
Portugal. Math. (N.S.)
Vol. xx, Fasc. , 200x, xxx–xxx

Portugaliae Mathematica
c© European Mathematical Society

A forced pendulum equation without stable
periodic solutions of a fixed period
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Abstract. The pendulum equation is forced by a continuous and T -periodic function
with zero average. In these conditions it is well known that there exist at least two T -
periodic solutions. We construct some examples where there are exactly two T -periodic
solutions and both are unstable.
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1. Introduction

Consider the differential equation

ẍ+ β sinx = f(t) (1)

where β > 0 is a real parameter and f : R → R is a continuous and T -periodic
function satisfying ∫ T

0

f(t)dt = 0. (2)

Many authors have discussed different properties of this equation and an extensive
list of references can be found in the survey paper [3]. In a recent paper [5] I
discussed the existence of T -periodic solutions that are stable in the Lyapunov
sense. It was proved in [5] that if

β ≤ (
π

T
)2

∗Supported by D.G.I. MTM2011-23652, Spain.



2 R. Ortega

then there exists a stable T -periodic solution for a large class of forcings satisfying
(2). Two examples of non-existence of stable periodic solutions will be constructed
in the present paper. They show that, in some aspects, the result obtained in [5]
is sharp.

Theorem 1.1. Assume that
β > (

2π
3T

)2.

Then there exists a real analytic function f : R → R satisfying

f(t+ T ) = f(t), f(−t) = −f(t), t ∈ R (3)

and such that the equation ( 1) has no stable T -periodic solution.

The function f(t) in the above result is odd and, in particular, the condition
(2) holds. This shows that the conclusion of the theorem in [5] cannot hold for
every forcing. Therefore, the phrase for almost every forcing employed in [5] is
essential, at least for parameters lying in the interval

(
2π
3T

)2 < β ≤ (
π

T
)2.

Let us recall the precise meaning in our context of a property that holds almost
everywhere. The space X of continuous and T -periodic functions with mean value
zero has infinite dimensions. It becomes a Banach space with the norm

||f || = max
t∈R

|f(t)|.

We say that a property holds for almost every forcing if it holds for every f ∈ P,
where P is a prevalent subset of X. The definition of prevalence is analyzed in
[6]. We just recall this definition: a subset P of X is prevalent if there exist a
Borel measure µ on X, a Borel subset N ⊂ X and a compact set K ⊂ X such
that X \ P ⊂ N , µ(K) > 0 and µ(N + g) = 0 for every g ∈ X. Prevalent sets are
dense in X and so the next result shows that the number ( π

T )2 is optimal for the
theorem in [5].

Theorem 1.2. Assume that
β > (

π

T
)2.

Then there exist a number ε > 0 and a real analytic function f : R → R satisfying
the conditions in ( 3) and such that the equation

ẍ+ β sinx = g(t)

has no stable T -periodic solution if g : R → R is a continuous and T -periodic
function satisfying ∫ T

0

g(t)dt = 0, ||f − g|| < ε.
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The rest of the paper is dedicated to the proof of these results. The proof of
Theorem 1.1 is based on the phenomenon of strong resonance at the third root
of unity, as described in Section 2. This explains the restriction on β imposed in
Theorem 1.1. Perhaps the analysis of resonances at higher roots of unity could
help to improve this result. I do not know if the conclusion of Theorem 1.1 is valid
for arbitrary β > 0. In my experience with the pendulum equation, I have found
that an useful strategy to produce examples with special properties is to assume
first that (1) is an autonomous equation with impulses, that is f =

∑
j cjDδj ,

where Dδj is the derivative of a Dirac measure. Once a preliminary example of
this type has been constructed, one can try to change f by an authentic function
via perturbation arguments. In this process weak topologies play an important
role. This explains why two sections of the paper, 3 and 6, are devoted to study
the effect of the weak∗ topology on equations of pendulum type. The examples
proving the two theorems are presented in sections 4 and 5. The period T > 0 is
arbitrary in both theorems but, after a re-scaling of time, it is not restrictive to
assume that T has a fixed value. To simplify computations we will choose T = 2π

3
in the first theorem and T = 2π in the second one.

With respect to the notations employed in the paper, I think they are more
or less standard. In particular Lp(R/TZ) and Cp(R/TZ) are spaces of T -periodic
functions.

2. Resonance at the third root of unity

Let R3 be the class of 2× 2 matrices L ∈ R2×2 satisfying

L3 = I, L 6= I.

These matrices are conjugate to the rotation of angle 120◦ and they play a sin-
gular role in stability theory. Assume that L is in R3 and consider the difference
equations

xn+1 = Lxn (4)

and
xn+1 = Lxn +N(xn), (5)

whereN is a nonlinear map satisfyingN(0) = 0, N ′(0) = 0. For the linear equation
(4) all non-trivial solutions are 3-cycles and the origin x = 0 is stable. However,
for a typical nonlinear perturbation (5) the origin is unstable. The purpose of this
section is to describe this phenomenon in precise terms. The exposition will be
inspired by the book [7].

Let U be any open subset of the plane containing the origin and assume that

F : U ⊂ R2 → R2
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is a C2 map with F (0) = 0. The origin x = 0 is stable with respect to F if given
any neighborhood V there exists another neighborhood W such that the iterates
Fn(W) are well defined for the future and

Fn(W) ⊂ V if n ≥ 0.

The fixed point x = 0 is unstable when the previous condition does not hold. The
notions of stability and instability are topological, meaning that they are invariant
under conjugacy by homeomorphisms.

The map F is C2 and so it can be expanded as

F (x) = Lx+Q(x) + o(|x|2) as |x| → 0

where L ∈ R2×2 and Q is a quadratic polynomial of the type

Q(x1, x2) = αx2
1 + βx1x2 + γx2

2, α, β, γ ∈ R2.

Let us assume that L ∈ R3 and define

Q](x) = L2Q(x) + LQ(Lx) +Q(L2x).

This is a new quadratic polynomial. Sometimes we will write QF and Q]
F to

emphasize the dependence on F .
The 2-jet of F at the origin will be described as

J2
0F = (L;α, β, γ).

To measure the distance between jets we fix some norm | · | in the space R2×2 ×
R2 × R2 × R2.

Proposition 2.1. Given F in the previous conditions, assume that Q]
F is not

identically zero. Then there exists εF > 0 such that the origin x = 0 is unstable
with respect to any C2 map G : U ⊂ R2 → R2 satisfying

G(0) = 0, G′(0) ∈ R3, |J2
0F − J2

0G| < εF .

Later we will present some examples on how to apply this result. By now we just
concentrate ourselves on the proof. As a first step we mention two straightforward
properties of the polynomial Q].

• Given F in the conditions of the above proposition, there exists εF > 0 such
that Q]

G 6= 0 if G : U ⊂ R2 → R2 is a C2 map with G(0) = 0, G′(0) ∈ R3

and |J2
0F − J2

0G| < εF .

• Assume that L = PRP−1 where P is a non-singular matrix and R is one of
the two rotations of angle 2π

3 (with positive or negative orientation). If we
define F∗(x) = P−1F (Px) then F ′∗(0) = R and Q]

F∗
(x) = P−1Q]

F (Px).
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After these remarks the above proposition becomes equivalent to the following
simplified result: Given a C2 map F : U ⊂ R2 → R2 satisfying

F (0) = 0, F ′(0) = R, Q]
F 6= 0,

the origin is unstable with respect to F .
The use of complex notation is very convenient for the proof of this result. We

identify C and R2 with z = x1 + ix2. The map F : U ⊂ C → C can be expressed
as

F (z, z) = ωz +Q(z, z) + o(|z|2) as |z| → 0

with ω2 +ω+1 = 0 and Q(z, z) = Az2 +Bzz+Cz2, A,B,C ∈ C. The polynomial
Q] becomes

Q](z, z) = 3ωCz2,

and the assumption Q] 6= 0 is equivalent to C 6= 0. For simplicity we assume that
3ωC = 1. This is always the case after a change Z = λz for appropriate λ. The
third iterate of F has the expansion

z3 = z +Q](z, z) + o(|z|2) = z + z2 + o(|z|2),

and a direct computation leads to

Re(z3
3) = Re(z3) + 3|z|4 + o(|z|4).

Let us fix r > 0 such that if |z| ≤ r then

Re(z3
3) > Re(z3) + 2|z|4. (6)

We are going to prove that no forward orbit with Re(z3
0) > 0 can remain in the

disk D = {z ∈ C : |z| ≤ r}. This proves the instability of z = 0.
We proceed by contradiction and assume that the positive orbit {zn}n≥0 is well

defined and satisfies
|zn| ≤ r, n ≥ 0

for some z0 in the above conditions. From the inequality (6) we deduce that

2
N∑

n=0

|z3n|4 < Re(z3
3N+3)−Re(z3

0) ≤ 2r3.

This implies that the series
∑
|z3n|4 converges and, in particular, |z3n| → 0. This

fact is not compatible with another consequence of (6), namely

· · · > Re(z3
3n) > Re(z3

3n−3) > · · · > Re(z3
3) > Re(z3

0) > 0.

Once we have completed the proof of Proposition 2.1 we apply it to an example
that will be important later. Consider the differential equation

ÿ + y + γ(t)y2 = 0
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where γ ∈ L1(R/TZ). Further assume that the period is

T =
2π
3
.

We will prove that the trivial solution y = 0 is unstable if∫ 2π
3

0

γ(t)e3itdt 6= 0. (7)

The equation is understood in the Carathéodory sense. Solutions are well defined
on the interval [0, T ] for small initial conditions and the Poincaré map can be
defined as

F : U ⊂ R2 → R2, F (y0, v0) = (y(T ; y0, v0), ẏ(T ; y0, v0))

where U is a neighborhood of the origin and y(T ; y0, v0) is the solution with initial
conditions y(0) = y0, ẏ(0) = v0. This is a C∞ map and the origin y0 = 0, v0 = 0
is a fixed point corresponding to the trivial solution y = 0. Note that the two
notions of stability, for the map and the differential equation, are equivalent. The
variational equation at y = 0 is

ÿ + y = 0

and so

F ′(0, 0) =
(

cosT sinT
− sinT cosT

)
.

This matrix is precisely the rotation of angle 2π
3 in the clockwise sense. To compute

the quadratic polynomial Q it is useful to employ complex notation. Letting w =
y + iẏ and z = y0 + iv0, the equation is written as

ẇ = −iw − iγ(t)(
w + w

2
)2, w(0) = z.

Using the formula of variation of constants we transform the initial value problem
in the integral equation

w(t) = e−itz − i

∫ t

0

e−i(t−s)γ(s)(
w(s) + w(s)

2
)2ds.

The variational equation leads to the first order approximation

w(t) = e−itz +O(|z|2) as |z| → 0,

uniformly in t ∈ [0, T ]. Combining the previous identities we obtain the expansion
F (z, z) = ωz +Q(z, z) + · · · with Q given by

− iω
4

(
∫ 2π

3

0

e−isγ(s)ds)z2 − iω

2
(
∫ 2π

3

0

eisγ(s)ds)zz − iω

4
(
∫ 2π

3

0

e3isγ(s)ds)z2

and ω = e
2π
3 i. From (7) we deduce that Q] 6= 0 and the conclusion follows.
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3. Weak convergence and number of periodic solutions

Let ϕ(t) be a T -periodic solution of the forced pendulum equation (1). The change
of variables x = y + ϕ(t) transforms the original equation in

ÿ + β sin(y + ϕ(t)) = β sinϕ(t). (8)

When ϕ is non-smooth or even discontinuous this equation still makes sense, even
if it does not come from an equation of the type (1). Due to the properties of the
sine function, this equation can be rewritten as

ÿ + β cosϕ(t) sin y + β sinϕ(t) cos y = β sinϕ(t).

We will work with the more general class of equations

ÿ + a(t) sin y + b(t) cos y = c(t) (9)

with a, b, c ∈ L∞(R/TZ). This equation is understood in the Carathéodory sense.
Given a T -periodic solution ψ(t), the linearized equation is

ξ̈ + (a(t) cosψ(t)− b(t) sinψ(t))ξ = 0. (10)

We say that ψ(t) is simple when 1 is not a Floquet multiplier of (10). The equation
(9) will be called simple if all T -periodic solutions are simple.

As an example consider the pendulum equation

ÿ + λ sin y = 0

corresponding to a(t) = λ > 0, b(t) = 0, c(t) = 0. This equation is simple whenever

λ < (
2π
T

)2.

To prove this we first recall that the closed orbits of this autonomous equation
have minimal period τ > 2π√

λ
. Hence they do not produce T -periodic solutions

if λ ≤ ( 2π
T )2. Under this condition the only T -periodic solutions are y = 0 and

y = π. A direct computation shows that y = π is always simple and y = 0 is also
simple excepting for λ = (2πn

T )2, n = 1, 2, . . .
Note that, given a solution y(t) of (9), new solutions can be produced by

adding 2π. The family y(t) + 2πn, n ∈ Z, is interpreted as a single solution. This
identification, already employed in the previous example, will apply in the rest of
the paper. Next we present an important property of simple equations.

Lemma 3.1. Assume that the equation ( 9) is simple. Then the number of T -
periodic solutions is finite.

From now on this number will be indicated byN(a, b, c). In particularN(λ, 0, 0) =
2 if λ ≤ ( 2π

T )2.
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Proof. Given a T -periodic solution ψ(t), there exists some τ ∈ [−T
2 ,

T
2 ] such that

ψ̇(τ) = 0. Thus

|ψ̇(0)| = |
∫ 0

τ

ψ̈(s)ds| ≤ (||a||L∞(R/TZ) + ||b||L∞(R/TZ) + ||c||L∞(R/TZ))
T

2
=: C.

Let F : R2 → R2 be the Poincaré map associated to (9),

F (y0, v0) = (y(T ; y0, v0), ẏ(T ; y0, v0)).

This is a real analytic diffeomorphism whose fixed points are in correspondence
with T -periodic solutions. Moreover, if (ψ(0), ψ̇(0)) = (y0, v0) then the eigenvalues
of F ′(y0, v0) are precisely the Floquet multipliers of (10). In particular 1 is not an
eigenvalue if ψ(t) is simple. The inverse function theorem applied to id−F implies
that (ψ(0), ψ̇(0)) is an isolated fixed point of F . Summing up, we can say that the
set of fixed points

F = {(y0, v0) ∈ [0, 2π]× R : F (y0, v0) = (y0, v0)}

is closed, bounded (|v0| ≤ C) and discrete, and so it is finite.�.

Assume now that (9) is simple and consider sequences {an}, {bn} and {cn} in
L∞(R/TZ) with an → a, bn → b and cn → c in an appropriate topology. We will
prove that for large n the number of T -periodic solutions of

ÿ + an(t) sin y + bn(t) cos y = cn(t) (11)

is independent of n. This is a more or less standard result if the convergence of the
sequences an, bn, cn is strong, the main point of this section is that it also holds
when the convergence is understood in a weak sense. To be precise we recall the
notion of weak∗ convergence in L∞.

Given a sequence {fn} in L∞(R/TZ), we say that it converges to f ∈ L∞(R/TZ)
in the weak∗ sense if ∫ T

0

fnφ→
∫ T

0

fφ

for every φ ∈ L1(R/TZ). Sometimes we will employ the notation f ⇀ f to indicate
this convergence.

Weak∗ convergence in L∞(R/TZ) can be characterized by the two properties
below,

• supn ||fn||L∞(R/TZ) <∞
•

∫ T

0
fnχ[a,b] →

∫ T

0
fχ[a,b] for every compact interval [a, b] ⊂ [0, T ].

Here χ[a,b] denotes the characteristic function of the set [a, b]. The proof of this
characterization is based on Banach-Steinhaus theorem and the density of simple
functions in L1(0, T ). Note that L1(R/TZ) and L1(0, T ) can be identified.

We are ready to present the main result of the section.
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Proposition 3.2. Assume that the equation ( 9) is simple and the sequences {an},
{bn} and {cn} in L∞(R/TZ) satisfy

an ⇀ a, bn ⇀ b, cn ⇀ c.

Then, for large n, the equation ( 11) is simple and N(an, bn, cn) = N(a, b, c).

To illustrate this proposition we present some concrete examples of sequences
in the above conditions.

Example 1. For each n > 2 consider the uniform partition of [0, T ]

t0 = 0 < t1 =
T

n
< t2 =

2T
n

< · · · < tn = T

and fix a number θ. Define

ϕn(t) = (−1)kθ if t ∈]tk, tk+1[.

We consider the equation

ÿ + β sin(y + ϕn(t)) = β sinϕn(t)

and try to apply the above proposition. The sequence an = β cosϕn is constant
and so it converges to λ = β cos θ in any topology. Next we prove that bn = cn =
β sinϕn converges to 0 in the weak∗ sense. Note that || sinϕn||L∞ ≤ 1 and so we
can assume φ = χ[a,b]. Then∫ T

0

sinϕnχ[a,b] =
∫ tr

a

sinϕn +
s−1∑
k=r

∫ tk+1

tk

sinϕn +
∫ b

ts

sinϕn

where r and s are the indexes such that

tr−1 < a ≤ tr ≤ ts ≤ b < ts+1.

All the integrals inside the sum have the same value up to an alternating sign.
Hence they cancel in pairs and the sum is either zero or it reduces to one single
integral, depending on the parity of s−1−r. In both cases we obtain the estimate

|
∫ T

0

sinϕnχ[a,b]| ≤
3T
n
.

The limit equation is ÿ + λ sin y = 0 and so, for large n, N(an, bn, cn) = 2 if
λ < ( 2π

T )2.

Example 2. Consider a function f(t) satisfying

f ∈ L1(R/TZ),
∫ T

0

f(t)dt = 0
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and let h(t) be the unique solution of

ḧ = f(t), h is T − periodic,
∫ T

0

h(t)dt = 0.

The change of variables x = y + h(t) transforms the pendulum equation (1) into

ÿ + β sin(y + h(t)) = 0.

When this equation is simple and has N periodic solutions of period T , the above
proposition can be applied. In particular there exists ε > 0 such that for any
function g satisfying

g ∈ L1(R/TZ),
∫ T

0

g(t)dt = 0, ||f − g||L1(R/TZ) < ε

the equation
ẍ+ β sinx = g(t)

has exactly N periodic solutions of period T .

Example 3. Consider the equation of a pendulum of variable length

ÿ + a(t) sin y = 0.

We fix two positive numbers M and λ < ( 2π
T )2. The above result can be applied to

deduce that there exists ε > 0 such that the equation has exactly two T -periodic
solutions if a ∈ L∞(R/TZ) satisfies

||a||L∞(R/TZ) < M, ||a− λ||L1(R/TZ) < ε.

The key for the proof of Proposition 3.2 is the following result on continuous
dependence with respect to weak topologies.

Lemma 3.3. Assume that {an}, {bn} and {cn} are sequences in the conditions
of Proposition 3.2 and let Fn : R2 → R2 be the Poincaré map associated to ( 11).
Then, for each α = (α1, α2) ∈ N2,

∂αFn(y0, v0) → ∂αF (y0, v0),

and the convergence is uniform on (y0, v0) ∈ K for each compact set K ⊂ R2.

We are using the multi-index notation ∂α = ∂α1+α2F
∂α1y0∂α2v0

. The proof of this
lemma is unrelated to the rest of the paper and we postpone it to Section 6.

Proof of Proposition 3.2. Consider the sets of fixed points

Fn = {(y0, v0) ∈ [0, 2π]× R : Fn(y0, v0) = (y0, v0)}.

From the proof of Lemma 3.1 we know that the sets Fn are compact and contained
in a common rectangle R = [0, 2π]× [−C,C]. Assume that the set F associated to
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(9) has N points, that is ]F = N . By assumption these fixed points are simple. Let
us fix closed disks D1, . . . , DN centered in these fixed points and pairwise disjoint.
The maps Fn converge to F in C1(Di) and so Fn ∩Di is a singleton for large n.
Moreover, the points in these intersections are also simple as fixed points of Fn.
We are lead to the inequality

N(an, bn, cn) = ]Fn ≥ ]F = N(a, b, c) = N.

To prove the reversed inequality we proceed by contradiction. If N(ak, bk, ck)
were greater than N for some subsequence, then Fk should have a point lying in
R \ ∪N

i=1Di. By a passage to the limit we conclude that the same should occur to
the set F and this is absurd.�

Remark. The previous proof shows that the set Fn converges to F in the Haus-
dorff topology on the space of compact subsets of R2. Later this fact will be
combined with a consequence of the proof of Lemma 3.3. The general solution
of (11), denoted by yn(t; y0, v0), satisfies that (yn(t; y0, v0), ẏn(t; y0, v0)) converges
to (y(t; y0, v0), ẏ(t; y0, v0)) uniformly in t ∈ [0, T ], (y0, v0) ∈ K, where K is any
compact subset of R2.

4. The first construction

We fix the period T = 2π
3 and assume β > 1. For each integer n ≥ 3 consider a

partition of the interval [0, T
2 ] of the type

τ0 = 0 < τ1 < τ2 =
2T
2n

< τ3 =
3T
2n

< · · · < τn =
T

2
.

There are two differences with respect to the partition considered in Example 1
after Proposition 3.2, now the interval has length T

2 and one of the knots is not
fixed. Indeed τ1 can be interpreted as a parameter lying in the interval ]0, T

n [. Let
θ be the number in ]0, π

2 [ satisfying

cos θ =
1
β
.

We define the function pn ∈ L∞(R/TZ) by

pn(−t) = −pn(t), pn(t+ T ) = pn(t), a.e. t ∈ R,

pn(t) = (−1)kθ if t ∈]τk, τk+1[, 0 ≤ k < n.

Note that the function pn depends upon the choice of τ1. We will use this freedom
to select a value of τ1 such that the condition∫ T

0

e3it sin pn(t)dt 6= 0 (12)
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holds. To prove that this choice is possible we observe that e3it is T -periodic and
so the integral can be translated to the interval [−T

2 ,
T
2 ],∫ T

0

e3it sin pn(t)dt =
∫ T

2

0

+
∫ 0

−T
2

=
∫ T

2

0

(e3it − e−3it) sin pn(t)dt =

2i(sin θ)
n−1∑
k=0

(−1)k

∫ τk+1

τk

sin 3tdt = −4
3
i sin θ cos 3τ1 + γ

where γ is a complex number depending on n and θ but independent of τ1. The
condition (12) will hold for all numbers τ1 ∈]0, T

n [ excepting perhaps for a finite
number of choices.

Once τ1 has been fixed we observe that

cos pn(t) =
1
β
a.e. t ∈ R

and
sin pn ⇀ 0

in the weak∗ sense. The proof of this fact is almost the same as the proof given
in Example 1 after Proposition 3.2. This proposition can be applied to conclude
that the equation

ÿ + β sin(y + pn(t)) = β sin pn(t) (13)

has exactly two T -periodic solutions, y = 0 and zn(t). Moreover zn(t) converges
uniformly to π. At this point the remark after the proof of Proposition 3.2 is
useful. We will prove that both solutions are unstable if n ≥ n0 for some n0. Let
us start with y = 0 and expand the equation to obtain

ÿ + β(cos pn(t))y − β

2
(sin pn(t))y2 + · · · = 0,

where the remainder is of order y3. In consequence this equation has a contact of
order two with

ÿ + y + γn(t)y2 = 0

and
γn(t) = −β

2
sin pn(t).

Note that the condition (12) implies that (7) holds. Let Fn : R2 → R2 be the
Poincaré map associated to (13). The expansion of Fn around the origin coincides,
up to second order, with the expansion computed in Section 2. Then Proposition
2.1 is applicable to Fn and y = 0 is unstable as a solution of (13). To prove the
instability of zn(t) set z = y − zn(t) in (13) to obtain

z̈ + β sin(z + zn(t) + pn(t))− β sin(zn(t) + pn(t)) = 0.
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The linearization at z = 0 is

ξ̈ + β cos(zn(t) + pn(t))ξ = 0. (14)

Since zn(t) → π uniformly, this equation converges to

ξ̈ − ξ = 0.

The Floquet multipliers of the limit equation are 0 < µ1 = e−T < 1 < µ2 = eT . By
continuous dependence, the Floquet multipliers of (14) also satisfy 0 < µ1 < 1 < µ2

for large n. The first Lyapunov method says that zn(t) is unstable as a solution of
(13).

If the function pn(t) were real analytic, the proof of Theorem 1.1 would be
complete, since it would be sufficient to define x = y + pn(t) and f(t) = p̈n(t) +
β sin pn(t). Of course this is not right and our strategy will be to perform this
change of variable after approximating pn by an appropriate analytic function.

Lemma 4.1. For each n ≥ n0 and δ > 0 there exists qn ∈ Cω(R/TZ) satisfying

(i) qn is odd

(ii) ||pn − qn||L2(R/TZ) < δ

(iii) the linear equation
ÿ + β cos qn(t)y = 0 (15)

has Floquet multipliers µ1 = ω, µ2 = ω with ω2 + ω + 1 = 0.

Before proving this result let us discuss how to complete the proof of Theorem
1.1. We claim that there exists a sequence δn ↓ 0 such that the equation

ÿ + β sin(y + qn(t)) = β sin qn(t) (16)

has exactly two T -periodic solutions and both of them are unstable if n is large
enough. Here qn is the function given by the previous lemma when δ = δn. First
note that

sin qn ⇀ 0 weak∗ in L∞(R/TZ), cos qn →
1
β

in L2(R/TZ)

for any sequence δn ↓ 0. Indeed, to justify the first convergence, we take a charac-
teristic function χ[a,b] and observe that

|
∫ T

0

(sin qn)χ[a,b]| ≤ |
∫ T

0

(sin pn)χ[a,b]|+ |
∫ T

0

(sin qn − sin pn)χ[a,b]| ≤

|
∫ T

0

(sin pn)χ[a,b]|+
√
T ||pn − qn||L2(R/TZ) → 0.

The second convergence is obtained in a similar way. The next step is to select δn
in an appropriate way. The Poincaré maps associated to (13) and (16) are denoted
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by Fn and F̃n and, by Lemma 3.3, they are close in the C2 topology on compact
sets. According to Proposition 2.1 we adjust δn so that

|J2
0Fn − J2

0 F̃n| < εFn
.

The eigenvalues of the matrix F̃ ′n(0) are the Floquet multipliers of (15); that is, ω
and ω. This implies that F̃ ′n(0) ∈ R3. Now Proposition 2.1 also says that y = 0 is
unstable as a solution of (16). Moreover, from Proposition 3.2 we know that the
equation (16) has exactly two T -periodic solutions y = 0 and z̃n → π. As before
we observe that the equation

ξ̈ + β cos(z̃n(t) + qn(t))ξ = 0

converges, in the sense of L2(R/TZ), to ξ̈ − ξ = 0. This is sufficient to guarantee
that also z̃n(t) is unstable for large n. The proof of Theorem 1.1 is complete, we
just define f(t) = q̈n(t) + β sin qn(t).

Proof of Lemma 4.1. Let us recall some well known facts on the discriminant
of Hill’s equation. Given a ∈ L2(R/TZ) consider the linear equation

ÿ + a(t)y = 0 (17)

with Floquet multipliers µ1 and µ2 and µ1 ·µ2 = 1. The discriminant is defined as

∆ = µ1 + µ2

and so the condition (iii) on the multipliers is equivalent to ∆ = ω+ω = −1. The
discriminant can be thought as a functional

∆ : L2(R/TZ) → R, a 7→ ∆[a].

It is well known that ∆ is continuous. We will be interested in the discriminant
of the equation (17) with a(t) = β cos q(t). For this reason we define the new
functional

D : L2(R/TZ) → R, D[q] = ∆[β cos q].

It is also continuous because it can be expressed as the composition D = ∆ ◦ N
where N is the Lipschitz-continuous operator

N : L2(R/TZ) → L2(R/TZ), N(q) = β cos q.

To work with odd functions we introduce the subspace of L2(R/TZ),

L2
\ = {q ∈ L2(R/TZ) : q(−t) = −q(t) a.e. t}.

It is a Hilbert space with the dense subspace of odd analytic functions

V = Cω(R/TZ) ∩ L2
\ .
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To prove the density of V we expand every function q ∈ L2
\ in a Fourier series of

sines,

q(t) ∼
∞∑

n=1

qn sin
2πnt
T

converging to q in the L2 sense. The partial sums
∑N

n=1 qn sin 2πnt
T belong to V

and q is the L2-limit.
Define

Cω = {q ∈ V : ||q − pn||L2(R/TZ) < δ}.

This is a non-empty convex set whose closure in L2
\ is the ball

C = {q ∈ L2
\ : ||q − pn||L2(R/TZ) ≤ δ}.

To prove the lemma we must show that the functional D takes the value −1 at
some function in Cω. Note that D[pn] = −1. We proceed by contradiction and
assume that

D[q] 6= −1 if q ∈ Cω.

Since Cω is convex, we can assume that that D + 1 does not change sign on this
set. The two possible cases are D+ 1 > 0 and D+ 1 < 0 and both can be handled
similarly. From now on we assume D + 1 > 0. By a density argument

D[q] ≥ −1 if q ∈ C. (18)

Next we compute the variations of D. Given f ∈ L2
\ and λ ∈ R, define

D(λ) = D[pn + λf ].

This is a smooth function and

D′(0) = −β
∫ T

0

χ(t)(sin pn(t))f(t)dt

with

χ(t) = −
√

3
2

sin2 t−
√

3
2

cos2 t = −
√

3
2
.

For this computation we refer to [5]. In particular, for the choice f(t) = sin pn(t),

D′(0) = β

√
3

2

∫ T

0

sin2 pn(t)dt > 0.

Hence D(λ) < −1 for λ negative and small. This is incompatible with (18) because
pn + λ sin pn belongs to C when |λ| is small.�
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5. The second construction

In this section we assume that T = 2π and β > 1
4 . The key for this construction will

be the notion of hyperbolicity. Let us first consider the linear equation (17). This
equation is called hyperbolic if the Floquet multipliers satisfy 0 < |µ1| < 1 < |µ2|.
In terms of the discriminant ∆ = ∆[a] this is equivalent to |∆| > 2. Given a
nonlinear equation and a periodic solution ψ(t), we say that ψ is hyperbolic if
the linearized equation satisfies the above condition. We recall that hyperbolic
solutions are unstable in the Lyapunov sense. Next we present examples for the
linear and nonlinear cases.

Given ε ∈ [0, 1
2 [, we consider the even and 2π-periodic function aε ∈ L∞(R/TZ)

defined by

aε(t) =
{

( 1
2 + ε)2, |t| < π

2
( 1
2 − ε)2, π

2 < |t| < π.

This function is piecewise constant and the associated Hill’s equation ÿ+aε(t)y = 0
can be integrated explicitly. After some computations that can be found in chapter
5 of the book [1], it can be checked that the discriminant satisfies

∆[aε] < −2

if ε > 0 is small enough. The equation ÿ−aε(t)y = 0 is hyperbolic for any ε ∈ [0, 1
2 [.

This can also be checked by direct integration. In this case

∆[−aε] > 2.

Next we consider the nonlinear equation

ÿ + aε(t) sin y = 0. (19)

The sequence aε converges to the constant 1
4 in a strong sense,

lim
ε↓0

||aε −
1
4
||L∞(R/TZ) = 0.

We are in the conditions of the third example after Proposition 3.2 and so, for
small ε, the equation (19) has exactly two periodic solutions with period T = 2π.
These solutions are y = 0 and y = π. The above discussion on linear equations
implies that these two solutions are hyperbolic. Up to this point the construction
is essentially the same as in the last section of [4]. From now on we fix a number
ε positive and small. In addition to the previous conditions we also assume that it
satisfies

β > (
1
2

+ ε)2.

This new condition is employed to find numbers θ± in ]0, π
2 [ with

β cos θ± = (
1
2
± ε)2.
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Next we take uniform partitions of the intervals [0, π
2 ] and [π

2 , π],

t0 = 0 < t1 =
π

2n
< t2 =

2π
2n

< · · · < tn =
π

2
,

t∗0 =
π

2
< t∗1 =

π

2
+

π

2n
< t∗2 =

π

2
+

2π
2n

< · · · < t∗n = π.

Let Hn be the odd periodic function in L∞(R/TZ) defined by

Hn(t) =
{

(−1)kθ+, if t ∈]tk, tk+1[
(−1)kθ−, if t ∈]t∗k, t

∗
k+1[.

We observe that β cosHn(t) = aε(t) almost everywhere and β sinHn ⇀ 0 in the
weak∗ sense. The equation

ÿ + β sin(y +Hn(t)) = β sinHn(t) (20)

converges to (19) in the sense of Proposition 3.2. Since the equation (19) is simple
we deduce that for large n the equation (20) has exactly two periodic solutions with
period T = 2π. We label them as y1 = 0 and y2,n(t). In view of the remark at the
end of Section 3 we know that y2,n(t) converges to π uniformly. The linearization
at y1 = 0 is precisely (19) and we know that this equation is hyperbolic. The
linearization at y2,n(t) is

ξ̈ + β cos(y2,n(t) +Hn(t))ξ = 0.

It is easily checked that β cos(y2,n(t)+Hn(t))+aε(t) converges to 0 uniformly. The
properties of continuity of the discriminant functional imply that the discriminant
of the above equation converges to ∆[−aε] > 2. From now on we fix n large enough
so that (20) has exactly two periodic solutions of period 2π. Moreover both of them
are hyperbolic. Once again we have used Proposition 3.2.

Our next step will be to expand Hn(t) in Fourier series

Hn(t) ∼
∞∑

k=1

γk sin kt.

For large N the trigonometric polynomial

KN (t) =
N∑

k=1

γk sin kt

is such that the equation

ÿ + β sin(y +KN (t)) = β sinKN (t)

has exactly two T -periodic solutions, both of them hyperbolic. The change of
variables x = y+KN (t) leads to an equation of the type (1). In view of the second
example after Proposition 3.2 we can conclude that this is the searched equation
for the proof of Theorem 1.2.
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6. Proof of Lemma 3.3

We divide the proof in five steps.

6.1. A remark on uniform convergence. Let Λ be a compact metric space.
Convergent sequences in Λ will be denoted by λn → λ∞, where λ∞ is the limit.
Given a sequence of functions

Xn : [0, T ]× Λ → R2, (t, λ) 7→ Xn(t, λ), n = 1, 2, . . . ,∞,

we say that there is c-convergence if the following property holds: for each λn →
λ∞,

Xn(t, λn) → X∞(t, λ∞)

uniformly in t ∈ [0, T ].
This notion is related to the so-called continuous convergence (see [2]). We will
employ the notation Xn ⇒ X∞.

Lemma 6.1. In the previous setting assume that Xn ⇒ X∞ and X∞ is continu-
ous. Then Xn converges to X∞ uniformly in [0, T ]× Λ.

Proof. By contradiction assume the existence of a number δ > 0 and sequences
tn and λn such that

|Xσ(n)(tn, λn)−X∞(tn, λn)| ≥ δ

for some integer σ(n) ≥ 1 with σ(n) →∞. After extracting a subsequence we can
assume that λn → λ∞. Then

|Xσ(n)(tn, λn)−X∞(tn, λn)| ≤

|Xσ(n)(tn, λn)−X∞(tn, λ∞)|+ |X∞(tn, λ∞)−X∞(tn, λn)|.

The assumption on c-convergence and the uniform continuity of X∞ imply that
the two terms in the sum tend to zero. This is incompatible with the existence of
the number δ. �

6.2. Convergence of the solution. We prove that the solution of equation (11)
converges to the solution of (9) in the following sense,

yn(t; y0, v0) → y(t; y0, v0), ẏn(t; y0, v0) → ẏ(t; y0, v0)

uniformly in t ∈ [0, T ], (y0, v0) ∈ K, where K is a compact subset of R2.
To prove this assertion we take Λ = K with λ = (y0, v0) and prove that there is

c-convergence of Xn = (yn, ẏn) towards X∞ = (y, ẏ). By continuous dependence
with respect to initial conditions we know that X∞ is continuous and so Lemma 6.1
will imply that Xn converges to X∞ in the uniform sense. Let us take a sequence
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λn = (y0n, v0n) ∈ K converging to λ∞ = (y0∞, v0∞). We abbreviate the notation
to

yn(t) = y(t; y0n, v0n).

We must prove that
yn(t) → y∞(t), ẏn(t) → ẏ∞(t)

uniformly in t ∈ [0, T ]. The sequences {an}, {bn} and {cn} are bounded in
L∞(R/TZ) and so the same can be said for the sequence {ÿn} in L∞(0, T ). From
here it is easy to deduce that the sequences {yn} and {ẏn} are uniformly bounded
and equi-continuous so that Ascoli theorem can be applied. Let {yk} be a sub-
sequence of {yn} converging to some y∗ in C1[0, T ], we will prove that y∞ = y∗.
This is sufficient to guarantee the convergence of the whole sequence {yn} to y∞.

Given a test function ϕ ∈ C∞[0, T ], ϕ(0) = ϕ(T ) = 0, we deduce from (11)
that

−
∫ T

0

ẏkϕ̇+
∫ T

0

{ak sin yk + bk cos yk − ck}ϕ = 0.

The sequence sin yk converges uniformly to sin y∗, hence ak sin yk ⇀ a sin y∗. This
type of argument allows a passage to the limit when k →∞, showing that y∗ is a
solution of (9). This solution must be understood in a weak sense but, since we are
dealing with ordinary equations, it is also a solution in the Carathéodory sense.
The initial conditions satisfied by y∞ and y∗ coincide at t = 0 and so y∗ = y∞.

6.3. Linear equations depending on parameters. Consider the Cauchy prob-
lem

z̈ +G(t, λ)z = g(t, λ), z(0) = w0, ż(0) = w1 (21)

where G, g : [0, T ]× Λ → R satisfy the following conditions:
• For each λ ∈ Λ, G(·, λ), g(·, λ) ∈ L∞(0, T )
• If λn → λ∞ then G(·, λn) ⇀ G(·, λ∞), g(·, λn) ⇀ g(·, λ∞) in the weak∗

sense.

The solution of (21) will be denoted by z(t, λ) and we claim that it depends con-
tinuously on λ. More precisely,

(t, λ) ∈ [0, T ]× Λ 7→ (z(t, λ), ż(t, λ))

is continuous. The proof of this fact uses again Ascoli theorem and an argument
of uniqueness. We omit the details.

6.4. Successive derivatives of the solution. The derivatives ∂αyn with ∂α =
∂|α|

∂α1y0∂α2v0
, |α| = α1 + α2, can be computed by differentiating the equation (11)

with respect to initial conditions. They satisfy a linear Cauchy problem of the
type

z̈ + Γn(t; y0, v0)z = γn(t; y0, v0), z(0) = w0, ż(0) = w1 (22)
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where
Γn = an cos yn − bn sin yn

and γn depends upon an, bn and the derivatives ∂βyn with |β| < |α|. For instance,
γn = 0, w0 = 0, w1 = 1 if α = (0, 1) or γn = (an sin yn + bn cos yn)∂e1yn∂

e2yn,
w0 = w1 = 0 if α = (1, 1) and e1 = (1, 0), e2 = (0, 1).

The same can be said about the solution of (9). To unify the discussion we
employ the notation y∞ for the solutions of (9). We claim that for each n =
1, 2, . . . ,∞ the map

(t; y0, v0) ∈ [0, T ]× R2 7→ (∂αyn(t; y0, v0), ∂αẏn(t; y0, v0)) ∈ R2

is continuous. This is proved by induction on N = |α|. We assume that the map is
continuous for each β with |β| < N and prove that the same holds for α. We can
apply the previous remark on the linear problem (21) where Λ is a closed ball in
R2, G = Γn and g = γn. Given a convergent sequence λm = (y0m, v0m) → λ∞ =
(y0∞, v0∞), the continuity of yn implies that Γn(·, λm) converges, as m → ∞, to
Γn(·, λ∞) in the weak∗ sense. The same can be said about γn(·, λm) and γn(·, λ∞)
but now the inductive assumption has to be invoked.

6.5. Convergence of the derivatives of the solution. To complete the proof
we show that the solution of equation (11) converges to the solution of (9) in the
CN topology on compact sets, that is

∂αyn(t; y0, v0) → ∂αy(t; y0, v0), ∂αẏn(t; y0, v0) → ∂αẏ(t; y0, v0)

uniformly in t ∈ [0, T ], (y0, v0) ∈ K for each |α| ≤ N .
Again the proof is by induction on the order of α. We consider the solution

of (22), Zn(t; y0, v0) = (zn(t; y0, v0), żn(t; y0, v0)) and prove that it converges to
Z∞(t; y0, v0) uniformly on [0, T ]×K. To this end we apply again Lemma 6.1 with
Λ = K. We already know that Z∞ is continuous and so it remains to prove that
Zn ⇒ Z∞. This is more or less a repetition of previous arguments based on Ascoli
theorem and the uniqueness of the initial value problem.
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