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THE NUMBER OF LIMIT CYCLES OF A
GENERALIZED ABEL EQUATION

TESIS DOCTORAL
NAEEM MOHAMED HASSAN ALKOUMI

España, Granada 2010



2

La presente memoria, The Number of Limit Cycles of a
Generalized Abel Equation, ha sido realizada por Naeem M. H.
Alkoumi bajo la dirección de los Drs. Rafael Ortega Rı́os y Pedro
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Chapter 1

Introduction

The general purpose of this work is to study the number of iso-
lated periodic solutions (limit cycles) of the polynomial differential
equation

u′ = an(t)un + an−1(t)u
n−1 + . . . + a0(t), (1.1)

where the coefficients ai(t), i = 0, 1, . . . , n, are continuous and T-
periodic functions for some T > 0. Classically, the interest on this
problem comes from the study of the number of isolated closed or-
bits of a planar polynomial vector field, which is a part of Hibert’s
sixteen problem [20], also listed as Problem 7 by S. Smale in [41].
This line of research has attracted the attention of a large number
of mathematicians, giving as a result a huge number of papers con-
cerning this topic, which makes very difficult if not impossible any
attempt of a systematic review. Therefore, we will limit ourselves
to give a general overview of some aspects of particular interest for
our purposes.

For n = 1, equation (1.1) is a linear equation, consequently hav-
ing at most one isolated periodic solution, whereas for n = 2 it
is a Riccati equation with at most two isolated periodic solutions.
When n = 3, equation (1.1) is known as the Abel differential equa-
tion. This is the first non-trivial case. It was shown in [37] that
the Abel differential equation has at most three periodic solutions
when a3 > 0. However, for a leading coefficient a3 with indefinite
sign, Lins Neto [31] gave examples with an arbitrary number of limit
cycles. Such a case is important because local questions related to
Hilbert’s sixteenth problem (bifurcation of small-amplitude isolated
periodic solution and center conditions) are reduced to polynomial
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equations in which the leading coefficient changes sign. The ex-
amples constructed by Lins-Neto can be extended to higher-order
polynomial equations, even with a constant leading coefficient an

[31, 13]. At this point, to get a more accurate information on the
number of limit cycles, most of the papers in the literature require
that only some the polynomial coefficients ak(t) do not vanish, in
such a way that the polynomial nonlinearity has only three or four
terms (see for instance [9, 4, 6, 14, 13, 26, 36, 40, 42, 43]).

More concretely, the equation with three terms

u′ = an1(t)u
n1 + an2(t)u

n2 + an3(t)u
n3 , (1.2)

where n1 > n2 > n3, has been considered on some related works.
From now on, a continuous function f : [0, T ] → R is said to have a
definite sign if it is not null and either f(t) ≥ 0 or f(t) ≤ 0, and we
write f Â 0 in the first case and f ≺ 0 in the second case. Gasull
and Guillamon [13] proved that if n3 = 1 and an2(t) or an3(t) have
a definite sign, then equation (1.2) has at most two positive limit
cycles. This gives a total maximum number of five limit cycles by
the change y = −u, since u = 0 is always a solution. In addition, if
n3 > 1 and only one of the coefficients has a definite sign, examples
are given with an arbitrary number of limit cycles.

Therefore, for equations with 3 or more monomials, in order to
obtain bounds on the number of limit cycles, it is natural in some
sense to assume that at least two coefficients have a definite sign.
A result following this idea was proved by Alwash in [9], where it is
proved that if n ≥ 3 and an−2(t) ≤ 0, the equation

u′ = un + an−1(t)u
n−1 + an−2(t)u

n−2, (1.3)

has at most one positive limit cycle.
In Chapter 2, new results are proved on the maximum number

of isolated T -periodic (limit cycles) of a first order polynomial dif-
ferential equation with four terms

u′ = an1(t)u
n1 + an2(t)u

n2 + an3(t)u
n3 + am(t)um. (1.4)

This case has been considered very recently in [4]. Our method of
proof is different and it is based on the known result that a sign on
derivative up to order three of the nonlinearity on a given region
gives a bound on the number of limit cycles (see for instance [13,
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24, 39]), but we exploit the fact that this sign is not invariant under
changes of variables. We have found that a similar idea has been
used very recently in [19] to obtain different results. We will pay
some attention to compare our results with the available literature
(specially [9, 4]). It should be emphasized the particularity that with
our results it is possible to consider the case of negative powers, a
situation which has been scarcely explored in the related literature.
It is worthwhile to consider this case for applications to the study
of the number of periodic solution in polynomial planar systems on
the cylinder, as we will show in more detail with examples inspired
by [7]. The results of this chapter are contained in the paper [3],
recently accepted for publication.

Comparatively, the number of papers providing an explicit bound
on the number of periodic solution in the general case where all the
coefficients of the polynomial nonlinearity are present is small. The
most known result is due to Ilyashenko [23], who proved that the
number of real periodic solutions does not exceed the bound

8 exp

{
(3C + 2) exp

[
3

2
(2C + 3)n

]}
,

where C > 1 is a uniform upper bound for |ak(t)|. The importance
of this result relies in the fact that it states the finiteness of the num-
ber of periodic solutions more that in the explicit estimate, which is
rather conservative. Later, Calanchi and Ruf [11], proved that there
are at most n periodic solutions if n is odd, the leading term is fixed
and the remaining terms are small enough. Finally, in a very recent
work [10], Alwash proved related results giving more precise infor-
mation about the number of limit cycles. On the other hand, Panov
[36] demonstrated that there is no upper bound for the number of
periodic solutions by proving that the set of return maps of these
equations are dense in the space of orientation preserving homeo-
morphisms. It follows from these examples that there is no upper
bound, in terms of n only, for the number of periodic solutions of
equation (1.1).

In Chapter 3, we prove new results about the number of isolated
periodic solutions of a first order differential equation with a poly-
nomial nonlinearity when all the coefficients are present. To this
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aim, we will write (1.1) in the more general form

x′ = xm

n∑

k=0

ak(t)x
k, (1.5)

where m ∈ Z. Thus, once again we consider a polynomial nonlin-
earity with possible negative powers. We will justify the interest of
this case with the study of a new family of planar vector fields

x′ = −y2p−1 +
x

q
P (x, y) , y′ = x2q−1 +

y

p
P (x, y) (1.6)

where P (x, y) is a polynomial and p, q are natural numbers. When
p = q = 1, it is a rigid system (see for instance [15, 16, 17]). Up to
our knowledge, such a generalized family has not been considered in
previous works. The results of this paper correspond to the paper
[2], which has been submitted for publication.

Finally in Chapter 4, we show that the method of Ilyashenko
[23] can also be applied to more general equations. As mentioned
before, assuming that all the coefficients aj(t) are dominated by a
common bound C > 1, Ilyahenko [23] obtained an explicit estimate
(depending on n and C). The purpose of this Chapter is to show
that this method can also be applied to more general equations. As
a model we will consider the equation

x′ = x3 + 10 sin x + p(t), p(t + 1) = p(t) (1.7)

and we will obtain an estimate on the number of periodic solutions
depending only on

‖p‖∞ = max
t∈[0,1]

|p(t)| ≤ C. (1.8)

The basic tool employed in [23] is the so called Jensen’s Lemma.
This is a result in Complex Analysis that allows to estimate the
number of zeros of a holomorphic function in a domain D in terms
of the behavior on the boundary ∂D. The standard version of this
Lemma assumes that D is a disc but the result can be transported
to other domains via Riemann’s Theorem on conformal mappings.
The approach in [23] was to consider certain domains with the shape
of a stadium and to employ ideas taken from hyperbolic geometry
to estimate some quantities related to the Riemann’s mapping for
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these domains. Our approach will be more straightforward, we will
consider the explicit Christoffel-Schwarz formula mapping the unit
disc onto a rectangle. This will allow us to state a version of Jensen’s
Lemma for the rectangle where all the quantities involved are ex-
plicit and expressed in terms of elliptic functions. Once we have
obtained this result in Complex Analysis we will present a modi-
fied version of Ilyashenko’s technique applicable to equation (1.7).
It seems to us that the results are presented so that the method is
flexible and can be applied to many other equations. The original
results contained in this paper correspond to the preprint [1].
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Chapter 2

On the Number of Limit
Cycles of a Generalized
Abel Equation

This chapter is motivated by some recent results on the number of
limit cycles of the first order differential equation with polynomial
nonlinearity

x′ =
n∑

i=0

ai(t)x
i, (2.1)

where the coefficients ai are continuous and T-periodic functions for
some T > 0. This chapter is divided into four Sections. In Section
2.1 we will present some known results. Section 2.2 we will prove a
new result with 4 monomials and discuss some consequences. The
method of proof is based on the known result that a sign on the
derivative up to order three of the nonlinearity on a given region
gives a bound on the number of limit cycles (see for instance [13,
24, 39]), but we exploit the fact that this sign is not invariant under
changes of variables. In Section 2.3, we combine this technique
with upper and lower solutions in order to get multiplicity results
for the fourth-order differential equation. Finally, in the last section
the main results are applied to some specific examples of polynomial
planar systems in order to get information on the maximum number
of limit cycles.
To conclude this introduction, we fix some notation. Following [13],
we say that equation (2.1) is of (d1, d2, ..., dr) type if aj ≡ 0 for

13
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all j 6= d1, ..., dr. The set of continuous and T-periodic function is
denoted as CT . Given a ∈ CT , we write a Â 0 if a(t) ≥ 0 for all
t ∈ [0, T ] and a(t0) > 0 for some t0. We write a ≺ 0 if −a Â 0.
D+ denotes the subset of functions x ∈ CT such that x(t) > 0 for
all t, whereas D− denotes the subset of functions x ∈ CT such that
x(t) < 0 for all t.

2.1 Preliminary Results

Let us consider a first order differential equation

x′ =
n∑

k=0

ak(t)x
k, (2.2)

where ak are continuous and T-periodic functions for some T > 0.
In this section we collect some elementary results employed on the
proofs of many theorems.

We are interested in the problem of the existence and multiplicity
of limit cycles of equation (2.2). Let us consider a general first order
equation

x′ = g(t, x). (2.3)

with g continuous and T-periodic in t and with continuous deriva-
tives in x up to order 3.

Definition 1 A periodic solution x = x(t) is said to be isolated if
there exists an ε > 0 such that there are no periodic solutions other
than x = x(t) in the region

{(t, x) : x(t)− ε ≤ x ≤ x(t) + ε}
Definition 2 A T-periodic solution of equation (2.3) which is iso-
lated in the set of all the periodic solution is called a limit cycle.

Let x(t, c) be the unique solution of (2.3) with initial condition
x(0, c) = c. Then x(t, c) is a limit cycle of (2.3) if and only if c is an
isolated zero of the displacement function q(c) := x(T, c)− c.

Definition 3 A given limit cycle x(t, c) is said hyperbolic if the
characteristic exponent

δ(T, c) =

∫ T

0

∂g(t, x(t, c))

∂x
dt
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is different from zero. As a consequence, a limit cycle is asymptoti-
cally stable if δ < 0 and unstable if δ > 0.

Definition 4 A T -periodic function α is called a strict lower (resp.
upper) solution of equation (2.3) if

α′(t) < g(t, α(t)) (resp. α′(t) > g(t, α(t))),

for all t.

Lemma 1 A T -periodic solution does not intersect any eventual
strict upper or lower solution.

Proof. Suppose that α(t) is a lower solution of equation (2.3). By
contradiction, assume that for a given T -periodic solution x(t) there
exists t0 such that x(t0) = α(t0). Define the T -periodic function
d(t) = x(t)− α(t), then

d′(t0) = x′(t0)− α′(t0) > g(t0, x(t0))− g(t0, α(t0)) = 0.

But then d should be strictly increasing in every zero, which it is
impossible since d is T -periodic and continuous. Therefore d has no
zeroes. The proof for the upper solution is analogous.

Lemma 2 Let α(t) be a strict lower (resp. upper) solution of (2.3).
Then q(α(0)) > 0 (resp. q(α(0)) < 0).

Proof. Let us assume that α(t) is a strict lower solution and define
d(t) = x(t, α(0)) − α(t). Then, d(0) = 0 and d′(0) = g(0, α(0)) −
α′(0) > 0. Let us prove that d(t) > 0 for all t > 0. By contra-
diction, let us suppose that there exists t1 > 0 such that d(t1) =
0 and d(t) > 0 for all 0 < t < t1. Then x(t1, α(0)) = α(t1)
and d′(t1) = g(t1, α(t1)) − α′(t1) > 0, which is a contradiction
with the fact that t1 is the first positive zero. Therefore, d(T ) =
x(T, α(0)) − α(T ) > 0, but because α(t) is T -periodic, this means
that q(α(0)) = x(T, α(0))−α(0) > 0. The proof for the upper solu-
tion is analogous.

Proposition 1 Let us assume that α(t), β(t) are strict lower and
upper solutions such that α(t) < β(t) (resp α(t) > β(t)). Then,
there exists a T -periodic solution x(t) such that α(t) < x(t) < β(t)
(resp. β(t) < x(t) < α(t)).
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Proof. Since the displacement function is continuous, it is a direct
consequence of Bolzano’s theorem and Lemmas 2 and 1.

Lemma 3 ([10, 30]) Consider the real differential equation

x′ = g(t, x) = xn + an−1(t)x
n−1 + . . . + a1(t)x + a0. (2.4)

The derivative of the displacement function are given by

q′(c) = exp(δ(T, c))− 1, (2.5)

q′′(c) = exp(δ(T, c))

∫ T

0

D(t, c)dt, (2.6)

q′′′(c) = exp(δ(T, c))

[
3

2
(G(T, c))2+

∫ T

0

(exp(δ(T, c)))2∂3g(x(t, c), t)

∂x3
dt

]
(2.7)

where

D(t, c) = exp(δ(t, c))
∂2g(x(t, c), t)

∂x2

and

G(t, c) =

∫ t

0

D(τ, c)dτ.

These formulae imply that for k ≤ 3, if ∂kg(t,x)
∂xk does not change sign

on an interval then the kth derivative of q does not change sign on
that interval.

Proof. q(c) = x(T, c)− c =
∫ T

0
dx =

∫ T

0
g(t, x(t, c))dt, then

q′(c) =
∂x(T, c)

∂c
− 1 =

∫ T

0

∂g(t, x(t, c))

∂x
.
∂x(t, c)

∂c
dt.

By assuming that U(t) = ∂x(t,c)
∂c

, we get a first order linear differential
equation

U ′(t)− ∂g(t, x(t, c))

∂x
U(t) = 0, U(0) =

∂x(0, c)

∂c
= 1,
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so the solution is

U(T ) = exp

(∫ T

0

∂g(t, x(t, c))

∂x
dt

)
.

Therefore
q′(c) = exp(δ(T, c))− 1.

To show (2.6), differentiating (2.5), we have

q′′(c) = exp(δ(T, c))

∫ T

0

∂2g(x(t, c), t)

∂x2
.
∂x

∂c
dt,

but ∂x(T,c)
∂c

= q′(c) + 1 = exp(δ(T, c)). Therefore

q′′(c) = exp(δ(T, c))

∫ T

0

D(t, c)dt.

Further differentiation leads to

q′′′(c) = exp(δ(T, c))

[∫ T

0

(
exp(δ(t, c))

∂2g(x(t, c), t)

∂x2
.

∫ t

0

∂2g(x(s, c), s)

∂x2
.
∂x

∂c
ds + exp(δ(t, c))

∂3g(x(t, c), t)

∂x3
.
∂x

∂c

)
dt

]

+

(∫ T

0

∂2g(x(t, c), t)

∂x2
exp(δ(t, c))dt

)
.

(
exp(δ(T, c))

∫ T

0

∂2g(x(t, c), t)

∂x2
.
∂x

∂c
dt

)
.

= exp(δ(T, c))

[(∫ T

0

D(t, c)dt

)2

+

∫ T

0

(exp(δ(t, c)))2∂3g(x(t, c), t)

∂x3
dt

+

∫ T

0

(
D(t, c)

∫ t

0

D(s, c)ds

)
dt

]
.

The last term inside the square brackets is, by straightforward inte-
gration by parts,

1

2

[∫ T

0

D(t, c)dt

]2

=
1

2
(G(T, c))2,
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so that

q′′′(c) = exp(δ(T, c))

[
3

2
(G(T, c))2

+

∫ T

0

(exp(δ(t, c)))2∂3g(x(t, c), t)

∂x3
dt

]
.

Proposition 2 ([39]) Let us consider a general first order equation

x′ = g(t, x), (2.8)

with g continuous and T -periodic in t. Fix k ∈ {1, 2, 3}. Let J be an
open interval and let us assume that g(t, x) has continuous partial

derivatives ∂k

∂xk g(t, x) for all (t, x) ∈ [0, T ]× J . If ∂k

∂xk g(t, x) ≥ 0 for

all (t, x) ∈ [0, T ] × J (resp. ∂k

∂xk g(t, x) ≤ 0 for all (t, x) ∈ [0, T ] ×
J), then the equation (2.8) has at most k limit cycles with range
contained in J .

Proof. For k = 1, the first derivative of the displacement function

q′(c) = exp(δ(T, c))− 1 ≥ 0.

Hence q(c) is increasing, so it has at most one isolated zero.
For k = 2, the second derivative of the displacement function

q′′(c) = exp(δ(T, c))

∫ T

0

exp(δ(t, c))gxx(x(t, c), t)dt ≥ 0,

hence q(c) is concave up, so it has at most 2 zeros.
Finally, for k = 3, q′′′(c) ≥ 0, so q′(c) is concave up, hence q′(c)
has at most 2 zeros and it implies that q(c) has at most 3 zeros,
for between two zeros of q there is always one zero of q′. Note that
when ∂3

∂x3 g(t, x) ≤ 0, we use the change of variable y = −x(−t).
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2.2 The equation with four monomials

As it was observed in the Introduction, it is natural in some sense
to assume that two coefficients of the polynomial nonlinearity have
a definite sign. A result following this idea was proved by Alwash
in [9], where it is proved that if n ≥ 3 and an−2(t) ≤ 0, the equation

u′ = un + an−1(t)u
n−1 + an−2(t)u

n−2, (2.9)

has at most one positive limit cycle.
A. Alvarez, J. L. Bravo, M. Fernández [4] study the equation of the
form

u′ = an1(t)u
n1 + an2(t)u

n2 + an3(t)u
n3 + am(t)um, (2.10)

with m = 1 and n1 > n2 > n3 > m := 1. They obtain two new
criteria for setting bounds to the number of limit cycles.
In [4], applying the same ideas as Gasull and Guillamon [13], the
following result is obtained.

Theorem 1 ([4]) Consider the differential equation

u′ = an1(t)u
n1 + an2(t)u

n2 + an3(t)u
n3 + am(t)um, (2.11)

where n1 > n2 > n3 > m = 1. Suppose that an1(t) and an2(t),
or an2(t) and an3(t) have the same definite sign, or that an1(t) and
an3(t) have opposite definite sign. Then, (2.11) has at most two
positive limit cycles. If moreover am(t) has null integral over [0, T ],
then (2.11) has at most one positive limit cycle.

The second criterion states that if

an1(t)u
n1 + an2(t)u

n2 + an3(t)u
n3 − u′(t) (2.12)

has definite sign, where

u(t) =

(
(n1 − n3)an3(t)

(n2 − n1)an2(t)

) 1
n2−n3

(2.13)

then equation (2.10) with m = 0 has at most two positive limit cy-
cles.
Here we prove some related results which can be seen as a comple-
ment to the previous ones. Our main result is as follows.
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Theorem 2 Let us assume that an1 has a definite sign.
Fix n1, n2, n3,m ∈ Z entire numbers such that n1 > n2 > n3 verify
the condition

n1 − 2n2 + n3 = 0. (2.14)

If

∆ = a2
n2

(m− n2)
2 − 4an1an3(m− n1)(m− n3) ≤ 0, (2.15)

then (2.11) has at most one positive limit cycle.

Proof. By means of the change in the independent variable
τ = −t, we can assume that an1 Â 0 without loss of generality. Let
us first consider the case m = 1. We write the equation as

u′ = uF (t, u),

where

F (t, u) = an1u
n1−1 + an2u

n2−1 + an3u
n3−1 + a1.

By using the change of variable u = ex, we get

x′ = F (t, ex) := g(t, x). (2.16)

Now,

gx(t, x) = exFx(t, e
x) = e(n3−1)x[(n1 − 1)an1e

(n1−n3)x

+ (n2 − 1)an2e
(n1−n2)x + (n3 − 1)an3 ].

If we call S = e(n1−n2)x, then S2 = e(n1−n3)x as a result of (2.14).
Therefore, gx(t, x) can be written as

gx(t, x) = e(n3−1)x[(n1 − 1)an1S
2 + (n2 − 1)an2S + (n3 − 1)an3 ].

The last factor is a quadratic polynomial with negative discriminant
by hypothesis (2.15). Hence by Proposition 2 there exists at most
one limit cycle of equation (2.16), which correspond to at most one
positive limit cycle of (2.11).

For m 6= 1, the equation is written as

u′ = umF (t, u).

Now the adequate change is u = xα, satisfying (m−1)α+1 = 0. This
change is well defined for positive solutions and keeps the number
of positive limit cycles. It leads to

x′ =
1

α
F (t, xα) := g(t, x).
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The derivative is

gx(t, x) = xα−1Fx(t, x
α)

= αx(n3−m+1)α−2[an1(n1 −m)S2

+ an2(n2 −m)S + an3(n3 −m)],

where S = x(n1−n2)α. The conclusion is analogous.
Once the proof is finished, it is good to state some clarifying

consequences for the comparison between this result and those pre-
viously published. As it is remarked in the Introduction, the first
original feature is that negative powers are possible. About con-
dition (2.14) , it is easy to realize that it is equivalent to impose
that three of the terms of the equation have powers following an
arithmetic sequence, that is, there exist r ∈ N, β ∈ Z, such that

n1 = 2r + β, n2 = r + β, n3 = β.

If r = 1 we get consecutive powers. In spite of that, m is free so the
result is quite flexible and give a whole family of new criteria.

Next, we will compare with the related literature through some
corollaries. The first one generalizes the result by [10] mentioned in
the Introduction.
In particular, we obtain the results of Alwash.

Corollary 1 If n1 > n2 > n3 holds the condition (2.14) and an1 , an3

have opposite definite signs, then the equation (2.10) has at most
two nontrivial limit cycles, at most one positive and at most one
negative.

Proof. Take m = n2 and apply Theorem 2, then (2.11) has at most
one positive limit cycle. For the negative one, make the change
y = −x.

For comparison with Theorem 1, note that it does not cover the
case of an1(t) and an3(t) with the same definite sign. In fact, in [4]
the authors provide examples under this assumption with at least
three limit cycles. Now we get the following complementary result.

Corollary 2 Fix n1 > n2 > n3 > m = 1 verifying (2.14) and
assume that an1and an3 have the same definite sign. If

an1(t)an3(t) ≥
(n2 − 1)2

4(n1 − 1)(n3 − 1)
an2(t)

2

for all t, then (2.10) has at most one positive limit cycle.
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The proof is direct. Other variant is the following one.

Corollary 3 Fix n1 > n2 > n3 verifying (2.14) and assume that
an1 and an3 have the same definite sign. If

4an1(t)an3(t) > a2
n2

(t),

for all t, then there exists m0 > 0 such that if |m| > m0, then (2.10)
has at most one positive limit cycle.

The number m0 is explicitly computable, for the proof follows easily
from a pass to the limit in condition (2.15).

We finish the section by pointing out that Theorem 2 and its
corollaries can be complemented with stability and exact multiplic-
ity information by using the explicit behavior near the origin, as it
is done for instance in [6, 13].

2.3 The complete fourth-order equation

The aim of this section is to provide some sufficient conditions for
limiting the number of limit cycles of the (4,3,2,1,0)-polynomial
equation

u′ = a4(t)u
4 + a3(t)u

3 + a2(t)u
2 + a1(t)u + a0(t). (2.17)

In [13, Theorem 5], it is proved that (2.17) with a4(t) ≡ 1 may have
an arbitrary number of T -periodic solutions. On the other hand,
when a0 ≡ 0, the main result of [4] implies that (2.17) has at most
two positive T -periodic solutions if a4, a3 Â 0, or a3, a2 Â 0, or
a4 Â 0 Â a2. Our results can be seen as a partial counterpart.

Our first result is very similar to some results in [8] for the fifth-
order homogeneous equation.

Theorem 3 If a2, a4 Â 0 and a2
3 − 8

3
a4a2 ≤ 0 , equation (2.17) has

at most two limit cycles.

Proof. The second derivative with respect to uof the right-hand
side of equation (2.17) is

12a4(t)u
2 + 6a3(t)u + 2a2(t).

Looking this as a second-order polynomial, the discriminant is

36a2
3 − 96a4a2.
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By hypothesis, this is negative, then by Proposition 2 there exist at
most two limit cycles.

On the other hand, next results are of a different nature.

Theorem 4 Let us assume that a0(t)a4(t) > 0 for all t. If

4 4

√
a0a3

4 + a3 ≥ 0,

equation (2.17) has at most two positive limit cycles.

Proof. We can assume without loss of generality that a0, a4 are
both strictly positive functions (if a0, a4 ≺ 0, we can use the change
v = −u). After the change x = 1

u
, the equation is

x′ = −xF (t,
1

x
),

where

F (t, x) = a4(t)x
3 + a3(t)x

2 + a2(t)x + a1(t) +
a0(t)

x
.

By defining g(t, x) := −xF (t, 1
x
), the second derivative is

gxx(t, x) =
−1

x3
Fxx(t,

1

x
).

Therefore, the proof is reduced to show that Fxx(t, x) is positive for
x > 0. It turns out that

Fxx(t, x) = 6a4(t)x + 2a3(t) +
2a0(t)

x3
.

Since, a0, a4 are strictly positive, the function 6a4(t)x+ 2a0(t)
x3 attains

its global minimum at a0(t)
1/4a4(t)

−1/4. Hence, for any x > 0

Fxx(t, x) ≥ 8a0(t)
1/4a4(t)

3/4 + 2a3(t) ≥ 0

and the proof is done by a direct application of Proposition 2.

Theorem 5 Let us assume that a4(t) > 0 for all t. Then, equation
(2.17) has at most three limit cycles verifying the property

u(t) >
−a3(t)

4a4(t)
for all t. (2.18)
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Analogously, equation (2.17) has at most three limit cycles verifying
the property

u(t) <
−a3(t)

4a4(t)
for all t. (2.19)

Proof. Firstly, we consider the case that the function ϕ(t) := −a3(t)
4a4(t)

has a continuous derivative. By introducing the change x = u − ϕ
in equation (2.17), the resulting equation is

x′ = a4(t)(x + ϕ)4 + a3(t)(x + ϕ)3 + a2(t)(x + ϕ)2

+a1(t)(x + ϕ) + a0(t) + ϕ′(t). (2.20)

The third derivative of the right-hand side of equation is

gxxx(t, x) = 24a4(t)x.

Then gxxx(t, x) > 0 if x > 0. By Proposition 2, with J =]0, +∞[,
there are at most three positive limit cycles of equation (2.20). Go-
ing back to the original equation, it gives at most three limit cycles
of equation (2.17) verifying (2.18).

Now, let us prove the general case of a continuous function ϕ(t)
by a limiting argument. The set C1

T of T -periodic functions with
continuous derivatives is dense on the set CT of T -periodic and con-
tinuous functions. Then, it is easy to prove that there exists a
sequence {ϕn(t)} ⊂ C1

T converging uniformly to ϕ(t) and such that
ϕn(t) > ϕ(t) for all n, t. Using the previous reasoning for each ϕn(t)
and passing to the limit we get the desired result.

In the same way, it is proved that there are at most three limit
cycles verifying (2.18).

Of course, in this latter result additional T -periodic solutions

crossing −a3(t)
4a4(t)

may appear. This possibility is excluded with an

additional assumption.

Corollary 4 Let us assume that −a3(t)
4a4(t)

is strict an upper (resp.

lower) solution of equation (2.17). Then, there are at most 6 limit
cycles.

Proof. If −a3(t)
4a4(t)

is an upper (or lower) solution, by Lemma 1 a

T-periodic solution can not cross it, so there are at most 3 of them
above and at most 3 below.



2.4. APPLICATIONS 25

2.4 Applications to polynomial system in the
cylinder

In this section we study the maximum number of limit cycles of
some polynomial vector fields in R2, the so-called Hilbert number.
The planar system

x′ = −y + xP (x, y) , y′ = x + yP (x, y) (2.21)

where P (x, y) is a polynomial, it is known in the related literature as
a rigid system (see for instance [5, 16, 17, 44] and their references).
In polar coordinates, the system is rewritten as

r′ = rP (rcosθ, rsinθ), θ′ = 1.

If r is considered as a function of θ, we get the first order differential
equation

dr

dθ
= rP (rcosθ, rsinθ), (2.22)

and now it is easy to give applications of the results of Section 2.3
for suitable choices of the polynomial P .
Similarly, the results contained in Section 2.3 can be applied to rigid
systems when the polynomial P (x, y) is a sum of homogeneous poly-
nomials up to fourth degree or to a suitable system in the cylinder.
We omit further details.

In the recent paper [7], the authors study the number of non-
contractible limit cycles of a family of systems in the cylinder R ×
R/[0, 2π] of the form

{
dρ
dt

= α̃(θ)ρ + β̃(θ)ρk+1 + γ̃(θ)ρ2k+1,
dθ
dt

= b(θ) + c(θ)ρk,
(2.23)

where k ∈ Z+ and all the above functions in θ are continuous and
2π-periodic. A contractible limit cycle is an isolated periodic orbit
which can be deformed continuously to a point, on the contrary it
is called non-contractible. This type of systems arises as the polar
expression of several types of planar polynomial systems. Of course,
when b(θ) ≡ 1 and c(θ) ≡ 0 we have a rigid system. In general,
if b(θ) does not vanish, a widely used change of variables due to
Cherkas [12] transforms the system into a common Abel equation.
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We will consider the reciprocal case b(θ) ≡ 0, c(θ) ≡ 1. Let us
consider the system

{
dρ
dt

= α̃(θ)ρ + β̃(θ)ρN3 + γ̃(θ)ρN2 + δ̃(θ)ρN1 ,
dθ
dt

= ρk,
(2.24)

where N1 > N2 > N3 > 0 and k > 0. A limit cycle of this system is
always non-contractible and as a function of θ it is a limit cycle or
the first order equation

r′ = β̃(θ)rn1 + γ̃(θ)rn2 + δ̃(θ)rn3 + α̃(θ)rm,

where ni = Ni − k for i = 1, 2, 3 and m = 1 − k. Now, a direct
application of Theorem 2 gives the following result.

Corollary 5 Take N1, N2, N3 such that N1 − 2N2 + N3 = 0 and
assume

γ̃(θ)2(N2 − 1)2 − 4β̃(θ)δ̃(θ)(N1 − 1)(N3 − 1) ≤ 0.

Then, system (2.24) has at most one limit cycle in the semiplane
{ρ > 0}.
In particular, the result holds if γ̃(θ) ≡ 0 and β̃(θ), δ̃(θ) have the
same definite signs.

As a last remark, let us comment that the study of non-contractible
limit cycles on a general system on the cylinder

{
dρ
dt

= P (θ, ρ),
dθ
dt

= Q(θ, ρ)

where components of the field (P,Q) are periodic in θ and poly-
nomial in ρ, leads to the study of the existence and multiplicity of
periodic solutions of a first order equation with a rational (quotient
of two polynomials) nonlinearity. This is a difficult problem which
deserves further developments.



Chapter 3

Multiplicity of Limit Cycles
of a Generalized Abel
Equation

3.1 Preliminary results

There is a wealth of material on roots of polynomials. Here we
review some basic properties under two categories: complex roots
and real roots. We indicate some lemmas from [25, 46] which provide
a classical bound for the roots of a polynomial.

Lemma 4 Any solution of the polynomial equation

anxn + an−1x
n−1 + · · ·+ a1x + a0 = 0 (3.1)

with real or complex coefficients and an 6= 0, verifies the bound

|x| ≤ max

{
1,

n−1∑

k=0

∣∣∣∣
ak

an

∣∣∣∣
}

.

Proof. Assume that |x| ≥ 1, hence 1 ≤ |x|k ≤ |x|n−1 for k ≤ n− 1.
From equation (3.1),

xn =
−1

an

(an−1x
n−1 + an−2x

n−2 + · · ·+ a1x + a0).

Then,

|x|n ≤
n−1∑

k=0

∣∣∣∣
ak

an

∣∣∣∣ |x|k ≤
(

n−1∑

k=0

∣∣∣∣
ak

an

∣∣∣∣
)
|x|n−1.

27
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Hence |x| ≤ ∑n−1
k=0

∣∣∣ ak

an

∣∣∣.

Let us consider the polynomial function

f(t, x) =
n∑

k=0

ak(t)x
k, (3.2)

where the coefficients ai are continuous and T-periodic functions.
Two simple consequences of the previous result are stated below.

Lemma 5 Let us assume that a0(t) 6= 0 for all t. If x 6= 0 is a
solution of f(t, x) = 0 for some t, then

|x| ≥ 1

max
{

1, maxt

∑n
k=1

∣∣∣ak

a0

∣∣∣
} .

Proof. By using the change of variable y = 1
x
, equation f(t, x) = 0

becomes
an + an−1y + · · ·+ a1y

n−1 + a0y
n = 0,

Using Lemma 4,

|y| = 1

|x| ≤ max

{
1, max

t

n∑

k=1

∣∣∣∣
ak

a0

∣∣∣∣
}

.

Analogously, one can prove the next lemma.

Lemma 6 Let us assume that an(t) 6= 0 for all t. If x 6= 0 is a
solution of fx(t, x) = 0 for some t, then

|x| ≤ max

{
1, max

t

n−1∑

k=1

∣∣∣∣
kak

nan

∣∣∣∣
}

.

3.2 Main results

Our purpose is to contribute to the literature with some results
which complement those available in the related literature. To this
aim, let us write the general non-linear differential equation in more
general form

x′ = xm

n∑

k=0

ak(t)x
k, (3.3)
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where m ∈ Z. Thus, we consider a polynomial nonlinearity with
possible negative powers, a situation which has been scarcely ex-
plored in the related literature. We will justify the interest of this
case in the last section with the study of a new family of planar
vector fields. Along the whole chapter, we assume the standing
hypothesis

(H1) an(t)a0(t) 6= 0 for all t.

Our main result is the following one.

Theorem 6 Let us assume that for all t,

n∑

k=1

|ak(t)| < |a0(t)| (3.4)

and
n−1∑

k=0

|(m + k)ak(t)| ≤ |(m + n)an(t)| . (3.5)

Then

i) Equation (3.3) has at most one positive limit cycle and at most
one negative limit cycle.

ii) If n + m is odd, equation (3.3) has exactly one limit cycle. If
n + m is even and an(t)a0(t) < 0 for all t, then equation (3.3)
has exactly one positive limit cycle and one negative limit cycle.
If n+m is even and an(t)a0(t) > 0 for all t, then equation (3.3)
has no limit cycles.

In [10, Theorem 1.3 (i)], it is proved that if

an(t) ≡ 1, |a0(t)| > 2n− 1

n− 1

and

|ak(t)| < n

(n− 1)2
for 1 ≤ k ≤ n− 1,

then equation (3.3) with m = 0 has at most one positive limit cycle
and at most one negative limit cycle. This result is generalized by
the previous one as it is shown below.
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Corollary 6 For all t, let us assume that

an(t) ≡ 1, |ak(t)| ≤ P ≤ 2

n− 1
for 1 ≤ k ≤ n− 1

and

|a0(t)| > (n− 1)P + 1.

Then equation (3.3) with m = 0 has at most one positive limit cycle
and at most one negative limit cycle.

We will show that this is a direct corollary of Theorem 6. Then
[10, Theorem 1.3 (i)] corresponds to the particular case P = n

(n−1)2

(which obviously is less than 2
n−1

for the nontrivial case n ≥ 2).
Using the same technique of proof that in Theorem 6, the follow-

ing result holds.

Theorem 7 Let us assume (3.4). Then,

i) If

n−1∑

k=0

|(m + k)(m + k − 1)ak(t)| ≤ |(m + n)(m + n− 1)an(t)| ,
(3.6)

for all t, then equation (3.3) has at most two positive limit cycles
and at most two negative limit cycles.

ii) If
∑n−1

k=0 |(m + k)(m + k − 1)(m + k − 2)ak(t)|
≤ |(n + m)(n + m− 1)(n + m− 2)an(t)| , (3.7)

for all t, then (3.3) has at most three positive limit cycles and
at most three negative limit cycles.

Note that condition (3.7) is weaker than (3.6) and (3.6) is weaker
than (3.5).

In the next Section we prove the main results, finally, the last
Section contains an application to the estimation of the number of
limit cycles of a family of polynomial planar systems which gener-
alize the well-known rigid systems by using action-angle variables
instead of polar coordinates.
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3.3 Proof of the main result

During this section, we will call

g(t, x) = xm

n∑

k=0

ak(t)x
k.

Let us define the constants

λ = min{|x| 6= 0 : g(t, x) = 0 for some t}
µ = max{|x| 6= 0 : gx(t, x) = 0 for some t}.

Note that such quantities are well-defined by hypothesis (H1).

Proposition 3 If µ < λ, then (3.3) has at most one positive limit
cycle and at most one negative limit cycle.

Proof. First, we prove that a given limit cycle does not change its
sign. If m > 0, it is trivial since x ≡ 0 is a solution, so other solutions
never cross it. In the case m = 0, note that (H1) implies that α ≡ 0
is an strict upper or lower solution (depending on the sign of a0).
Finally, if m < 0 the equation is not defined in 0 and changes of
sign are not allowed. Therefore, eventual limit cycles have constant
sign. Let us prove that there exists at most one positive limit cycle,
being analogous the proof for the existence of at most one negative
limit cycle. This is done in three steps:

• Step 1: Any eventual positive limit cycle x(t) verifies

x(t) ≥ λ, ∀t.
It x(tm) > 0 is the global minimum of x(t), then x′(tm) = 0,
hence g(tm, x(tm)) = 0 and the inequality holds by the own
definition of λ.

• Step 2: gx(t, x) 6= 0 for all x > µ. This is a direct consequence
of the definition of µ.

• Step 3: Conclusion: Let us call J = (µ, +∞). By continuity,
gx(t, x) > 0 (if an > 0) or gx(t, x) < 0 (if an < 0) for all x ∈ J .
Then Proposition 2 says that there exists at most one limit
cycle in J , but by Step 1 and the condition µ < λ, all the
positive limit cycles belong to J , therefore the proof is done.
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Proof of Theorem 6.

i) Condition (3.4) means that

max

{
1,

n∑

k=1

∣∣∣∣
ak

a0

∣∣∣∣
}

= 1 for every t,

hence we conclude that λ ≥ 1 by Lemma 5. Moreover, by
Lemma 6 and condition (3.5), we get µ ≤ 1. Therefore µ ≤ λ.
In order to apply Proposition 3, it remains to prove that λ > 1.
By contradiction, if λ = 1 then g(t, 1) = 0 for some t, that is,

n∑

k=0

ak(t) = 0,

but then

|a0(t)| =
∣∣∣∣∣−

n∑

k=1

ak(t)

∣∣∣∣∣ ≤
n∑

k=1

|ak(t)| ,

contradicting (3.4).

ii) To fix ideas, along the whole proof we can consider that a0(t) >
0 for all t. In fact the remaining case can be reduced to this
one by inverting the time variable τ = −t.

Assume that n + m is odd and an(t) < 0 for all t. Using the
sign of a0, it is easy to verify that α(t) ≡ ε > 0 is a strict
lower solution for a small enough ε. On the other hand, β(t) ≡
M > 0 is a strict upper solution for a big enough M . This
gives a positive limit cycle. Having in mind the sign of an, such
limit cycle has negative characteristic exponent and therefore
it is asymptotically stable. Let us prove that it is unique. By
the first part of the theorem, if there is a second limit cycle
ϕ(t), it should be negative and the function gx(t, ϕ(t)) does
not vanish. By using that n + m is odd and an < 0, the sign
of this function is negative by continuity, so the characteristic
exponent of ϕ(t) is again negative. Therefore, we have two zeros
of the displacement function q(c) with negative derivative, this
means that it should be a third solution in between, but this
is a contradiction with part (i). The case an(t) > 0 is solved in
the same way, resulting in this case a unique limit cycle which
will be negative.
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Assume now that n is even and an(t)a0(t) < 0. Then, taking
ε,M > 0 small and big enough respectively, −M is a strict
upper solution and −ε is a strict lower solution, so there exists
a negative limit cycle. Similarly, ε is a strict lower solution and
M is a strict upper solution, so there exists a positive limit
cycle, and there are no more by part (i).

Finally, let us assume that n + m is even and an(t)a0(t) > 0.
Then, taking ε, M > 0 small and big enough respectively,
−M,−ε, ε, M are a strict lower solutions.
By Lemma 2, q(−M), q(−ε), q(ε), q(M) are all positive. As-
sume by contradiction that there exists a limit cycle ϕ(t), say
a positive one (the remaining case is similar). Then it should
be unique, so from q(ε), q(M) > 0 we have that ϕ(0) as a zero
of the displacement function must be degenerate, that is, the
characteristic exponent

δ =

∫ T

0

gx(t, ϕ(t))dt = 0.

But using the arguments contained in part (i), under our con-
ditions ϕ(t) > 1 and gx(t, ϕ(t)) 6= 0 for all t, which is a clear
contradiction with δ = 0.

Let us remark that Theorem 6 remains true if < and ≤ are in-
terchanged in conditions (3.4) − (3.5). The proof of Theorem 7 is
analogous to the first part of Theorem 6 by using λ as defined above
and modifying the definition of µ with the use of the second or third
derivative of g.
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3.4 Real Periodic Solutions

In [8, 9, 10] Alwash have proved related results giving more precise
information about the number of limit cycles.
We consider the differential equation of the form

x′ = xn + an−1(t)x
n−1 + · · ·+ a1(t)x + a0(t), (3.8)

In equation (3.8) if the leading coefficient, an(t) is not 1 but does
not vanish anywhere, then the transformation of the independent
variable reduces the equation into a similar equation but with a
leading coefficient equal 1. In this section first we give the result of
Alwash [10], he gave upper bounds for the number of real periodic
solutions when |a2(t)|, |a1| or |a0(t)| is large.
We show that the jth derivative of q(c) does not change sign in c > 1
and in c < −1, and the (j − 1)th derivative of q(c) does not change
sign in |c| < 1. If the ith derivative (i = 1, 2, 3) of a function does
not change sign on an interval then the function has at most i zeros
in this interval. This implies that q has at most 3j − 1 zeros.

Theorem 8 ([10]) Consider the equation (3.8)

i) If for 0 ≤ t ≤ T

|ai(t)| < n

(n− 1)2
, 1 ≤ i ≤ n− 1,

and

|a0| > 2n− 1

n− 1

then there is at most one positive real periodic solution and at
most one real negative periodic solution.

ii) If for 0 ≤ t ≤ T

|ai(t)| < n

(n− 2)2
, 2 ≤ i ≤ n− 1,

and

|a1| > n(2n− 3)

n− 2

then there are at most five real periodic solutions; at most three
of them are positive and at most three of them are negative.
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iii) If for 0 ≤ t ≤ T

|ai(t)| < n

(n− 3)2
, 3 ≤ i ≤ n− 1,

and

|a2| > n(n− 1)(2n− 5)

2(n− 3)

then there are at most eight real periodic solutions; at most five
of them are positive and at most five of them are negative.

The conditions in Theorem 8 on |ai| can be replaced by conditions
on

∑ |ai|. The main results of the section are stated and proved
below.

Theorem 9 Consider the equation (3.8)

i) If for 0 ≤ t ≤ T
n−1∑
i=1

|ai(t)| < n

n− 1
,

and

|a0| > 2n− 1

n− 1

then there is at most one positive real periodic solution and at
most one real negative periodic solution.

ii) If for 0 ≤ t ≤ T
n−1∑
i=2

|ai(t)| < n

n− 2
,

and

|a1| > n(2n− 3)

n− 2

then there are at most five real periodic solutions; at most three
of them are positive and at most three of them are negative.

iii) If for 0 ≤ t ≤ T
n−1∑
i=3

|ai(t)| < n

n− 3
,
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and

|a2| > n(n− 1)(2n− 5)

2(n− 3)

then there are at most eight real periodic solutions; at most five
of them are positive and at most five of them are negative.

Proof. By letting

f(t, x) = xn + an−1(t)x
n−1 + · · ·+ a1(t)x + a0(t),

i) If x ≥ 1, then

fx(t, x) = nxn−1 + (n− 1)an−1(t)x
n−2 + . . . + 2a2(t)x + a1(t)

≥ nxn−1 − (n− 1)|an−1(t)|xn−2 − . . .− 2|a2(t)|x− |a1(t)|

> nxn−1 − (n− 1)xn−2

n−1∑
i=1

|ai(t)|

> nxn−1 − (n− 1)xn−2(
n

n− 1
)

> nxn−2(x− 1) ≥ 0.

For 0 < x < 1, then if a0 < −2n−1
n−1

we have

f ≤ xn + |an−1(t)|xn−1 + . . . + |a1(t)|x + a0(t)

< 1 + |an−1(t)|+ . . . + |a1(t)|+ a0(t)

< 1 +
n

n− 1
+ a0(t)

< 1 +
n

n− 1
− 2n− 1

n− 1
= 0.

On the other hand if a0 > 2n−1
n−1

we have

f ≥ xn − |an−1(t)|xn−1 − . . .− |a1(t)|x + a0(t)

≥ xn − (|an−1(t)|+ . . . + |a1(t)|) + a0(t)

≥ xn − n

n− 1
+

2n− 1

n− 1
= xn + 1 > 0.

Therefore fx > 0 if x ≥ 1 and f < 0 or f > 0 when 0 < x < 1.
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If x ≤ −1 and n is even, then

fx ≤ nxn−1 + (n− 1)|an−1||x|n−2+

. . . + 2|a2||x|+ |a1|

< nxn−1 + (n− 1)|x|n−2

n−1∑

k=1

|ak|

< nxn−1 + nxn−2

= nxn−2(x + 1) ≤ 0.

If x ≤ −1 and n is odd, then

fx ≥ nxn−1 − (n− 1)|an−1||x|n−2 − . . .− 2|a2||x| − |a1|

> nxn−1 − (n− 1)|x|n−2

n−1∑

k=1

|ak| > nxn−1 − n|x|n−2

= n|x|n−1 − n|x|n−2

= nxn−1(1− 1

|x|) ≥ 0.

If −1 < x < 0, then

f ≤ xn + |an−1|xn−1 + . . . + |a2|x2 + |a1|x + a0

< xn−1(x + |an−1|+ . . . + 2|a2|+ |a1|) + a0

< 1 +
n−1∑
i=1

|ai|+ a0

< 1 +
n

n− 1
− 2n− 1

n− 1
= 0.

Therefore, fx > 0 in x ≥ 1, fx < 0 in x ≤ −1, when n is even,
but fx > 0 when n is odd. Moreover, f < 0 in −1 < x < 0 if
a0 ≤ −2n−1

n−1
.

Hence there is at most one positive real periodic solution and
at most one real negative periodic solution.
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ii) If x ≥ 1 then

fxx ≥ n(n− 1)xn−2 − (n− 1)(n− 2)|an−1|xn−3−
. . .− 6|a3|x− 2|a2|

> n(n− 1)xn−2 − (n− 1)(n− 2)xn−3

n−1∑

k=2

|ak|

> n(n− 1)xn−2 + n(n− 1)xn−3

= n(n− 1)xn−3(x + 1) > 0.

If x ≤ −1, then

fxx ≥ n(n− 1)|x|n−2 − (n− 1)(n− 2)|an−1||x|n−3−
. . .− 6|a3||x| − 2|a2|

> n(n− 1)|x|n−2 − (n− 1)(n− 2)|x|n−3

n−1∑

k=2

|ak|

> n(n− 1)|x|n−3(|x|+ 1) > 0.

If 0 < x < 1, then

fx ≤ nxn−1 + (n− 1)|an−1|xn−2 + . . . + 2|a2|x + a1

< n + (n− 1)
n−1∑

k=2

|ak|+ a1

< n + (n− 1)
n

n− 2
− n(2n− 3)

n− 2
= 0.

If −1 < x < 0, then

fx ≤ n + (n− 1)|an−1|+ (n− 2)|an−2|+
. . . + 2|a2|+ a1

< n + (n− 1)
n−1∑

k=2

|ak|+ a1

< n + (n− 1)
n

n− 2
− n(2n− 3)

(n− 2)
= 0.

Therefore, equation (3.8) has at most five real periodic solu-
tions; at most three of them are positive and at most three of
them are negative.
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iii) If x ≥ 1 then

fxxx ≥ n(n− 1)(n− 2)xn−3 − (n− 1)(n− 2)(n− 3)|an−1|xn−4−
. . .− 24|a4|x− 6|a3|
≥ n(n− 1)(n− 2)xn−3 − (n− 1)(n− 2)(n− 3)|an−1|xn−4 −
. . .− 24|a4|xn−4 − 6|a3|xn−4

> n(n− 1)(n− 2)xn−3 − (n− 1)(n− 2)(n− 3)xn−4

n−1∑

k=3

|ak|

> n(n− 1)(n− 2)xn−3 − n(n− 1)(n− 2)xn−4

= n(n− 1)(n− 2)xn−4(x− 1) ≥ 0.

If x ≤ −1 then

fxxx ≥ n(n− 1)(n− 2)|x|n−3 − (n− 1)(n− 2)(n− 3)|an−1||x|n−4−
. . .− 24|a4||x| − 6|a3|

> n(n− 1)(n− 2)|x|n−3 − (n− 1)(n− 2)(n− 3)|x|n−4

n−1∑

k=3

|ak|

> n(n− 1)(n− 2)|x|n−4(|x| − 1) ≥ 0.

If −1 < x < 0, then

fxx ≤ n(n− 1)|x|n−2 + (n− 1)(n− 2)|an−1||x|n−3+

. . . + 6|a3||x|+ 2a2

< n(n− 1) + (n− 1)(n− 2)
n−1∑

k=3

|ak|+ 2a2

< n(n− 1)
n(n− 1)(n− 2)

n− 3
− n(n− 1)(2n− 5)

n− 3
= 0.

Therefore, equation (3.8) has at most eight real periodic solu-
tions; at most five of them are positive and at most five of them
are negative.
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3.5 Applications to Polynomial Planar Systems

The main motivation for the study of the number of limit cycles in
first-order equations with a polynomial nonlinearity is the search for
information about the maximum number of limit cycles of a given
autonomous polynomial planar system, the so-called Hilbert num-
ber. The most simple family of polynomial planar systems which
can be reduced to a generalized Abel equation are the so-called rigid
systems {

x′ = λx− y + xP (x, y)
y′ = x + λy + yP (x, y)

If
P (x, y) = R1(x, y) + R2(x, y) + . . . + Rn−1(x, y),

where each Rk is a homogeneous polynomial of degree k , the system
in polar coordinates becomes





r′ = rnRn−1(cos θ, sin θ) + rn−1Rn−2(cos θ, sin θ)+
. . . + r2R1(cos θ, sin θ) + λr

θ′ = 1.

Limit cycles of the system correspond to positive limit cycles of

dr

dθ
= rnRn−1(cos θ, sin θ) + rn−1Rn−2(cos θ, sin θ)+

. . . + r2R1(cos θ, sin θ) + λr.

Many examples contained in the literature belong to this class (see
[9, 10, 8, 13, 17, 18, 19] and their references only to cite some of
them). Of course, our results can be applied directly to this kind of
systems, but we are going to focus our attention in a more general
family which seem not to have been studied in previous works.

Let us consider the system

x′ = −y2p−1 +
x

q
P (x, y) , y′ = x2q−1 +

y

p
P (x, y) (3.9)

where P (x, y) is a polynomial and p, q are natural numbers. When
p = q = 1, it is a rigid system.
Let us introduce action-angle variables r, θ such that

x = rpC(θ), y = rqS(θ), (3.10)
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where C(θ) and S(θ) are functions of θ defined implicitly by

C2q(θ)

2q
+

S2p(θ)

2p
= 1. (3.11)

Note that (C(θ), S(θ)) is a solution of the autonomous hamiltonian
system

x′ = −y2p−1, y′ = x2q−1,

and it is uniquely determined by fixing the initial condition

(C(0), S(0)) = ((2q)
1
2q , 0).

The notion of action-angle variables is a classical tool in Celestial
Mechanics and Stability Theory (a similar change was proposed by
Liapunov, see [28, Pag. 43]).

In the new coordinates, the system (3.9) is rewritten as

r′ =
1

pq
rP (rpC(θ), rqS(θ)), θ′ = r2pq−p−q. (3.12)

By taking r as a function of θ we get the single differential equation

dr

dθ
= ArmP (rpC(θ), rqS(θ)), (3.13)

where A = 1
pq

and m = −2pq + p + q + 1. The coefficients will be

polynomials in the generalized trigonometrical functions C(θ), S(θ).
Now we can use (3.11) in order to get

|C(θ)| ≤ (2q)
1
2q , |S(θ)| ≤ (2p)

1
2p ,

and such bounds can be used for practical application of our con-
ditions. Instead of concrete examples, we will prove a somewhat
general result.

Corollary 7 Let p, q ∈ N and Q(x, y) be a given polynomial of de-
gree h. Consider the system (3.9) where

P (x, y) =

(
x2q

2q
+

y2p

2p

)n

+ Q(x, y) + λ.

Then, there exist n0, λ0 > 0 (only depending on Q, p, q), such that
(3.9) has
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i) exactly one limit cycle if n > n0 and λ < −λ0.

ii) no limit cycles if n > n0 and λ > λ0.

Proof. After the change (3.10), the resulting first order equation is

dr

dθ
=

1

pq
rmP (rpC(θ), rqS(θ)))

=
1

pq
rm

[
r2pqn + Q(rpC(θ), rqS(θ)) + λ

]
.

For this equation, the leading coefficient is

a2pqn ≡ 1

pq
, whereas a0 ≡ λ

pq
.

Finally, we can write

Q(rpC(θ), rqS(θ)) =

h max{p,q}∑

k=1

ak(θ)r
k.

Then, condition (3.4) can be expressed as

|λ| > λ0 := 1 + max
θ

h max{p,q}∑

k=1

|ak(θ)| .

On the other hand, condition (3.5) is

|m + n| > max
θ

h max{p,q}∑

k=1

|(m + k)ak(θ)| .

so it is sufficient to take

n > n0 := |m|+ max
θ

h max{p,q}∑

k=1

|(m + k)ak(θ)| .

Now the result is a direct consequence of Theorem 6.



Chapter 4

The Number of Periodic
Solutions of some Analytic
Equations of Abel Type

4.1 The number of zeros of an analytic function

Let F be a closed rectangle with vertices ±a ± ib and consider h :
F → C holomorphic in the interior of F and continuous on F.
Assume also that

h(z) = h(z) ∀z ∈ F,

and so h maps the interval [−a, a] into R.
Given any subset A of F we employ the notation N(h,A) to indicate
the number of zeros of h on A. Zeros are counted according to their
multiplicity. Assume that we are given a real interval J = [−Γ, Γ]
with Γ < a, we would like to find an estimate on N(h, J).
To state our result we need the Christoffel-Schwarz transformation
f mapping the unit disk D = {z ∈ C : |z| < 1} conformally onto
F and such that f(0) = 0 and f ′(0) > 0. Following [38, 27] such a
map can be expressed as

f(z) =
2b

K(sin α)

∫ z

0

dξ√
1− 2 cos(2α)ξ2 + ξ4

,
b

a
=

K(sin α)

K(cos α)
,

where K is the complete elliptic integral of the first kind (see Figure
4.1, where z+ = eiα and z− = e−iα ).

43
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Figure 4.1:

Theorem 10 Let J = [−Γ, Γ] and h : F → C be in the above
conditions. In addition assume that for some positive numbers m
and M,

|h| ≤ M in F, max
J
|h| = m.

Then

N(h, J) ≤ − ln(m−1M)/ ln(
2γ

1 + γ2
),

where γ is such that f(γ) = Γ.

Example 1 (Test example):
Consider the function h(z) = sin z, the interval J = [−π

6
, π

6
] and the

rectangle F = [−π, π]×[−1.5, 1.5]. From 3
2π

= K(sin α)
K(cos α)

we deduce that

α = 0.180762 and γ = 0.287904. The estimate | sin z| ≤ cosh |=mz|
implies that we can take
M = cosh(1.5). Since m = 0.5 we obtain

N(h, J) ≤ − 1

ln( 2γ
1+γ2 )

ln(2 cosh(1.5)) ≈ 2.4518.

An alternative approach would consist in applying Corollary 1 of
[23]. In this case the rectangle has to be replaced by a domain with
the shape of a stadium. In the notations of [23] we take K = [−π

6
, π

6
]

and U the ε- neighborhood of K with ε = 1.5. Notice that U ⊂ F.
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We notice that |K|ε−1 = π
3
.2
3

> ln 2 and so the result in [23] is
applicable. The estimate on the number of zeros now become

N(h, J) ≤ e
2π
9 ln(2 cosh(1.5)) ≈ 3.11265.

See figure 4.2

Figure 4.2:

The proof will consist in an adaptation of the classical Jensen’s
Lemma (usually stated on a disk) to the rectangle F. We first recall
this result.(see [32] and [35]).

Lemma 7 (Jensen’s Lemma) Let D = {z ∈ C : |z| < 1} be the
unit disk and let H : D ⊂ C → C be a holomorphic function. For
each ρ ∈ (0, 1) such that H(z) 6= 0 if |z| = ρ, we denote by Nρ the
number of zeros (counting multiplicities) of H in |z| < ρ. Then

Nρ ≤ − 1

ln ρ
ln

M

|H(0)| ,

where M = supz∈D |H(z)|.
In the proof we will also employ the Mobius transformation

M : w =
z0 − z

1− z0z
,

where z0 is a given point satisfying |z0| < 1. This transformation
maps the unit disk D onto itself and it is an involution; that is, the
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inverse M−1 = M. Moreover M(0) = z0.
Proof of theorem 10. From the Christoffel-Schwarz formula we
observe that if z ∈ D, f(−z) = −f(z). Moreover f(z) ∈ R whenever
z ∈ R. Then f([−γ, γ]) = J and we can pick points ξ0 ∈ J and
z0 ∈ [−γ, γ] satisfying

|h(ξ0)| = m, f(z0) = ξ0.

(See figure 4.3, where I0 = [ z0−γ
1−z0γ

, z0+γ
1+z0γ

] and I1 = [−γ, γ].)

Figure 4.3:

Since z0 is real the Mobius transformation M maps the real line
onto itself and one immediately checks that

M([−γ, γ]) = M−1([−γ, γ]) = [
z0 − γ

1− z0γ
,

z0 + γ

1 + z0γ
].

The function ϕ(x) = γ+x
1+γx

, x ∈ [−γ, γ] is increasing and so

max{| z0 + γ

1 + z0γ
|, | z0 − γ

1− z0γ
|} ≤ 2γ

1 + γ2
:= R < 1.

These computations imply that hence M−1([−γ, γ]) is contained in
the disk |z| ≤ R.
Next we define H = h ◦ f ◦M, and observe that |H(0)| = m and
|H| ≤ M on D. Since H(0) 6= 0 we can apply the Identity Principle
to find a sequence of numbers ρn ↘ R and such that H(z) 6= 0 if
|z| = ρn. From Jensen’s Lemma applied to H we deduce that

Nρn ≤ − 1

ln(ρn)
ln(

M

m
).

Letting n →∞ we deduce that

N(h, J) ≤ lim
n→∞

Nρn ≤ − 1

ln(R)
ln(

M

m
).
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Assume now that ε > 0 is a fixed number and Γ is a parameter
satisfying

0 < Γ ≤ Γ < ∞, (4.1)

for a fixed Γ. Consider the rectangle FΓ = [−Γ − ε, Γ + ε] × [−ε, ε]
and the interval JΓ = [−Γ, Γ].

Theorem 11 There exists ϑ = ϑ(Γ, ε) > 0 such that for each Γ sat-
isfying (4.1) and each continuous function h : FΓ → C, holomorphic
in the interior of FΓ,

N(h, JΓ) ≤ ϑ ln(m−1M),

where |h| ≤ M in FΓ and maxJΓ
|h| ≥ m.

Remark 1 The above result is also applicable to a non-symmetric
interval. Assuming J = [a, b] with 0 < b−a

2
≤ Γ, we define c = a+b

2
and apply Theorem 11 to h1(z) = h(z + c) with Jc = [−c, c], Fc =
[−c− ε, c + ε]× [−ε, ε].

Lemma 8 Let I and J be open intervals and let us assume that
f : I → J is strictly increasing and continuous, where f(I) = J.
Then f−1 : J → I is strictly increasing and continuous.

Proof. First we show that f−1 is continuous. To this end we observe
that if α, β ∈ I with α < β then

f (]α, β[) = ]f(α), f(β)[ .

Here we are using that f is continuous and increasing. Assume now
that O ⊆ I is an open set. We will prove that (f−1)−1(O) = f(O)
is also open. We can express the open set as

O =
⋃
n

]an, bn[,

with an, bn ∈ I. Then

f(O) =
⋃
n

f(]an, bn[) =
⋃
n

]f(an), f(bn)[.

The set f(O) is open because it is an union of open intervals.
It remains to show that f−1 is increasing. Take y1, y2 ∈ J with
y1 ≤ y2. We want to prove that x1 = f−1(y1) ≤ x2 = f−1(y2). By
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contradiction assume x1 > x2, since f increasing we have f(x1) >
f(x2). But y1 = f(x1) > f(x2) = y2, contradiction.

Proof of theorem 11. The function K(k) =
∫ π/2

0
dθ√

1−k2 sin2 θ
is

strictly increasing on k ∈ [0, 1[. In consequence also the function

α ∈ [0, π/2[½ K(sin α)

K(cos α)
∈ [0,∞[

is strictly increasing. Given Γ ≥ 0 there exist a unique α = α(Γ)
with

ε

Γ + ε
=

K(sin α)

K(cos α)
, (4.2)

and the function Γ ∈ [0,∞[ 7→ α(Γ) ∈]0, π/4] is strictly decreasing
and continuous. Consider the Christoffel-Schwarz transformation
depending upon the parameter Γ,

f(z, Γ) =
2ε

K(sin α(Γ))

∫ z

0

dξ√
1− 2 cos(2α(Γ))ξ2 + ξ4

(4.3)

where we restrict z to the real axis we observe that the function
z ∈ [−1, 1] ½ f(z, Γ) is strictly increasing. Since f(0, Γ) = 0 and
f(1, Γ) = Γ + ε we find a unique γ = γ(Γ) ∈ [0, 1[ with

f(γ, Γ) = Γ. (4.4)

Moreover γ = γ(Γ) is a continuous function and we can define

γ∗ = max
[0,Γ]

γ(Γ). (4.5)

We can apply Theorem 10 in FΓ and define

ϑ = − 1

ln( 2γ∗
1+γ2∗

)
.

Remark 2 ϑ can be computed numerically using (4.2), (4.4) and
(4.5).
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Take ε = 1.5 and Γ = 22
1
3 .

Numerically by Mathematica6 program γ(α(Γ)) is increasing (see
Table 1) then

γ∗ = max
[0,Γ]

γ(Γ) = γ(22
1
3 ) = 0.910597..

Hence ϑ = 228.349.

Γ α γ
0.0 0.785398 0.000000
0.2 0.663954 0.130990
0.4 0.559028 0.248564
0.6 0.469156 0.354350
0.8 0.392628 0.448757
1.0 0.327746 0.532101
1.2 0.272932 0.604906
1.4 0.226768 0.667919
1.6 0.187999 0.722023
1.8 0.155531 0.768162
2.0 0.128413 0.807279
2.2 0.105822 0.840271
2.4 0.087051 0.867969
2.6 0.071499 0.891127
2.8 0.058623 0.910418
2.80204 0.058504 0.910597

Table 1
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4.2 Estimates for real-valued solutions

Consider the differential equation

x′ = v(x, t) (4.6)

where v : R × R → R is continuous and 1-periodic in t. We also
assume that there is uniqueness for the initial value problem. Given
ξ ∈ R the solution satisfying x(0) = ξ will be denoted by x(t, ξ) and
the corresponding maximal interval ]α, ω[ with

−∞ ≤ α = α(ξ) < 0 < ω = ω(ξ) ≤ +∞.

Let D be the set of initial conditions such that the solution is well
defined in [0, 1]; that is,

D = {ξ ∈ R : ω(ξ) > 1}.
We recall that D is an open interval which sometimes can be empty.
For instance, this is the case for

v(x, t) = λ(1 + x2) with λ ≥ π.

The Poincare map is defined as

P : D → R, P (ξ) = x(1, ξ).

This is an increasing and continuous function and periodic solutions
do correspond to fixed points of P.

Lemma 9 Assume that for some r ∈ R
v(x, t) > 0 if x ≥ r.

In addition there exists a periodic solution and another solution that
blows up not later than t = 1; that is, ω(ξ) ≤ 1 for some ξ ∈ R.
Then

P (D) =]B, +∞[ for some B, −∞ ≤ B < ∞.

Proof. Let A be an initial condition such that x(t, A) is periodic
solution of (4.6). Then A = P (A) ∈ P (D). Since P (D) is an open
interval we can express it as P (D) =]B,C[ with −∞ ≤ B < A ≤
C ≤ +∞. It remains to prove that C = +∞. To this end we take any
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number y ∈]A, +∞[ and consider the solution φ(t) of (4.6) satisfying
φ(1) = y. We claim that φ(t) is well defined in [0, 1]. Otherwise
there should exist some α ∈ [0, 1[ such that one of the following
alternatives holds,

(i) lim
t↘α

φ(t) = −∞ (ii) lim
t↘α

φ(t) = +∞.

The first alternative is ruled out because, by uniqueness, φ(t) >
x(t, A) if t ∈]α, 1]. Assume by a contradiction argument that (ii)
holds. Then, for t close enough to α one should have φ(t) > r. In
consequence φ′(t) = v(φ(t), t) > 0 and φ is strictly increasing on
some interval of the type ]α, α+ δ[. This is not compatible with (ii).

Lemma 10 Assume that for some r ∈ R
v(x, t) > 0 if x ≥ r.

In addition ω(r) ≤ 1 and there exists a periodic solution ϕ(t) with
ϕ(0) = A. Then, for any R > r we can find xR > A with P (xR) = R
such that the following statements hold,

i) [A, xR] ⊂ D.

ii) x(t, ξ) ≤ R for each t ∈ [0, 1], ξ ∈ [A, xR].

iii) max[A,xR] |h| ≥ (R− r) where h := id− P.

See Figure 4.4

Figure 4.4:
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Proof. From the previous lemma we know that ]A,∞[⊂ P (D) and
so there exists xR ∈ D such that P (xR) = R. Since P is increasing
and P (A) = A < R we conclude that xR > A. Since D is an interval
and A, xR ∈ D, (i) follows.

ii) First we notice that xR < r since xR ∈ D but [r, +∞[∩D =
φ. By contradiction suppose that x(τ, ξ) > R for some τ ∈
]0, 1], ξ ∈ [A, xR]. Let ψ(t) be the solution satisfying ψ(1) = R
and ψ(0) = xR. Let τ ∈]0, 1] be the first instant such that
ψ(τ) = r. We claim that τ is the only number in ψ−1(r). Indeed,
ψ′(τ̂) = v(ψ(τ̂), τ̂) = v(r, τ̂) > 0 for any τ̂ ∈ ψ−1(r) and this
forces the uniqueness of τ. The previous discussion implies that
ψ′(t) = v(ψ(t), t) > 0 if t ∈ [τ, 1]. Hence ψ is strictly increasing
on [τ, 1] and ψ(t) ≤ ψ(1) = R on this interval. The definition
of τ implies that ψ(t) ≤ r on [0, τ ] and so ψ(t) ≤ R on [0, 1].
Finally we observe that, by uniqueness, x(t, ξ) ≤ ψ(t) if t ∈
[0, 1] and this is against the assumption x(t, ξ) > R for some t.

iii) xR < r since xR ∈ D but r /∈ D. Since P is increasing, then

max
[A,xR]

|h| = max
[A,xR]

|id− P | ≥ |h(xR)|,

but

|h(xR)| = |xR − P (xR)| = |xR −R| = R− xR ≥ R− r.

We conclude this section with an adaptation of Lemma 10 to both
sides of the real line. The proof is analogous.

Lemma 11 Assume that for some r+ > 0 > r−,

v(x, t) > 0 if x ≥ r+, v(x, t) < 0 if x ≤ r−.

In addition ω(r+) ≤ 1, ω(r−) ≤ 1, and there exists at least one
periodic solution. Then, for any R > r = max{r+, |r−|}, we can
find an interval J = [a, b] ⊂ [r−, r+] such that

i) J ⊂ D, P (J) = [−R,R] and all the fixed points of P are con-
tained in J .

ii) |x(t, ξ)| ≤ R for each t ∈ [0, 1], ξ ∈ J.

iii) maxJ |h| ≥ (R− r) where h := id− P.

See Figure 4.5.
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Figure 4.5:

4.3 Estimates for complex-valued solutions

In this section we consider the complex valued differential equation

z′ = v(z, t) (4.7)

where v : C×R→ C is continuous, holomorphic in z, 1-periodic in
t and v(z, t) ∈ R if z ∈ R. Since the time is real, this equation can
be interpreted as a system in R2, namely

x′ = <ev(z, t), y′ = =mv(z, t), z = x + iy.

Since the line y = 0 is invariant we recover the real-valued equation
on the x-axis.
We present a result similar to Lemma 2, page (1339) in [33].



54 CHAPTER 4. THE NUMBER OF PERIODIC SOLUTIONS

Lemma 12 Assume that we are given a compact interval [a, b] and
a rectangle F = [a− ε, b + ε]× [−ε, ε] for some ε > 0.
In addition there are positive number ρ and K such that

• ∀ ξ̂ ∈ [a, b], z(t, ξ̂) is well defined in [0, 1] and |z(t, ξ̂) − c| ≤ ρ
∀ t ∈ [0, 1], where c = a+b

2
is the mid-point of the interval,

• F is contained in the disk of radius ρ centered at c and
|v(z, t)| ≤ K if |z − c| ≤ ρ + 2

• √2ε exp (K) < 1.

Then, for each ξ ∈ F the solution z(t, ξ) is well defined in [0, 1] and
satisfies

|z(t, ξ)−c| ≤ ρ+1, |z(t, ξ)−ξ| ≤ ρ+
b− a

2
+
√

2ε(1+exp (K)), t ∈ [0, 1].

See Figure 4.6.

Figure 4.6:

Proof. First we notice that from the assumptions b−a
2
≤ ρ. Given

ξ ∈ F we denote by ω̃ = ω̃(ξ) the largest number in [0, 1] such that

|z(t, ξ)− c| ≤ ρ + 1 if t ∈ [0, ω̃].
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Given any ξ in F we can find ξ̂ ∈ [a, b] such that

|ξ − ξ̂| ≤
√

2ε.

Then, from the differential equation when t ∈ [0, ω̃],

|z(t, ξ)− z(t, ξ̂)| ≤ |ξ − ξ̂|+
∫ t

0

|v(z(s, ξ), s)− v(z(s, ξ̂), s)|ds.

The function v(., t) is holomorphic and Cauchy’s inequality implies
that for
|z − c| ≤ ρ + 1,

|∂v

∂z
(z, t)| ≤ max

|z−c|≤ρ+2
|v(z, t)| ≤ K.

From the complex version of the Mean Value Theorem we deduce
that,

|z(t, ξ)− z(t, ξ̂)| ≤ |ξ− ξ̂|+ K

∫ t

0

|z(s, ξ)− z(s, ξ̂)|ds if t ∈ [0, ω̃].

From Gronwall’s lemma [21],

|z(t, ξ)− z(t, ξ̂)| ≤ |ξ − ξ̂|eKt, t ∈ [0, ω̃].

Next we claim that ω̃ ≥ 1. Assuming by contradiction that ω̃ < 1
we notice that

ρ + 1 = |z(ω̃, ξ)− c| ≤ |z(ω̃, ξ)− z(ω̃, ξ̂)|+ |z(ω̃, ξ̂)− c|

≤ |ξ − ξ̂|eK + ρ ≤
√

2εeK + ρ,

and this is not compatible with the assumptions. In particular the
previous reasoning implies that z(t, ξ) is well defined in [0, 1] and

|z(t, ξ)− c| ≤ ρ + 1 if t ∈ [0, 1].

To obtain the other estimate we observe that

|z(t, ξ)− ξ| ≤ |z(t, ξ)− z(t, ξ̂)|+ |z(t, ξ̂)− ξ̂|+ |ξ̂ − ξ|

≤
√

2ε(eK + 1) + ρ +
b− a

2
, t ∈ [a, b].
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4.4 An example

Next we show how to employ the previous results in order to estimate
the number of periodic solutions of the equation

x′ = v(x, t) := x3 + 10 sin x + p(t) (4.8)

where p : R −→ R is continuous, 1-periodic and ‖p‖∞ ≤ C. The

numbers ±(C + 10)
1
3 are constant lower and upper solutions of this

equation and this shows that there exists always at least one periodic
solution.(see Theorem 2.1, page (383) in [34])
Next we define the number

r = 2
1
3 (C + 10)

1
3 .

The function

ψ(t) =
r√

1− r2t
, t ∈ [0,

1

r2
[

is a solution of x′ = 1
2
x3 and satisfies ψ(t) ≥ ψ(0) = r. From these

properties it is easy to deduce that ψ(t) is a sub-solution of (4.8).
Actually,

ψ′(t)−ψ(t)3−10 sin ψ(t)−p(t) ≤ −1

2
ψ(t)3+10+C ≤ −1

2
r3+10+C = 0.

In consequence the solution of (4.8) satisfying x(0) = r must blow
up before the time t = 1

r2 . This fact allows up to apply Lemma 11
to (4.8) with r+ = r, r− = −r and R = 2r. We find an interval
J = [a, b] in the conditions of the Lemma. In particular the number
of periodic solutions of the differential equation coincides with the
number of zeros of h = id− P in the interval [a, b].
Also

|x(t, ξ)| ≤ 2r if t ∈ [0, 1] and ξ ∈ J (4.9)

and
max

J
|h| ≥ r. (4.10)

Next we apply the results of section 4.3. Here it is important to
notice that sin z is an entire function and so

v(z, t) = z3 + 10 sin z + p(t)

is entire as a function of z. Let us apply Lemma 12 with

ρ = 3r, K = (4r + 2)3 + C + 10 cosh(ρ + 2), ε =
1

2
e−K .
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Let us show that this choice is admissible. Using (4.9) we notice

that if ξ̂ ∈ [a, b] and t ∈ [0, 1] then

|z(t, ξ̂)− c| ≤ |z(t, ξ̂)|+ |a + b

2
| ≤ 2r + r = 3r.

Also, since ε < 1
2
, we notice that the rectangle F is contained in the

disc centered at c and of radius 3r. Moreover, if |z − c| ≤ ρ + 2,

|v(z, t)| ≤ (|z − c|+ |c|)3 + cosh(ρ + 2) + C

≤ (ρ + 2 + r)3 + cosh(ρ + 2) + C := K.

From the conclusion of Lemma 12 we know that h is well defined in
F and

|h(ξ)| ≤ ρ +
b− a

2
+
√

2ε(1 + eK) ≤ 3r + r +

√
2

2
(e−K + 1).

We are ready to apply Theorem 11 to the function h = id − P on
the interval [a, b]. Notice that this interval is not symmetric around
the origin and we must take into account the Remark after that
Theorem. Notice that the theorem on differentiability with respect
to initial conditions implies that h is holomorphic. Moreover, since
=mz = 0 is invariant for the equation, h is real-valued on the real

line. Since Γ = b−a
2
≤ r =: Γ, M = 4r +

√
2

2
(e−K + 1) and m = r,

N(h, [a, b]) ≤ ϑ ln(4 +

√
2

2r
(e−K + 1)) (4.11)

We can sum up the previous discussions in the following statement:
For each C > 0 there exists N(C) such that the equation (4.8) has
at most N periodic solutions for any function p : R→ R continuous
and 1-periodic with

‖p‖∞ ≤ C.

Moreover, the number N can be computed numerically.
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L’Enseignement Mathématique, 23 (1977) 18-38.

[46] C. Yap, Fundamental problems of algorithmic algebra, Oxford
University Press, Inc., New York, NY, 2000.


