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Abstract. We study the existence of stable and unstable periodic solutions
of a differential equation that models the planar oscillations of a satellite in an

elliptic orbit around its center of mass. The proof is based on a suitable version

of Poincaré-Birkhoff theorem and the third order approximation method.

1. Introduction

If we consider a satellite moving in a central Newtonian gravitational field and
suppose that the satellite is a rigid body whose center of mass moves in an elliptical
orbit, the motion of the satellite can be described as the equation

(1.1) (1 + e cos ν)
d2ϕ

dν2
− 2e sin ν

dϕ

dν
+ α sinϕ cosϕ = 2e sin ν,

where ϕ is the angle between one of the satellites’ principal central axes of inertia,
lying in the orbit plane, and the radius vector of its center of mass, ν is the true
anomaly, 0 ≤ e ≤ 1 is the eccentricity of the ellipse, α > 0 is the inertial parameter
of the satellite and in general 0 < α ≤ 3.

This equation was introduced by Beletskii in 1959. See [1, 2] and the references
therein. During the last few decades, such an equation has been studied by many
researchers and a wide number of articles can be found in the literature [2, 3, 12,
13, 18, 24, 28, 29, 30]. For example, it is well known [2] that if α = 6e, then
(1.1) admits the particular solution ϕ = ν

2 , which corresponds that the satellite
rotates in the orbit plane performing three revolutions in absolute space per two
revolutions of the center of mass in the orbit. Petrhysyn and Yu made a major
progress in [24] to prove the existence of periodic orbits by using Galerkin type
finite-dimensional approximations. Later the existence was solved by Hai in [12] by
a variational argument, and additional restrictions over the parameters e, α in [24]
were eliminated. The second solution was found in [13] by using the mountain pass
theorem.

Compared with the existence of periodic solutions, the analysis of the stabil-
ity of the solutions is less explored and most known stability results are based
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on numerical calculations or concerned with the linear stability. For example, in
[30] the regions of stability for the parameters were computed numerically. Later
some explicit criteria for linear stability were derived in [24]. However, due to the
symplectic charater of the system the linear stability does not imply directly the
nonlinear stability of the periodic solutions, which may depend in general on the
higher order terms of the asymptitic expansion. Besides the numerical methods,
the first analytical results about the nonlinear stability was proved by Nuñez and
Torres in [22], as a natural continuation of [21], in which a region of parameters
to ensure the existence of twist periodic solutions was explicitly described. It was
proved that if α ≤ 1/18, (??) admits a twist periodic solution. Although numer-
ical experiments show that one can expect stability for α < 1/2 except for some
strong resonances, the theoretical approach can not arrive at this expected results
up to now. In a more recent paper [4], a rigorous analysis of nonlinear stability for
resonant rotation and the cases of eccentricity close to 1 are studied.

In this paper, we continue the study of some dynamical aspects of eq. (1.1). The
first task is to prove the abundance of periodic solutions with arbitrary minimal
period and prescribed winding number. The existence of an infinite number of
periodic solutions is often considered as a signature of complex dynamics. A direct
outcome of the method is that such solutions come in couples and one of them
is always unstable. The proof is based on a suitableversion of Poincaré-Birkhoff
theorems, which were originally conjectured by Poincaré in 1912 when he studied
the restricted three body problem, and were first proved by Birkhoff in 1913. During
the last century, different proofs and developments were given. We refer the reader
to [19, Section 2.1] for a short review on Poincaré-Birkhof theorems.

The second objective is to find some new conditions for nonlinear stability. The
main tool is the method of third order approximation, which was developed by
Ortega [23] and Zhang [26] for general time-periodic Lagrangian equations. During
the past few years, there has been considerable progress on this topic, we refer the
reader to [5, 6, 7, 8, 11, 16, 17, 22] and references therein. In general, the third
order approximation method is applicable for conservative systems, and cannot be
applied for damped equations, which are in general dissipative. However, as shown
in [10], we can also establish the third order approximation method for damped
differential equations when the damping coefficient has zero mean, as in our model
(1.1). In this way, we are able to identify a stability region on the parameter plane
α, e that is different from that of [22].

The paper is organized as follows. In Section 2, we present some preliminary
results, which includes the Poincaré-Birkhoff theorem and some basic facts about
the third order approximation method. Moreover, we prove a new stability criterion
for damped differential equations. Section 3 is contains the proof of the existence
of an infinite number of periodic solutions ecoded by the minimal period and the
winding number. Finally, in Section 4 we apply the stability criterion obtained in
Section 2 to derive a new region of stability.

2. Preliminaries and a new stability criterion

2.1. The Poincaré-Birkhoff theorem. Consider two strips A = R× [−a, a] and
B = R × [−b, b], where b > a > 0. We will work with a Ck-diffeomorphism
f : A→ B defined by

f(θ, r) = (Q(θ, r), P (θ, r)),
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where Q,P : R2 → R are functions of class Ck satisfying the periodicity conditions

Q(θ + π, r) = Q(θ, r) + π, P (θ + π, r) = P (θ, r).

Such generalized periodicity conditions tell us that the map is the lift to R2 of the
corresponding map f̄ : Ā → B̄, where Ā = R/Z × [−a, a] and B̄ = R/Z × [−b, b].
After the identification θ+π = θ, the domain of f can be interpreted as an annulus
or a cylinder. We shall think that it is a cylinder with vertical coordinator r and
the variable θ as an angle. We say that f is isotopic to the inclusion, if there exists
a function H : A × [0, 1] → B such that for every λ ∈ [0, 1], Hλ(x) = H(λ, x)
is a homeomorphism with H0(x) = f(x) and H1(x) = x. The class of the maps
satisfying the above characteristics will be indicated by εk(A).

We say that f ∈ ε1(A) is exact symplectic if there exists a smooth function
V = V (θ, r) with V (θ + π, r) = V (θ, r) and such that

(2.1) dV = PdQ− rdθ.

The following theorem is a slight modified version of Poincaré-Birkhoff theorem
proved by Franks in [15] and the statement on the instability was reproved by Marò
in [19]. Here we say that a fixed point p1 of the one-to-one map f : U ⊂ RN → RN
is stable in the sense of Lyapunov if for every neighbourhood Up1 of p1 there exists
another neighbourhood U∗ ⊂ Up1 such that, for each n > 0, fn(U∗) is well defined
and fn(U∗) ⊂ Up1 .

Theorem 2.1. [15, 19] Let f : A → B be an exact symplectic diffeomorphism
belonging to ε2(A) such that f(A) ⊂ int(B). Suppose that there exists a constant
ε > 0 such that

Q(θ, a)− θ > ε, ∀ θ ∈ [0, π),

Q(θ,−a)− θ < −ε, ∀ θ ∈ [0, π).
(2.2)

Then f has at least two distinct fixed points p1 and p2 in A such that p1−p2 6= (kπ, 0)
for every k ∈ Z. Moreover, at least one of the fixed points is unstable if f is analytic.

2.2. The third-order approximation method. Given a function a(ν), let us
denote a+(ν) = max{a(ν), 0} and a−(ν) = max{−a(ν), 0} the positive and the
negative parts of a(ν). Obviously a(ν) = a+(ν)− a−(ν).

Consider the damped differential equation

(2.1)
d2ϕ

dν2
+ h(ν)

dϕ

dν
+ g(ν, ϕ) = 0,

where

h ∈ L̃1(R/2πZ) :=

{
h ∈ L1(R/2πZ) : h̄ =

1

2π

∫ 2π

0

h(ν)dν = 0

}
.

Given a 2π-periodic solution ψ, we can expand (2.1) around ψ in the following way

(2.2)
d2ϕ

dν2
+ h(ν)

dϕ

dν
+ a(ν)ϕ+ b(ν)ϕ2 + c(ν)ϕ3 + · · · = 0,

where a, b, c ∈ C(R/2πZ) are given as

(2.3) a(ν) = gϕ(ν, ψ(ν)), b(ν) =
1

2
gϕϕ(ν, ψ(ν)), c(ν) =

1

6
gϕϕϕ(ν, ψ(ν)).
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The linearized equation for (2.1) is given as

(2.4)
d2ϕ

dν2
+ h(ν)

dϕ

dν
+ a(ν)ϕ = 0.

The Poincaré matrix of (2.4) is

M(2π) =

(
φ1(2π) φ2(2π)
φ′1(2π) φ′2(2π)

)
,

where φ1(ν) and φ2(ν) are real-valued solutions of (2.4) satisfying

φ1(0) = 1, φ′1(0) = 0, φ2(0) = 0, φ′2(0) = 1.

Since h ∈ L̃1(R/2πZ), we know detM(2π) = 1, which plays a crucial role in es-
tablishing the third order approximation method because only in this case (2.1)
becomes a conservative system. The eigenvalues λ1,2 of M are called the Floquet

multipliers of (2.4). Obviously λ1 · λ2 = 1. We say that (2.4) is elliptic if λ1 = λ2,
|λ1| = 1, λ1 6= ±1.

Define

σ(h)(ν) = exp

(∫ ν

0

h(s)ds

)
,

and

τ(ν) =

∫ ν

0

σ(−h)(s)ds.

Then τ(ν) is increasing in ν and τ(ν+2π) ≡ τ(ν)+T , where T = τ(2π) > 0. Using
the change of time ς = τ(ν), the function

â(ς) = a(τ−1(ς))σ(2h)(τ−1(ς))

is T -periodic. Then the first twist coefficient β of the nonlinear damped equation
(2.2) can be written as, up to a positive factor,

β =

∫∫
[0,2π]2

b(ν)b(s)σ(h)(ν)σ(h)(s)R3(ν)R3(s)χθ(|ϑ(ν)− ϑ(s)|)dνds

−3

8

∫ 2π

0

c(ν)σ(h)(ν)R4(ν)dν,(2.5)

where the kernel χ(·) is given by

(2.6) χθ(x) =
3 cos(x− θ/2)

16 sin(θ/2)
+

cos 3(x− θ/2)

16 sin(3θ/2)
, x ∈ [0, θ].

R(ν) = r(τ(ν)), ϑ(ν) = ϑ̂(τ(ν)), r is the positive T -periodic solution of

(2.7)
d2r

dς2
+ â(ς)r(ς) =

1

r3(ς)
.

θ = Tρ, ρ is the rotation number of

(2.8)
d2y

dς2
+ â(ς)y(ς) = 0,

and ϕ̂ is given by

ϕ̂(ς) =

∫ ς

0

1

r2(ξ)
dξ.

The formula (2.5) was obtained in [10]. We say that the equilibrium of the
nonlinear system (2.2) is twist if the linear equation (2.4) is elliptic and the first
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twist coefficient β 6= 0. By the Moser twist theorem [25], a twist periodic solution
is necessarily stable in the sense of Lyapunov.

2.3. A new stability criterion. In this subsection, we prove a novel stability
criterion for the nonlinear equation (2.2).

Theorem 2.2. Assume that a, b, c ∈ C(R/2πZ) and there exist constants σ1, σ2
such that 0 ≤ σ1 ≤ σ2 ≤ π

2T (T = τ(2π)) and

(2.9) σ2
1 ≤ a(t)σ(2h)(t) ≤ σ2

2 , for all t.

Suppose further that

(2.10)
‖B+‖1‖B−‖1

min
{

sin( 3Tσ1

2 ), sin( 3Tσ2

2 )
} < 3

10
σ3
1

[
‖C−‖1
σ2
2

− ‖C+‖1
σ2
1

]
,

where
B(ν) = b(ν)σ(h)(ν), C(ν) = c(ν)σ(h)(ν).

Then the trivial solution x = 0 of (2.2) is twist and therefore is stable.

Proof. Under the condition (2.9), we know that

0 < σ2
1 ≤ â(ς) = a(t)σ(2h)(ν) ≤ σ2

2 ≤
( π

2T

)2
,

therefore equation (2.8) is in the first stability zone and is elliptic [27]. In this case,
equation (2.7) has a unique positive T -periodic solution r(ς). Moreover R(ν) = r(ς).
Following from [20, Lemma 4.2], we have the estimates

(2.11) σ
−1/2
2 ≤ R(ν) ≤ σ−1/21 , for all ν.

Moreover, we know that the rotation number ρ of equation (2.8) satisfies

0 ≤ σ1 ≤ ρ ≤ σ2 ≤
π

2T
,

and therefore

(2.12) 0 < Tσ1 ≤ θ = Tρ ≤ Tσ2 <
π

2
.

In this case, the kernel χ(x) > 0 for all x ∈ [0, θ]. Moreover,

min
x∈[0,θ]

χθ(x) = χ(0) =
3 cos(θ/2) + 2 cos(3θ/2)

8 sin(3θ/2)
,

and

max
x∈[0,θ]

χθ(x) = χ(θ/2) =
3 cos θ + 2

8 sin(3θ/2)
.

Now we are able to estimate the twist coefficient as follows. The term containing
c(ν) is

β1 = −3

8

∫ 2π

0

c(ν)σ(h)(ν)R4(ν)dν

=
3

8

∫ 2π

0

c−(ν)σ(h)(ν)R4(ν)dν − 3

8

∫ 2π

0

c+(ν)σ(h)(ν)R4(ν)dν

≥ 3

8
R4

min‖C−‖1 −
3

8
R4

max‖C+‖1

≥ 3

8σ2
2

‖C−‖1 −
3

8σ2
1

‖C+‖1.(2.13)
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The term containing b(ν) is

β2 =

∫∫
[0,2π]2

b(ν)σ(h)(ν)b(s)σ(h)(s)R3(ν)R3(s)χθ(|ϑ(ν)− ϑ(s)|)dνds

=

∫∫
[0,2π]2

(B+(ν)B+(s) +B−(ν)B−(s))R3(ν)R3(s)χθ(|ϑ(ν)− ϑ(s)|)dνds

−
∫∫

[0,2π]2
(B+(ν)B−(s) +B−(ν)B+(s))R3(ν)R3(s)χθ(|ϑ(ν)− ϑ(s)|)dνds

≥ −
∫∫

[0,2π]2
(B+(ν)B−(s) +B−(ν)B+(s))R3(ν)R3(s)χθ(|ϑ(ν)− ϑ(s)|)dνds

≥ −max
θ
χ(θ)R6

max

∫∫
[0,2π]2

(B+(ν)B−(s) +B−(ν)B+(s))dνds

= − 3 cos θ + 2

4 sin(3θ/2)
R6

max‖B+‖1‖B−‖1

≥ − 3 cos θ + 2

4 sin(3θ/2)

1

σ3
1

‖B+‖1‖B−‖1.

Using (2.12) and from the monotonicity of sin and cos, we obtain

3 cos θ + 2

4 sin(3θ/2)
≤ 5

4 min
{

sin( 3Tσ1

2 ), sin( 3Tσ2

2 )
} .

Therefore,

(2.14) β2 ≥ −
5‖B+‖1‖B−‖1

4σ3
1 min

{
sin( 3Tσ1

2 ), sin( 3Tσ2

2 )
} .

Combined the inequalities (2.13) and (2.14), we obtain

β ≥ 3

8σ2
2

‖C−‖1 −
3

8σ2
1

‖C+‖1 −
5‖B+‖1‖B−‖1

4σ3
1 min

{
sin( 3Tσ1

2 ), sin( 3Tσ2

2 )
} .(2.15)

It is easy to verify that β > 0 under the condition (2.10). �

Remark 2.3. In Theorem 2.2, if we assume that all conditions holds with 0 ≤
σ1 ≤ σ2 ≤ π

3T , then sin 3Tσ1

2 < sin 3Tσ2

2 . In this case, the trivial solution x = 0 of
(2.2) is twist if

(2.16)
‖B+‖1‖B−‖1

sin( 3Tσ1

2 )
<

3

10
σ3
1

[
‖C−‖1
σ2
2

− ‖C+‖1
σ2
1

]
.

3. Multiplicity of periodic solutions

The objective is to prove our model equation (1.1) fits the hypotheses of the
Poincaré-Birkhoff Theorem exposed in Subsection 2.1. One can easily verify that
eq. (1.1) can be rewriten as the following Euler-Lagrange equation

∂

∂ν
(
∂L

∂ϕ′
)− ∂L

∂ϕ
= 0,

where the Lagrangian is given as

L(ϕ,ϕ′, ν) =
(1 + e cos ν)2(ϕ′)2

2
+
α(1 + e cos ν)

4
cos 2ϕ+ 2e(1 + e cos ν) sin ν ϕ.
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On the other hand, using the change of variables given by the Legendre transform{
ϕ = ϕ,
φ = ∂L

∂ϕ′ = (1 + e cos ν)2ϕ′,

we can get the Hamiltonian

H(ϕ, φ, ν) =
φ2

2(1 + e cos ν)2
− α(1 + e cos ν)

4
cos 2ϕ− 2e(1 + e cos ν) sin ν ϕ,

and the new Hamiltonian system

(4.1)

{
ϕ′ = ∂H

∂φ = φ
(1+e cos ν)2 ,

φ′ = −∂H∂ϕ = −α(1 + e cos ν) sinϕ cosϕ+ 2e(1 + e cos ν) sin ν.

Denote by (ϕ(ν), φ(ν)) = (ϕ(ν, θ, r), φ(ν, θ, r)) the solution of the system (4.1)
satisfying the initial condition

(4.2) (ϕ(0), φ(0)) = (θ, r).

It is easy to see that there exist positive constants a1, a2 such that

|∇H(ϕ, φ, ν)| ≤ a1
√
ϕ2 + φ2 + a2,

which is the sufficient condition for the following result, see [14].

Lemma 3.1. The solution (ϕ, φ) of problem (4.1)-(4.2) is unique and globally de-
fined.

Let us define the Poincaré map associated to system (4.1) as

S(θ, r) = (Q(θ, r), P (θ, r))

= (ϕ(2π, θ, r), φ(2π, θ, r)).

Clearly, the fixed points of the Poincaré map S correspond to the 2π-periodic
solutions of (4.1). It follows from π-periodicity of the function sinϕ cosϕ and
Lemma 3.1 that

(4.3) ϕ(ν, θ + π, r) = ϕ(ν, θ, r) + π, φ(ν, θ + π, r) = φ(ν, θ, r).

Thus

Q(θ + π, r) = Q(θ, r) + π, P (θ + π, r) = P (θ, r),

which implies that the map S is defined on the cylinder.
Obviously, the partial derivatives ofH(ϕ, φ, ν) with respect to the variables (ϕ, φ)

of order equal to 2 are continuous in the variables (ϕ, φ, ν). Using the theorem of
differentiability with respect to the initial conditions, we know that S ∈ C2(A). By
the uniqueness of (ϕ(ν, θ, r), φ(ν, θ, r)), S is a diffeomorphism of A. The isotopy to
the identity is given by the flow

Ψλ(θ, r) = Ψ((1− λ)2π, θ, r)

= (ϕ((1− λ)2π, θ, r), φ((1− λ)2π, θ, r)), λ ∈ [0, 1].

Notice that Ψ0(θ, r) = S(θ, r), Ψ1(θ, r) = (θ, r) and this isotopy is valid on the
cylinder. Now we can assert that the map S ∈ ε2(A).

Theorem 3.2. Equation (1.1) has at least two geometrically distinct 2π-periodic
solutions and at least one of them is unstable.
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Proof. Consider the C1 function

V (θ, r) =

∫ 2π

0

L(ϕ,ϕ′, ν)

=

∫ 2π

0

[
(1 + e cos ν)2(ϕ′(ν, θ, r))2

2
+
α(1 + e cos ν)

4
cos 2(ϕ(ν, θ, r))

+ 2e(1 + e cos ν) sin ν ϕ(ν, θ, r)]dν.

By the fact (4.3), we obtain

V (θ + π, r) =

∫ 2π

0

[
(1 + e cos ν)2(ϕ′(ν, θ + π, r))2

2

+
α(1 + e cos ν)

4
cos(2ϕ(ν, θ + π, r))

+ 2e(1 + e cos ν) sin ν ϕ(ν, θ + π, r)]dν.

=

∫ 2π

0

[
(1 + e cos ν)2(ϕ′(ν, θ, r))2

2

+
α(1 + e cos ν)

4
cos(2ϕ(ν, θ, r))

+ 2e(1 + e cos ν) sin ν (ϕ(ν, θ, r) + π)]dν

=V (θ, r) +

∫ 2π

0

2e(1 + e cos ν) sin νdν

=V (θ, r).

The partial derivatives of V (θ, r) is computed as

Vθ(θ, r) =

∫ 2π

0

[(1 + e cos ν)2ϕ′(ν, θ, r)
∂ϕ′

∂θ

− α(1 + e cos ν) sin(ϕ(ν, θ, r)) cos(ϕ(ν, θ, r))
∂ϕ

∂θ

+ 2e(1 + e cos ν) sin ν
∂ϕ

∂θ
]dν.

It follows from the second equation of (4.1) that

(4.4) Vθ(θ, r) =

∫ 2π

0

(1 + e cos ν)2ϕ′(ν, θ, r)
∂ϕ′

∂θ
+
∂ϕ

∂θ
φ′dν.

Integrating by part and using the first equation in (4.1) we get∫ 2π

0

∂ϕ

∂θ
φ′dν =(

∂ϕ

∂θ
φ)|2π0 −

∫ 2π

0

∂ϕ′

∂θ
φdν

=φ(2π, θ, r)
∂ϕ(2π, θ, r)

∂θ
− φ(0, θ, r)

∂ϕ(0, θ, r)

∂θ

−
∫ 2π

0

∂ϕ′

∂θ
(1 + e cos ν)2ϕ′(ν, θ, r)dν.

Substituting the above equation into (4.4) gives

(4.5) Vθ(θ, r) = φ(2π, θ, r)
∂ϕ(2π, θ, r)

∂θ
− φ(0, θ, r)

∂ϕ(0, θ, r)

∂θ
.
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Analogously, we can get

(4.6) Vr(θ, r) = φ(2π, θ, r)
∂ϕ(2π, θ, r)

∂r
− φ(0, θ, r)

∂ϕ(0, θ, r)

∂r
.

By (4.5) and (4.6), we have

dV =Vθdθ + Vrdr

=[φ(2π, θ, r)
∂ϕ(2π, θ, r)

∂θ
− φ(0, θ, r)

∂ϕ(0, θ, r)

∂θ
]dθ

+ [φ(2π, θ, r)
∂ϕ(2π, θ, r)

∂r
− φ(0, θ, r)

∂ϕ(0, θ, r)

∂r
]dr

=φ(2π, θ, r)[
∂ϕ(2π, θ, r)

∂θ
dθ +

∂ϕ(2π, θ, r)

∂r
dr]

− φ(0, θ, r)[
∂ϕ(0, θ, r)

∂θ
dθ +

∂ϕ(0, θ, r)

∂r
dr]

=φ(2π, θ, r)dϕ(2π, θ, r)− φ(0, θ, r)dϕ(0, θ, r)

=PdQ− rdθ,

which means that the map S(θ, r) is exact symplectic.
Next we prove that the Poincaré map S satisfies the boundary twist condition

(2.2), i,e, there exist ρ > 0 and ε > 0 such that

Q(θ, ρ)− θ > ε, Q(θ,−ρ)− θ < −ε, θ ∈ [0, π).

Integrating the second equation of (4.1) from 0 to ν ∈ [0, 2π], we get

φ(ν) = r +

∫ ν

0

−α(1 + e cos s) sinϕ cosϕ+ 2e(1 + e cos s) sin sds

≥ r − ν(α+ 2e)(1 + e)

≥ r − 2π(α+ 2e)(1 + e).

We can find a constant ρ1 ≥ 2π(α+ 2e)(1 + e) > 0 so that if r > ρ1 then φ(ν) > 0.
It follows from the first equation of (4.1) that

ϕ′ =
φ

(1 + e cos ν)2
> 0,

which means that ϕ(ν) is increasing for ν ∈ [0, 2π]. Take ρ = ρ1 + 1 and we have

Q(θ, ρ)− θ = ϕ(2π, θ, ρ)− ϕ(0, θ, ρ) > 0.

By a standard compactness argument, we can conclude that there exists ε > 0 such
that

Q(θ, ρ)− θ > ε, θ ∈ [0, π).

Analogously, we can conclude that

Q(θ,−ρ)− θ < −ε, θ ∈ [0, π).

In order to apply Theorem 2.1, we take A = R × [−ρ, ρ]. Since the solutions of
(4.1) are globally defined, one can find a larger B such that S(A) ⊂ intB.

Since the right-hand side of (4.1) is analytic with respect to the variables (ϕ, φ),
the Poincaré map S is also analytic following from the analytic dependence on
initial conditions.

Up to now, all the conditions of Theorem 2.1 are satisfied, thus we get that
the Poincaré map S(θ, r) = (Q(θ, r), P (θ, r)) = (ϕ(2π, θ, r), φ(2π, θ, r)) has at least
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two fixed points and one of them is unstable. Therefore, (4.1) has at least two
geometrically distinct 2π-periodic solutions and at least one of them is unstable. �

Now we consider the existence of the so-called 2π-periodic solutions of (1.1) with
winding number N ∈ Z, that is

ϕ(ν + 2π) = ϕ(ν) +Nπ, ∀ν ∈ R.
Such solutions are also called rotating or running solutions. Of course, one has the
usual 2π-periodic solutions when the winding number is zero.

Let ϕ(ν) be a 2π-periodic solution of (1.1) with winding number N . Taking the
change of variables

ω(ν) = ϕ(ν)− N

2
ν,

we obtain

ω(ν + 2π) = ϕ(ν + 2π)− N

2
(ν + 2π)

= ϕ(ν)− N

2
ν

= ω(ν),

which implies that the 2π-periodic solutions of (1.1) with winding number N cor-
respond to the usual 2π-periodic solutions of the equation

(4.7) (1 + e cos ν)
d2ω

dν2
−2e sin ν

dω

dν
+α sin(ω+

Nν

2
) cos(ω+

Nν

2
) = (N + 2)e sin ν.

Proceeding as in the proof of Theorem 3.2, we can prove the following result.

Theorem 3.3. For every integer N , equation (1.1) has at least two geometrically
distinct 2π-periodic solutions with winding number N and at least one of them is
unstable.

Finally we study the existence of k-order subharmonic solutions of (1.1) with
winding number N , that is,

(4.8) ϕ(ν + 2kπ) = ϕ(ν) +Nπ, ∀ν ∈ R.

Theorem 3.4. For each couple of relatively prime natural numbers N, k, equation
(1.1) has at least two geometrically distinct k-order subharmonic solutions with
winding number N and 2kπ is the minimal period. Moreover, at least one of them
is unstable.

Proof. The proof is a straightforward modification of the proof of Theorem 3.2,
with 2π replaced by 2kπ. We only need to prove that 2kπ is the minimal period of
subharmonic solutions ϕ(ν) with winding number N .

Assume by contradiction that 2lπ is the minimal period, where l ∈ {1, 2, ..., k−1},
which means that there exist a nonzero integer j such that

(4.9) ϕ(ν + 2lπ) = ϕ(ν) + jπ, ∀ν ∈ R.
Let n1 and n2 be positive integers such that

(4.10) n1l = n2k.

By (4.8), we have

ϕ(ν + 2n2kπ) = ϕ(ν) + n2Nπ, ∀ν ∈ R,
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and by (4.9), we have

ϕ(ν + 2n1lπ) = ϕ(ν) + n1jπ, ∀ν ∈ R.
By the above two equalities and the uniqueness of the solution ϕ(ν), we can get
that n2N = n1j, i.e.,

n2
n1

=
j

N
.

From (4.10), we know that
n2
n1

=
l

k
,

which implies that

(4.11)
N

k
=
j

l
,

which is impossible because N and k are relatively prime and j is a nonzero integer
and l ∈ {1, 2, ..., k − 1}. �

4. Stable periodic solutions

In this section, we prove that when the parameters α, e are in a concrete region,
the satellite equation (1.1) admits a twist 2π-periodic solution ϕ(ν), which has the
smallest L∞ norm among all of 2π-periodic solutions of (1.1).

First we rewrite equation (1.1) as the equivalent form

(3.1)
d2ϕ

dν2
− 2e sin ν

1 + e cos ν

dϕ

dν
+
α sinϕ cosϕ

1 + e cos ν
=

2e sin ν

1 + e cos ν
,

which is of the form (2.1) with

h(ν) = − 2e sin ν

1 + e cos ν

and

g(ν, ϕ) =
α sinϕ cosϕ

1 + e cos ν
− 2e sin ν

1 + e cos ν
.

Then

σ(h)(ν) = exp

(∫ ν

0

− 2e sin s

1 + e cos s
ds

)
=

(
1 + e cos ν

1 + e

)2

.

Define

τ(ν) =

∫ ν

0

σ(−h)(s)ds =

∫ ν

0

(
1 + e

1 + e cos s

)2

ds,

and let

T = τ(2π) =
2π
√

1 + e

(1− e) 3
2

.

Now we consider the following linear damped equation

(3.2)
d2ϕ

dν2
− 2e sin ν

1 + e cos ν

dϕ

dν
+

α

1 + e cos ν
ϕ = 0

associated to periodic boundary conditions

(3.3) ϕ(2π) = ϕ(0), ϕ′(2π) = ϕ′(0).
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When the anti-maximum principle holds for (3.2)-(3.3), the non-homogeneous
equation

d2ϕ

dν2
− 2e sin ν

1 + e cos ν

dϕ

dν
+

α

1 + e cos ν
ϕ = f(ν)

has a unique 2π-periodic solution, which can be written as

ϕ(ν) =

∫ 2π

0

G(ν, s)f(s)ds,

where G(ν, s) is called the Green function of (3.2)-(3.3).

It was proved in [9, Theorem 2.7] that, if
∫ 2π

0
a(ν)σ(h)(ν)dν > 0 and∫ 2π

0

σ(−h)(ν)dν

∫ 2π

0

a(ν)σ(h)(ν)dν < 4,

then the Green’s function G(ν, s) of (2.4)-(3.3) is positive for all (ν, s) ∈ [0, 2π] ×
[0, 2π]. Applying this fact to (3.2)-(3.3), we have the following result.

Lemma 4.1. Assume that

(3.4) 0 < α <
(1− e2)3/2

π2
.

Then the Green function G(ν, s) of (3.2)-(3.3) is positive for all (ν, s) ∈ [0, 2π] ×
[0, 2π].

Proof. Let a(ν) =
α

1 + e cos ν
. By a direct computation, we know that∫ 2π

0

a(ν)σ(h)(ν)dν =

∫ 2π

0

α

1 + e cos ν

(
1 + e cos ν

1 + e

)2

dν =
2απ

(1 + e)2
> 0.

Moreover, ∫ 2π

0

σ(−h)(ν)dν

∫ 2π

0

a(ν)σ(h)(ν)dν

=

∫ 2π

0

(
1 + e

1 + e cos ν

)2

dν · 2απ

(1 + e)2

= 2απ

∫ 2π

0

1

(1 + cos ν)2
dν

=
4π2α

(1− e2)
3
2

.

Now the result is a direct consequence since the condition (3.4) holds. �

Lemma 4.2. [16, Lemma 2.1] Let a and b be positive numbers. Then the cubic
equation

ax3 + b = x

has a positive root if and only if 27ab2 ≤ 4. In this case, the minimal positive root
is given by

x = Φ(a, b) =
2√
3a

cos
π + y

y
,

(
y = arccos

(
3
√

3ab

2

)
∈ (0,

π

2
)

)
,
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which satisfies

Φ(a, b) ≤ 3b

2
.

Theorem 4.3. Assume that

(3.5) 3
√

2e ≤ α < (1− e2)3/2

π2
.

Then (1.1) has a unique 2π-periodic solution ϕ(ν) such that its L∞ norm ‖ϕ‖ is
the smallest among all of 2π-periodic solutions of (1.1). Moreover, ϕ(ν) satisfies

(3.6) ‖ϕ‖ ≤ Φ

(
2

3
,

2e

α

)
≤ 3e

α
.

Proof. It is obvious that ϕ is a 2π-periodic solution of (3.1) if and only if ϕ is a
fixed point of the following operator

(Tϕ)(ν) =

∫ 2π

0

G(ν, s)
α

2(1 + e cos s)
(2ϕ(s)− sin 2ϕ(s)) ds

+

∫ 2π

0

G(ν, s)
2e sin s

1 + e cos s
ds.

Obviously, T is a completely continuous operator from C(R/2πZ) to itself. By
Lemma 4.1 and the condition (3.5), we know that G(ν, s) > 0. For any ϕ ∈
C(R/2πZ), it follows from the basic estimate

|ϕ− sinϕ| ≤ |x|
3

6

that

|(Tϕ)(ν)| ≤
∫ 2π

0

G(ν, s)
α

2(1 + e cos s)
|2ϕ(s)− sin 2ϕ(s)| ds

+

∫ 2π

0

G(ν, s)

∣∣∣∣ 2e sin s

1 + e cos s

∣∣∣∣ ds
≤
∫ 2π

0

G(ν, s)
α

2(1 + e cos s)
|2ϕ(s)− sin 2ϕ(s)| ds

+

∫ 2π

0

G(ν, s)
2e

1 + e cos s
ds

≤
[

2

3
‖ϕ‖3 +

2e

α

] ∫ 2π

0

G(ν, s)
α

1 + e cos s
ds

=
2

3
‖ϕ‖3 +

2e

α
,

which yields

‖Tϕ‖ ≤ 2

3
‖ϕ‖3 +

2e

α
.

Under the condition (3.5), we know that

27 · 2

3
· (2e

α
)2 ≤ 4.

Define

Ω =

{
ϕ ∈ C(R/2πZ) : ‖ϕ‖ ≤ Φ

(
2

3
,

2e

α

)}
.
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Then T(Ω) ⊂ Ω. Moreover, by Lemma 4.2, T has a fixed point ϕ ∈ Ω, which is a
2π-periodic solution of (1.1).

Now we prove the uniqueness. Let ϕ,ϕ1 ∈ Ω, then

|(Tϕ)(ν)− (Tϕ1)(ν)|

≤
∫ 2π

0

αG(ν, s)

2(1 + e cos s)
|(2ϕ(s)− sin 2ϕ(s))− (2ϕ1(s)− sin 2ϕ1(s))| ds.

(3.7)

By using the estimate (3.6), we have

|(2ϕ(s)− sin 2ϕ(s))− (2ϕ1(s)− sin 2ϕ1(s))|

≤ 4Φ2

(
2

3
,

2e

α

)
|ϕ(s)− ϕ1(s)|

≤ 36e2

α2
|ϕ(s)− ϕ1(s)|.

(3.8)

Using (3.5), (3.7) and (3.8), for all ϕ,ϕ1 ∈ Ω, we obtain

‖Tϕ− Tϕ1)‖ ≤36e2

α2

∫ 2π

0

αG(ν, s)

2(1 + e cos s)
ds‖ϕ− ϕ1‖

=
18e2

α2
‖ϕ− ϕ1‖

≤‖ϕ− ϕ1‖.

Thus, if the strict inequality in condition (3.5) is satisfied, we know that T : Ω→ Ω
is actually a strict contraction. So T has a unique fixed point ϕ in Ω. If the equality
in (3.5) holds, one can also obtain the uniqueness from the proof above, although
T may not be a strict contraction.

By the uniqueness of the 2π-periodic solution of (1.1) in Ω, we know that ‖ϕ‖
is smaller than the norms of other possible 2π-periodic solutions of (1.1). �

Now, we are ready to state the main result of this section.

Theorem 4.4. Assume that (3.5) is satisfied. Then there exists a region ∆, which
is constructed below (see Fig. 1) , such that if (α, e) ∈ ∆, the 2π-periodic solution
ϕ of (1.1) obtained in Theorem 4.3 is twist and therefore is stable.

Proof. By Theorem 4.3, we know

(3.9) ‖ϕ‖ ≤ Φ

(
2

3
,

2e

α

)
≤ 3e

α
.

A computation of the coefficients in (2.3) for equation (3.1) gives

a(ν) =
α cos 2ϕ(ν)

1 + e cos ν
, b(ν) = −α sin 2ϕ(ν)

1 + e cos ν
, c(ν) = − 2α cos 2ϕ(ν)

3(1 + e cos ν)
.

Using (3.9), we have the following estimates

α(1− e)3

(1 + e)4
cos(

6e

α
) ≤ a(ν)σ(2h)(ν) ≤ α

1 + e
.

Thus (2.9) is satisfied if we can take

σ1 =

√
α(1− e)3
(1 + e)4

cos(
6e

α
), σ2 =

√
α

1 + e
.
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Figure 1. The region of stability ∆.

By (3.9), we obtain C+ = 0 and

C− =

∫ 2π

0

2α cos 2ϕ(ν)

3(1 + e cos ν)
·
(

1 + e cos ν

1 + e

)2

dν

=
2α

3(1 + e)2

∫ 2π

0

cos 2ϕ(ν) · (1 + e cos ν)dν

≥
4απ cos( 6e

α )

3(1 + e)2
.

Therefore,

3

10
σ3
1

[
‖C−‖1
σ2
2

− ‖C+‖1
σ2
1

]
≥

2απ cos( 6e
α )

5(1 + e)2
· σ

3
1

σ2
2

= G1(α, e).

We note that

‖B+‖1‖B−‖1 ≤

(∫ 2π

0

∣∣∣∣α sin 2ϕ(ν)

1 + e cos ν

∣∣∣∣ (1 + e cos ν

1 + e

)2

dν

)2

≤
α2 sin2( 6e

α )

(1 + e)4

(∫ 2π

0

(1 + e cos ν)dν

)2

=
4π2α2 sin2( 6e

α )

(1 + e)4
= G2(α, e).

Let

∆ =

{
(α, e)|(3.5) is satisfied and G1(α, e) >

G2(α, e)

min
{

sin( 3Tσ1

2 ), sin( 3Tσ2

2 )
}} .

Up to now, all conditions of Theorem 2.2 are satisfied if (α, e) ∈ ∆, thus we get
that the least amplitude 2π-periodic solution ϕ(ν) of (1.1) obtained in Theorem
4.3 is of twist type. �
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