field is given by the derivatives (1.4) of the vectorial potential

A⃗(t, r) = −µ0

2π
[a0(r) + ka(t, r)]ez,

which solves the wave equation (3.7) for the time-dependent distribution (3.3)
associated to the current along the infinite wire. Just like in the Newtonian case,
the cylindrical symmetries are still present in our model and the corresponding
linear and angular relativistic momenta are conserved quantities. Therefore, we
are able to reduce (1.1) to a planar Hamiltonian system with one degree of freedom.

By using global continuation and topological degree, we identify a bi-parametric
family of radially periodic motions in (1.1) for an explicit interval of the pertur-
bation parameter k. Moreover, the proofs involve some delicate estimations of
the induced potential A⃗, which can be of independent interest, see Section 4.2 for
details.

Regarding the radial stability, we are sure that it holds for small values of
k reasoning like in [61], where the third approximation method is used [96, 114].
However, we have not been able to obtain a quantitative result, which remains as
an open problem.
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The chapter is structured as follows. In Section 4.1 we construct rigorously the
model from physical principles and the main results are presented. Section 4.2 col-
lects some delicate estimations about the asymptotic behaviour of the potential A⃗.
In Section 4.3, the symmetries of the system are used to deduce the corresponding
conserved quantities (linear and relativistic angular momentum) and reduce the
problem to a Hamiltonian system with one degree of freedom. To conclude, Sec-
tion 4.4 contains the main proof for the existence of radially periodic solutions. It
relies on the topological results developed in Section 1.3.3, that resemble the cel-
ebrated global continuation theorem by Capietto-Mawhin-Zanolin [22], adapted
to our context. Additionally, it is included a brief appendix about the Bessel
functions that are essential to describe the asymptotic behaviour of A⃗(t, q) in the
singularity points.

4.1 Statements of the main results

As in Chapter 3, we consider an infinitely long and infinitely thin straight wire
carrying a current of the form I0 + kI(t), where I0 > 0, k ≥ 0 are constants and
I(t) ∈ C2(R/TZ) satisfies ∫ T

0

I(t)dt = 0.

Notice that (3.2) implies the existence of a T -periodic primitive of I(t), which
we denote by I(t). Without loss of generality, let us assume the wire centered
in the z-axis. Then, the corresponding current density is a vectorial distribution
J⃗ = (0, 0, J) such that

J(f) =

∫
R2

[I0 + kI(t)] f(t, 0, 0, z) dt dz, for every f ∈ C∞
0

(
R4
)
.

Furthermore, the wire is also assumed to be electrically neutral, i.e., at any time,
every segment of it contains as many electrons as protons, so the charge density
ρ is null. In this situation, (3.4) admits as unique distributional solution to the

electromagnetic field given by (1.4), with Φ ≡ 0 and A⃗(t, q) = A(t, r)ez, where

A(t, r) = −µ0

2π
[a0(r) + ka(t, r)], (4.1)

and

a0(r) = I0 ln r, a(t, r) =

∫ ∞

0

I[t, r, τ ]√
τ 2 + r2

dτ.

Here r denotes the radial variable in theXY -plane, ez is the positive unitary vector
in the z-direction, and the bracket [t, r, τ ] =

(
t−

√
τ 2 + r2

)
shows the delay effect

of the potential. We refer the reader to Proposition 1 in Chapter 3 (or Proposition
1 in [61]) for the mathematical details. By the same result, (4.1) is T -periodic and
such that

if I(t) ∈ Cn([0, T ];R), then a(t, r) ∈ Cn
(
[0, T ]× R+;R

)
. (4.2)
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Moreover, there exists a constant C > 0 for which

|a(t, r)| ≤ C| ln r|, when r << 1.

Therefore, the blow up sign of (4.1) when r tends to 0 is controlled for all t ∈ [0, T ]
by the logarithm term a0(r) if k is small enough. In this chapter, we shall improve
Proposition 1 in [61] by giving a quantitative version, being able to estimate ex-
plicitly not just C but also describing the asymptotic behaviour of a(t, r) and its
partial derivative ∂ra(t, r) when r tends to 0 or to +∞. Concretely, for any r̂ > 0,
let Kr̂ be the quantity

Kr̂ :=
4I0

max
{
[2
(
1 +

√
2
)
+ π]∥I∥∞ + r̂π∥İ∥∞; 4T

2

3π
∥Ï∥∞

} .
Theorem 15. Let I0 be positive and I(t) ∈ C2(R/TZ) satisfying (3.2). Then (4.1)
is such that:

i) For any k ≥ 0, lim
r→+∞

A(t, r) = −∞, uniformly in t.

ii) For any k ∈ [0, Kr̂), lim
r→0+

A(t, r) = +∞, uniformly in t.

iii) For any k ∈ [0, Kr̂),

0 > −I0
r

[
1− k

Kr̂

]
>

2π

µ0

∂rA(t, r) > −I0
r

[
1 +

k

Kr̂

]
, (4.4)

for all (t, r) ∈ [0, T ]× [0, r̂].

Moreover,

iv) If k > 0, then
∂rA(t, r) ∼ r−1/2G(t, r), when r >> 1,

with G(t, r) being an oscillating function such that, given any (t, r) ∈ [0, T ]×
(0,+∞), there exists an infinitely number of points in [r,+∞) where G(t, r)
changes its sign.

Notice that the first three assertions are satisfied by the logarithm a0(r). There-
fore, the modification of the logarithm picture is explicitly controlled with respect
of the perturbation parameter k. Through this we are able to find invariant sets
for the solutions in order to apply a fixed point argument. The proof of Theorem
15 is given in Section 4.2.

In our particular conditions, the dynamical system (1.1) is

d

dt
ϕ(q̇(t)) = −∂tA⃗(t, q(t)) + q̇(t)×

[
∇q × A⃗(t, q(t))

]
. (4.5)
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Again, induced by the wire symmetries, let us consider the cylindrical coordinates
q = (r cos θ, r sin θ, z). We also denote by pr, L and pz the relativistic radial,
angular and linear momenta respectively, defined as

pr =
ṙ√

1− ṙ2 − r2θ̇2 − ż2
, L =

r2θ̇√
1− ṙ2 − r2θ̇2 − ż2

,

pz =
ż√

1− ṙ2 − r2θ̇2 − ż2
+ A(t, r).

(4.6)

Both L and pz are first integrals of (4.5) for every k ≥ 0. We rely on this fact to
introduce the following definition, analogous to the one established in the previous
chapter.

Definition 6. A solution q(t) = (r(t), θ(t), z(t)) of (4.5) with angular momentum
L and linear momentum pz is called a (L, pz)-solution. Moreover, it is radially
T -periodic if r(t+ T ) = r(t), for every t ∈ R.

Now, we are ready to set up the main result about the existence of radially
periodic solutions. Given T, k > 0, let us define

P(k) = −µ0

2π

[
I0 lnT + k

T 2

3
∥Ï∥∞

]
. (4.7)

Theorem 16. Let I0, L be positive, I(t) ∈ C2(R/TZ) satisfying (3.2) and P0 <
P(KT ). Take ε > 0 and k̄ ∈ [0, Krε+T+ε], where rε is the unique point satisfying
the identity

r2
[
P0 +

µ0

2π

(
I0 ln r −

T 2

3
∥Ï∥∞Kr+T+ε

)]
=

2πL2

µ0I0

C1 + C2(r + T + ε)

C2ε
, (4.8)

with
C1 = ∥I∥∞

[
2
(
1 +

√
2
)
+ π
]
, and C2 = π ∥İ∥∞.

Then, there exists a positive constant rm < rε, depending on k̄ and P(k̄), such that
for every (k, pz) ∈ [0, k̄] ×

[
P0,P(k̄)

]
, the Lorentz force equation (4.5) admits at

least one radially T -periodic (L, pz)-solution with

rm < r(t) < rε, for all t ∈ R.

Moreover,
lim
ε→0

rε = +∞ , lim
ε→0

Krε = 0.

4.2 Estimations for the potential

In this section we prove Theorem 15 as a consequence of two previous results. The
first one describes explicitly the asymptotic behaviour of (4.1) close to the wire
and also very far from it. In particular, we have the following.
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Proposition 4. Let I0 be positive and I(t) ∈ C2(R/TZ) satisfying (3.2). Then,
for every k ≥ 0,

lim
r→+∞

A(t, r) = −∞, uniformly in t.

Moreover, let k0 be the constant

k0 =
I0

T 2

3π
∥Ï∥∞

.

Then, for any k ∈ [0, k0): lim
r→0+

A(t, r) = +∞, uniformly in t.

On the other hand, as the potential (4.1) is regular, we can also proceed in a
similar way with its derivative ∂rA(t, r).

Lemma 1. Let I0 be positive and I(t) ∈ C2(R/TZ) satisfying (3.2).
Given any radius r̂ > 0, define the constant

kr̂ =
4I0

[2
(
1 +

√
2
)
+ π]∥I∥∞ + r̂π∥İ∥∞

. (4.9)

If k ∈ [0, kr̂), then

0 > −I0
r

[
1− k

kr̂

]
>

2π

µ0

∂rA(t, r) > −I0
r

[
1 +

k

kr̂

]
,

for all (t, r) ∈ [0, T ]× [0, r̂]. Moreover, if k > 0, then

∂rA(t, r) ∼ r−1/2G(t, r), when r >> 1,

where G(t, r) is a bounded and oscillating function such that, given any (t, r) ∈
[0, T ]×(0,+∞), there exists an infinitely number of points in [r,+∞) where G(t, r)
changes its sign.

Once we prove both results, it is clear that Theorem 15 follows combining them.

4.2.1 Proof of Proposition 4.

By Proposition 1 in [61], we know that

|a(t, r)| ≤ ∥I∥∞ ln
(
1 +

√
2
)
+ 2r−1∥I∥∞,

for all (t, r) ∈ [0, T ]× R+. Consequently, for every k ≥ 0,

−2π

µ0

A(t, r) ≥ I0 ln r − k|a(t, r)| ≥ I0 ln r − k∥I∥∞
(
ln
(
1 +

√
2
)
+ 2r−1

)
,

and the first assertion follows taking limits when r → +∞.
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Complementary, recalling again Proposition 1 in [61], the Fourier series of I(t)
allows to write a(t, r) as

a(t, r) =− π

2

∑
j≥1

[αj cos (λjt) + βj sin (λjt)]Y0 (λjr)

+
π

2

∑
j≥1

[αj sin (λjt)− βj cos (λjt)]J0 (λjr) ,
(4.10)

where J0, Y0 are the Bessel functions of first and second kind with zero index
respectively, λj = j2πT−1 and {αj, βj}j≥1 are the Fourier coefficients:

αj =
2

T

∫ T

0

I(t) cos(λjt)dt, βj =
2

T

∫ T

0

I(t) sin(λjt)dt.

Due to the regularity of I, integrating by parts twice we get the following:

αj = − T

2π2j2

∫ T

0

Ï(t) cos(λjt)dt, βj = − T

2π2j2

∫ T

0

Ï(t) sin(λjt)dt.

It is clear that |αj|, |βj| ≤ T 2

2π2j2
∥Ï∥∞, for all j ≥ 1. However, let us be more precise:∫ T

0

| sin(λjt)|dt =
∫ T

0

| sin
(
j2π
T
t
)
|dt = j

∫ T
j

0

| sin
(
j2π
T
t
)
|dt

= j

[∫ T
2j

0

sin
(
j2π
T
t
)
dt−

∫ T
j

T
2j

sin
(
j2π
T
t
)
dt

]

=
T

2π

[
− cos

(
j2π
T
t
) ∣∣∣ T2j

0
+ cos

(
j2π
T
t
) ∣∣∣Tj

T
2j

]
=

2T

π
.

Similarly,
∫ T
0
| cos(λjt)|dt = 2T

π
and

|αj|, |βj| ≤
T 2

π3j2
∥Ï∥∞, for all j ≥ 1.

Therefore, as ∥J0∥∞ = J0(0) = 1 and
∑
j≥1

j−2 = π2/6, then

|a(t, r)| < T 2

π2
∥Ï∥∞

[∑
j≥1

1

j2
|Y0 (λjr) |+

π2

6

]
,

for all (t, r) ∈ [0, T ]×R+. Concerning Y0(x), it is known that |Y0(x)| < 1, when x >
σ, where σi is the unique real root of the equation Y0(x) + 1 = 0. Thus, defining

r = σ
T

2π
, (4.11)

iσ ≈ 0, 2258374310
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if r ≥ r, it is clear that λjr > σ, for every j ∈ N. Furthermore,

|a(t, r)| < T 2

3
∥Ï∥∞, for all (t, r) ∈ [0, T ]× [r,∞). (4.12)

On the other hand, assume now r ∈ (0, r) and let us define the number

jr =
⌊r
r

⌋
≥ 1,

where ⌊·⌋ denotes the integer part function. Moreover, note that λjr < σ when
j ≤ jr, and then |Y0 (λjr)| ≥ 1 if, and only if, j ≤ jr. Therefore,∑

j≥1

1

j2
|Y0 (λjr) | =

jr∑
j≥1

1

j2
|Y0 (λjr) |+

∑
j>jr

1

j2
|Y0 (λjr) |

≤
jr∑
j≥1

1

j2
|Y0 (λjr) |+

∑
j>jr

1

j2
<

jr∑
j≥1

1

j2
|Y0 (λjr) |+

∑
j≥1

1

j2
.

Now we recall the inequality (4.19), developed in Appendix 4.5:

|Y0(x)| <
2

π

[∣∣∣∣ln( |x|
2

)∣∣∣∣+ γ

]
+

2

π
exp

(
x2

4

)
, x ∈ R,

with γii denoting the well known Euler-Masheroni constant, see [40, Section 1.5]
and the references therein. In particular,

|Y0 (λjr)| <
2

π

[∣∣∣ln(rπ
T

)∣∣∣+ ln j + γ + exp

(
λ2j
r2

4

)]
, r > 0,

and

π

2

jr∑
j≥1

1

j2
|Y0 (λjr) | <

jr∑
j≥1

1

j2

[∣∣∣ln(rπ
T

)∣∣∣+ ln j + γ + exp

(
σ2

4

)]
<

[∣∣∣ln(rπ
T

)∣∣∣+ γ + exp

(
σ2

4

)]∑
j≥1

1

j2
+
∑
j≥1

ln j

j2
.

The second sum is also convergent and can be computed explicitly by using the
derivative of the Riemann zeta function, see for instance [40, p. 135]. More
concretely,

ζ ′(2) =
∑
j≥2

ln j

j2
=
π2

6
(12 lnA− γ − ln(2π)) ,

where Aiii denotes the Glaisher–Kinkelin constant. Using this,

jr∑
j≥1

1

j2
|Y0 (λjr) | <

π

3

[∣∣∣ln( r
T

)∣∣∣+ exp

(
σ2

4

)
+ 12 lnA− ln 2

]
,

iiγ = 0, 5772156649...
iiiA = 1, 2824271291...
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and then, for any (t, r) ∈ [0, T ]× (0, r), we conclude that

|a(t, r)| < T 2

3π
∥Ï∥∞

(
|ln r|+ C̃

)
, (4.13)

with C̃ = | lnT |+ exp
(
σ2

4

)
+ 12 lnA− ln 2 + π. Finally, by (4.13),

2π

µ0

A(t, r) = −I0 ln r − ka(t, r) ≥ −I0 ln r − k|a(t, r)|,

≥ −I0 ln r + k
T 2

3π
∥Ï∥∞

(
|ln r|+ C̃

)
when (t, r) ∈ [0, T ] × (0, r), and the second assertion follows taking limit when
r → 0.

4.2.2 Proof of Lemma 1

Due to the smoothness of a(t, r), by the Leibniz’s rule we obtain ∂ra(t, r) deriving
under the integral sign

∂ra(t, r) = −r
∫ ∞

0

1

τ 2 + r2

[
İ[t, r, τ ] +

I[t, r, τ ]√
τ 2 + r2

]
dτ.

Fix m > 0 arbitrarily and let us consider the following decomposition:∫ ∞

0

İ[t, r, τ ]

τ 2 + r2
dτ =

∫ m

0

İ[t, r, τ ]

τ 2 + r2
dτ +

∫ ∞

m

İ[t, r, τ ]

τ 2 + r2
dτ.

Integrating by parts, we get that∫ ∞

m

İ[t, r, τ ]

τ 2 + r2
dτ = − I[t, r, τ ]

τ
√
τ 2 + r2

∣∣∣∣∣
∞

m

+

∫ ∞

m

I[t, r, τ ]
d

dτ

1

τ
√
τ 2 + r2

dτ

=
I[t, r,m]

m
√
m2 + r2

−
∫ ∞

m

I[t, r, τ ]

τ 2 (τ 2 + r2)

[√
τ 2 + r2 +

τ 2√
τ 2 + r2

]
dτ

=
I[t, r,m]

m
√
m2 + r2

−
∫ ∞

m

I[t, r, τ ]

τ 2
√
τ 2 + r2

dτ −
∫ ∞

m

I[t, r, τ ]

(τ 2 + r2)3/2
dτ.

Therefore, we can write

∂ra(t, r) = r

[
−
∫ m

0

İ[t, r, τ ]

τ 2 + r2
dτ −

∫ m

0

I[t, r, τ ]

(τ 2 + r2)3/2

− I[t, r,m]

m
√
m2 + r2

+

∫ ∞

m

I[t, r, τ ]

τ 2
√
τ 2 + r2

dτdτ

]
.
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With respect of the first line, both terms are bounded because∣∣∣∣∫ m

0

f(τ)

τ 2 + r2
dτ

∣∣∣∣ ≤ ∥f∥∞
∫ m

0

1

τ 2 + r2
dτ =

∥f∥∞
r

arctan (m/r),

for any f ∈ L∞ (R). On the other hand,∣∣∣∣∫ ∞

m

I[t, r, τ ]

τ 2
√
τ 2 + r2

dτ

∣∣∣∣ < ∥I∥∞
∫ ∞

m

1

τ 3
dτ =

∥I∥∞
2m2

.

Putting together all this, and choosing m = r, it follows that

|∂ra(t, r)| < ∥I∥∞
2
(
1 +

√
2
)
+ π

4r
+ ∥İ∥∞

π

4
, for all (t, r) ∈ [0, T ]× R+.

Moreover, fix r̂ > 0 arbitrarily. Then, by (4.9),

|∂ra(t, r)| <
1

r

I0
kr̂
, for all (t, r) ∈ [0, T ]× [0, r̂].

From this, the inequalities of Lemma 1 are obtained easily because

∂rA(t, r) = −I0
r
− k∂ra(t, r) ≤ −I0

r
+ k |∂ra(t, r)| < −I0

r

[
1− k

kr̂

]
and

∂rA(t, r) ≥ −I0
r
− k |∂ra(t, r)| > −I0

r

[
1 +

k

kr̂

]
.

To conclude, let us focus again in the Bessel functions. By 9.2.1 and 9.2.2
in [1], for |x| large we have that

J0(x) =

√
2

πx
cos(x− π/4) +O(|x|−3/2),

Y0(x) =

√
2

πx
sin(x− π/4) +O(|x|−3/2),

where O(f(x)) means that the remaining term is of the order of a certain function
f(x). Then, applying this in (4.10), we obtain that, for r large enough,

a(t, r) = r−1/2F(t, r) +O(r−3/2),

with

F(t, r) =−
√
π

2

∑
j≥1

[αj cos (λjt) + βj sin (λjt)] sin (λjr − π/4)
1

λj

+

√
π

2

∑
j≥1

[αj sin (λjt)− βj cos (λjt)] cos (λjr − π/4)
1

λj
.
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Reasoning like we did above, it is not difficult to see that F(t, r) is well defined
in R× R+ and that satisfies the properties of the statement. Finally, as a(t, r) is
regular, for r large enough we can write

2π

µ0

∂rA(t, r) = −I0
r
+ k∂ra(t, r) =

k√
r
G(t, r) +Θ(r−1),

with G(t, r) = ∂rF(t, r), and the lemma is proven.

4.3 Hamiltonian structure and magnetostatic regime

In general electrodynamics situations, the Lorentz Force equation (1.1) admits the
Hamiltonian formulation (1.16), according to [7]. In our particular case, as Section
4.1 stated, (1.1) is written as (4.5) and the corresponding Hamiltonian function is

H(t, p, q) =

√
1 + |p− A⃗(t, q)|2.

Again, the cylindrical symmetries induce us to consider the cylindrical change of
variable q = (r cos θ, r sin θ, z) and its associated basis {er, eθ, ez}, where

er = (cos θ, sin θ, 0) , eθ = (− sin θ, cos θ, 0) .

In these coordinates, the time-derivative is q̇ = ṙer + rθ̇eθ + żez and, after some
basic computations (see [113] for a similar procedure), we are able to rewrite the
Lorentz force equation (4.5) as the following system:

d

dt

(
ṙ√

1− ṙ2 − r2θ̇2 − ż2

)
− rθ̇2√

1− ṙ2 − r2θ̇2 − ż2
= ż∂rA(t, r),

d

dt

(
r2θ̇√

1− ṙ2 − r2θ̇2 − ż2

)
= 0,

d

dt

(
ż√

1− ṙ2 − r2θ̇2 − ż2
+ A(t, r)

)
= 0.

Remark 20. In this coordinates system, the characteristic Special Relativity effect
for the limitation of the particle velocities is the vector (ṙ, rθ̇, ż) strictly contained
in the interior of the unitary ball.

Observe that, as in the previous chapter, every symmetry implies a conservation
law, being consistent with Noether’s Theorem, while there is a dynamical equation
for the radial component r(t). Consequently, this induces the definition (4.6) of
the corresponding relativistic momenta (pr, L, pz) that, after some algebra, can be
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reversed obtaining:

ṙ =
pr√

1 + (pz − A)2 + p2r + L2r−2
, r2θ̇ =

L√
1 + (pz − A)2 + p2r + L2r−2

,

ż =
pz − A(t, r)√

1 + (pz − A)2 + p2r + L2r−2
.

From these identities, it is clear that the motion of a charged particle is de-
scribed by its radial component, with implicit dependence on the constant L, pz
and k. In particular, this allows to reduce (4.5) to the planar system

ṙ =
pr√

1 + (pz − A)2 + p2r + L2r−2
,

ṗr =
L2r−3 + (pz − A)∂rA√

1 + (pz − A)2 + p2r + L2r−2
,

(4.14)

that is Hamiltonian for the energy function

H(t, r, pr) =
√

1 + (pz − A)2 + p2r + L2r−2. (4.15)

In summary, by the wire symmetries, the dynamics described in (4.5) and
in (4.14) are equivalent. Therefore, we are reducing the Lorentz Force equation
(1.1) to a planar Hamiltonian system with one degree of freedom for the radial
component of the solutions, which is a similarity with the Newtonian approach.

Remark 21. Magnetostatic dynamics.

As (4.15) is integrable when k = 0, the energy of the system is conserved in that
case. Physically, this induces a magnetostatic regime, because of the vanishing of
the electric field, and the particles cannot collide with the wire. It is not difficult to
see that, for any pair (L, pz) ∈ R+ × R, (4.14) admits a unique equilibrium (r̄, 0).
We call it (L, pz)-equilibrium and is given by the identity

r̄2
[
pz +

µ0

2π
I0 ln r̄

]
=

2π

µ0

L2

I0
. (4.16)

Furthermore, this point is the same as in the Newtonian dynamics (see Defini-
tion 5 in Chapter 3). By (4.16), observe that the (L, pz)-equilibria are close to the
wire only if pz is large. Also,

r̄ ∈
(
exp

(
−pz

2π

µ0I0

)
, 1

)
, when pz > 0,

while r̄ ≥ 1 in the complementary case. However, regardless of the sign of pz, a
particle with radially constant motion is always accelerated in the current direction
because

ż = H−1
0

(
pz +

µ0

2π
I0 ln r̄

)
> 0.
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Again, this is also a similarity with the non-relativistic approach, where the unique
difference is the presence of the Hamiltonian constant H0. In fact, as H0 > 1, ż
is smaller than in the Newtonian case, which is something expected.

4.4 Existence of radially periodic solutions

In this section we apply the topological degree arguments developed in the Section
1.3.3 to the planar Hamiltonian system (4.14) in order to prove Theorem 16.
Before that, suitable a priori bounds are obtained using the asymptotic estimations
of A(t, r) developed in Section 4.2. As Theorem 16 was formulated in terms of
equation (4.5), the equivalent version for (4.14) reads:

Theorem 17. Let I0, L be positive, I(t) ∈ C2(R/TZ) satisfying (3.2) and P0 <
P(KT ). Take ε > 0 and k̄ ∈ [0, Krε+T+ε], with rε defined in (4.8). Then, there
exists a positive constant rm < rε, depending on k̄ and P(k̄), such that for all
(k, pz) ∈ [0, k̄]×

[
P0,P(k̄)

]
, (4.14) admits at least one T -periodic solution with

rm < r(t) < rε, for every t ∈ R.

Moreover,
lim
ε→0

rε = +∞ , lim
ε→0

Krε = 0.

From here to the end, we will refer to (r(t), pr(t)) as a T -periodic solution of
(4.14), where L, k and pz will be specified depending the case. By Remark 21, we
recall that |ṙ(t)| < 1 for all t ∈ R, thus the oscillation of r(t) is bounded by the
period, i.e.,

max
t∈[0,T ]

r(t)− min
t∈[0,T ]

r(t) < T.

On the other hand, the periodicity of the solution in (4.14) implies the existence
of t0 ∈ [0, T ] such that

r3 (t0) [A (t0, r (t0))− pz] ∂rA (t0, r (t0)) = L2.

We begin with the lower bound.

Lemma 2. Let I0, L be positive, I(t) ∈ C2(R/TZ) satisfying (3.2). Then, for any
k̄ ∈ [0, KT ], there exists a constant rm > 0, depending on k̄ and P(k̄), such that

rm < min
{
r(t) : t ∈ [0, T ], (k, pz) ∈ [0, k̄]×

(
−∞,P(k̄)

]}
.

Proof. Let us fix (k, pz) ∈ [0, k̄] ×
(
−∞,P(k̄)

]
. Recalling that T > r, with r

defined in (4.11), using (4.12) we get

A(t, T ) > −µ0

2π

[
I0 lnT + k

T 2

3
∥Ï∥∞

]
≥ P(k̄), for all t ∈ R.
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So, in particular, A(t0, T ) − pz > 0. Furthermore, Theorem 15 states that A(t, r)
is strictly decreasing when r ≤ T , and, because of the signs in (4.17), r(t0) > T
necessarily.

Finally, define the set

Zm(k̄) = {r ∈ R+ : P(k̄) = A(t, r), for some (t, k) ∈ [0, T ]× [0, k̄]},

that is closed because A is continuous in (t, r, k). Therefore, it has a minimum
m(k̄) := minZm(k̄) > T , and

min
t∈[0,T ]

r(t) > max
t∈[0,T ]

r(t)− T > m(k̄)− T := rm > 0.

The above result gives an explicit set for k and pz such that the particles with
radially periodic motion do not collide with the wire. This cannot be done for the
upper bound, at least using the identity (4.17), due to the oscillations of A(t, r)
for any k > 0 when r is large. More precisely, by iv) in Theorem 15,

r3 [A(t, r)− pz] ∂rA(t, r) = −pzr5/2G(t, r) +O(r2), r >> 1.

Therefore, for any L > 0, there exists a sequence {(tn, rn)}n∈N such that
lim

n→+∞
rn = +∞, and

r3n [A(tn, rn)− pz] ∂rA(tn, rn) = L2, for all n ∈ N.

However, under suitable conditions, the control for the decreasing of A(t, r), stated
in iii)-Theorem 15, allows to find explicit radius where there are no periodic solu-
tions of (4.14). To this aim, let us recall the identity (4.8):

r2
[
P0 +

µ0

2π

(
I0 ln r −Kr+T+ε

T 2

3
∥Ï∥∞

)]
=

2πL2

µ0I0

C1 + C2(r + T + ε)

C2ε
.

Lemma 3. Let I0, L be positive, I(t) ∈ C2(R/TZ) satisfying (3.2) and P0 <
P(KT ). Then, for any ε > 0 there exists a unique rε satisfying (4.8). Moreover,

i) lim
ε→0

rε = +∞.

ii) rε /∈ {r(t) : t ∈ [0, T ], (k, pz) ∈ [0, Krε+T+ε]× [P0,P (KT )]}.

Proof. Fix ε > 0 arbitrarily and let us write (4.8) as fε(r) = gε(r). Firstly, it is not
difficult to see that f(r) has a unique critical point r̃, which is a global minimum.
Furthermore,

lim
r→0+

fε(r) = 0− and lim
r→+∞

fε(r) = +∞.
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Then, as gε(r) is an increasing linear function with gε(0) >
2π
µ0

L2

I0
, the intersection

point rε is unique.

Regarding the properties, i) is trivial because gε tends to +∞ when ε→ 0. On
the other hand, as Kr is decreasing in r, by (4.7) we have that

−P(KT ) >
µ0

2π

(
I0 lnT +Kr+T

T 2

3
∥Ï∥∞

)
,

for any r > 0. As a consequence,

P0 +
µ0

2π

(
I0 lnT −Kr+T

T 2

3
∥Ï∥∞

)
< P0 −P(KT ) < 0,

for any r > 0 and then f(T ) < 0, from where it follows that rε > T . In particular,
rε > r and, by (4.12),

|a(t, r)| < T 2

3
∥Ï∥∞, for all (t, r) ∈ [0, T ]× [rε,+∞). (4.18)

Now fix (k, pz) ∈ (0, Krε+T+ε] × [P0,P (KT )]. Firstly, let us see that rε cannot
satisfy (4.17). To this aim, defining the function

F (t, r) = r3 [−pz + A(t, r)] ∂rA(t, r),

we can write (4.17) as F (t0, r(t0)) = L2. By (4.18) and (4.8), we have that

pz − A(t, rε) = pz +
µ0

2π
[I0 ln rε + ka(t, rε)]

> P0 +
µ0

2π

[
I0 ln rε −Krε+T+ε

T 2

3
∥Ï∥∞

]
> 0,

for every t ∈ R. On the other hand, as k ≤ Krε+T+ε, then ∂rA(t, rε) is strictly
negative and we can write

F (t, rε) = r3ε [pz − A(t, rε)] |∂rA(t, rε)| .

Using (4.4),

F (t, rε) >
I0µ0

2π
r2ε

(
P0 +

µ0

2π

[
I0 ln rε −Krε+T+ε

T 2

3
∥Ï∥∞

]) [
1− Krε+T+ε

Krε+T

]
=
I0µ0

2π
r2ε

(
P0 +

µ0

2π

[
I0 ln rε −Krε+T+ε

T 2

3
∥Ï∥∞

]) C2ε

C1 + C2(rε + T + ε)
,

where in the last equality we have used the definition (4.3) of Kr. Then, from
(4.8) it follows that F (t, rε) > L2 for all t ∈ [0, T ] and, consequently,

rε /∈ {r(t0) : r(t) T -periodic with (k, pz) ∈ (0, Krε+T+ε]× [P0,P (KT )]}.
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However, if there exists a t1 ̸= t0 such that r(t1) = rε, condition (4.17) must be
satisfied at some point r ∈ (rε, rε + T ). Reasoning for any r in this set as we just
did above for rε, we obtain that

F (t, r) >
I0µ0

2π
r2
(
P0 +

µ0

2π

[
I0 ln r −Krε+T+ε

T 2

3
∥Ï∥∞

]) [
1− Krε+T+ε

Krε+T

]
>
I0µ0

2π
r2ε

(
P0 +

µ0

2π

[
I0 ln rε −Krε+T+ε

T 2

3
∥Ï∥∞

]) [
1− Krε+T+ε

Krε+T

]
,

and therefore F (t, r) >
I0µ0

2π
L2, for all (t, r) ∈ [0, T ]× [rε, rε+T ], which proves ii).

Corollary 3. Let I0, L be positive, I(t) ∈ C2(R/TZ) satisfying (3.2) and P0 <
P(KT ). Then,

rε > r̄, for any (ε, pz) ∈ R+ × [P0,P (KT )] ,

where r̄ is the corresponding (L, pz)-equilibrium defined in (4.16).

Proof. Fix ε > 0, pz ∈ [P0,P (KT )] arbitrarily and let us write again (4.8) as
fε(r) = gε(r). By (4.16),

fε(r̄) < r̄2
[
pz +

µ0

2π
I0 ln r̄

]
=

2π

µ0

L2

I0
< gε(0) < gε(rε) = fε(rε).

Then, as fε(r) is increasing for all r ≥ rε, the result is proven.

Finally, we prove Theorem 17.

Proof. Let us obtain a bound for pr(t). To this aim, fix ε > 0 and take (k̄, pz) ∈
[0, Krε+T+ε]× [P0,P (KT )]. Because of Lemmas 2 and 3, we assume the existence
of a T -periodic solution such that r(t) ∈ {r ∈ R : rm < r < rε}. Then, by
periodicity, there exists a t̄ ∈ [0, T ] such that pr(t̄) = 0 and, integrating ṗr in [t̄, t],
with t arbitrary, we obtain the a priori bound:

|pr(t)| =

∣∣∣∣∣
∫ t

t̄

L2r−3(s) + (pz − A(s, r(s)))∂rA(s, r(s))√
1 + (pz − A(s, r(s)))2 + p2r + L2r−2(s)

ds

∣∣∣∣∣
<

∫ t

t̄

L2r−3(s)ds+

∫ t

t̄

|pz − A(s, r(s))| |∂rA(s, r(s))|√
1 + (pz − A(s, r(s)))2 + p2r + L2r−2(s)

ds

<T
L2

r3m
+

∫ t

t̄

|∂rA(s, r(s))| ds < T
L2

r3m
+ C(k̄) := P (k̄) <∞,
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with C(k̄) = max {|∂rA(t, r)| ; (t, r) ∈ [0, T ]× [rm, rε]}. Due to this, we define the
sets:

Ωε,k̄ = {x ∈ R2 : rm < x1 < rε, |x2| < P (k̄)};
Ω = {x ∈ X : Im(x) ⊂ Ωε,k̄}.

On the other hand, take k = λk̄, with λ ∈ [0, 1], and let us consider the
corresponding potential Aλ(t, r) and Hamiltonian function Hλ(t, r, pr) given by
(4.1) and (4.15) respectively. By (4.2), Hλ(t, r, pr) is T -periodic and regular in
its domain for any λ ∈ [0, 1]. Furthermore, as H0 is autonomous, hypotheses i)-
ii) of Section 1.3.3 are verified and the homotopic problem associated to (4.14)
satisfies (1.24). Therefore, we conclude applying Corollary 2 in Section 1.3.3 to
f0(r, pr) = H2

0(r, pr), for which it only remains to study its critical points in Ωk̄:

∂rH2
0 =

(
pz +

I0µ0

2π
ln r

)
I0µ0

π

1

r
− 2

L2

r3
; ∂prH2

0 = 2pr.

After basic computations, it follows that the equilibrium (r̄, 0), which belongs to
the interior of Ωk̄ by Corollary 3, is the unique critical point of H2

0(r, pr). Con-
cerning the derivatives of second order, clearly

∂2r prH
2
0(r, pr) = ∂2pr rH

2
0(r, pr) = 0, and ∂2prprH

2
0(r, pr) = 2.

Moreover,

∂2rrH2
0(r, pr) =

I20µ
2
0

2π2

1

r2
−
(
pz +

I0µ0

2π
ln r

)
I0µ0

π

1

r2
+ 6

L2

r4

= −∂rH
2
0

r
(r, pr) +

1

r2

(
I20µ

2
0

2π2
+ 4

L2

r2

)
.

Finally, as ∂rH2
0(r̄, 0) = 0,

∣∣HessH2
0(r̄, 0)

∣∣ = 2

r̄2

(
I20µ

2
0

2π2
+ 4

L2

r̄2

)
> 0,

and the result is proven.
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4.5 Appendix on Bessel functions

As some of the bounds obtained in Section 4.2 are computed using properties of the
Bessel functions, we consider necessary to include this appendix just to comment
some basic aspects of them. In particular, we need to justify the inequality

|Y0(z)| ≤
2

π

[∣∣∣ln(z
2

)∣∣∣+ γ
]
+

2

π
exp(z2/4), z ≥ 0. (4.19)

Before define them, let us recall some brief notions about the Gamma function
Γ(x), which we use in our development.

Gamma function

Defined as the improper integral

Γ(x) =

∫ +∞

0

sx−1e−sds, x > 0.

It is clear that Γ diverges in the origin, moreover

Γ(m) = (m− 1)!, m ∈ N.

On the other hand, we denote by ψ0 the Digamma function, defined as the loga-
rithmic derivative of Γ, i.e. Γ′(x)

Γ(x)
= ψ0(x). About this, we just remark the following

property

ψ0(x+ 1) = ψ0(x) +
1

x
, x > 0.

In particular, this implies:

ψ0(m+ 1) = ψ0(1) +
m∑
n=1

1

n
= −γ +

m∑
n=1

1

n
, m ∈ N, (4.20)

where γ is commonly known as the Euler-Masheroni constant.

Bessel functions

Given ν ∈ R and z ≥ 0, the Bessel function of first kind, order ν and argument z,
is defined as

Jν(z) =
∞∑
m=0

(−1)m
(z
2

)2m+ν

m!Γ(m+ ν + 1)
.

This expression is a linear combination of solutions for the Bessel’s equation

z2
d2y

dz2
+ z

dy

dz
+ (z2 − ν2)y = 0,
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which is also a solution by linearity. In particular, when ν = 0 we get

J0(z) =
∞∑
m=0

(−1)m
(z
2

)2m
(m!)2

. (4.21)

One of its basic properties is that Jν(z) is analytic for any ν ∈ R and any z ̸= 0.
Therefore, the Bessel function of second kind and natural order n ∈ N is defined
as the derivative

Yn(z) =
1

π

[
∂Jν
∂ν

− (−1)n
∂J−ν
∂ν

]
ν=n

, n ∈ N.

It is not difficult to see that ∂Jν
∂ν

(z)|ν=0 = −∂J−ν

∂ν
(z)|ν=0. By this,

Y0(z) =
2

π

∂Jν
∂ν

(z)
∣∣∣
ν=0

=
2

π

∂

∂ν

∞∑
m=0

(−1)m
(
z
2

)2m+ν

m!Γ(m+ ν + 1)

∣∣∣∣∣
ν=0

=
2

π

(
∞∑
m=0

(−1)m
(
z
2

)2m+ν

m!Γ(m+ ν + 1)
ln
(
z
2

)
−

∞∑
m=0

(−1)m
(
z
2

)2m+ν

m!Γ(m+ ν + 1)
ψ0(m+ ν + 1)

)∣∣∣∣∣
ν=0

.

Then, using (4.21) and (4.20), we obtain

Y0(z) =
2

π

[
ln
(z
2

)
+ γ
]
J0(z)−

2

π

∞∑
m=1

(−1)m
(z
2

)2m
(m!)2

[
1 + ...+

1

m

]
.

Finally, as |J0(z)| ≤ 1 for all z, we get (4.19):

|Y0(z)| ≤ 2

π

[∣∣∣ln(z
2

)∣∣∣+ γ
]
+

2

π

∞∑
m=0

(z2/4)m

m!

=
2

π

[∣∣∣ln(z
2

)∣∣∣+ γ
]
+

2

π
exp(z2/4).



Chapter 5

Coupling Poincaré-Birkhoff with
upper and lower solutions

This last chapter corresponds with the paper An extension of the Poincaré–Birkhoff
Theorem coupling twist with lower and upper solutions [42], coauthored by Alessan-
dro Fonda and Andrea Sfecci, from the University of Trieste, and that is actually
submitted for publication.

As it was detailed in the first chapter, in [42] we extend some famous results
of C.C. Conley and E.J. Zehnder in [29], where they gave a partial answer to
a conjecture by V.I. Arnold [9, 10]. Concretely, their result considers a periodic
problem for general Hamiltonian system

Sż = ∇H(t, z) , (5.1)

where S =
(
0 −I
I 0

)
is the standard symplectic matrix, H : R × R2N → R is

T -periodic in t, and ∇H(t, z) denotes its gradient with respect to z. Writing
z = (q, p), with q = (q1, . . . , qN) and p = (p1, . . . , pN), the system reads as

q̇ = ∂pH(t, q, p) , ṗ = −∂qH(t, q, p) .

Let us recall again the two main results of [29].

In a first theorem, assuming the Hamiltonian function H(t, z) to be periodic
in all variables q1, . . . , qN and p1, . . . , pN , they prove that system (5.1) has at least
2N + 1 geometrically distinct T -periodic solutions. In a second theorem, they
assume H to be periodic in q1, . . . , qN and to have a quadratic behaviour in p
such that there exist a constant R > 0 and a symmetric regular matrix A for
which H(t, q, p) = 1

2
⟨Ap, p⟩ + “lower order terms”, when |p| ≥ R. In this setting,

they prove that system (5.1) has at least N + 1 geometrically distinct T -periodic
solutions. They also mention a possible relation of this second result with the
Poincaré-Birkhoff Theorem.

These pioneering results in [29] have been extended in different directions, like
in [25,37,44,48,55–57,60,74,79,86,88,105,112].

71
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Our approach is strongly based on the higher-dimensional generalizations of
the Poincaré-Birkhoff Theorem established by Fonda and Ureña [55–57], where
some variants of the twist condition in higher dimensions are provided. These
works have also been extended by Fonda and Gidoni in [43], assuming H to be
periodic in q1, . . . , qN and possibly also in p1, . . . , pL, for some L ∈ {1, . . . , N},
together with a very general twist condition, thus finding N + L + 1 periodic
solutions. In a second paper [44], they obtain a most general result assuming
that the Hamiltonian function includes a nonresonant quadratic term. As it was
commented in Chapter 1.2.2, several applications of this theory have been provided
[19,21,41,44,45,50,51,53,56], generalizing some previously established results for
second order equations [24,34,35,47,52,69,73].

It is the aim of this chapter to further extend this fertile theory to systems
that, besides the periodicity-twist conditions illustrated above, also present a pair
of well-ordered lower and upper solutions. In order to better explain this situation,
let the considered Hamiltonian system be of the type{

q̇ = ∂pH(t, q, p, u, v) , ṗ = −∂qH(t, q, p, u, v) ,

u̇ = ∂vH(t, q, p, u, v) , v̇ = −∂uH(t, q, p, u, v) .
(5.2)

Here H : R×R4 → R is T -periodic in t, periodic in q, and has a twist involving the
(q, p) variables. At the same time, we also assume that there exist some constant
lower/upper solutions α ≤ β involving the (u, v) variables. In this situation we
are able to prove the existence of two geometrically distinct T -periodic solutions.
The result will then be extended to higher dimensional systems.

The reader is surely familiar with the method of lower/upper solutions in the
case of scalar equations like, for instance,

ü = f(t, u) .

This method has a long history, dating back to the pioneering papers [93,98,108],
see also the book [33] for a detailed exposition. We recall that the T -periodic
functions α, β : R → R are said to be a lower solution and an upper solution,
respectively, if

α̈(t) ≥ f(t, α(t)) , β̈(t) ≤ f(t, β(t)) ,

for every t ∈ [0, T ]. Recently the theory has been extended to periodic planar
systems in [46, 54]. This will be the approach adopted here, even if we will only
be able to deal with the case of constant lower and upper solutions.

Let us briefly explain why we need to reduce to constant lower/upper solutions.
The standard proof procedure in lower/upper solutions theorems is as follows: a)
modify the problem below α(t) and above β(t), in the u component, by the use
of a truncating function; b) show that the modified problem has a solution; c)
prove that the u component of this solution stays between α(t) and β(t). The
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technical difficulty encountered in the present work is that we need to maintain
the Hamiltonian structure, hence the modification of the problem has to be made
in the Hamiltonian function itself, being careful to preserve the differentiability of
the new function. Once the modification has been made, we are allowed to apply
the results in [44]. We believe that this technical difficulty could be overcome, but
for now the case of nonconstant lower/upper solutions remains an open problem.

Another open problem arises in the case of non-well-ordered lower and upper
solutions. Assuming some nonresonance conditions with respect to the higher part
of the spectrum, this case is usually treated by topological degree methods. We
do not know how to adapt this type of technique to our situation.

In order to maintain a friendly exposition, the chapter is written following
an increasing order of complexity, first presenting the main ideas in the simplest
situation, then extending them to more general systems. The chapter is thus
organized as follows.

In Section 5.1 we state our result in the simple case of system (5.2). The
proof is provided in Section 5.2. Then, in Section 5.3, we provide some variants
of the first theorem. In particular, we state a version of the theorem involving a
topological annulus, in the spirit of Poincaré’s original statement. In Section 5.4
we illustrate several examples of applications.

In Section 5.5 we extend the result to higher dimensions, thus generalizing
both the Conley–Zehnder theorems presented above. The proof is provided in
Section 5.6. In Section 5.7 we extend the higher dimensional result to systems
whose Hamiltonian function further involves a quadratic term and some examples
of possible applications are given in Section 5.8. In Section 5.9 we provide a
further application to the study of periodic solutions to perturbations of completely
integrable systems.

Finally, in Section 5.10 we establish the most general result of [42], where the
twist condition is stated as an “avoiding cones condition”.

5.1 Statement of the first result

In this section we consider the Hamiltonian system (5.2), where the Hamiltonian
function H : R × R4 → R is assumed to be continuous, T -periodic in t, and
continuously differentiable in the q, p, u, v variables.

Let us state our assumptions.

Assumption 1 (Periodicity). The function H(t, q, p, u, v) is periodic in q.
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To fix the ideas, we will assume the period in q to be equal to 2π. Under this
setting, T -periodic solutions of (5.2) appear in equivalence classes made of those
solutions whose components q(t) differ by an integer multiple of 2π. We say that
two T -periodic solutions are geometrically distinct if they do not belong to the
same equivalence class.

Assumption 2 (Lower and upper solutions). There exist some constants δ > 0
and α ≤ β such that

v ∂vH(t, q, p, u, v) > 0 , when u ∈ [α− δ, α] ∪ [β, β + δ], and v ̸= 0 , (5.3)

and {
∂uH(t, q, p, u, 0) ≥ 0 , when u ∈ [α− δ, α] ,

∂uH(t, q, p, u, 0) ≤ 0 , when u ∈ [β, β + δ] .
(5.4)

The above assumption comes from the definition of lower and upper solutions
given in [46,54]. We require here that these lower and upper solutions are constant.
More precisely, all constants in [α − δ, α] are lower solutions, and all constants in
[β, β + δ] are upper solutions. In the sequel, the constant δ > 0 provided by
Assumption 2 will be used without further mention.

Assumption 3 (Nagumo condition). There exist d > 0 and two continuous func-
tions f, φ : [d,+∞) → (0,+∞) , with∫ +∞

d

f(s)

φ(s)
ds = +∞ ,

satisfying the following property. If u ∈ [α− δ, β + δ], then{
∂vH(t, q, p, u, v) ≥ f(v) , when v ≥ d ,

∂vH(t, q, p, u, v) ≤ −f(−v) , when v ≤ −d ,

and
|∂uH(t, q, p, u, v)| ≤ φ(|v|) , when |v| ≥ d .

Assumption 4 (Linear growth). For every K > 0 there is a constant CK > 0
such that

|∂qH(t, q, p, u, v)| ≤ CK(|p|+ 1) , when u ∈ [α− δ, β + δ] and |v| ≤ K .

Remark 22. Notice that, under the above assumption, for any two continuous
functions U, V : [0, T ] → R, with

α− δ ≤ U(t) ≤ β + δ , for every t ∈ [0, T ] , (5.5)

the solutions of the system

q̇ = ∂pH(t, q, p, U(t), V (t)) , ṗ = −∂qH(t, q, p, U(t), V (t)) (5.6)
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are defined on [0, T ]. Indeed, let (q(t), p(t)) be a solution of system (5.6) starting at
time t = 0 from some (q(0), p(0)) = (q0, p0). This solution is defined on a maximal
interval of future existence [0, T ] ∩ [0, ω) . Set K = ∥V ∥∞. By Assumption 4,

|ṗ(t)| ≤ CK(|p(t)|+ 1) , for every t ∈ [0, T ] ∩ [0, ω) ,

which, combined with the Gronwall Lemma, yields

|p(t)| ≤ (|p0|+ 1) eCKT , for every t ∈ [0, T ] ∩ [0, ω) .

Then, since H is periodic in q, we have that there is a constant C > 0 depending
only on U , V and |p0|, such that

|q̇(t)| ≤ C , for every t ∈ [0, T ] ∩ [0, ω) .

Hence,

|q(t)| ≤ |q0|+ CT , for every t ∈ [0, T ] ∩ [0, ω) .

This implies that the solution (q(t), p(t)) must be defined on [0, T ], i.e., that ω > T .

Here is our first result.

Theorem 18. Let Assumptions 1, 2, 3 and 4 hold. Assume that there exist a < b
and ρ > 0 with the following property: For any two continuous functions U, V :
[0, T ] → R satisfying (5.5), the solutions of system (5.6) are such that{

q(T )− q(0) < 0 , when p(0) ∈ [a− ρ, a] ,

q(T )− q(0) > 0 , when p(0) ∈ [b, b+ ρ] .
(5.7)

Then, there exist at least two geometrically distinct T -periodic solutions of sys-
tem (5.2), such that p(0) ∈ (a, b) and

α ≤ u(t) ≤ β , for every t ∈ R . (5.8)

The same conclusion holds if (5.7) is replaced by{
q(T )− q(0) > 0 , when p(0) ∈ [a− ρ, a] ,

q(T )− q(0) < 0 , when p(0) ∈ [b, b+ ρ] .

5.2 The proof of Theorem 18

The proof is based on [44, Corollary 2.4], and will be divided in two steps. In the
first step we analyze the dynamics focusing on the (u, v) variables. In the second
one, we draw our attention on the (q, p) variables.
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5.2.1 Working with the (u, v) coordinates

Let us focus our attention on the couple of variables (u, v). At first, we are going
to modify the original problem (5.2) outside some suitably chosen set V ⊆ R4.
We will then prove that all the T -periodic solutions of the modified system must
be such that z(t) = (q(t), p(t), u(t), v(t)) ∈ V for every t ∈ [0, T ]. Hence, such
solutions will solve the original problem (5.2), too.

Assumption 3 permits us to apply the reasoning in [54, Theorem 3.1] (see
also [46, Lemma 15]) in order to find two continuously differentiable functions
γ± : R → R satisfying

γ−(s) < −d < d < γ+(s) ,

for every s ∈ [α− δ, β + δ], and

−∂uH
(
t, q, p, u, γ+(u)

)
> ∂vH

(
t, q, p, u, γ+(u)

)
γ′+(u) , (5.9)

−∂uH
(
t, q, p, u, γ−(u)

)
< ∂vH

(
t, q, p, u, γ−(v)

)
γ′−(u) , (5.10)

for every (t, q, p, u) ∈ [0, T ] × [0, 2π] × R × [α − δ, β + δ]. Correspondingly, we
introduce the set

V = {z = (q, p, u, v) | α ≤ u ≤ β , γ−(u) < v < γ+(u)} .

Now we can choose a constant d̂ > d satisfying

−d̂ < γ−(s) < γ+(s) < d̂ ,

for every s ∈ [α− δ, β + δ].

We consider a continuously differentiable function ζ : R → R such that

ζ(u) =


α− δ , if u ≤ α− 2δ ,

u , if α ≤ u ≤ β ,

β + δ , if u ≥ β + 2δ ,

(5.11)

and
ζ ′(u) > 0 , when u ∈ (α− 2δ, β + 2δ) . (5.12)

Notice that
α− δ ≤ ζ(u) ≤ β + δ , for every u ∈ R .

Then, we introduce a continuously differentiable function χ : [α−δ, β+δ]×R → R
satisfying the following properties:

χ(u, v) =


−d̂ , if v < −d̂− 1 ,

v , if γ−(u) ≤ v ≤ γ+(u) ,

d̂ , if v > d̂+ 1 .

(5.13)
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Moreover, we assume that

∂vχ(u, v) > 0 , when |v| < d̂+ 1 . (5.14)

Let Ĥ : R× R4 → R be defined as

Ĥ(t, q, p, u, v) = H
(
t, q, p, ζ(u), χ(ζ(u), v)

)
+H(u, v) ,

with

H(u, v) =
1

2

[[
(v − d̂ )+

]2
+
[
(v + d̂ )−

]2
−
[
(u− β)+

]2 − [(u− α)−
]2]

,

where, as usual, ξ+ = max{ξ, 0} and ξ− = max{−ξ, 0}. We consider the modified
Hamiltonian system{

q̇ = ∂pĤ(t, q, p, u, v) , ṗ = −∂qĤ(t, q, p, u, v) ,

u̇ = ∂vĤ(t, q, p, u, v) , v̇ = −∂uĤ(t, q, p, u, v) .
(5.15)

Notice that Ĥ = H in the closure of the set V . Our aim is to prove the following
a priori bound.

Lemma 4. If z = (q, p, u, v) is a T -periodic solution of (5.15), then z(t) ∈ V for
every t ∈ [0, T ], hence it solves (5.2).

The proof of this lemma needs some preparation, hence it will be provided at
the end of the section.

In what follows, for every z = (q, p, u, v) we introduce the notation

z̃ = (q, p, ζ(u), χ(ζ(u), v)) .

We can explicitly compute

∂qĤ(t, z) = ∂qH
(
t, z̃) , ∂pĤ(t, z) = ∂pH

(
t, z̃) , (5.16)

∂uĤ(t, z) =
(
∂uH

(
t, z̃) + ∂vH

(
t, z̃) ∂uχ(ζ(u), v)

)
ζ ′(u) + ∂uH(u, v), (5.17)

∂vĤ(t, z) =∂vH
(
t, z̃) ∂vχ(ζ(u), v) + ∂vH(u, v) . (5.18)

Proposition 5. Any solution of (5.15) satisfies, for every t0 ∈ R,

[u(t0) < α and v(t0) = 0] ⇒ v̇(t0) < 0 ,

[u(t0) > β and v(t0) = 0] ⇒ v̇(t0) > 0 .
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Proof. We first note that, as an immediate consequence of (5.3), we have

∂vH(t, q, p, u, 0) = 0 , when u ∈ [α− δ, α] ∪ [β, β + δ] . (5.19)

We prove the first implication, the second one being similar. Let t0 ∈ R be such
that u(t0) < α and v(t0) = 0. Let z(t) be a solution of (5.15), with z(t0) =
(q(t0), p(t0), u(t0), 0). Then, z̃(t0) = (q(t0), p(t0), ζ(u(t0)), 0). By (5.17) and (5.19)
we have that

v̇(t0) = −∂uĤ(t0, z(t0)) = −∂uH(t0, z̃(t0))ζ
′(u(t0))− ∂uH(u(t0), 0)

= −∂uH(t0, z̃(t0))ζ
′(u(t0)) + u(t0)− α , (5.20)

so that

v̇(t0) < −∂uH(t0, z̃(t0))ζ
′(u(t0)) .

Then, (5.4) and (5.12) give the negative sign when u(t0) ∈ (α − 2δ, α) . On the
other hand, ζ ′(u) vanishes when u ≤ α − 2δ and the conclusion easily follows
from (5.20).

Proposition 6. Any solution of (5.15) satisfies, for every t0 ∈ R,

[u(t0) ≤ α and v(t0) < 0] ⇒ u̇(t0) < 0 ,

[u(t0) ≤ α and v(t0) > 0] ⇒ u̇(t0) > 0 ,

[u(t0) ≥ β and v(t0) < 0] ⇒ u̇(t0) < 0 ,

[u(t0) ≥ β and v(t0) > 0] ⇒ u̇(t0) > 0 .

Proof. Let us prove the first assertion, the proof of the others being similar. Let
t0 ∈ R be such that u(t0) ≤ α and v(t0) < 0. Since ζ(u) ∈ [α − δ, α] when u ≤ α

and χ(u, v) < 0 when v < 0, recalling (5.3), (5.14), and (5.18), if −d̂−1 < v(t0) < 0
we get

u̇(t0) = ∂vH(t0, z̃(t0))∂vχ(ζ(u(t0)), v(t0))− (v(t0) + d̂ )−

≤ ∂vH(t0, z̃(t0))∂vχ(ζ(u(t0)), v(t0)) < 0 .

On the other hand, if v(t0) ≤ −d̂ − 1, then ∂vχ(ζ(u(t0)), v(t0)) = 0, so that

u̇(t0) = −(v(t0) + d̂ )− < 0.

We define the open sets

ANW = {z ∈ R4 | u < α , v > 0} , ANE = {z ∈ R4 | u > β , v > 0} ,
ASW = {z ∈ R4 | u < α , v < 0} , ASE = {z ∈ R4 | u > β , v < 0} .

As a consequence of the previous propositions, the following can be easily
proved.
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Proposition 7. For every solution z of (5.15) the following assertions hold:

if z(t0) ∈ ANW for some t0 ∈ R, then z(t) ∈ ANW for every t < t0 ,

if z(t0) ∈ ANE for some t0 ∈ R, then z(t) ∈ ANE for every t > t0 ,

if z(t0) ∈ ASW for some t0 ∈ R, then z(t) ∈ ASW for every t > t0 ,

if z(t0) ∈ ASE for some t0 ∈ R, then z(t) ∈ ASE for every t < t0 .

Hence, ANE and ASW are positively invariant sets, while ASE and ANW are
negatively invariant.

Proposition 8. Any solution of (5.15) satisfies, for every t0 ∈ R,

[α ≤ u(t0) ≤ β and v(t0) > d] ⇒ u̇(t0) > 0 ,

[α ≤ u(t0) ≤ β and v(t0) < −d] ⇒ u̇(t0) < 0 .

Proof. Let us prove the first implication. Since u(t0) ∈ [α, β] and v(t0) > d, we
have that ζ(u(t0)) = u(t0) and

u̇(t0) = ∂vH(t0, z̃(t0))∂vχ(u(t0), v(t0)) + (v(t0)− d̂ )+ .

If v(t0) ≥ d̂ + 1, then ∂vχ(u(t0), v(t0)) = 0 and (v(t0) − d̂ )+ > 0. On the other

hand, if d < v(t0) < d̂ + 1, then ∂vχ(u(t0), v(t0)) > 0 and (v(t0) − d̂ )+ ≥ 0.
Moreover, ∂vH(t0, z̃(t0)) > 0 by Assumption 3, thus proving that u̇(t0) > 0 in
both cases.

Proof of Lemma 4. Let z be a T -periodic solution of (5.15). We begin proving that
α ≤ u(t) ≤ β for every t. By contradiction, assume that there exists t0 ∈ R such
that u(t0) > β. If z(t0) ∈ ANE, by Proposition 7, since the function is periodic,
z(t) ∈ ANE for every t ∈ R. Then, we get a contradiction using Proposition 6.
Similarly we cannot have z(t0) ∈ ASE. Finally, if v(t0) = 0, Proposition 5 takes us
to the previous contradicting situations. We have thus proved that u(t) ≤ β for
every t ∈ R. A similar argument proves that u(t) ≥ α for every t ∈ R.

Now we show that v(t) < γ+(u(t)) for every t ∈ R. Let us define the function
G+(t) = v(t)− γ+(u(t)). By Proposition 8, it cannot be that G+(t) > 0 for every
t ∈ [0, T ]. Assume by contradiction the existence of t0 ∈ R such that G+(t0) = 0.

Then, since ∇H(t, z) = ∇Ĥ(t, z) for z in the closure of V , by (5.9) we have

G′
+(t0) = −∂uH(t0, z(t0))− γ′+(u(t0)) ∂vH(t0, z(t0)) > 0 ,

where z(t0) =
(
q(t0), p(t0), u(t0), γ+(u(t0))

)
. This implies that G+(t) > 0 for every

t > t0, which is in contradiction with the periodicity of z. We have thus proved
that G+(t) < 0 for every t ∈ [0, T ].

We can similarly prove that γ−(u(t)) < v(t) for every t ∈ R, using (5.10).
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5.2.2 Working with the (q, p) coordinates

Let us fix K > 0 such that

|χ(ζ(u), v)| < K , for every (u, v) ∈ R2 .

Let z(t) = (q(t), p(t), u(t), v(t)) be a solution of system (5.15) starting at time
t = 0 with p(0) ∈ [a− ρ, b + ρ]. This solution is defined on a maximal interval of
future existence [0, ω) . By Assumption 4, recalling (5.16),

|ṗ(t)| ≤ CK(|p(t)|+ 1) , for every t ∈ [0, ω) ,

hence, setting
c = (max{|a|, |b|}+ ρ+ 1) eCKT ,

by Gronwall Lemma we have that

|p(t)| ≤ c , for every t ∈ [0, T ] ∩ [0, ω) .

Let η : R → R be a C∞-smooth nonincreasing function such that

η(s) =

{
1 , if s ≤ c ,

0 , if s ≥ c+ 1 .
(5.21)

We can rewrite the Hamiltonian Ĥ as

Ĥ(t, q, p, u, v) =
1

2
(v2 − u2) + ĥ(t, q, p, u, v) , (5.22)

and define the new Hamiltonian function

H̃(t, q, p, u, v) =
1

2
(v2 − u2) + h̃(t, q, p, u, v) , (5.23)

where
h̃(t, q, p, u, v) = η(|p|) ĥ(t, q, p, u, v) .

Notice that

|p| ≥ c+ 1 ⇒ h̃(t, q, p, u, v) = 0 for every (t, q, u, v) ∈ R× R3 .

The Hamiltonian H̃ induces the system{
q̇ = ∂ph̃(t, q, p, u, v) , ṗ = −∂qh̃(t, q, p, u, v) ,
u̇ = v + ∂vh̃(t, q, p, u, v) , v̇ = u− ∂uh̃(t, q, p, u, v) .

(5.24)

Since the Hamiltonian function is periodic in q and the functions ζ, ζ ′, χ, ∇χ, η
and η′ are all bounded, there exists a constant C̃ > 0 such that∣∣∂qh̃(t, z)∣∣+ ∣∣∂ph̃(t, z)∣∣+ ∣∣∂uh̃(t, z)∣∣+ ∣∣∂vh̃(t, z)∣∣ ≤ C̃ ,

for every (t, z) ∈ R × R4. Hence, the Hamiltonian function H̃ is the sum of a

nonresonant quadratic term and a function with bounded gradient ∇h̃(t, z). In
particular, all solutions of (5.24) are globally defined on [0, T ].
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We now verify the twist condition for system (5.24). Let z = (q, p, u, v) be a
solution of (5.24) such that p(0) ∈ [a− ρ, b+ ρ]. As long as |p(t)| ≤ c, we have

|ṗ(t)| = |∂qH(t, q(t), p(t), ζ(u(t)), χ(ζ(u(t)), v(t)))| ≤ CK(|p(t)|+ 1) .

Hence, by Gronwall Lemma, we conclude that |p(t)| ≤ c for every t ∈ [0, T ].
So, z = (q, p, u, v) is a solution of (5.15). Then, (q, p) is a solution of (5.6) with
U(t) = ζ(u(t)) and V (t) = χ(ζ(u(t)), v(t)), condition (5.5) is verified and, by (5.7),{

p(0) ∈ [a− ρ, a] ⇒ q(T ) < q(0) ,

p(0) ∈ [b, b+ ρ] ⇒ q(T ) > q(0) .

Hence, we can apply [44, Corollary 2.4] so to find two T -periodic solutions z =
(q, p, u, v) of (5.24) such that p(0) ∈ (a, b) . By the above estimates, these are
indeed solutions of (5.15) and, recalling Lemma 4, we conclude that they are the
T -periodic solutions of the original system (5.2) we were looking for.

5.3 Some variants of Theorem 18

Let us start with two observations.

Remark 23. Assumption 2 can be generalized by asking that there further exist
vα, vβ such that{

(v − vα) ∂vH(t, q, p, u, v) > 0 , when u ∈ [α− δ, α] and v ̸= vα ,

(v − vβ) ∂vH(t, q, p, u, v) > 0 , when u ∈ [β, β + δ] and v ̸= vβ ,

and {
∂uH(t, q, p, u, vα) ≥ 0 , when u ∈ [α− δ, α] ,

∂uH(t, q, p, u, vβ) ≤ 0 , when u ∈ [β, β + δ] .

Remark 24. Instead of a fixed interval [a, b], we could have a varying interval
[a(q), b(q)], where a, b : R → R are continuous 2π-periodic functions. Indeed, if a
and b are continuously differentiable, this case can be reduced to the previous one
by the symplectic change of variables

Ψ(q, p, u, v) =

(∫ q

0

b(s)− a(s)

2
ds ,

2p− b(q)− a(q)

b(q)− a(q)
, u, v

)
,

cf. [92, Exercise 1, p. 132]. If a and b are just continuous, they can be replaced by
smooth functions by the use of Fejer Theorem. Notice that the new Hamiltonian
H̃(t, q̃, p̃, u, v) = H(t,Ψ−1(q̃, p̃, u, v)) is periodic in q̃, with period τ := 1

2

∫ 2π

0
(b(s)−

a(s)) ds.
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We now propose a variant of our result which is more in the spirit of the
Poincaré–Birkhoff Theorem as originally stated by Poincaré [103]. We first re-
call the definition of rotation number. For t1 < t2, let η : [t1, t2] → R2 be a
continuous curve such that η(t) ̸= (0, 0) for every t ∈ [t1, t2]. Writing η(t) =
ρ(t)(cos θ(t), sin θ(t)), with ρ : R → (0,+∞) and θ : R → R continuous, we define

Rot (η; [t1, t2]) = −θ(t2)− θ(t1)

2π
.

We need to suitably modify Assumption 4, in the following way

Assumption 5 (Energy growth). For every K > 0 there is a constant CK > 0
such that ∣∣q ∂pH(t, q, p, u, v)− p ∂qH(t, q, p, u, v)

∣∣ ≤ CK(q
2 + p2 + 1) ,

when u ∈ [α− δ, β + δ] and |v| ≤ K .

In the sequel, we denote by D(Γ) the open bounded region delimited by a
planar Jordan curve Γ.

Theorem 19. Let Assumptions 2, 3, and 5 hold. Let k be an integer and assume
that there exist ρ > 0, ρ̃ > 0 and two planar Jordan curves Γ1, Γ2, strictly star-
shaped with respect to the origin, with

0 ∈ D(Γ1) ⊆ D(Γ1) ⊆ D(Γ2) ,

such that, for any two continuous functions U, V : [0, T ] → R satisfying (5.5),
the solutions of system (5.6) with dist

(
(q(0), p(0)),D(Γ2) \ D(Γ1)

)
≤ ρ which are

defined on [0, T ] satisfy

q(t)2 + p(t)2 ≥ ρ̃ , for every t ∈ [0, T ] ,

and, if (q(0), p(0)) /∈ D(Γ2) \ D(Γ1),

Rot ((q, p); [0, T ]) < k , when dist
(
(q(0), p(0)),Γ1

)
≤ ρ ,

Rot ((q, p); [0, T ]) > k , when dist
(
(q(0), p(0)),Γ2

)
≤ ρ .

Then, the Hamiltonian system (5.2) has at least two T -periodic solutions zi(t),
i = 1, 2, satisfying (5.8), with

(qi(0), pi(0)) ∈ D(Γ2) \ D(Γ1) ,

and
Rot ((qi, pi); [0, T ]) = k.

The same is true if (19) is replaced by

Rot ((q, p); [0, T ]) > k , when dist
(
(q(0), p(0)),Γ1

)
≤ ρ ,

Rot ((q, p); [0, T ]) < k , when dist
(
(q(0), p(0)),Γ2

)
≤ ρ .
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Proof. At first, let R0 > 0 be such that

dist
(
(q(0), p(0)),D(Γ2)

)
≤ ρ ⇒ q(0)2 + p(0)2 ≤ R0 .

We modify the Hamiltonian H introducing the function Ĥ, arguing as in Sec-
tion 5.2.1, thus finding the a priori bound in Lemma 4. Let K > 0 be such that

|χ(ζ(u), v)| < K , for every (u, v) ∈ R2 .

Let z(t) = (q(t), p(t), u(t), v(t)) be any solution of system (5.15) starting at time
t = 0 from a point z(0) satisfying q(0)2 + p(0)2 ≤ R0. This solution is defined
on a maximal interval of future existence [0, ω) . Defining r(t) = q(t)2 + p(t)2, by
Assumption 5,

|ṙ(t)| ≤ CK(r(t) + 1) , for every t ∈ [0, ω) ,

hence, setting
c = (R0 + 1) eCKT ,

by Gronwall Lemma we have that

r(t) ≤ c , for every t ∈ [0, T ] ∩ [0, ω) .

Let η be the function introduced in (5.21). Arguing as above, we can write Ĥ as

in (5.22) and define H̃ as in (5.23), where now

h̃(t, q, p, u, v) = η(q2 + p2) ĥ(t, q, p, u, v) .

The Hamiltonian function H̃ induces the system (5.24), whose solutions are glob-
ally defined on [0, T ].

Let z(t) = (q(t), p(t), u(t), v(t)) be any solution of system (5.24) with starting
point z(0) satisfying dist

(
(q(0), p(0)),D(Γ2) \ D(Γ1)

)
≤ ρ. Set U(t) = ζ(u(t))

and V (t) = χ(ζ(u(t), v(t)). Notice that (5.5) is satisfied. It can be verified that
r(t) = q(t)2 + p(t)2 ≤ c for every t ∈ [0, T ], with the same constant c as above.
Therefore, the couple (q(t), p(t)) is a solution of (5.6). So, by the assumption of
the theorem, we get

r(t) ≥ ρ̃ , for every t ∈ [0, T ] .

We now introduce a new smooth cut-off increasing function η̃ : R → [0, 1] such
that

η̃(s) =

{
0 , if r ≤ ρ̃/2 ,

1 , if r ≥ ρ̃ ,

and the new Hamiltonian function

H(t, q, p, u, v) =
1

2
(v2 − u2) + h(t, q, p, u, v) ,

where h(t, q, p, u, v) = η̃(q2 + p2)h̃(t, q, p, u, v).
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For the new Hamiltonian system Sż = ∇H(t, z), we introduce the symplectic
change of variables

q(t) =
√
2r(t) cos

(
θ(t)− 2π

T
kt
)
, p(t) =

√
2r(t) sin

(
θ(t)− 2π

T
kt
)
,

so to get a Hamiltonian system{
θ̇ = ∂rH(t, θ, r, u, v) , ṙ = −∂θH(t, θ, r, u, v) ,

u̇ = ∂vH(t, θ, r, u, v) , v̇ = −∂uH(t, θ, r, u, v) ,
(5.25)

defined for r > 0. This system can now be extended also for r ≤ 0, preserving
the regularity. Now, the periodicity Assumption 1 is recovered in the variable θ,
while Assumption 5 implies that the linear growth Assumption 4 holds for the new
variables (θ, r) instead of (q, p). Then Theorem 18 applies, in view of Remark 24,
providing the existence of two geometrically distinct T -periodic solutions of (5.25),
which are then translated, by the inverse change of variables (θ, r) 7→ (q, p), into
the T -periodic solutions of (5.2) we are looking for.

5.4 Examples of applications

Both Theorem 18 and Theorem 19 open the way to a multitude of applications.
We will just sketch here a few.

Let us consider for example a system of the type{
−q̈ = g(t, q)− e(t) + ∂qP (t, q, u) ,

−ü = −f(u) + ∂uP (t, q, u) ,
(5.26)

where all functions are continuous and T -periodic in t, with
∫ T
0
e(t) dt = 0. Let

P (t, q, u) be 2π-periodic in q and continuously differentiable in (q, u). Assume

moreover g(t, q) to be 2π-periodic in q, with
∫ 2π

0
g(t, s) ds = 0.

Then system (5.26) is of the type (5.2), with

H(t, q, p, u, v) =
1

2
(p+ E(t))2 +

1

2
v2 +

∫ q

0

g(t, s) ds−
∫ u

0

f(σ) dσ + P (t, q, u) ,

where E(t) =
∫ t
0
e(s) ds. Precisely, we have{

q̇ = p+ E(t) , ṗ = −g(t, q)− ∂qP (t, q, u) ,

u̇ = v , v̇ = f(u)− ∂uP (t, q, u) .

Corollary 4. In the above setting, assume moreover that there exist two constants
α < β such that

f(α) < ∂uP (t, q, α), ∂uP (t, q, β) < f(β), (5.27)
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for all (t, q) ∈ [0, T ] × [0, 2π]. Then, system (5.26) has at least two geometrically
distinct T -periodic solutions (q, u), with α ≤ u ≤ β.

Proof. Notice that H(t, q, p, u, v) is 2π-periodic in q. By continuity, there is a
sufficiently small δ > 0 such that Assumption 2 is satisfied. Also Assumption 3 is
easily verified, taking f(s) = s and φ(s) constant. Moreover, there exist R > 0
with the following property: For any continuous function U : [0, T ] → R such that
α− δ ≤ U(t) ≤ β + δ for every t ∈ [0, T ], the solutions of

−q̈ = g(t, q)− e(t) + ∂qP (t, q, U(t))

satisfy {
q(T )− q(0) < 0 , when q̇(0) < −R ,
q(T )− q(0) > 0 , when q̇(0) > R .

Then, taking b = −a = R + ∥E∥∞, Theorem 18 applies.

As an immediate consequence, we have the following.

Corollary 5. The system of coupled pendulums of the form{
q̈ + a sin q = e(t)− ∂qP (t, q, u),

ü+ b sinu = −∂uP (t, q, u),

where P (t, q, u) and e(t) are as above, has at least two geometrically distinct T -
periodic solutions, for any a > 0, if ∥∂uP∥∞ < b.

We thus extend two classical results on the pendulum equation (cf. [89]). The

first one states that, if e(t) is T -periodic and
∫ T
0
e(t) dt = 0, then

q̈ + a sin q = e(t)

has at least two geometrically distinct T -periodic solutions, for any a > 0. The
second one states that, if ê(t) is T -periodic and ∥ê∥∞ ≤ b, then

ü+ b sinu = ê(t)

has at least two geometrically distinct T -periodic solutions.

Here are some other possible examples of applications.

1. Let f(u) = |u|ℓ−1u, with ℓ > 0, and let P be a function as above, and such that

lim
u→±∞

∂uP (t, q, u)

|u|ℓ
= 0 , uniformly in (t, q) ∈ [0, T ]× [0, 2π] .

Then, there exist two constants β = −α > 0 large enough such that (5.27) is
satisfied. In particular, if ∂uP is bounded, it is enough to take

α < −∥∂uP∥1/ℓ∞ , β > ∥∂uP∥1/ℓ∞ .

Notice that this includes the case of ∂uP being periodic in u. Hence, in this
situation, there exist at least two geometrically distinct T -periodic solutions of
system (5.26).



86 CHAPTER 5. COUPLING PB WITH UP&LW SOLUTIONS

2. Let f(u) = |u|ℓ sin(u), with ℓ > 0, and let P be as in the previous exam-
ple. Then (5.27) is satisfied for an infinite number of positive and negative pairs
(αi, βi). Hence, there exist infinitely many T -periodic solutions of system (5.26)
with positive u component and infinitely many T -periodic solutions with negative
u component.

3. Consider f(u) = arctan(u). Then, if ∂uP is bounded, with

∥∂uP∥∞ <
π

2
,

there exist at least two geometrically distinct T -periodic solutions of system (5.26).
It is sufficient to take β = −α > 0 large enough.

When P (t, q, u) is not periodic in q, we can appeal to Theorem 19. Consider
for example the system {

−q̈ = g(q) + ∂qP (t, q, u) ,

−ü = −f(u) + ∂uP (t, q, u) ,
(5.28)

where P (t, q, u) is continuously differentiable in (q, u). We can prove the following.

Corollary 6. Assume that

lim
|q|→∞

g(q)

q
= +∞ , (5.29)

and that ∂qP is bounded. If there exist two constants α < β such that (5.27) holds,
then system (5.28) has infinitely-many T -periodic solutions.

Proof. We will briefly explain the main arguments. At first we modify system (5.28)
by introducing the functions

f̂(u) = (u− β)+ − (u− α)− + f(ζ(u))ζ ′(u) , P̂ (t, q, u) = P (t, q, ζ(u)) ,

thus obtaining {
q̇ = p , ṗ = −g(q)− ∂qP̂ (t, q, u) ,

u̇ = v , v̇ = f̂(u)− ∂uP̂ (t, q, u) ,
(5.30)

and denoting by Ĥ(t, z) = 1
2
(v2 − u2) + ĥ(t, z) its Hamiltonian, for a suitable

choice of ĥ. Let B(0, R) ⊆ R2 be the ball of radius R > 0 centered at the origin,
and set BR := B(0, R) × R2. Then, following the arguments in [34, Section 2],
we can prove that any solution of system (5.30) is globally defined in the interval
[0, T ]. Moreover, by the elastic property stated in [34, Lemma 1] we can find
r3 > r2 > r1 > 0 such that any solution z(t) = (q(t), p(t), u(t), v(t)) of (5.30)
starting at t = 0 from a point belonging to ∂Br2 satisfies z(t) ∈ Br3 \ Br1 for every
t ∈ [0, T ]. For such solutions we can find k > 0 such that Rot ((q, p); [0, T ]) < k.
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Let us fix any k′ ≥ k. Assumption (5.29) provides the existence of R1 > 0
such that every solution z of (5.30), with z(t) /∈ BR1 for any t ∈ [0, T ], satisfies
Rot ((q, p); [0, T ]) > k′. Then, using again [34, Lemma 1], we can find R3 > R2 >
R1 such that any solution z of (5.30) starting at t = 0 from a point belonging
to ∂BR2 satisfies z(t) ∈ BR3 \ BR1 for every t ∈ [0, T ]. Hence, we have for such
solutions Rot ((q, p); [0, T ]) > k′.

Now, we introduce a smooth cut-off function η̂ : [0,+∞) → [0, 1] such that

η̂(r) =

{
0 if r ∈ [0, r1/2] ∪ [2R3,+∞) ,

1 if r ∈ [r1, R3] .

and the new Hamiltonian H̃(t, z) = 1
2
(v2 − u2) + h̃(t, z) where now

h̃(t, z) = η̂
(√

q(t)2 + p(t)2
)
ĥ(t, z) .

Finally, we are able to apply Theorem 19 to system (5.30) thus obtaining two
T -periodic solutions satisfying Rot ((q, p); [0, T ]) = k′ with starting point z(0) ∈
BR2 \ Br2 . Then, we can easily see that they are indeed solutions of (5.28).

Since the above construction can be made for every k′ ≥ k, we have proved the
existence of infinitely many T -periodic solutions.

We thus extend a result by Ding and Zanolin [34], stating that, if g(q) satis-
fies (5.29) and e(t) is T -periodic, the scalar equation

q̈ + g(q) = e(t)

has infinitely-many T -periodic solutions. A similar result for system (5.26) remains
an open problem, because global existence of the solutions is not guaranteed.
However, one could follow the lines of [50, 66, 69, 73] by assuming that the first
equation has 0 as an equilibrium point, and then prove that there are infinitely
many T -periodic solutions.

Whenever the function g has a sublinear growth at infinity, the existence of
subharmonic solutions has been investigated in [35]. We could also state such kind
of result here, but we avoid the details, for briefness.

Another situation where our results can be applied is when the system in (q, p)
has a different rotational behaviour at zero and at infinity. There are many papers
dealing with such a problem, see for instance [83] and the references therein. This
type of situation can be also exploited when dealing with some kind of asymmetric
oscillators like in [21], where the so-called jumping nonlinearities are treated. We
do not enter into details, again, to be brief.
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5.5 Going to higher dimensions

We consider system (5.1), assuming the Hamiltonian function H : R × R2N → R
to be continuous, T -periodic in its first variable t, and continuously differentiable
with respect to its second variable z, with corresponding gradient ∇H(t, z).

For z ∈ R2N , we write z = (ϕ, ψ, q, p, u, v), where, for some nonnegative integers
L, M and D,

ϕ = (ϕ1, . . . , ϕL) ∈ RL, ψ = (ψ1, . . . , ψL) ∈ RL,
q = (q1, . . . , qM) ∈ RM , p = (p1, . . . , pM) ∈ RM ,
u = (u1, . . . , uD) ∈ RD, v = (v1, . . . , vD) ∈ RD.

Notice that one or more of these integers could be equal to zero, in which case the
corresponding group will not be taken into account. For example, if L = 0, then
ϕ and ψ will disappear from the list.

Our system (5.1) then reads as
ϕ̇ = ∂ψH(t, z) , ψ̇ = −∂ϕH(t, z) ,

q̇ = ∂pH(t, z) , ṗ = −∂qH(t, z) ,

u̇ = ∂vH(t, z) , v̇ = −∂uH(t, z) .

(5.31)

Let us introduce our assumptions.

Assumption 6 (Periodicity). The function H(t, z) is periodic in each of the vari-
ables included in ϕ, ψ, q.

To fix the ideas, we assume that all periods are equal to 2π. The total number
of variables in which our Hamiltonian function is 2π-periodic is thus 2L + M .
Under this setting, T -periodic solutions z(t) of (5.1) appear in equivalence classes
made of those solutions whose components in ϕ(t), ψ(t), q(t), differ by an integer
multiple of 2π. We say that two T -periodic solutions are geometrically distinct if
they do not belong to the same equivalence class.

In the sequel, inequalities ≤ involving vectors are to be interpreted componen-
twise. Moreover, for any σ ∈ R, we use the notation σ̄ = (σ, . . . , σ) ∈ RD.

Assumption 7 (Lower and upper solutions). There exist some constants δ > 0,
α = (α1, . . . , αD) and β = (β1, . . . , βD) with α ≤ β, having the following property.
If α− δ̄ ≤ u ≤ β + δ̄, then, for every j ∈ {1, . . . , D},

vj ∂vjH(t, z) > 0 , when uj ∈ [αj − δ, αj] ∪ [βj, βj + δ] and vj ̸= 0 ,

and {
∂ujH(t, z) ≥ 0 , when uj ∈ [αj − δ, αj] and vj = 0 ,

∂ujH(t, z) ≤ 0 , when uj ∈ [βj, βj + δ] and vj = 0 .
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In the sequel, the constant δ > 0 provided by Assumption 7 will be used
without further mention.

Assumption 8 (Nagumo condition). For every j ∈ {1, . . . , D} there exist dj > 0
and two continuous functions fj, φj : [dj,+∞) → (0,+∞) , with∫ +∞

dj

fj(s)

φj(s)
ds = +∞ ,

satisfying the following property. If α− δ̄ ≤ u ≤ β + δ̄, then{
∂vjH(t, z) ≥ fj(vj) , when vj ≥ dj ,

∂vjH(t, z) ≤ −fj(−vj) , when vj ≤ −dj ,

and ∣∣∂ujH(t, z)
∣∣ ≤ φj(|vj|) , when |vj| ≥ dj .

Assumption 9 (Linear growth). For every K > 0 there is a constant CK > 0
with the following property. If α− δ̄ ≤ u ≤ β + δ̄ and |v| ≤ K, then

|∂qH(t, z)| ≤ CK(|p|+ 1) .

Adapting the argument in Remark 22, under the above assumption, for any
two continuous functions U, V : [0, T ] → RD with

α− δ̄ ≤ U(t) ≤ β + δ̄ , for every t ∈ [0, T ] , (5.32)

the solutions of the system
ϕ̇ = ∂ψH(t, ϕ, ψ, q, p, U(t), V (t)) ,

ψ̇ = −∂ϕH(t, ϕ, ψ, q, p, U(t), V (t)) ,

q̇ = ∂pH(t, ϕ, ψ, q, p, U(t), V (t)) ,

ṗ = −∂qH(t, ϕ, ψ, q, p, U(t), V (t)) ,

(5.33)

are defined on [0, T ] and, setting K = ∥V ∥∞,

|p(t)| ≤ (|p(0)|+ 1) eCKT , for every t ∈ [0, T ] . (5.34)

In the following, we consider a convex body D of RM , i.e., a closed convex
bounded set with nonempty interior. We denote by πD : RM \ D̊ → ∂D the pro-
jection on the convex set D and by νD(ζ) the unit outward normal at ζ ∈ ∂D,
assuming that D has a smooth boundary. We say that D is strongly convex if, for
any p ∈ ∂D, the function F : D → R defined as F(η) = ⟨η−p, νD(p)⟩ has a unique
maximum point at η = p.
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Here is our first result in this higher dimensional setting, generalizing Theo-
rem 18.

Theorem 20. Let Assumptions 6, 7, 8, and 9 hold. Assume that there exist ρ > 0,
a symmetric regular M×M matrix A and a strongly convex body D of RM , having
a smooth boundary, with the following property: For any two continuous functions
U, V : [0, T ] → RD satisfying (5.32), the solutions of (5.33) with p(0) /∈ D̊ and
dist(p(0), ∂D) ≤ ρ are such that〈

q(T )− q(0) , AνD
(
πD(p(0))

)〉
> 0 .

Then, system (5.31) has at least 2L + M + 1 geometrically distinct T -periodic
solutions, satisfying

p(0) ∈ D̊ ,

and
α ≤ u(t) ≤ β , for every t ∈ R . (5.35)

5.6 Proof of Theorem 20

Since the arguments will be similar to those provided in Section 5.2, we will try
to be brief.

At first we need to suitably modify the Hamiltonian system working compo-
nentwise in the (u, v) variables.

For every j ∈ {1, . . . , D}, from Assumption 8 we can find some continuously

differentiable functions γ±j : R → R and then d̂j > 0 such that

−d̂j < γ−j (s) < −dj , dj < γ+j (s) < d̂j ,

for every s ∈ [αj − δ, βj + δ], satisfying

−∂ujH
(
t, z
)
> ∂vjH

(
t, z
)
(γ+j )

′(uj) , when vj = γ+j (uj) ,

−∂ujH
(
t, z
)
< ∂vjH

(
t, z
)
(γ−j )

′(uj) , when vj = γ−j (uj) ,

for every (t, z) ∈ [0, T ]× R2N with uj ∈ [αj − δ, βj + δ].

We then define γ± : RD → RD as

γ±(u) = (γ±1 (u1), . . . , γ
±
D(uD)) ,

and introduce the set

V = {z = (ϕ, ψ, q, p, u, v) | α ≤ u ≤ β , γ−(u) < v < γ+(u)} ,
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recalling that we need to check the inequalities componentwise. We can then
introduce some functions ζj : R → R and χj : [αj − δ, βj + δ]×R → R similarly as
in (5.11) and (5.13), define

ζ(u) = (ζ1(u1), . . . , ζD(uD)) ,

χ(u, v) = (χ1(u1, v1), . . . , χD(uD, vD)) ,

and consider the modified Hamiltonian Ĥ : R× R2N → R as

Ĥ(t, ϕ, ψ, q, p, u, v) = H
(
t, ϕ, ψ, q, p, ζ(u), χ(ζ(u), v)

)
+H(u, v) ,

with

H(u, v) =
1

2

D∑
j=1

([
(vj−d̂j)+

]2
+
[
(vj+d̂j)

−
]2

−
[
(uj−βj)+

]2− [(uj−αj)+]2) .
The modified Hamiltonian system

Sż = ∇Ĥ(t, z) (5.36)

complies the following a priori bound, whose proof can be given adapting the one
of Lemma 4, arguing separately on every couple of variables (uj, vj), and verifying
the validity of some analogues of Propositions 5, 6, 7, and 8.

Lemma 5. If z = (ϕ, ψ, q, p, u, v) is a T -periodic solution of (5.36), then z(t) ∈ V
for every t ∈ [0, T ], hence it solves (5.31).

The next step involves the (q, p) variables. The reasoning in Section 5.2.2 can
be adapted to higher dimension. We fix K > 0 such that

|χ(ζ(u), v)| < K , for every (u, v) ∈ R2D, (5.37)

and, given the convex body D and the constant ρ > 0 as in the statement of the
theorem, we set

P0 = max{|p| : p ∈ D} , and c = (P0 + ρ+ 1)eCKT .

Let z(t) be a solution of system (5.36) having [0, ω) as its maximal interval of
future existence, starting with p(0) satisfying dist(p(0),D) ≤ ρ. Arguing as at the
beginning of Section 5.2.2, from Assumption 9 and (5.34), we have that

|p(t)| ≤ c , for every t ∈ [0, T ] ∩ [0, ω) . (5.38)

So, we can introduce the cut-off function η as in (5.21) in order to change the
Hamiltonian function

Ĥ(t, z) =
1

2
(|v|2 − |u|2) + ĥ(t, z) ,

into the new Hamiltonian function

H̃(t, z) =
1

2
(|v|2 − |u|2) + h̃(t, z) ,

with h̃(t, z) = η(|p|) ĥ(t, z). Notice that |∇h̃(t, z)| ≤ C̃ for a certain positive

constant C̃.
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Our aim is now to apply [44, Corollary 2.3] to the modified system

Sż = ∇H̃(t, z) . (5.39)

Any solution z = (ϕ, ψ, q, p, u, v) of (5.39) is defined on [0, T ]. As in the proof
of Theorem 18, we can prove that, if dist(p(0),D) ≤ ρ, then |p(t)| ≤ c for every
t ∈ [0, T ]. In particular it is a solution of (5.36). Then, if we set U(t) = ζ(u(t))
and V (t) = χ(ζ(u(t)), v(t)), we see that (ϕ, ψ, q, p) is a solution of (5.33). By
the assumption of the theorem, if the solution starts with dist(p(0), ∂D) ≤ ρ and
p(0) /∈ D̊, then 〈

q(T )− q(0) , AνD
(
πD(p(0))

)〉
> 0 .

The application of [44, Corollary 2.3] provides us 2L +M + 1 geometrically
distinct T -periodic solutions of (5.39) satisfying p(0) ∈ D̊. Then, by the above
estimates, they are solutions of (5.36). Finally, from Lemma 5, these are indeed
solutions of the original Hamiltonian system (5.31), and they satisfy α ≤ u(t) ≤ β,
for every t ∈ R.

5.7 Variants in higher dimensions

Here are two variants of Theorem 20. In the first one, the twist is formulated as
an avoiding rays condition.

Theorem 21. Let Assumptions 6, 7, 8, and 9 hold. Assume that there exist
ρ > 0 and a convex body D of RM , having a smooth boundary, with the following
property: For any two continuous functions U, V : [0, T ] → RD satisfying (5.32),
the solutions of system (5.33) with p(0) /∈ D̊ and dist(p(0), ∂D) ≤ ρ are such that

q(T )− q(0) /∈ {λνD
(
πD(p(0))

)
: λ ≥ 0} . (5.40)

Then, the same conclusion of Theorem 20 holds.

Proof. The argument follows the lines of the proof of Theorem 20, with the only
difference of applying [44, Corollary 2.1] instead of [44, Corollary 2.3].

Notice that the twist condition (5.40) may as well be replaced by

q(T )− q(0) /∈ {λνD
(
πD(p(0))

)
: λ ≤ 0} ,

and the same conclusion of Theorem 20 still holds.

We now consider the case when D is a M -cell, namely

D = [a1, b1]× · · · × [aM , bM ] .
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Theorem 22. Let Assumptions 6, 7, 8, and 9 hold. Assume that there exist ρ > 0
and a M-tuple σ = (σ1, . . . , σM) ∈ {−1, 1}M , with the following property: For
any two continuous functions U, V : [0, T ] → RD satisfying (5.32), the solutions
of (5.33) with p(0) /∈ D̊ and dist(p(0), ∂D) ≤ ρ are such that, for every i ∈
{1, . . . ,M}, {

σi(qi(T )− qi(0)) < 0 , when pi(0) ∈ [ai − ρ, ai] ,

σi(qi(T )− qi(0)) > 0 , when pi(0) ∈ [bi, bi + ρ] .

Then, the same conclusion of Theorem 20 holds.

Proof. Again the proof is similar to the one of Theorem 20, just applying [44,
Corollary 2.4] instead of [44, Corollary 2.3].

Remark 25. As noticed in Remark 24, instead of the fixed intervals [ai, bi] defining
the M-cell D, we could have varying intervals [ai(qi), bi(qi)], where ai, bi : R → R
are continuous 2π-periodic functions.

We now generalize Theorem 19. We thus drop the periodicity in the q-variables,
still maintaining it in the ϕ and ψ variables, as stated below.

Assumption 10 (Periodicity). The function H(t, z) is periodic in each of the
variables included in ϕ, ψ.

We also need to suitably modify Assumption 4, in the following way

Assumption 11 (Energy growth). For every K > 0 there is a constant CK > 0
such that, for every i ∈ {1, . . . ,M},∣∣qi ∂piH(t, q, p, u, v)− pi ∂qiH(t, q, p, u, v)

∣∣ ≤ CK(q
2
i + p2i + 1) ,

when u ∈ [α− δ, β + δ] and |v| ≤ K .

Here is the generalization of Theorem 19.

Theorem 23. Let Assumptions 7, 8, 10 and 11 hold. Let k1, . . . , kM be integers
and assume that there exist ρ > 0, ρ̃ > 0 and, for each i ∈ {1, . . . ,M} there exist
two planar Jordan curves Γi1, Γi2, strictly star-shaped with respect to the origin,
with

0 ∈ D(Γi1) ⊆ D(Γi1) ⊆ D(Γi2) ,

such that, for any two continuous functions U, V : [0, T ] → R satisfying (5.32), the
solutions of system (5.33) with

dist
(
(qi(0), pi(0)),D(Γi2) \ D(Γi1)

)
≤ ρ for every i ∈ {1, . . . ,M}

which are defined on [0, T ], satisfy

qi(t)
2 + pi(t)

2 ≥ ρ̃ , for every t ∈ [0, T ] ,
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and, if (qi(0), pi(0)) /∈ D(Γi2) \ D(Γi1),

Rot ((qi, pi); [0, T ]) < ki , when dist
(
(qi(0), pi(0)),Γ

i
1

)
≤ ρ ,

Rot ((qi, pi); [0, T ]) > ki , when dist
(
(qi(0), pi(0)),Γ

i
2

)
≤ ρ .

Then, system (5.31) has at least 2L+M + 1 distinct T -periodic solutions

z(1)(t) , . . . , z(2L+M+1)(t) ,

satisfying (5.35), with

(q
(n)
i (0), p

(n)
i (0)) ∈ D(Γi2) \ D(Γi1) ,

and
Rot ((q

(n)
i , p

(n)
i ); [0, T ]) = ki ,

for every i = 1, . . . ,M and n = 1, . . . , 2L+M + 1. The same is true if, for some
i ∈ {1, . . . ,M}, assumption (23) is replaced by

Rot ((qi, pi); [0, T ]) > ki , when dist
(
(qi(0), pi(0)),Γ

i
1

)
≤ ρ ,

Rot ((qi, pi); [0, T ]) < ki , when dist
(
(qi(0), pi(0)),Γ

i
2

)
≤ ρ .

Proof. It is perfectly analogous to the one of Theorem 19, the only difference being
the use of Theorem 22 (and Remark 25) instead of Theorem 18.

Let us now add a further equation, and consider the more general system
ϕ̇ = ∂ψH(t, z) , ψ̇ = −∂ϕH(t, z) ,

q̇ = ∂pH(t, z) , ṗ = −∂qH(t, z) ,

u̇ = ∂vH(t, z) , v̇ = −∂uH(t, z) ,

Jẇ = ∂wH(t, z) .

(5.41)

Here, and in the following, the symbol J is always used as the standard symplectic
matrix, in different dimensions. Moreover, now z = (ϕ, ψ, q, p, u, v, w). We will
generalize Theorem 20. Assumptions 6, 7 and 8 will remain the same, while
Assumption 9 needs to be modified as follows.

Assumption 12 (Linear growth). Let

H(t, z) = 1
2

〈
B(t)w,w

〉
+H(t, z) ,

where the symmetric matrix B(t) is continuous, T -periodic, and such that

w(t) ≡ 0 is the only T -periodic solution of Sẇ = B(t)w .

The function H is such that for every K > 0 there is a constant CK > 0 with the
following property: If α− δ̄ ≤ u ≤ β + δ̄ and |v| ≤ K, then

|∂qH(t, z)|+ |∂wH(t, z)| ≤ CK(|p|+ 1) .
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Under the above assumption, given any two continuous functions U, V : [0, T ] →
RD, with

α− δ̄ ≤ U(t) ≤ β + δ̄ , for every t ∈ [0, T ] , (5.42)

the solutions of the system

ϕ̇ = ∂ψH(t, ϕ, ψ, q, p, U(t), V (t), w) ,

ψ̇ = −∂ϕH(t, ϕ, ψ, q, p, U(t), V (t), w) ,

q̇ = ∂pH(t, ϕ, ψ, q, p, U(t), V (t), w) ,

ṗ = −∂qH(t, ϕ, ψ, q, p, U(t), V (t), w) ,

Jẇ = ∂wH(t, ϕ, ψ, q, p, U(t), V (t), w) ,

(5.43)

are defined on [0, T ], cf. Remark 22.

Theorem 24. Let Assumptions 6, 7, 8 and 12 hold. Assume that there exist ρ > 0,
a symmetric regular M×M matrix A and a strongly convex body D of RM , having
a smooth boundary, with the following property: For any two continuous functions
U, V : [0, T ] → RD satisfying (5.42), the solutions of (5.43) with p(0) /∈ D̊ and
dist(p(0), ∂D) ≤ ρ are such that〈

q(T )− q(0) , AνD
(
πD(p(0))

)〉
> 0 . (5.44)

Then, system (5.41) has at least 2L + M + 1 geometrically distinct T -periodic
solutions, such that p(0) ∈ D̊, and α ≤ u(t) ≤ β, for every t ∈ R.

Proof. Following the lines of the proof of Theorem 20, we can introduce a modified
system ruled by a Hamiltonian function of the type

Ĥ(t, z) = 1
2

〈
B(t)w,w

〉
+

1

2
(|v|2 − |u|2) + ĥ(t, z) .

Moreover, Ĥ can be introduced so to guarantee that every T -periodic solution of
Sż = ∇Ĥ(t, z) satisfies an a priori bound as in Lemma 5, in particular α ≤ u ≤ β.
Then, from Assumption 12, we can introduce K > 0 as in (5.37) such that, if
α− δ̄ ≤ u ≤ β + δ̄ and |v| ≤ K, then

|∂qĥ(t, z)|+ |∂wĥ(t, z)| ≤ ĈK(|p|+ 1) .

Hence, we can find a constant c > 0 such that any solution of Sż = ∇Ĥ(t, z)
starting with z(0) satisfying dist(p(0),D) ≤ ρ is such that (5.38) holds.

Again, we can introduce the cut-off function η, as in (5.21), and the Hamilto-
nian function

H̃(t, z) = 1
2

〈
B(t)w,w

〉
+

1

2
(|v|2 − |u|2) + h̃(t, z) ,
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where h̃(t, z) = η(|p|)ĥ(t, z). Using Assumption 12 we get

|∇h̃(t, z)| ≤ C̃ ,

for a certain positive constant C̃. We can rewrite the previous Hamiltonian as

H̃(t, z) = 1
2

〈
M(t)

(
w, (u, v)

)
,
(
w, (u, v)

)〉
+ h̃(t, z) ,

where

M(t)
(
w, (u, v)

)
=
(
B(t)w, (−u, v)

)
.

Our aim is to apply [44, Corollary 2.3] to the modified system Sż = ∇H̃(t, z). We
easily verify the nonresonance condition

ω(t) ≡ 0 is the only T -periodic solution of Sω̇ = M(t)ω ,

where ω = (w, (u, v)).

We finally verify, with the usual argument, that any solution z of the previous
system with 0 < dist(p(0),D) ≤ ρ is such that

⟨q(T )− q(0),Ap(0)⟩ > 0 .

The application of [44, Corollary 2.3] provides us 2L +M + 1 geometrically

distinct T -periodic solutions of Sż = ∇H̃(t, z) satisfying p(0) ∈ D̊. Then, as in
the previous proofs we end showing that they are solutions of (5.41), too, and they
satisfy α ≤ u(t) ≤ β, for every t ∈ R.

Clearly enough, the twist condition (5.44) could be replaced by an avoiding
rays condition, as in Theorem 21, or by a sign condition on the edges of anM -cell,
like in Theorem 22. Also, we could provide a statement on an annulus, similarly
as in Theorem 23. Or even some combination of these could be considered. We
avoid the details, for briefness.

5.8 Examples in higher dimensions

In this section we just briefly mention how the examples given in Section 5.4
generalize to higher dimensions applying the results of Sections 5.5 and 5.7. To
this aim, consider a system of the form

ϕ̇ = ∂ψP (t, ϕ, ψ, q, u) , ψ̇ = −∂ϕP (t, ϕ, ψ, q, u) ,
−q̈i = gi(t, qi)− ei(t) + ∂qiP (t, ϕ, ψ, q, u) , 1 ≤ i ≤M,

−üj = −hj(uj) + ∂ujP (t, ϕ, ψ, q, u) , 1 ≤ j ≤ D,

(5.45)
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where all functions are continuous and T -periodic in t. For simplicity, we assume
that P (t, ϕ, ψ, q, u) is 2π-periodic in each of the variables included in ϕ, ψ and q,
so, due to this, we fix an arbitrary cube in R2L+M of length [0, 2π], denoting it by
Θ. Moreover, let P (t, ϕ, ψ, q, u) be continuously differentiable in (ϕ, ψ, q, u) and
assume that, for every i ∈ {1, . . . ,M},

∫ T

0

ei(t)dt = 0 and

∫ 2π

0

gi(t, s)ds = 0 .

Then system (5.45) is of the type (5.31), with

H(t, z) =
1

2
|p+ E(t)|2 + 1

2
|v|2 +

M∑
i=1

∫ qi

0

g(t, s) ds

−
D∑
j=1

∫ uj

0

hj(σ) dσ + P (t, ϕ, ψ, q, u) ,

where z = (ϕ, ψ, q, p, u, v) and E = (E1, . . . , EM) : [0, T ] → RM is a primitive of
the field e(t) = (e1(t), . . . , eM(t)).

Let us state the analogues of Corollaries 4 and 5.

Corollary 7. In the above setting, assume moreover that there exist two vectors
α, β ∈ RD, with α ≤ β, such that, for all j ∈ {1, . . . , D},

hj(αj) < ∂ujP (t, ϕ, ψ, q, u), when uj = αj ,

hj(βj) > ∂ujP (t, ϕ, ψ, q, u), when uj = βj ,

for all (t, ϕ, ψ, q) ∈ [0, T ] × Θ and all u ∈ RD such that α ≤ u ≤ β. Then,
system (5.26) has at least 2L+M + 1 geometrically distinct T -periodic solutions,
with α ≤ u ≤ β.

Proof. All the assumptions of Theorem 22 are easily verified, whence the conclu-
sion.

As an immediate consequence, we have the following.

Corollary 8. The system
ϕ̇ = ∂ψP (t, ϕ, ψ, q, u) , ψ̇ = −∂ϕP (t, ϕ, ψ, q, u) ,
q̈i + ai sin qi = ei(t)− ∂qiP (t, ϕ, ψ, q, u) , 1 ≤ i ≤M, ,

üj + bj sinuj = −∂ujP (t, ϕ, ψ, q, u) , 1 ≤ j ≤ D,

where P (t, ϕ, ψ, q, u) and e(t) are as above, has at least 2L+M + 1 geometrically
distinct T -periodic solutions, for any ai > 0, if ∥∂ujP∥∞ < bj for every j ∈
{1, . . . , D}.
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All the other examples presented in Section 5.4 can be displayed in this more
general setting, also with a mixing of assumptions on each component. In par-
ticular, we thus generalize the results in [21, 24, 26, 34, 35, 50, 53, 58, 69, 73, 86, 88].
Also equations with singularities could be considered, as in [47,51]. We will avoid
entering further into details, for briefness.

A further example of application is analyzed in the next section.

5.9 Periodic perturbations of completely integra-

ble systems

In [15,44], perturbations of completely integrable Hamiltonian systems were stud-
ied, see also [45], and the references therein. We will now add an extra term to
the Hamiltonian function, involving lower and upper solutions.

We consider the system{
φ̇ = ∇K(I) + ε∂IP (t, φ, I, u) , İ = −ε∂φP (t, φ, I, u) ,
−ü = ∂uG(t, u) + ε∂uP (t, φ, I, u) .

(5.46)

Here, we have (φ, I) ∈ R2M and u ∈ RD. We assume that K : RM → R is
continuously differentiable and the same for G : R× RD → R with respect to the
second variable. The perturbation function P : R×R2M+D → R is continuous, T -
periodic in t, and continuously differentiable with respect to all the other variables,
with a bounded gradient. Moreover, the function P is τi-periodic in each φi, i.e.,
for every i ∈ {1, . . . ,M},

P (. . . , φi + τi, . . . ) = P (. . . , φi, . . . ) .

We also assume that there exist some integers m1, . . . ,mM for which

T∇K(I 0) = (m1τ1, . . . ,mMτM) .

The expert reader will recognize that we are dealing with a completely resonant
torus. Here is our result.

Theorem 25. In the above setting, assume that there exist I 0 ∈ RM , a symmetric
invertible M ×M matrix A and ρ̄ > 0 such that

0 < |I − I 0| ≤ ρ̄ ⇒ ⟨∇K(I)−∇K(I 0),A(I − I 0)⟩ > 0 . (5.47)

Moreover, let there exist some constants δ > 0, ς > 0, α = (α1, . . . , αD) and
β = (β1, . . . , βD) with α ≤ β, having the following property: If α− δ̄ ≤ u ≤ β + δ̄,
for every j ∈ {1, . . . , D} one has{

∂ujG(t, u) ≥ ς , when uj ∈ [αj − δ, αj] ,

∂ujG(t, u) ≤ −ς , when uj ∈ [βj, βj + δ] .
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Then, for every σ > 0 there exists ε̄ > 0 such that, if |ε| ≤ ε̄, there are at least
M + 1 geometrically distinct solutions of system (5.46) satisfying

φ(t+ T ) = φ(t) + T∇K(I 0) , I(t+ T ) = I(t) ,

u(t+ T ) = u(t) , v(t+ T ) = v(t) ,

and such that

|φ(t)− φ(0)− t∇K(I0)|+ |I(t)− I0| < σ ,

and

α ≤ u(t) ≤ β ,

for every t ∈ R.

Proof. Since we are looking for solutions with I(t) in the open ball B(I0, σ), we can
suitably modify the function K outside this set and assume that it has a bounded
gradient. We perform the change of variables

q(t) = φ(t)− t∇K(I 0) , p(t) = I(t)− I0 ,

thus obtaining the new Hamiltonian function

H(t, q, p, u, v) = K(p) + 1
2
|v|2 +G(t, u) + εQ(t, q, p, u) ,

where the functions

K(p) = K(I)−
〈
∇K(I 0) , I − I 0

〉
, Q(t, q, p, u) = P (t, φ, I, u)

are implicitly defined. We notice that Q is periodic in q1, . . . , qM and both Q and
K have bounded gradient: so, there are CK, CQ > 0 such that

|∇K(p)| ≤ CK , |∇Q(t, q, p, u)| ≤ CQ ,

for every (t, q, p, u) ∈ [0, T ] × R2M+D. Our goal is now to prove that for every
σ > 0 there exists ε > 0 such that, if |ε| ≤ ε, there are M + 1 geometrically
distinct T -periodic solutions z = (q, p, u, v) of the system

Sż = ∇H(t, z) , (5.48)

satisfying max{|q(t)− q(0)| , |p(t)|} < σ and α ≤ u(t) ≤ β, for every t ∈ R.

Let us fix σ ∈ (0, ρ) . We are in the setting of Theorem 24. Assumptions 6, 7, 8
and 12 can be easily checked. We need to verify the twist condition (5.44).

Since ∇K(0) = 0, we can choose r < σ/4 such that

|p| ≤ 4r ⇒ 2T |∇K(p)| < σ , (5.49)
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and by (5.47) there is ℓ > 0 such that

r ≤ |p| ≤ 4r ⇒ ⟨∇K(p),Ap)⟩ > 4ℓ . (5.50)

Let us fix δ > 0 satisfying

δ < min

{
r ,

2ℓ

CK∥A∥

}
.

Reducing ε if necessary, every solution of (5.48), with |ε| ≤ ε, is such that |p(t)−
p(0)| < δ for every t ∈ [0, T ].

Let us consider a solution z of (5.48) with |ε| ≤ ε and initial condition satisfying
2r ≤ |p(0)| ≤ 3r. Then, r ≤ |p(t)| ≤ 4r for every t ∈ [0, T ], and so, by (5.50),

⟨∇K(p(t)),Ap(t)⟩ > 4ℓ , for every t ∈ [0, T ] .

Reducing ε if necessary, we have that

⟨∂pH(t, z(t)),Ap(0)⟩ =
= ⟨∇K(p(t)),Ap(t)⟩ − ⟨∇K(p(t)),A(p(t)− p(0))⟩+ ε⟨∂pQ(t, z(t)),Ap(0))⟩
> 4ℓ− CK∥A∥δ − 3εCQ∥A∥r > ℓ .

Integrating the previous estimate in the interval [0, T ], we get

⟨q(T )− q(0),Ap(0)⟩ > ℓT > 0 .

We can thus apply Theorem 24, choosing D = B(0, 2r) and ρ = r. We have that

|p(t)| ≤ |p(0)|+ δ < 2r + δ < 3r < σ , for every t ∈ [0, T ] .

Moreover, by (5.49), we deduce that |q(t)− q(0)| < σ, for every t ∈ [0, T ].

The T -periodic solutions we have found are then translated, by the inverse
change of variables, into the solutions of (5.46) we are looking for.

Remark 26. The twist condition (5.47) is surely verified if K is twice continuously
differentiable with detK′′(I 0) ̸= 0, by taking A = K′′(I 0).

Remark 27. A more general twist condition (see [41]) can be considered, for
instance,

0 ∈ cl

{
r ∈ (0,+∞) : min

|I−I 0|=r
⟨∇K(I)−∇K(I 0),A(I − I 0)⟩ > 0

}
.

Remark 28. The same type of result holds, with the due changes, for a more
general system of the type

ϕ̇ = ε∂ψP (t, ϕ, ψ, φ, I, u, w) , ψ̇ = −ε∂ϕP (t, ϕ, ψ, φ, I, u, w) ,
φ̇ = ∇K(I) + ε∂IP (t, ϕ, ψ, φ, I, u, w) , İ = −ε∂φP (t, ϕ, ψ, φ, I, u, w) ,
−ü = ∂uG(t, u) + ε∂uP (t, ϕ, ψ, φ, I, u, w) ,

Sẇ = B(t)w + ε∂wP (t, ϕ, ψ, φ, I, u, w) ,
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when P is also periodic in ϕ1, . . . , ϕL and ψ1, . . . , ψL, and B(t) is a symmetric ma-
trix, continuous and T -periodic, such that w(t) ≡ 0 is the only T -periodic solution
of Sẇ = B(t)w.

Remark 29. It would be interesting to see how Theorem 25 could be extended to
infinite dimensions, in the spirit of [45].

5.10 The general result

We consider system (5.1), assuming the Hamiltonian function H : R × R2N → R
to be continuous, T -periodic in its first variable t, and continuously differentiable
with respect to the variable z, with corresponding gradient ∇H(t, z).

For z ∈ R2N , we use the notation z = (x, y), with x = (x1, . . . , xN) ∈ RN and
y = (y1, . . . , yN) ∈ RN . Moreover, we gather into five groups the variables of x
and y, respectively, thus writing

x = (xa, xb, xc, xd, xe), y = (ya, yb, yc, yd, ye),

where, for some nonnegative integers Na, N b, N c, Nd, N e,

xa = (xa1, . . . , x
a
Na) ∈ RNa

, ya = (ya1 , . . . , y
a
Na) ∈ RNa

,

xb = (xb1, . . . , x
b
Nb) ∈ RNb

, yb = (yb1, . . . , y
b
Nb) ∈ RNb

,
xc = (xc1, . . . , x

c
Nc) ∈ RNc

, yc = (yc1, . . . , y
c
Nc) ∈ RNc

,

xd = (xd1, . . . , x
d
Nd) ∈ RNd

, yd = (yd1 , . . . , y
d
Nd) ∈ RNd

,
xe = (xe1, . . . , x

e
Ne) ∈ RNe

, ye = (ye1, . . . , y
e
Nc) ∈ RNe

.

and we also introduce the notation zj = (xj, yj) for j ∈ {a, b, c, d, e}. Notice that
one or more of these integers could be equal to zero, in which case the corresponding
group will not be taken into account. For example, if Na = 0, then xa, ya and za

will disappear from the list. In the following, for simplicity we sometimes write
(u, v) instead of (xe, ye), and D = N e.

Let us introduce our assumptions in this general setting.

Assumption 13 (Periodicity). The function H(t, z) is periodic in each of the
variables included in xa, xb, ya, yc.

The total number of variables in which our Hamiltonian function is periodic is
thus 2Na+N b+N c. Under this setting, T -periodic solutions z(t) of (5.1) appear in
equivalence classes made of those solutions whose components in xa(t), xb(t), ya(t), yc(t)
differ by an integer multiple of the corresponding periods. We say that two T -
periodic solutions are geometrically distinct if they do not belong to the same
equivalence class.
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Assumption 14 (Lower and upper solutions). There exist some constants δ > 0,
α = (α1, . . . , αD) and β = (β1, . . . , βD) with α ≤ β, having the following property.
If α− δ̄ ≤ u ≤ β + δ̄, then, for every j ∈ {1, . . . , D},

vj ∂vjH(t, z) > 0 , when uj ∈ [αj − δ, αj] ∪ [βj, βj + δ] and vj ̸= 0 ,

and {
∂ujH(t, z) ≥ 0 , when uj ∈ [αj − δ, αj] and vj = 0 ,

∂ujH(t, z) ≤ 0 , when uj ∈ [βj, βj + δ] and vj = 0 .

Assumption 15 (Nagumo condition). For every j ∈ {1, . . . , D} there exist dj > 0
and two continuous functions fj, φj : [dj,+∞) → (0,+∞) , with∫ +∞

dj

fj(s)

φj(s)
ds = +∞ ,

satisfying the following property. If α− δ̄ ≤ u ≤ β + δ̄, then{
∂vjH(t, z) ≥ fj(vj) , when vj ≥ dj ,

∂vjH(t, z) ≤ −fj(−vj) , when vj ≤ −dj ,

and ∣∣∂ujH(t, z)
∣∣ ≤ φj(|vj|) , when |vj| ≥ dj .

Assumption 16 (Linear growth). There exists a symmetric 2Nd × 2Nd matrix
B(t), T -periodic and continuous in t, satisfying the nonresonance condition

zd(t) ≡ 0 is the only T -periodic solution of Sżd(t) = B(t)zd(t) ,

and such that, writing

H(t, z) = 1
2

〈
B(t)zd, zd

〉
+H(t, z) ,

for every K > 0 there is a CK > 0 with the following property: If α− δ̄ ≤ u ≤ β+ δ̄
and |v| ≤ K, then

|∂xbH(t, z)|+ |∂ycH(t, z)|+ |∂xdH(t, z)|+ |∂ydH(t, z)| ≤ CK(|yb|+ |xc|+ 1) .

The above assumption guarantees that, for any two continuous functions U, V :
[0, T ] → RD, with

α− δ ≤ U(t) ≤ β + δ , for every t ∈ [0, T ] , (5.51)

setting W (t) = (U(t), V (t)) and

H(t, z) = H(t, za, zb, zc, zd,W (t)) ,

the solutions of
Sż = ∇H(t, z) (5.52)

are defined on [0, T ], cf. Remark 22.
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Let us also introduce a C1-function h : RNb+Nc → R and a regular symmetric
(N b +N c)× (N b +N c) matrix S such that, for some positive constants C1, C2,

|h(υ)− 1
2
⟨Sυ, υ⟩| ≤ C1 and |∇h(υ)− Sυ| ≤ C2,

for every υ ∈ RNb+Nc
, and let

D = {υ ∈ RNb+Nc

: ∇h(υ) = 0} .

We assume that such a set is compact. Our main result is the following.

Theorem 26. Let Assumptions 13, 14, 15, and 16 hold. Assume moreover that
there exists ρ > 0 such that, for any two continuous functions U, V : [0, T ] → RD

satisfying (5.51), the solutions of (5.52) with (yb(0), xc(0)) /∈ D̊ and dist((yb(0), xc(0)),D) ≤
ρ are such that

(xb(T )− xb(0), yc(T )− yc(0)) /∈ {λJ∇h((yb(0), xc(0))) : λ ≥ 0} .

Then, system (5.1) has at least 2Na+N b+N c+1 geometrically distinct T -periodic
solutions z(t), such that

(yb(0), xc(0)) ∈ D̊ ,

and
α ≤ u(t) ≤ β , for every t ∈ R .

Proof. With the same procedure adopted in the proof of Theorem 21 provided in
Section 5.6, dealing with the ze = (u, v) coordinates, we can introduce a modified
problem ruled by a Hamiltonian of the type

Ĥ(t, z) = 1
2

〈
B(t)zd, zd

〉
+

1

2
(|v|2 − |u|2) + ĥ(t, z) .

Moreover, Ĥ can be introduced so to guarantee that every T -periodic solution of
Sż = ∇Ĥ(t, z) satisfies an a priori bound as in Lemma 5, in particular α ≤ u ≤ β.
Then, from Assumption 16, we can introduce K > 0 as in (5.37) so to obtain

|∂xbĥ(t, z)|+ |∂ycĥ(t, z)| ≤ CK(|yb|+ |xc|+ 1) ,

when α − δ̄ ≤ u ≤ β + δ̄ and |v| ≤ K. Hence, as in (5.38), we can find a

constant c > 0 such that, if z(t) is a solution of Sż = ∇Ĥ(t, z) starting with
dist((yb(0), xc(0),D) ≤ ρ, with maximal interval of future existence [0, ω) , then

max{|yb(t)| , |xc(t)|} ≤ c , for every t ∈ [0, T ] ∩ [0, ω) .

Again, we can introduce the cut-off function η as in (5.21), and the Hamiltonian

H̃(t, z) = 1
2

〈
B(t)zd, zd

〉
+

1

2
(|v|2 − |u|2) + h̃(t, z) ,

where h̃(t, z) = η(|yb|)η(|xc|)ĥ(t, z). Using Assumption 16 we get

|∇h̃(t, z)| ≤ C̃ ,

for a certain positive constant C̃.
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We can rewrite the previous Hamiltonian as

H̃(t, z) = 1
2

〈
M(t)(zd, ze), (zd, ze)

〉
+ h̃(t, z) ,

where
M(t)

(
zd, ze

)
= M(t)

(
zd, (u, v)

)
=
(
B(t)zd, (−u, v)

)
.

In particular, we can verify the nonresonance condition

zd,e(t) ≡ 0 is the only T -periodic solution of Sżd,e(t) = M(t)zd,e(t) ,

where zd,e = (zd, ze). Our aim is to apply [44, Theorem 1.1] to the modified system

Sż = ∇H̃(t, z). Its solutions are globally defined on [0, T ].

Let z = (za, zb, zc, zd, ze) be a solution of Sż = ∇H̃(t, z). As in the above
proofs we can show that if dist((yb(0), xc(0),D) ≤ ρ, then max{|yb(t)| , |xc(t)|} ≤
c for every t ∈ [0, T ]. Hence, z solves Sż = ∇Ĥ(t, z) and, setting W (t) =(
ζ(u(t)), χ(ζ(u(t)), v(t))

)
, we see that (za, zb, zc, zd) is a solution of (5.52).

If 0 < dist((yb(0), xc(0)),D) ≤ ρ, then

(xb(T )− xb(0), yc(T )− yc(0)) /∈ {λJ∇h((yb(0), xc(0))) : λ ≥ 0} ,

by the hypothesis of the theorem.

The application of [44, Theorem 1.1] provides us 2Na+N b+N c+1 geometrically

distinct T -periodic solutions of Sż = ∇H̃(t, z) satisfying (yb(0), xc(0)) ∈ D̊. Then,
following the argument of the previous proofs, it can be seen that they are solutions
of Sż = ∇H(t, z), as well, and α ≤ u ≤ β.

Remark 30. Theorem 26 generalizes all three Theorems 20, 21 and 22 previously
stated. For example, let the assumptions of Theorems 20 hold. We consider a
smooth function σ : R → R such that

σ(s) =

{
0 , if s ≤ 0 ,

1 , if s ≥ 1 ,
and σ′(s) > 0 if s ∈ (0, 1) ,

and, adapting the notations, we define the function h : RNb+Nc → R by

h(p) = −ξ(p)⟨A(p− πD(p)), p− πD(p)⟩ ,

where

ξ(p) =

{
0 , if p ∈ D ,
1
2
σ(|p− πD(p)|) , if p /∈ D .

Following the proof of [44, Corollary 2.3] one can verify that h satisfies the as-
sumptions in Theorem 26.

Having extended with Theorem 26 the main theorem in [44], we thus have
generalized, for instance, the results in [25,29,43,56,60,74,79,86].
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[87] , Topological degree and boundary value problems for nonlinear differ-
ential equations., In Topological methods for ordinary differential equations
(1993), 74–142.

[88] , Multiplicity of solutions of variational systems involving ϕ-
Laplacians with singular ϕ and periodic nonlinearities, Discrete & Continu-
ous Dynamical Systems 32.11 (2012), 4015.

[89] J. Mawhin and Willem. M., Critical point theory and hamiltonian systems,,
Springer, New York, 1989.

[90] J.C. Maxwell, A dynamical theory of the electromagnetic field, Philosophical
Transactions of the Royal Society of London 155 (1865), 459–512.

[91] L. Michelotti, Intermediate classical dynamics with applications to beam
physics, John Wiley & Sons, New York, 1995.

[92] J. Moser and E. Zehnder, Notes on dynamical systems, vol. 12, American
Mathematical Soc., 2005.
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