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1 Introduction

Consider the differential equation

ẍ+ β sinx = f(t) (1)

where β > 0 is a real parameter and the function f : R → R is continuous
and T -periodic. In addition it is assumed that f has zero average, that is∫ T

0
f(t)dt = 0.

Given a solution x(t), then x(t) + 2πN is also a solution for each N =
±1,±2, . . . Two solutions are called geometrically different if they are not
related in this way. Mawhin and Willem proved in [12] that there exist at
least two T -periodic solutions x1(t) and x2(t) that are geometrically differ-
ent. More information on this result and on the history of this equation can
be found in the survey paper [11]. These periodic solutions were found as
critical points of the action functional

A[x] =
∫ T

0
{1
2
ẋ2(t) + β cosx(t) + f(t)x(t)}dt, x(t+ T ) = x(t).
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In particular one of them, say x1(t), is a global minimizer of the action.
It was already observed by Poincaré that minimizers are unstable in the
Lyapunov sense and a proof for the non-degenerate case can be seen in the
classical book by Carathéodory [3]. The general case is treated in [18]. In
consequence the equation (1) has always one unstable T -periodic solution.
The problem of the existence of stable T -periodic solutions is more delicate
and the answer depend on the forcing f . If we define the resonance set

R = {(2πp
Tq

)2 : q = 1, 2, 3, 4; p = 1, 2, . . .}

then there exists a stable T -periodic solution when β 6∈ R and f is small
enough. This follows from a perturbation argument that uses Birkhoff Nor-
mal Form and KAM theory. To obtain non-local results it seems that these
tools must be combined with ideas coming from Nonlinear Analysis. The
first results in this direction were obtained in [15] by Núñez. He used the
method of upper and lower solutions (in the reversed order) to locate the
periodic solution. More recently Lei, Li, Yan and Zhang have obtained in
[5] a non-local extension of the perturbation result mentioned above. They
can find explicitly a non-negative function P (β) that only vanishes on R
and such that there exists a stable T -periodic solution if∫ T

0
|f(t)|dt < P (β).

In [6] this result was improved to allow some resonances. In the present
paper I obtain a stability result without imposing restrictions on the size of
the forcing. More precisely, it will be proved that if

0 < β ≤ (
π

T
)2 (2)

then there exists a stable T -periodic solution for almost every forcing f with
zero average.

The space of continuous and T -periodic functions with zero average will
be denoted by

X = {f ∈ C(R/TZ) :
∫ T

0
f(t)dt = 0}.

It has infinite dimensions and so the phrase for almost every forcing f in
X needs further clarifications. To this end we interpret X as a separable
Banach space endowed with the uniform norm

||f ||∞ = max
t∈R

|f(t)|
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and use the notion of prevalence introduced by Ott and Yorke in [20]. That
paper explains the relationship with a related notion introduced previously
by Kolmogorov. The main result of the paper can be stated now in precise
terms.

Theorem 1 Assume that the condition (2) holds. Then the set

S = {f ∈ X : (1) has a stable T − periodic solution}

is prevalent in X.

In a paper in preparation I will construct two examples of forcings f(t) such
that the equation (1) has exactly two T -periodic solutions and both of them
are unstable. The first example will be constructed for β > ( 2π

3T )2 and this
implies that S 6= X, at least when β > ( 2π

3T )2. For the second example it
will be assumed that β > ( π

T )2 but the new feature will be the existence of
ε > 0 such that the equation ẍ+ β sinx = f∗(t) has exactly two T -periodic
solutions, both of them unstable, if ||f − f∗||∞ < ε. This shows that S is
not prevalent when β > ( π

T )2. I do not know if the set S is also large in
the sense of category when (2) holds. Perhaps some of the techniques of the
paper by Markus and Meyer [9] could be applied but it does not seem an
easy task.

The rest of the paper is dedicated to the proof of theorem 1. In section
2 we recall some well known properties of linear periodic equations related
to the Floquet multipliers µ1, µ2 and the discriminant ∆ = µ1 +µ2. Given a
T -periodic solution ϕ(t) of (1), we say that it is elliptic if the multipliers of
the linearized equation satisfy µ1 = µ2, µ1 = eiθ, θ 6= kπ, k = 0,±1,±2, . . ..
In section 3 we assume that (2) holds and prove that there exists an elliptic
solution for almost every f ∈ X. The main tool in this section is degree
theory. Elliptic solutions can be unstable in the Lyapunov sense, however
this cannot occur if the number θ

2π satisfies certain arithmetic conditions.
This is explained in section 4, where we invoke a result due to Russmann
[22]. In particular the solution ϕ(t) is stable if the number θ

2π is Diophantine.
The set of Diophantine real numbers is small in the sense of category but
it has full measure. The Floquet exponent θ is easily computed in terms of
the discriminant ∆ of the linearized equation. In section 5 we interpret the
discriminant as a functional depending on the elliptic solution ϕ, ∆ = ∆[ϕ],
and prove that all numbers in the elliptic region −2 < ∆ < 2 are regular
values of this functional. This section is inspired by ideas of Moser in [14].
In section 6 a result of more abstract nature is presented. We describe it in
a simplified form. Consider a separable Banach space E and a C1 functional
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d : E → R without singular values. Given a set F ⊂ R of full measure,
we can expect that d−1(F ) is prevalent in E. In finite dimension this is a
more or less direct consequence of Fubini’s theorem. In infinite dimensions
some work is needed, especially because, as shown in [7], prevalence is not
preserved by C1 diffeomorphisms. In section 7 this abstract result is applied
and the proof of the theorem is completed. Roughly speaking, E = X,
d = ∆ and F is in correspondence with Diophantine numbers. It follows
that, for almost every f ∈ X, the elliptic solution ϕ is in the conditions of
Russmann’s theorem.

2 Remarks on Hill’s equation

Given a linear equation
ÿ + a(t)y = 0 (3)

with a ∈ C(R/TZ), we consider the solutions φ1(t) and φ2(t) satisfying

φ1(0) = φ̇2(0) = 1, φ̇1(0) = φ2(0) = 0. (4)

The Floquet multipliers µ1, µ2 are the eigenvalues of the monodromy matrix

M =
(
φ1(T ) φ2(T )
φ̇1(T ) φ̇2(T )

)
.

They satisfy µ1 · µ2 = 1. The equation is called

• elliptic if µ1 = µ2 ∈ S1 \ {−1, 1}

• hyperbolic if µ1, µ2 ∈ R \ {−1, 1}

• parabolic if µ1 = µ2 = ±1.

Here S1 = {z ∈ C : |z| = 1}. When the multipliers are real they have the
same sign, under some additional conditions they must be positive.

Lemma 2 Assume that the equation (3) is hyperbolic or parabolic and

a(t) ≤ (
π

T
)2, t ∈ R

with strict inequality somewhere. Then µi > 0, i = 1, 2.
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This lemma can be seen as a particular case of lemma 1.4 in [16]. In that
paper it was assumed that there was a friction term but the proof also works
without friction.

The discriminant of (3) is defined as

∆ := φ1(T ) + φ̇2(T ) = trace(M) = µ1 + µ2.

This is a very significant number in the theory of Hill’s equation (see [8]). It
is easy to verify that the equation is elliptic if |∆| < 2, hyperbolic if |∆| > 2
and parabolic if |∆| = 2. The existence of non-trivial T -periodic solutions
for (3) is equivalent to µ1 = µ2 = 1 or ∆ = 2. In such a case we say that
the equation is degenerate. In the elliptic case the monodromy matrix M is
similar to a rotation. More precisely, there exist a number θ ∈]0, 2π[, θ 6= π,
and a 2× 2 matrix P with detP = 1 such that M = PR[θ]P−1 with

R[θ] =
(

cos θ − sin θ
sin θ cos θ

)
.

In this case the Floquet multipliers are µ1 = eiθ, µ2 = e−iθ and the discrim-
inant is

∆ = 2 cos θ.

3 Existence of an elliptic periodic solution

Let x(t) be a T -periodic solution of the pendulum equation (1). We say that
x(t) is elliptic if the variational equation

ÿ + (β cosx(t))y = 0 (5)

is elliptic. Similar definitions are given for the hyperbolic and parabolic
case. The main result of this section is the following.

Proposition 3 Assume that β ≤ ( π
T )2. Then there exists an open and

prevalent set E ⊂ X such that the equation (1) has at least one elliptic
solution if f ∈ E.

The main tools for the proof of this result will be some connections between
degree and stability (see [16, 17]) and a result on non-degeneracy proved in
[19]. We start with a more elementary result on a priori bounds.

Lemma 4 Let x(t) be a T -periodic solution of (1). Then

|ẋ(0)| ≤ (β + ||f ||∞)
T

2
.
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Proof. The periodicity of x(t) implies that the derivative vanishes at some
instant, say ẋ(τ) = 0 for some τ ∈ [−T

2 ,
T
2 ]. The mean value theorem and

the equation lead to the estimate

|ẋ(0)| = |ẋ(0)− ẋ(τ)| = |ẍ(ξ)||τ | ≤ (β| sinx(ξ)|+ |f(ξ)|)|τ |,

where ξ is some number between 0 and τ .�

Next we recall the result in [19]. We say that a T -periodic solution x(t)
is non-degenerate if 1 is not a multiplier of the equation (5). Let R be
the class of functions f ∈ X such that all T -periodic solutions of (1) are
non-degenerate. It is proved in [19] that R is open and prevalent.

Lemma 5 Assume that f ∈ R. Then there is only a finite number of T -
periodic solutions of (1) satisfying x(0) ∈ [0, 2π].

Proof. The periodic differential equation (1) has an associated Poincaré
map defined as

Π : R2 → R2, Π(ξ) = (x(T ; ξ), ẋ(T ; ξ))

where x(t; ξ) is the solution of (1) satisfying x(0) = ξ1, ẋ(0) = ξ2 and ξ =
(ξ1, ξ2) ∈ R2. The fixed points of Π are the initial conditions of the periodic
solutions with period T . Given a T -periodic solution x(t) and the fixed point
ξ∗ = (x(0), ẋ(0)), the theorem on differentiability with respect to initial
conditions implies that the derivative of Π at the fixed point is precisely the
monodromy matrix of (5); that is,

Π′(ξ∗) = M.

In consequence, if f ∈ R, all fixed points of Π will satisfy det(I−Π′(ξ∗)) 6= 0.
The implicit function theorem can be applied to deduce that all these fixed
points are isolated. If we combine this fact with the bound in Lemma 4 we
can conclude that the set of fixed points

F = {ξ = (ξ1, ξ2) ∈ R2 : Π(ξ) = ξ, ξ1 ∈ [0, 2π]}

is finite (=compact and discrete).�

Let us fix f ∈ R and a number σ ∈ R such that x(0) 6= σ for any T -
periodic solution. Let x1(t), . . . , xN (t) be the family of T -periodic solutions
satisfying

xi(0) ∈]σ, σ + 2π[, i = 1, . . . , N.
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Each of these solutions has an associated index that can be computed ac-
cording to the formula

γT (xi) = sign{(1− µ1)(1− µ2)},

where µ1 and µ2 are the Floquet multipliers associated to the variational
equation (5) with x ≡ xi. An important global property of these indexes is
that

N∑
i=1

γT (xi) = 0.

This identity can be derived in many ways but we refer to [17] for an ele-
mentary proof. Each index γT (xi) can only take the values 1 or −1 and so
at least one of the solutions, say x1, must satisfy γT (x1) = 1. We define
E = R\{0} and claim that if f ∈ E then x1(t) is elliptic. Since E is open and
prevalent this will complete the proof of proposition 3. To prove the claim
we discuss some properties of the Floquet multipliers. From the asumption
on β we know that β cosx(t) ≤ ( π

T )2 and so lemma 2 applies unless we are in
the exceptional case β cosx(t) ≡ ( π

T )2. This situation is excluded because it
would lead to x(t) ≡ 2πn, n ∈ Z and f ≡ 0, but the forcing f ≡ 0 is not in
E . Once we know that lemma 2 is applicable, we observe that no parabolic
solution can exist if f ∈ E . We compute the index. In the hyperbolic case
0 < µ1 < 1 < µ2 and so γT (x) = sign{(1− µ1)(1− µ2)} = −1, while in the
elliptic case µ1 = µ2 and γT (x) = sign{|1 − µ1|2} = 1. Summing up, when
f ∈ E , a periodic solution is elliptic if and only if γT (x) = 1.

4 Lyapunov stability and linearization

Typically, the stability of a periodic solution of the forced pendulum equa-
tion is decided using some information on the higher order tems in the Taylor
expansion of the equation (see [2, 13]). It is also possible to prove stability
using information coming exclusively from the linearized equation (5) but
then some restrictions on the Floquet multipliers must be imposed. A gen-
eral result in this line is proved by Russmann in [22] and we will apply it to
the pendulum equation. First we need some basic facts on the arithmetic of
irrational numbers. We refer to [21] for more details. An irrational number
θ is a Liouville number if for each integer n > 1 there exist integers p and
q > 1 such that

|θ − p

q
| < 1

qn
.
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The set of Liouville numbers L ⊂ R has zero measure but it is large in
the sense of category. Irrational numbers which are not of Liouville type
satisfy a Diophantine condition. The set D = R \ (L ∪Q) has full measure
but it is small in the sense of category. The function ϕ(x) = 2 cos(2πx) is
Lipschitz-continuous and so it maps null sets into null sets; in particular

C = ϕ(L ∪Q) (6)

has zero measure. This set can also be expressed as

C = ϕ((L ∪Q) ∩ [0,
1
2
])

with
L ∪Q =

⋂
n>1

⋃
p,q∈Z,q>1

]
p

q
− 1
qn
,
p

q
+

1
qn

[.

From here it is easy to prove that C is a Borel set. Note that ϕ defines a
homeomorphism between [0, 1

2 ] and [−2, 2].

Proposition 6 Assume that x(t) is a periodic solution of (1) and the dis-
criminant of the linearized equation (5) satisfies |∆| < 2 and ∆ 6∈ C. Then
x(t) is stable.

Proof. The Poincaré map Π associated to the differential equation (1) is
an area-preserving analytic diffeomorphism. Moreover, the stability of the
solution x(t) is equivalent to the stability of the corresponding fixed point of
Π. The discriminant satisfies |∆| < 2 and so the solution is elliptic and M is
similar to a rotation R[θ]. By assumption we know that ∆ = 2 cos θ is not in
C and so θ

2π ∈ D. Theorem 1.2 in [22] can be applied and therefore the fixed
point is stable under Π. Notice that the arithmetic condition imposed in [22]
is of Bruno type. This is less restrictive than the diophantine condition.�

Remark. The previous proposition is not particularly linked to the pendu-
lum equation. The same proof is valid for a general equation

ẍ+ g(x) = f(t)

when g is real analytic. The results is also valid when g is C∞ but now Russ-
mann’s theorem is not applicable. Instead one can use Herman’s theorem
(see [4] for more details).
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5 Regular values of the discriminant

The discriminant of the linear equation (3) can be interpreted as a functional
depending on the coefficient a(t). More precisely, we consider the functional

∆ : C(R/TZ) → R, a 7→ ∆[a],

where ∆[a] is the discriminant of (3). This approach was taken by Moser
in [14]. The following result was essentially proved in [14] but a complete
proof will be presented, since it seems a good opportunity to introduce some
notation.

Lemma 7 The functional ∆ is of class C1 and it has exactly two critical
values, ∆ = ±2.

Proof. Given δ ∈ C(R/TZ), the theorem on differentiability with respect
to parameters implies that the directional derivative along δ is given by

∆′[a]δ :=
d

ds
∆[a+ sδ]|s=0 = z1(T ) + ż2(T )

where zi(t) is the solution of

z̈ + a(t)z + δ(t)φi(t) = 0, z(0) = ż(0) = 0.

From the formula of variation of constants we deduce that

zi(t) =
∫ t

0
G(t, s)φi(s)δ(s)ds

with
G(t, s) = φ1(t)φ2(s)− φ1(s)φ2(t).

Then

∆′[a]δ =
∫ T

0
χ(s; a)δ(s)ds (7)

with χ(s; a) = G(T, s)φ1(s) + ∂G
∂t (T, s)φ2(s) =

−φ2(T )φ1(s)2 + (φ1(T )− φ̇2(T ))φ1(s)φ2(s) + φ̇1(T )φ2(s)2.

This shows that ∆ is Gateaux differentiable. The function χ(·; a) is contin-
uous and so the the derivative ∆′[a] can be interpreted as an element of the
dual space C(R/TZ)∗. Next we prove that the differential map

a ∈ C(R/TZ) 7→ ∆′[a] ∈ C(R/TZ)∗
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is continuous. Consider a sequence an ∈ C(R/TZ) converging to a, ||an −
a||∞ → 0. By continuous dependence we know that χ(s; an) → χ(s; a),
uniformly in s ∈ [0, T ]. For each δ ∈ C(R/TZ) with ||δ||∞ ≤ 1,

|(∆′[an]−∆′[a])δ| ≤
∫ T

0
|χ(s; an)− χ(s; a)|ds→ 0.

Moreover this convergence is uniform in the unit ball of C(R/TZ), ||δ||∞ ≤ 1.
The previous discussions imply that ∆ is Fréchet differentiable and of class
C1.

To show that ±2 are critical values, we find functions a± ∈ C(R/TZ)
such that the monodromy matrices associated to the equations ÿ+a±(t)y = 0
are M± = ±I. Then ∆[a±] = ±2 and χ(·; a±) ≡ 0. In view of (7) we
conclude that ∆′[a±] = 0. The simplest choices for a+ and a− are the
constant functions a+ ≡ (2π

T )2 and a− ≡ ( π
T )2.

To complete the proof we must check that all values in R \ {−2, 2}
are regular. Assume that a ∈ C(R/TZ) is such that ∆[a] 6= ±2. Going
back to the formula (7) we notice that we must prove that χ(·; a) is not
identically zero. Assume by contradiction that χ(t; a) = 0 for each t ∈ R.
In particular, χ(0; a) = 0 and χ̇(0; a) = 0. This implies that φ2(T ) = 0 and
φ1(T )− φ̇2(T ) = 0 and so the function χ takes the simplified form χ(s; a) =
φ̇1(T )φ2(s)2. Now we conclude that φ̇1(T ) = 0 since χ vanishes everywhere.
Then the monodromy matrix M takes the form αI with α = φ1(T ) = φ̇2(T ).
Since M has determinant one, we deduce that M = ±I. This is impossible
if ∆[a] 6= ±2.�

We will be interested in similar properties for another functional: the
discriminant of the linearized forced pendulum equation. Given f ∈ X and
a T -periodic solution x(t) of the equation (1) we define D = D[x] as the
discriminant of the linearized equation (5). To be precise on the domain of
the functional we introduce the set

M = {x ∈ C2(R/TZ) :
∫ T

0
sinx(t)dt = 0}.

The definition of M is motivated by the condition f ∈ X and the identity

β

∫ T

0
sinx(t)dt =

∫ T

0
f(t)dt, (8)

valid for any T -periodic solution x(t) of (1). As noticed in [10], M is a
Banach manifold of codimension one in the space C2(R/TZ). The tangent
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space at x ∈M is

Tx(M) = {y ∈ C2(R/TZ) :
∫ T

0
(cosx(t))y(t)dt = 0}.

The rigorous definition of the functional is

D : M→ R, D[x] = ∆[β cosx].

It can be seen as the composition D = ∆ ◦N ◦ i,

N : C2(R/TZ) → C(R/TZ), i : M→ C2(R/TZ),

where N is the substitution operator Nx(t) = cosx(t) and i is the inclusion
of M in the ambient space. From the chain rule we deduce that D is C1

and, for each y ∈ Tx(M),

D′[x]y = −∆′[β cosx](β sinx)y = −β
∫ T

0
χx(t)(sinx(t))y(t)dt,

where χx = χ(·, a) with a(t) = β cosx(t). In contrast to the previous ex-
ample, D can have critical values lying in the elliptic region |D| < 2. The
constant functions xn(t) ≡ nπ, n ∈ Z satisfy D′[xn] = 0 and D[x2n] =
∆[β] = 2 cos

√
βT , D[x2n+1] = ∆[−β] = 2 cosh

√
βT . Then 2 cos

√
βT and

2 cosh
√
βT are critical values. To avoid this unwanted fact we eliminate the

functions xn and consider the new domain for the functional

M∗ = M\ {xn : n ∈ Z}.

This is an open subset of M and the restriction of the functional will be
denoted by D∗ : M∗ → R.

Proposition 8 All real numbers different from ±2 are regular values of D∗.

We need a preliminary result on linear equations, whose proof is postponed
to the end of the section.

Lemma 9 Assume that φ1(t) and φ2(t) are the solutions of the equation
(3) satisfying the initial conditions (4). Then the three functions φ1(t)2,
φ1(t)φ2(t) and φ2(t)2 are linearly independent on any open interval I ⊂ R.

Proof of Proposition 8. Assume that x ∈ M∗ is a critical point of D∗.
Then D′[x] = 0 and ∫ T

0
χx(t)(sinx(t))y(t)dt = 0
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for each y ∈ Tx(M). This integral can be interpreted as an inner product
in the Hilbert space L2(R/TZ),

〈χx sinx, y〉L2 = 0.

This is equivalent to say that the function χx sinx is orthogonal to the
tangent space,

χx sinx ∈ Tx(M)⊥.

From the general theory of Hilbert spaces we know that

Tx(M)⊥ = V ⊥,

where V is the closure of Tx(M) in L2(R/TZ). The space V can also be
described as the hyperplane orthogonal to the line spanned by cosx(t),

V = L⊥, L = {λ cosx(·) : λ ∈ R}.

Hence, the function x is a critical point of D if and only if

χx sinx ∈ V ⊥ = (L⊥)⊥ = L.

This means that
χx(t) sinx(t) = λ cosx(t) (9)

for some λ ∈ R. In principle this identity should be understood in the
L2-sense but, since we are dealing with continuous functions, it holds every-
where. In particular it must hold at an instant τ where sinx(τ) = 0. Notice
that such an instant exists because x is in the manifold M. Evaluating (9)
at t = τ we obtain λ = 0. At this moment we use that x is in M∗ and so
the function sinx(t) must be positive on some open interval I. The identity
(9) now leads to χx(t) = 0 for each t ∈ I. The function χx can be thought
as a linear combination of φ2

1, φ1φ2 and φ2
2 and using Lemma 9 we conclude

that
φ̇1(T ) = φ2(T ) = φ1(T )− φ̇2(T ) = 0.

As before, these identities imply that the monodromy matrix is ±I and
therefore D[x] = ±2.�

Proof of Lemma 9. It is sufficient to prove that the Wronskian W = W (t)
of these three functions never vanishes. A simple computation shows that

W = det

 φ2
1 φ1φ2 φ2

2

2φ1φ̇1 φ2φ̇1 + φ1φ̇2 2φ2φ̇2

2φ̇2
1 − 2aφ2

1 2φ̇1φ̇2 − 2aφ1φ2 2φ̇2
2 − 2aφ2

2

 .
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In particular,

W (0) = det

 1 0 0
0 1 0

−2a(0) 0 2

 = 2.

Assume for the moment that the function a(t) is of class C1. The three
functions zij = φiφj , 1 ≤ i ≤ j ≤ 2, are solutions of the third order linear
equation

d3z

dt3
+ 4a(t)

dz

dt
+ 2ȧ(t)z = 0.

This fact is observed in the book [8] and can be checked by direct substitu-
tion. Liouville’s formula can be applied to this equation and it follows that
the Wronskian is constant (W = 2) everywhere. The same conclusion also
holds for the general case, when we can only assume that a(t) is continuous.
The function a(t) can be approximated in the uniform sense by C1 functions
an(t). By continuous dependence, for a fixed initial condition, the solutions
of the second order equations ÿ+an(t)y = 0 converge to the solutions of (3)
in C1[0, T ]. This fact implies that the corresponding Wronskians Wn = 2
converge to W .�

6 Regular values and prevalent sets

Let E be a separable Banach space. Given a vector e ∈ E, the ball centered
at e of radius r > 0 will be denoted by

B(e, r) = {f ∈ E : ||f − e|| < r}.

The closed ball will be B(e, r). The σ-algebra of Borel sets on E will be
denoted by BE.

A set N ∈ BE is Haar-null if there exists a Borel measure µ on E such
that µ(K) > 0 for some compact subset K of E and

µ(N + e) = 0 for each e ∈ E.

More generally, a subset of E is Haar-null if it is contained in some Borel set
that is Haar-null.

To illustrate this notion we present a simple class of Haar-null sets.
Assume that E is split as E = E1

⊕
E2, where E1 is a closed subspace and

E2 has finite dimension. The vector space E2 is locally compact and has an
associated Haar measure, denoted by λE2 . To normalize we can assume that
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the unit ball has measure one. Next we fix a set S ⊂ E2 such that S ∈ BE2

and λE2(S) = 0. Then we define

NS = {e1 + e2 : e1 ∈ E1, e2 ∈ S} (10)

and claim that NS is Haar-null in E. To prove that NS belongs to BE we
observe that it can be expressed as NS = π−1

2 (S), where π2 : E → E is the
projection onto E2 associated to the splitting. Now it is enough to recall
that the inverse image of a Borel set under a continuous function is also a
Borel set. The subspace E2 is closed in E and so the σ-algebra of Borel sets
of E2 can be expressed as BE2 = {B ∩ E2 : B ∈ BE}. This fact allows us to
induce a measure on E from the measure on E2,

µ(B) := λE2(B ∩ E2) if B ∈ BE.

It is easy to prove that µ is indeed a Borel measure. Moreover, the compact
set K = B(0, 1) ∩ E2 satisfies µ(K) = 1. Finally, if we denote e2 = π2(e),

µ(NS + e) = λE2(S + e2) = λE2(S) = 0.

Going back to the general theory, we recall that the countable union of
Haar-null sets is also a Haar-null set. Also we recall that Haar-null sets
were called shy sets in [20]. The complement of a shy set is a prevalent set.
Next we present the main result of the section.

Proposition 10 Let G be an open and prevalent subset of E. Assume
that there exist a family {Uα}α∈A of open subsets of E and functions dα ∈
C1(Uα,R) such that

G ⊂
⋃
α∈A

Uα

d′α(e) 6= 0 for each e ∈ Uα, α ∈ A.

Finally assume that C is a Borel subset of R with zero measure. Then the
set

G̃ =
⋃
α∈A

d−1
α (R \ C)

is prevalent in E.

Before the proof we present an informal discussion for the case of a single
index A = {α} and E = R3. In this case a Haar-null set is just a set of
zero measure. Since the function dα has no critical values, the open set Uα

is foliated by the smooth surfaces dα(x1, x2, x3) = c, where c is constant.
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cd =α

αd

αΦcx =3

At least locally this family of surfaces has an explicit equation, say x3 =
φα(x1, x2, c). The diffeomorphism Φα : (x1, x2, c) 7→ (x1, x2, φα(x1, x2, c))
is defined locally and maps a subset Z contained in R2 × C into d−1

α (C).
It can be proved that d−1

α (C) can be covered by the image of a countable
family {Zλ}λ∈Λ of sets this type. The set R2×C is Haar-null in R3. This is
a consequence of Fubini theorem but it can also be deduced from previous
discussions. Indeed R2 ×C can be interpreted as the set NC corresponding
to the splitting of R3 = R2 ×R along the coordinate axes. The function φα

is C1 and so Φα preserves sets of zero measure. This implies that Φα(Zλ)
has zero measure. Then d−1

α (C) can be covered by a countable union of zero
measure sets.

As will be seen later, the proof in the general case follows along these lines
excepting at one point. In contrast to the case of Rn, in infinite dimensions
Haar-null sets are not preserved by diffeomorphisms. An example of this
phenomenon is presented in [7]. To overcome this difficulty we will show
that the image under a diffeomorphism of a set of the type NS is a Haar-
null set.

The proof of Proposition 10 will be obtained after a sequence of lemmas.
We start with a characterization of Haar-null sets.

Lemma 11 Assume that N ∈ BE. The following statements are equivalent:
(i) N is Haar-null
(ii) For each n ∈ N there exists a neighborhood Vn in E such that N ∩ Vn

is Haar-null.
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Proof. This result is mentioned in [20]. The implication (i) ⇒ (ii) is
obvious. To prove (ii) ⇒ (i) we notice that it is not restrictive to assume that
Vn is open. Since E is a separable metric space, it has the Lindelöf property
(see [23]) and so we can extract a countable sub-covering of {Vn}n∈N . That
is, {Vλ}λ∈Λ with Λ ⊂ N and

⋃
λ Vλ ⊃ N . Then N is the countable union of

the sets N ∩ Vλ, that are Haar-null sets.�

The next result will be very useful to simplify proofs. Instead of using
a single measure as in the definition of Haar-null set, we play with many
measures. The advantage is that the condition µ(N + e) = 0 is only needed
when ||e|| is small.

Lemma 12 Assume that N ∈ BE and for each n ∈ N there exists a number
δn > 0, a Borel measure µn on E and a compact set Kn ⊂ E such that
µn(Kn ∩ B(n, r)) > 0 for each r > 0 and

µn(N + e) = 0 if ||e|| < δn.

Then N is Haar-null.

Proof. In view of Lemma 11 it is sufficient to prove that N ∩ B(n, 1
3δn) is

Haar-null for each n ∈ N . To this end we define a new measure

µ̂n(B) := µn(B ∩ B(n,
1
3
δn)).

It is easy to check that µ̂n is a Borel measure and, by assumption, µ̂n(Kn) >
0. It remains to prove that

µ̂n[(N ∩ B(n,
1
3
δn)) + e] = 0

for each e ∈ E. This is a consequence of the assumptions if ||e|| < δn.
Assume now that ||e|| ≥ δn, then the balls B(n, 1

3δn) and B(n, 1
3δn) + e are

disjoint and so

µ̂n[(N ∩ B(n,
1
3
δn)) + e] = µn(∅) = 0.�

In the next result we assume that there is a splitting E = E1
⊕

E2 as before
and NS is defined by (10).

Lemma 13 Let ϕ : U → V be a C1-diffeomorphism between two open sets
contained in E. In addition assume that ϕ−1 is Lipschitz continuous. Then
N = ϕ(NS ∩ U) is Haar-null.
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Proof. Given n ∈ N we find m ∈ NS ∩ U with n = ϕ(m). We split m as
m = m1 + m2 with m1 ∈ E1, m2 ∈ E2. It is possible to find sets W1, W2

and W satisfying that Wi is open in Ei, mi ∈ Wi, i = 1, 2, W is open in E,
0 ∈W , and such that the map ψ : (W2 ×W )×W1 ⊂ (E2 × E)× E1 → E1,

ψ(f2, e; f1) = π1ϕ
−1(ϕ(f1 + f2) + e)−m1

is well defined. Here π1 is the projection associated to the splitting. The
map ψ is of class C1 and satisfies

ψ(m2, 0;m1) = 0, ∂3ψ(m2, 0;m1) = idE1 .

The last identity concerning the partial derivative along the subspace E1 is
a consequence of the chain rule because

∂3ψ(f2, e; f1) = π1 ◦ (ϕ−1)′(ϕ(f1 + f2) + e) ◦ ϕ′(f1 + f2) ◦ i1,

where i1 : E1 → E is the inclusion. It follows from the implicit function
theorem that there exist setsW ∗

1 , W ∗
2 andW ∗ and a function F : W ∗

2×W ∗ →
W ∗

1 such that W ∗
i is open in Ei, mi ∈ W ∗

i ⊂ Wi, i = 1, 2, W ∗ is open in E,
0 ∈W ∗ ⊂W , F is of class C1, F (m2, 0) = m1 and the equation

ψ(f2, e; f1) = 0, (f2, e; f1) ∈W ∗
2 ×W ∗ ×W ∗

1

is equivalent to f1 = F (f2, e).
Given e ∈W ∗ we observe that the function

Me : f2 ∈W ∗
2 7→ ϕ−1(ϕ(F (f2, e) + f2) + e)

takes values into the affine space E2 + m1 = E2 + m. Then Me can be
interpreted as a C1 map between two spaces of the same finite dimension. In
consequence the set Ze = Me(S ∩W ∗

2 ) satisfies λE2+m(Ze) = 0. Here we are
using a new but obvious notation. The Haar measure on E2 is transported
to E2 + m via the formula λE2+m(B) := λE2(B −m). We intend to apply
Lemma 12 to the Borel set N = ϕ(NS ∩ U). For each n = ϕ(m) we take a
ball β centered at m. The radius of this ball will be chosen later. Consider
the Borel measure in E,

µn(B) := λE2+m(ϕ−1(B ∩ V ) ∩ β ∩ (E2 +m))

for each B ∈ BE. Define

Kn = ϕ(B(m, r∗) ∩ (E2 +m))
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where r∗ > 0 is so small that B(m, r∗) ⊂ U . This is a compact set contained
in V and

ϕ−1(Kn ∩ B(n, r)) = B(m, r∗) ∩ (E2 +m) ∩ ϕ−1(B(n, r) ∩ V )

contains a ball (relative to E2+m) centered at m. Hence, µn(Kn∩B(n, r)) >
0 for each r > 0. It remains to prove that µn(N + e) = 0 if ||e|| is small.
Assume that x is a point in Σ = ϕ−1((ϕ(NS ∩ U) + e) ∩ V ) ∩ β ∩ (E +m).
Then x = ϕ−1(ϕ(f1 + f2) + e) with f = f1 + f2 ∈ NS ∩ U and

||f −m|| ≤ ||ϕ−1(ϕ(f))− ϕ−1(ϕ(f) + e)||+ ||ϕ−1(ϕ(f) + e)−m||

≤ [ϕ−1]Lip||e||+ ||x−m|| ≤ [ϕ−1]Lip||e||+ radius of β.

Here [ϕ−1]Lip is the best Lipschitz constant of ϕ−1 and we are using that
x is in the ball β. Adjusting the radius and choosing ||e|| small enough we
conclude that f1 ∈ W ∗

1 , f2 ∈ W ∗
2 and e ∈ W ∗. Since x belongs to E2 +m,

m1 = π1(x) = π1ϕ
−1(ϕ(f1 + f2) + e), implying that ψ(f2, e; f1) = 0. This

is equivalent to f1 = F (f2, e) and therefore x = Me(f2) with f2 ∈ S ∩W ∗
2 .

We conclude that the set Σ is contained in Me(S ∩W ∗
2 ) = Ze and so

µn(N + e) = λE2+m(Σ) ≤ λE2+m(Ze) = 0.�

Next we show that the Lipschitz condition on ϕ−1 is not essential.

Proposition 14 Let ϕ : U → V be a C1-diffeomorphism between two open
subsets of E. Then N = ϕ(NS ∩ U) is a Haar null set in E.

Proof. For each n ∈ N , n = ϕ(m), we find an open neighborhood Un of m
and a number Mn such that Un ⊂ U and

||(ϕ−1)′(x)||L(E,E) ≤Mn

for each x ∈ Vn = ϕ(Un). Here || · ||L(E,E) is the norm in the space of
bounded endomorphisms of E. The restriction of ϕ, ϕn : Un → Vn is a C1-
diffeomorphism and ϕ−1

n is Lipschitz-continuous with [ϕ−1
n ]Lip ≤Mn. Then

Lemma 13 can be applied and the set ϕ(NS ∩ Un) is Haar-null. Since

ϕ(NS ∩ Un) = ϕ(NS ∩ U) ∩ Vn = N ∩ Vn,

we can apply Lemma 11 and deduce that N is a Haar-null set.�

We are ready to prove a simplified version of Proposition 10.
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Lemma 15 Assume that U is an open subset of E and there exists a func-
tion d ∈ C1(U,R) with

d′(e) 6= 0 for each e ∈ U.

In addition C is a Borel subset of R with zero measure. Then Z = d−1(C)
is Haar-null in E.

Proof. First of all we notice that Z is the inverse image under d of a
Borel set. This implies that Z ∈ BE. Next we apply the local submersion
theorem as stated in [1]. Given e∗ ∈ U , we must check that the functional
d′(e∗) : E → R is surjective and has split kernel E1 with closed complement
E2, E = E1

⊕
E2. This is immediate because d′(e∗) is a non-zero element of

the dual space E∗ and so E1 = Ker d′(e∗) is a closed hyperplane. For the
subspace E2 we can take any line E2 = {te : t ∈ R} with d′(e∗)e 6= 0. The
submersion theorem implies the existence of open sets V and W in E and a
C1-diffeomorphism ϕ : V →W such that

V = {e1 + te : e1 ∈ E1, ||e1|| < r1, |t| < r2} for appropriate r1 and r2,

e∗ ∈W ⊂ U , ϕ(0) = e∗ and d(ϕ(e1 + te)) = t. Then Z∩W can be described
as the image under ϕ of the set

{e1 + te : e1 ∈ E1, ||e1|| < r1, |t| < r2, t ∈ C}.

That is, Z ∩W = ϕ(NC ∩ V ), and Proposition 14 implies that Z ∩W is
Haar-null. Once again we invoke Lemma 11 to finish the proof.�

Proof of Proposition 10. The Lindelöf property allows us to extract a
countable sub-covering {Uλ}λ∈Λ, Λ ⊂ N,

⋃
λ Uλ ⊃ G. From Lemma 15 we

deduce that each set d−1
λ (C) is Haar-null. In consequence also

⋃
λ∈Λ d

−1
λ (C)

is Haar-null. From

E \ G̃ ⊂ (E \G) ∪
⋃
λ∈Λ

d−1
λ (C)

we conclude that G̃ is prevalent.�

7 Proof of Theorem 1

Let us consider the operator

F : M→ X, F [x] = ẍ+ β sinx,
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where M is the manifold introduced in Section 5. In view of the identity
(8), every T -periodic solution of (1) belongs to M if f ∈ X. Hence the
periodic problem for (1) with f ∈ X is equivalent to the equation

F [x] = f.

The map F is smooth with derivative

F ′[x] : Tx(M) → X, F ′[x]y = ÿ + β(cosx)y.

The next result was already obtained in [10] in a more general context. We
present a simple proof.

Lemma 16 Given x ∈ M, the derivative F ′[x] is an isomorphism if and
only if x(t) is a non-degenerate T -periodic solution of (1).

Proof. Assume first that F ′[x] is an isomorphism and let y(t) be a T -
periodic solution of the linearized equation

ÿ + β(cosx(t))y = 0.

Integrating over a period we obtain β
∫ T
0 (cosx(t))y(t)dt = 0 and so y ∈

Tx(M). From the linearized equation, F ′[x]y = 0, and this implies y = 0
because Ker F ′[x] = {0}.

Assume now that x(t) is non-degenerate. Then it is obvious that the
kernel of F ′[x] is trivial. To prove that F ′[x] is onto let p be a given function
in X. By Fredholm alternative we know that the non-homogeneous equation

ÿ + β(cosx(t))y = p(t)

has a unique T -periodic solution. This solution satisfies

β

∫ T

0
(cosx(t))y(t)dt =

∫ T

0
p(t)dt = 0.

Then y ∈ Tx(M) and F ′[x]y = p.�

The set E defined by Proposition 3 is open and prevalent in X. We
recall that it was defined as R \ {0} where R was the set constructed in
[19]. Given f ∈ E , we can select x ∈ M such that F [x] = f and the
linearized equation at x(t) is elliptic. Indeed x belongs to the sub-manifold
M∗ = M\ {xn : n ∈ Z} because f 6= 0 and F [xn] = 0. In the notations of
Section 5

|D[x]| < 2.
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In particular the solution x(t) is non-degenerate and so F ′[x] is an isomor-
phism. We apply the inverse function theorem and find open sets Vf ⊂M∗,
Uf ⊂ E with x ∈ Vf , f ∈ Uf , and such that the restriction F : Vf → Uf is
a diffeomorphism. After restricting the size of Uf we can assume that the
functional

df : Uf → R, df (g) = D[F−1(g)]

is smooth and takes values in the interval ] − 2, 2[. From Proposition 8 we
deduce that d′f (g) 6= 0 for each g ∈ Uf . We are ready to apply Proposition
10. Define E = X, G = E and consider the open covering {Uf}f∈E . Finally,
let C be the set defined in Section 4 by the formula (6). Then

G̃ =
⋃
f∈E

d−1
f (R \ C)

is prevalent in X.
We claim that the equation

ẍ+ β sinx = g(t)

has a stable T -periodic solution for each g ∈ G̃. According to the definition
of G̃ there exists a T -periodic solution x(t) such that the discriminant of
the linearized equation is given by ∆ = df (g), for some f ∈ E with g ∈ Uf .
Moreover, |∆| < 2 and ∆ 6∈ C. Proposition 6 is applicable and we conclude
that G̃ ⊂ S.
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