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Abstract

We consider the nonlinear oscillator equation ẍ + |x|α−1x = p(t) for α ≥ 3 and non-periodic
forcing p. For any solution x which is unbounded in the (x, ẋ)-phase plane it is shown that,
for ε > 0 small enough, there is a solution xε which is bounded in the phase plane and such
that the actions of xε and x remain close on a time interval of length ε−2; further precise
information is available on the location of the zeros of xε. In addition, it is possible to take
the bounded solution xε from a fixed countable family of such solutions.
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1 Introduction and statement of main results

In the 1960’s Littlewood [13, 14] posed the problem to investigate boundedness properties of the
solutions to differential equations of the form

ẍ+ g(x) = p(t), (1.1)

where x = x(t) is scalar-valued, p is a given bounded forcing, and g has superlinear growth:
g(x)/x → ∞ as |x| → ∞. One issue of particular interest was to decide whether all solutions
would have to be bounded in the (x, ẋ)-phase plane, no matter what the initial data x(0) = x0

and ẋ(0) = v0 were. As opposed to its harmless appearance this question turned out to be
quite intricate, with the results obtained so far being closely tied to the regularity and periodicity
hypotheses imposed on p. For instance Littlewood himself could prove: (i) in [13, Thm. 1] that
given g with some additional properties there is a (non-periodic) bounded function p such that (1.1)
admits at least one unbounded solution, and (ii) in [14] that there are g and a periodic function p
such that (1.1) has at least one unbounded solution. See also [11] and [16] for some corrections.
The result mentioned in (i) was later refined for g(x) = x3 (cf. [12, Section 1.3] and the references
therein) to also provide growth rates of the energy of an unbounded solution. A further related
reference is [20], where for given g it was shown that there is a bounded and arbitrarily small
forcing p such that ‘most’ initial data (in a topological sense) will lead to an unbounded motion.

Concerning bounded solutions, the first complete positive answer was obtained in [17] for g(x) =
2x3 and p piecewise continuous and periodic by using KAM theory after suitably transforming the
system for large energies. This result underwent many generalizations and extensions leading to a
wealth of work over the years, by far too many to be reviewed here. If p ∈ L∞(R) is not necessarily
periodic, then [21] yields the existence of infinitely many bounded solutions by using variational
methods.

If we summarize the preceding discussion and specialize to

ẍ+ |x|α−1x = p(t) (1.2)

for α ≥ 3 and non-periodic p, then there may co-exist bounded and unbounded solutions. In view
of the above it is therefore important to obtain a more refined understanding of the underlying
structure and the rôle of the bounded solutions for the overall dynamics. To state our first main
theorem, for a given solution x = x(t) we let

E(t) =
1

2
ẋ(t)2 +

1

α+ 1
|x(t)|α+1, (1.3)

and furthermore we write E(t) = E(t;x) if the solution x is to be emphasized. The homogeneous
problem ẍ + |x|α−1x = 0 has a global center at the origin and the action % =

∫
γE
y dx represents

the area enclosed by the periodic orbit γE of energy E = 1
2
y2 + 1

α+1
|x|α+1 for y = ẋ. Due to the

homogeneity of the problem it is found that % = kE
α+3

2(α+1) with a certain constant k > 0, cf. (7.9)
below. For the forcing function we need to assume that p ∈ C6

b (R), i.e., p has continuous and
bounded derivatives up to the sixth order.
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Theorem 1.1 Suppose that α ≥ 3 and p ∈ C6
b (R). Then there exist a function ε∗ = ε∗(ρ) > 0

of ρ > 0 (also depending upon α and ‖p‖C6
b (R)) and constants a1, A1, A2, A3, A4 > 0 (depending

upon α and ‖p‖C6
b (R)) such that the following holds. Let x = x(t) be a solution of (1.2) such that

lim supt→∞E(t;x) = ∞ and inft≥t0 E(t;x) < ρ for some t0 ∈ R. Then for every ε ∈]0, ε∗] there
are a solution xε = xε(t) of (1.2) and a time tε ≥ t0 so that

a1 ε
− 2(α+1)

α−1 ≤ E(t;xε) ≤ A1 ε
− 2(α+1)

α−1 for t ∈ R (1.4)

and
|%ε(t)− %(t)| ≤ A2 ε

α−3
α−1 for 0 ≤ t− tε ≤ A3 ε

−2. (1.5)

Furthermore, the sets of zeros of xε and x in {0 ≤ t− tε ≤ A3 ε
−2} can be labelled as {tεn : n ∈ I}

and {tn : n ∈ I} such that
|tεn − tn| ≤ A4 ε for all n ∈ I.

The proof is elaborated in Section 8, with an extended outline being given in Section 2; here
we shall restrict ourselves to some comments. The starting point is an unbounded solution x of
(1.2), in the most general sense that lim supt→∞E(t;x) = ∞; the condition inft≥t0 E(t;x) < ρ for
some t0 ∈ R should be viewed as a quantitative statement measuring which ε are allowed. Then,

for ε > 0 small enough, there is a solution xε, bounded in the phase plane with energy ∼ ε−
2(α+1)

α−1 ,
such that the actions %ε of xε and % of x stay close on a time interval of length ε−2; further precise
information is available on the location of the zeros of xε. In fact the proof will show that the
bounded solution xε can be taken from a fixed countable family B of bounded solutions, which
therefore plays a key rôle for the dynamics, since every unbounded solution has to remain close not
only to the set B, but to an individual member of this set, for a long time before it can escape. This
also highlights a difference of the result as compared to standard averaging or adiabatic invariant
techniques [1, 4]; see Section 10 for some more remarks.

As is to be expected the difficulties in the proof of Theorem 1.1 are due to the fact that p is non-
periodic. After some transformations (1.2) can be written as a system generated by a Hamiltonian
function of the form

H(φ, I; τ) = ω0I
a +R(φ, I; τ),

which is 2π-periodic in the ‘time variable’ τ , but non-periodic in the ‘angular variable’ φ. If it were
not for the latter, then KAM theory could be applied (provided that R is sufficiently regular). For
R non-periodic in φ we have to rely on our second main result, whose proof in turn will be based
on precise quantitative refinements of the theory of non-periodic twist maps [5, 6, 7] in the case of
small twist at infinity; see Section 2 for more details. To state the theorem consider R2× (R/2πZ)
with coordinates (φ, I; τ). Let G be an open and connected subset such that

R× [I∗,∞[×(R/2πZ) ⊂ G ⊂ R×]0,∞[×(R/2πZ) (1.6)

for some I∗ > 0. We shall consider a Hamiltonian function H : G→ R given by

H(φ, I; τ) = ω0I
a +R(φ, I; τ), (1.7)

where ω0 > 0 and a ∈]0, 1[. For the remainder term R we assume that R ∈ C2,0(G) and it satisfies

|R|+ |∂φR|+ I|∂IR|+ |∂2
φφR|+ I|∂2

φIR|+ I2|∂2
IIR| ≤ C0I

b, I ≥ I∗, (1.8)
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for some constant C0 > 0 and some b ∈ R such that b ≤ a−1. (Here the class C2,0(G) is composed
by those continuous functions having derivatives w.r. to φ and I up to the second order such
that all these derivatives are continuous in (φ, I; τ). Also notice that functions defined on G are
2π-periodic in τ .) The Hamiltonian system associated to H is

φ′ = ∂IH = aω0I
a−1 + ∂IR, I ′ = −∂φH = −∂φR. (1.9)

Theorem 1.2 There exist a function ε∗ = ε∗(ρ) > 0 of ρ > 0 (also depending upon ω0, a, b, C0,
I∗) and constants a1, A1, A2, A3 > 0 (depending upon ω0, a, b, C0, I∗) so that the following holds.
Let (φ, I) be a solution of (1.9) defined on [τ0,∞[ and satisfying lim supτ→∞ I(τ) = ∞ as well as
infτ≥τ0 I(τ) < ρ. Then for every ε ∈]0, ε∗] there are a solution (φε, Iε) of (1.9) defined on R and a
time τε > τ0 so that

a1 ε
− 1

1−a ≤ Iε(τ) ≤ A1 ε
− 1

1−a for τ ∈ R (1.10)

and
|φε(τ)− φ(τ)|+ |Iε(τ)− I(τ)| ≤ A2 ε for 0 ≤ τ − τε ≤ A3 ε

− σ
1−a , (1.11)

where σ = min{2− a,−b} > 0.

This result is verified in Section 4. It is reminiscent of a Nekhoroshev type statement under finite
differentiability assumptions (as in [2]); again see Section 10 for some more comments.

2 Outline of the proof

The proof of Theorem 1.2 is based on a result (Theorem 3.2) on certain twist maps (θ, r) 7→ (θ′, r′)
with non-periodic ‘angular variable’. For large r these maps have the form

θ′ = θ +
c

rα
+R1(θ, r), r′ = r +R2(θ, r),

where α > 0 and R1, R2 are remainder terms which are assumed to be small in a suitable sense.
Although there is little danger of confusion let us point out that here θ′ and r′ denote the iterates
rather than derivatives. If θ were a periodic variable and R1, R2 were sufficiently regular, then all
large orbits would be known to be bounded, by Moser’s invariant curve theorem. For non-periodic
θ, it still can be shown that there is a large number of bounded orbits, and every unbounded orbit
has to stay close to a bounded orbit for many iteration steps. It should be noticed that concerning
regularity we only need to assume that R1,R2 ∈ C1. Therefore Theorem 3.2 gives something
new even in the periodic case: Although then the existence of the bounded orbits follows from
the Poincaré-Birkhoff theorem or from Aubry-Mather theory, a fact that is not contained in the
standard theory is that every unbounded orbit has to stay close to some bounded orbit for many
iterations. In the case where θ is non-periodic, the bounded orbits are obtained via a variational
method using a generating function of the map. To show that unbounded orbits remain near
bounded ones for many steps we use the fact that the bounded orbits that we constructed lie in
horizontal strips of the form

Sε = {(θ, r) ∈ R2 : ε−1/α ≤ r ≤ Γε−1/α}

for some fixed Γ > 0. Also θ′ − θ ∼ ε→ 0 as ε→ 0 on the bounded orbits due to the small twist
at infinity, which means that the orbits only can make very small steps in their θ-variable. In
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addition r acts as an adiabatic invariant for the map, in that r′−r → 0 as r →∞. Hence given an
unbounded orbit (θn, rn) it has to enter into some Sε and then it gets close to the corresponding
bounded orbit (θε

n, r
ε
n) which is contained in Sε. By a kind of ‘abstract’ averaging method we are

then able to improve to T = O(ε−µ) for a suitable µ > 0 on the mere continuous dependence,
which would predict that only T = O(1) for the time for which

|θε
n − θn|+ |rε

n − rn| ≤ Cε for n0 ≤ n ≤ n0 + T

is verified, with a certain n0 ∈ N.

Regarding the proof of Theorem 1.1, we need to check that the equation (1.2) could be fit into
the abstract framework from Theorem 1.2. First (1.2) is transformed to action-angle variables (θ, %)
as in [17]. The next step is to change the time and angle variable in the associated Hamiltonian
function H(θ, %; t), taking τ = θ as the new time, φ = t as the new angle, and I = H as the new
action. This trick leads to a new Hamiltonian function H(φ, I; τ); it was pioneered in [10] and has
found many applications since. Then H may be written as

H(φ, I; τ) = ω0I
a + R̃(φ, I; τ), (2.1)

where ω0 > 0 and a ∈ [1
2
, 1[. The remainder term R̃ is non-periodic in φ, 2π-periodic in τ , and

such that (1.8) holds for a certain constant b ≤ 0. Here we encounter the problem that the key
assumption b ≤ a−1 from Theorem 1.2 will not be satisfied for any α ≥ 3. To remedy this problem
we can perform three further canonical transformations on (2.1) using Theorem 6.7. For that the
first thing to notice is that in fact R̃ has the special structure

R̃(φ, I; τ) = f(φ)g(τ)Ib +R(φ, I; τ),

where f ∈ C4
b (R), g is continuous, 2π-periodic, and has zero average, and R satisfies (1.8), with b

being replaced by some smaller c. Each such transformation preserves this special structure of H
and improves the power b to b− (1− a). Then after three steps we arrive at b− 3(1− a) ≤ a− 1,
so that Theorem 1.2 applies to the Hamiltonian system resulting from the last step. If we finally
undo all the transformations and use Theorem 1.2, we can complete the proof of Theorem 1.1. For
the transformation result (Theorem 6.7) we follow along the lines of earlier work for Hamiltonian
functions that are periodic in φ; see [3, 9, 15] for instance. However, one always has to keep track
of the differences arising through the non-periodicity of the system in φ.

3 Unbounded orbits close to bounded orbits

Consider the plane R2 with coordinates (θ, r) and a one-to-one map Φ of class C1,

Φ : D → R2, Φ(θ, r) = (θ′, r′),

where D ⊂ R×]0,∞[ is open and contains a half-plane {r ≥ r∗} for some r∗ > 0. By an orbit of
Φ we understand a maximal solution of the difference equation

(θn+1, rn+1) = Φ(θn, rn), (θn, rn) ∈ D.

Typical orbits are defined for indices in some I = {n ∈ Z : a < n < b}, where −∞ ≤ a < b ≤ ∞.
An orbit is said to be complete, if I = Z. We recall that throughout this paper the notion ‘bounded’
for an orbit will only refer to its r-component, i.e., a bounded orbit satisfies supn∈I rn <∞, whereas
it is called unbounded in the case that supn∈I rn = ∞.

Next we introduce an assumption on the existence of complete orbits.
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Assumption 3.1 (EXC) There are numbers r∗ > r∗ and Γ > 1 such that for every µ ≥ r∗ there
exists a complete orbit (θ̂n, r̂n)n∈Z of Φ satisfying

µ ≤ r̂n ≤ Γµ for all n ∈ Z.

These orbits are bounded and they can coexist with unbounded orbits. We would like to show
that the orbits produced by assumption (EXC) play an important rôle in the dynamics. To this
end we need to impose some additional conditions on the map Φ. Assume that it can be expressed
as

θ′ = θ + T (θ, r), r′ = r +R(θ, r),

for functions T ,R : D → R. In addition, there should exists constants α, σ > 0 and a,A,K,M > 0
so that

a

rα
≤ T (θ, r) ≤ A

rα
, (3.1)

|R(θ, r)| ≤ K

rα
, (3.2)∣∣∣∂T

∂θ
(θ, r)

∣∣∣+ ∣∣∣∂T
∂r

(θ, r)
∣∣∣+ ∣∣∣∂R

∂θ
(θ, r)

∣∣∣+ ∣∣∣∂R
∂r

(θ, r)
∣∣∣ ≤ M

rσ
, (3.3)

holds for r ≥ r∗.

Theorem 3.2 Let the previously stated hypotheses be satisfied. Then there exists a number ε∗ > 0
(depending upon r∗, r∗, α, σ, A, K, and M) such that the following holds. Let (θn, rn)n∈I be an
orbit of Φ so that

inf
n∈I

rn < ε−1/α ≤ Γε−1/α < sup
n∈I

rn (3.4)

for some ε ∈]0, ε∗[. Then there is a complete orbit (θε
n, r

ε
n)n∈Z of Φ satisfying

a

Γα
ε ≤ θε

n+1 − θε
n ≤ Aε and ε−1/α ≤ rε

n ≤ Γε−1/α for n ∈ Z,

and furthermore there is an integer N ∈ I such that

|θε
n − θn|+ |rε

n − rn| ≤ 2α+2(A+K)ε for N ≤ n ≤ N + T,

provided that T is an integer so that

T ≤ ln 2

2σM
ε−σ/α.

In particular, the set {N,N + 1, . . . , N + T} is contained in I.

The above statement is designed for future applications and this explains its purely quantitative
nature. To look at it from a more qualitative perspective, let us assume for illustration that
(θn, rn)n≥0 is an unbounded orbit. Then ε can be made arbitrarily small and the orbit will remain
close to a bounded orbit (θε

n, r
ε
n)n∈Z for a long period of time.

Before we go on to the proof we need three preliminary results. The first lemma shows that
horizontal lines {r = c} are mapped by Φ to explicit curves {r′ = ψ(θ′)}, if c is large enough.
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Lemma 3.3 Assume that c > r∗ is such that

Mc−σ ≤ 1

2
. (3.5)

Then there exists a function ψ ∈ C1(R) such that

Φ({(θ, c) : θ ∈ R}) = {(θ′, ψ(θ′)) : θ′ ∈ R}.

Proof : The function θ 7→ θ + T (θ, c) has derivative 1 + ∂θT (θ, c) ≥ 1 − Mc−σ ≥ 1/2, as a
consequence of (3.3) and (3.5). Therefore this function is an increasing diffeomorphism of the real
line and we can consider its inverse, denoted by θ = χ(θ′). Then defining

ψ(θ′) = c+R(χ(θ′), c), (3.6)

we obtain the claim. 2

The second lemma will describe the behavior of Φ−1 near infinity. For this purpose we introduce
the functions

f±(r) = r ± K

rα

and fix a number s∗ ≥ r∗ such that

f ′+(s∗) > 0 and f−(s∗) > 0.

Then both functions are positive and increasing on [s∗,∞[. Given (θ′, r′) = Φ(θ, r), we deduce
from (3.2) that

f−(r) ≤ r′ ≤ f+(r);

in what follows this observation will be employed several times without further mention. Also
notice that, in view of (3.6), the function ψ appearing in the previous lemma satisfies

f−(c) ≤ ψ(θ′) ≤ f+(c) for θ′ ∈ R. (3.7)

Lemma 3.4 Assume that for some (θ, r) ∈ D the point (θ′, r′) = Φ(θ, r) satisfies r′ > f+(c) for
some c ≥ s∗. Moreover, let f−(c) > f+(s∗) and (3.5) hold. Then r ≥ c.

Proof : The set D− = D ∩ {r < c} is connected and hence also Φ(D−) is connected. Since Φ is
one-to-one, the set Φ(D−) has to be contained in one of the components of the complement of the
curve {r′ = ψ(θ′)}. Given a point on the line {r = s∗}, its iterate (θ+, r+) = Φ(θ, s∗) satisfies

r+ = s∗ +R(θ, s∗) ≤ f+(s∗) < f−(c) ≤ ψ(θ+).

Here we have used (3.7). This estimate shows that Φ(D−) has to be contained in the ‘lower’
component {(θ′, r′) : r′ < ψ(θ′)}. Finally we invoke the assumption r′ > f+(c) and (3.7) to
conclude that r′ > ψ(θ′). This shows that (θ, r) cannot belong to D−. 2

The third lemma is useful to translate certain arguments using connectedness to a discrete
setting. It is based on the notion of an ε-connected set. Following [19] we consider a metric space
(A, d) and ε > 0. We say that the space is ε-connected if given a∗, a

∗ ∈ A there are finitely many
points a0 = a∗, a1, . . . , an−1, an = a∗ such that d(aj, aj+1) < ε for j = 0, . . . , n− 1.
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Lemma 3.5 Let (X, ‖ · ‖) be a normed space and suppose that A ⊂ X is ε-connected for some
ε > 0. Let F,C1, C2 ⊂ X be such that C1 6= C2 are connected components of X \ F satisfying
A ∩ C1 6= ∅ and A ∩ C2 6= ∅. Then there exist x ∈ A and y ∈ F such that ‖x− y‖ ≤ ε/2.

Proof : By assumption there are a0 ∈ A ∩ C1, an+1 ∈ A ∩ C2, and a1, . . . , an ∈ A verifying
‖aj+1 − aj‖ < ε for j = 0, . . . , n. Let L ⊂ X denote the polygonal line connecting a0 → a1 →
. . . → an+1. Since a0 ∈ C1 and an+1 ∈ C2, one of the segments ak → ak+1 of L must intersect
F in a point y. Then y = λak+1 + (1 − λ)ak for some λ ∈ [0, 1] yields ‖ak − y‖ ≤ λε and
‖ak+1− y‖ ≤ (1−λ)ε. Thus depending on whether λ ∈ [0, 1/2] or λ ∈ [1/2, 1] one can take x = ak

or x = ak+1. 2

Proof of Theorem 3.2: We fix ε∗ > 0 so small that the following conditions hold for any
ε ∈]0, ε∗[:

ε−1/α > r∗,
1

2
ε−1/α > r∗, 2α+3(A+K) ε

α+1
α ≤ 1, (3.8)

ε−1/α > f+

(1

2
ε−1/α

)
,

1

2
ε−1/α > s∗, f−

(1

2
ε−1/α

)
> f+(s∗), 2σMεσ/α ≤ 1

2
. (3.9)

Then the first relation in (3.8) allows to use assumption (EXC) with µ = ε−1/α. Let (θε
n, r

ε
n)n∈Z be

a complete orbit of Φ satisfying

ε−1/α ≤ rε
n ≤ Γε−1/α for n ∈ Z. (3.10)

From (3.1) it is easy to deduce that

a

Γα
ε ≤ θε

n+1 − θε
n ≤ Aε for n ∈ Z. (3.11)

The assumption (3.4) on the given orbit (θn, rn)n∈I can be used to find n0, n1 ∈ I such that

rn0 < ε−1/α < Γε−1/α < rn1 .

From now on we assume that n0 < n1, the other case being similar. Define

n2 = max {n ∈ Z : n0 ≤ n ≤ n1, rn < ε−1/α}.

Then n0 ≤ n2 ≤ n1, rn2 < ε−1/α, and rn ≥ ε−1/α for n2 < n ≤ n1. We are going to apply Lemma
3.4 with (θ, r) = (θn2 , rn2) and c = 1

2
ε−1/α. In fact, we have rn2+1 ≥ ε−1/α, and all of the other

required conditions are satisfied due to (3.9). Hence the conclusion of Lemma 3.4 ensures that

rn2 ≥
1

2
ε−1/α.

Next we define a piecewise linear function φε : R → R by the assignment φε(θε
n) = rε

n. Since
(3.11) implies that the points {θε

n : n ∈ Z} form a partition of the real axis, this function φε is
well-defined and continuous. Let F ⊂ R2 be the polygonal line joining the complete orbit, i.e.,
the graph of φε. Then F ⊂ S = {(θ, r) ∈ R2 : ε−1/α ≤ r ≤ Γε−1/α} by (3.10). Furthermore define
C1 = {(θ, r) ∈ R2 : r < φε(θ)} as well as C2 = {(θ, r) ∈ R2 : r > φε(θ)}. Finally let A = {(θn, rn) :
n = n2, . . . , n1}. To apply Lemma 3.5 to X = R2 and the norm ‖x‖ = |x1|+ |x2|, notice first that
(θn2 , rn2) ∈ A ∩ C1 and (θn1 , rn1) ∈ A ∩ C2; this is due to the fact that R×] −∞, ε−1/α[⊂ C1 and
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R×]Γε−1/α,∞[⊂ C2. For showing that A is δ-connected with δ = 2α(A + K)ε, we observe that
rn ≥ 1

2
ε−1/α for n = n2, . . . , n1. Then, from (3.1) and (3.2),

|θn+1 − θn|+ |rn+1 − rn| ≤ δ for n = n2, . . . , n1 − 1,

which means that A is δ-connected. Hence we can apply Lemma 3.5 to obtain N ∈ {n2, . . . , n1}
and (θ, r) ∈ F such that

|θN − θ|+ |rN − r| ≤ δ

2
.

Since N ∈ {n2, . . . , n1}, in particular

rN ≥ 1

2
ε−1/α. (3.12)

By definition of F we may write θ = λθε
m+1 + (1 − λ)θε

m and r = λrε
m+1 + (1 − λ)rε

m for some
λ ∈ [0, 1] and m ∈ Z. From (3.11), (3.2), and (3.10) we have

|θε
m+1 − θε

m|+ |rε
m+1 − rε

m| ≤ (A+K)ε.

As a consequence,

|θ − θε
m|+ |r − rε

m| = λ(|θε
m+1 − θε

m|+ |rε
m+1 − rε

m|) ≤ (A+K)ε,

and therefore

|θN − θε
m|+ |rN − rε

m| ≤ |θN − θ|+ |θ − θε
m|+ |rN − r|+ |r − rε

m|

≤ δ

2
+ (A+K)ε = (2α−1 + 1)(A+K)ε

≤ 2α+1(A+K)ε (3.13)

for those N ∈ {n2, . . . , n1} and m ∈ Z. Now consider the shifted complete orbit (θ̂ ε
n , r̂

ε
n)n∈Z =

(θε
n+m−N , r

ε
n+m−N)

n∈Z of Φ. Then (3.13) says that

|θN − θ̂ε
N |+ |rN − r̂ε

N | ≤ 2α+1(A+K)ε. (3.14)

Denote T∗ = ln 2
2σM

ε−σ/α as well as L = 1+2σMεσ/α. Then for each integer k such that 0 ≤ k ≤ T∗,

|θ̂ε
N+k − θN+k|+ |r̂ε

N+k − rN+k| ≤ 2α+1(A+K)Lkε, (3.15)

rN+k ≥
1

2
ε−1/α. (3.16)

To establish this claim, we make some auxiliary observations. Assume first that (θ, r), (Θ, R) ∈ D
are such that r, R ≥ 1

2
ε−1/α. In particular, then r, R > r∗ holds due to the second relation in (3.8).

If (θ′, r′) = Φ(θ, r) and (Θ′, R′) = Φ(Θ, R), then by the mean-value theorem and (3.3),

|Θ′ − θ′|+ |R′ − r′| ≤ |Θ− θ|+ |R− r|+ |T (Θ, R)− T (θ, r)|+ |R(Θ, R)−R(θ, r)|

≤
(
1 + 2σMεσ/α

)[
|Θ− θ|+ |R− r|

]
. (3.17)

Next we assert that LT∗ ≤ 2. In fact, from ln(1 + x) ≤ x for x ≥ 0 it follows that

T∗ lnL ≤ T∗ 2σMεσ/α = ln 2.
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For the actual proof of (3.15) and (3.16), we proceed by (finite) induction on k. For k = 0 this is
just (3.14) and (3.12). Now suppose that (3.15) and (3.16) hold for some k with k+ 1 ≤ T∗. Then
rN+k ≥ 1

2
ε−1/α, and from (3.10) we see that r̂ε

N+k ≥ 1
2
ε−1/α also. Hence (3.17) and (3.15) yield

|θ̂ε
N+k+1 − θN+k+1|+ |r̂ε

N+k+1 − rN+k+1| ≤
(
1 + 2σMεσ/α

)[
|θ̂ε

N+k − θN+k|+ |r̂ε
N+k − rN+k|

]
≤ 2α+1(A+K)Lk+1ε.

Thus in particular by (3.10), due to Lk+1 ≤ LT∗ ≤ 2, and by the third relation in (3.8),

rN+k+1 ≥ r̂ε
N+k+1 − |r̂ε

N+k+1 − rN+k+1| ≥ ε−1/α − 2α+2(A+K)ε ≥ 1

2
ε−1/α,

which completes the inductive argument and hence the proof of the theorem. 2

4 From the Hamiltonian to the discrete system

Throughout this section it will be assumed that the assumptions of Theorem 1.2 are satisfied.
Also, all quantities that depend only upon ω0, a, b, C0, or I∗ will be called a constant.

We are going to consider the Poincaré map Φ associated to the periodic system (1.9). For
(φ0, I0) ∈ R2 such that (φ0, I0; 0) ∈ G let τ 7→ (φ(τ ;φ0, I0), I(τ ;φ0, I0)) denote the solution of (1.9)
satisfying φ(0) = φ0 and I(0) = I0. From now on the coordinates (θ, r) used in the previous section
should be identified with (φ0, I0). Consider the map

Φ : D → R2, Φ(φ0, I0) = (φ(2π;φ0, I0), I(2π;φ0, I0)),

where D ⊂ R2 is composed by those initial data (φ0, I0) leading to solutions that are defined on
the whole interval [0, 2π]. Notice that D is open but not necessarily connected. In order to check
that Φ fits into the general framework set up in Section 3, we first need to establish that some
half-plane {I0 ≥ I∗∗} is contained in D. This is a consequence of the following result.

Lemma 4.1 There exists a constant I∗∗ ≥ I∗ such that for every φ0 ∈ R and I0 ≥ I∗∗ the solution

(φ(τ), I(τ)) = (φ(τ ;φ0, I0), I(τ ;φ0, I0))

to (1.9) with initial data (φ0, I0) exists on [0, 2π] and satisfies

I0
4
≤ I(τ) ≤ 4I0 for τ ∈ [0, 2π]. (4.1)

Proof : Denote [0, τ0[⊂ [0, 2π] the maximal half-open subinterval such that I0/4 < I(τ) < 4I0 for
τ ∈ [0, τ0[. Then

(I(1−b))′ = (1− b)I−bI ′ = −(1− b)I−b(∂φR)

implies that |(I1−b)′| ≤ (1− b)C0 on [0, τ0[. Thus for τ ∈ [0, τ0[,(I0
2

)1−b

≤ I1−b
0 − 2π(1− b)C0 ≤ I(τ)1−b ≤ I1−b

0 + 2π(1− b)C0 ≤ (2I0)
1−b, (4.2)

provided that we take I∗∗ large enough. Therefore we must have τ0 = 2π and I0/4 ≤ I(τ) ≤ 4I0
for τ ∈ [0, 2π]. 2
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Remarks 4.2 (a) It is no loss of generality to assume that I∗∗/4 ≥ I∗ is verified, so that (1.8) is
at our disposal for τ ∈ [0, 2π].

(b) In the preceding proof it is not necessary to suppose that b ≤ a − 1, it only matters that
a ∈]0, 1[ and b < 1. This observation will be useful in Section 7.

Given a solution (φ(τ ;φ0, I0), I(τ ;φ0, I0)) of (1.9) defined on an interval J , the discrete Φ-orbit
(φn, In) is well-defined for each n ∈ J ∩ 2πZ, where

φn = φ(2nπ;φ0, I0) and In = I(2nπ;φ0, I0).

Assuming that J ∩ 2πZ 6= ∅ and infn∈J∩2πZ In ≥ I∗∗, the above lemma yields that

1

4
inf

n∈J∩2πZ
In ≤ inf

τ∈J
I(τ) ≤ sup

τ∈J
I(τ) ≤ 4 sup

n∈J∩2πZ
In. (4.3)

This inequality will be employed several times. It implies in particular that bounded and complete
Φ-orbits correspond to bounded solutions of the Hamiltonian system defined on the whole real
line.

Furthermore we need to know that if two orbits (φn, In) and (φ̂n, În) are close to each other,
then the corresponding solutions (φ(τ), I(τ)) and (φ̂(τ), Î(τ)) are also close. This can be made
precise using the following elementary stability result.

Lemma 4.3 There is a constant Cstab > 0 such that if τ0 ∈ R and if (φ, I) and (φ̂, Î) are solutions
to (1.9) so that I(τ0) ≥ I∗∗ as well as Î(τ0) ≥ I∗∗, then

|φ(τ)− φ̂(τ)|+ |I(τ)− Î(τ)| ≤ Cstab

(
|φ(τ0)− φ̂(τ0)|+ |I(τ0)− Î(τ0)|

)
(4.4)

for every τ ∈ [τ0, τ0 + 2π].

Proof : Given a general ODE system ẋ = X(τ, x) for x ∈ U ⊂ Rd, if x1 = x1(τ) and x2 = x2(τ)
are solutions, then

|x1(τ)− x2(τ)| ≤ eL|τ−τ0| |x1(τ0)− x2(τ0)|
by Gronwall’s lemma, where L is a Lipschitz constant for the vector field X(τ, ·). In our case
x = (φ, I) and X = (∂IH,−∂φH), which is defined on the region U = {I ≥ I∗∗/4}, since I∗∗ ≥ 4I∗
by definition. Hence to estimate the Lipschitz constant on U we must obtain a bound on the
second derivatives of H. From (1.8) it follows that

∂2
φφH = ∂2

φφR = O(Ib), ∂2
φIH = ∂2

φIR = O(Ib−1), ∂2
IIH = ω0a(a− 1)Ia−2 + ∂2

IIH = O(Ia−2).

Therefore due to b ≤ 0 and a− 2 < 0 these expressions are bounded on U . It remains to observe
that as a consequence of I(τ0) ≥ I∗∗ and Î(τ0) ≥ I∗∗ the corresponding solutions cannot leave U
for τ ∈ [τ0, τ0 + 2π], in view of Lemma 4.1. 2

Remark 4.4 In the preceding proof it is sufficient to assume that a ∈]0, 1[ and b ≤ 0.

The theorem on the differentiability with respect to initial conditions implies that Φ ∈ C1(D; R2).
In addition, by uniqueness we know that Φ is one-to-one. Define

T (φ0, I0) = φ(2π;φ0, I0)− φ0 and R(φ0, I0) = I(2π;φ0, I0)− I0.
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Lemma 4.5 The Poincaré map satisfies the conditions (3.1), (3.2), and (3.3) for I ≥ I∗∗ and
appropriate constants a, A, K, M , and with

α = 1− a and σ = max{2− a,−b}.

Proof : Since b < a, we can select γ2 > γ1 > 0 such that

γ1I
a−1 ≤ aω0I

a−1 − C0I
b−1 ≤ aω0I

a−1 + C0I
b−1 ≤ γ2I

a−1

for all I ∈ R so that I ≥ I∗∗/4. Thus from the first relation in (1.9), (1.8), and (4.1),

γ1 4a−1 Ia−1
0 ≤ γ1I(τ)

a−1 ≤ aω0I(τ)
a−1 − C0I(τ)

b−1 ≤ φ′(τ) ≤ aω0I(τ)
a−1 + C0I(τ)

b−1

≤ γ2I(τ)
a−1 ≤ γ2 41−a Ia−1

0 ,

whenever I0 ≥ I∗∗ and τ ∈ [0, 2π]; also recall that a < 1. Thus integration over τ ∈ [0, 2π] yields

2πγ1 4a−1 Ia−1
0 ≤ φ1 − φ0 ≤ 2πγ2 41−a Ia−1

0 , (4.5)

provided that I0 ≥ I∗∗. This yields (3.1) due to T (φ0, I0) = φ1 − φ0 and α = 1− a > 0.
Concerning (3.2), a similar reasoning and b ≤ a− 1 < 0 leads to

|I ′(τ)| ≤ C0I(τ)
b ≤ C04

−bIb
0 ≤ C04

−bIa−1
0 .

Then integration over τ ∈ [0, 2π] leads to

|I1 − I0| ≤ 2πC04
−bIa−1

0 ,

which is (3.2) in view of R(φ0, I0) = I1 − I0.
Next we turn to (3.3). Notice that the partial derivatives appearing in this condition are just

the entries of the 2 × 2-matrix DΦ(φ0, I0) − E2, where E2 ∈ R2×2 denotes the identity matrix.
Defining

Ψ(τ) =

(
∂φ
∂φ0

(τ) ∂φ
∂I0

(τ)

∂I
∂φ0

(τ) ∂I
∂I0

(τ)

)
and A(τ) =

(
∂2

φIR a(a− 1)ω0I
a−2 + ∂2

IIR

− ∂2
φφR − ∂2

φIR

)
,

where φ(τ) = φ(τ ;φ0, I0), I(τ) = I(τ ;φ0, I0), and R = R(φ(τ), I(τ); τ), the variational equations
associated to (1.9) are just Ψ′ = A(τ)Ψ. Furthermore, we have Ψ(0) = E2 and Ψ(2π) = DΦ(φ0, I0).
From (1.8) and (4.1) we obtain in some matrix norm

‖A(τ)‖ ≤ C(Ib−1
0 + Ia−2

0 + Ib−2
0 + Ib

0) ≤ CI
max{a−2, b}
0 = CI−σ

0 for τ ∈ [0, 2π]

and a suitable constant C ≥ 1 that could be computed explicitly. Since σ ≥ 0 by assumption we
have I−σ

0 ≤ 1, so that in particular ‖A(τ)‖ ≤ C for τ ∈ [0, 2π]. Therefore

‖Ψ(τ)‖ ≤ ‖Ψ(0)‖+

∫ τ

0

‖A(s)Ψ(s)‖ ds ≤ C
(
1 +

∫ τ

0

‖Ψ(s)‖ ds
)

in conjunction with Gronwall’s lemma yields ‖Ψ(τ)‖ ≤ C for τ ∈ [0, 2π] and a new constant C.
Hence

‖Ψ(τ)− E2‖ ≤
∫ τ

0

‖A(s)Ψ(s)‖ ds ≤ CI−σ
0 for τ ∈ [0, 2π]

and a certain C is found. Recalling that Ψ(2π) = DΦ(φ0, I0), we obtain (3.3). 2
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Lemma 4.6 There exist constants r∗ > r∗ ≥ I∗∗ and Γ > 1 such that the condition (EXC) is
satisfied for the Poincaré map.

The proof of this result uses a variational technique and is independent of the rest of the
discussion. For this reason we postpone it to the next section (Section 5).

The application of Theorem 3.2 to the Poincaré map Φ leads to the following result.

Theorem 4.7 Under the hypotheses of Theorem 1.2 there exist constants ε∗, a1, A1, A2, A3 > 0
and Γ̂ > 1 such that if (φ, I) is a solution of (1.9) defined on some interval J ⊂ R and

I∗∗ ≤ inf
τ∈J

I(τ) <
1

4
ε−

1
1−a ≤ 4 Γ̂ε−

1
1−a < sup

τ∈J
I(τ)

for some ε ∈]0, ε∗[, then there are a solution (φε, Iε) of (1.9) defined on R and a time τε ∈ J so
that

a1 ε
− 1

1−a ≤ Iε(τ) ≤ A1 ε
− 1

1−a for τ ∈ R

and
|φε(τ)− φ(τ)|+ |Iε(τ)− I(τ)| ≤ A2 ε for 0 ≤ τ − τε ≤ A3 ε

− σ
1−a ,

where σ = min{2− a,−b} > 0 is from Lemma 4.5.

Proof : After a time translation τ 7→ τ − τ0 we can assume that J ∩ 2πZ 6= ∅. The discrete orbit
(φ(2nπ), I(2nπ))n∈J∩2πZ satisfies (3.4) with Γ = Γ̂, in view of (4.3). Using Lemmas 4.5 and 4.6
it is therefore possible to apply Theorem 3.2 to the Poincaré map. Hence the conclusion of the
theorem is a consequence of Lemma 4.3. 2

Theorem 1.2, as stated in the introduction, can now be obtained as a corollary to the previous
result.

Proof of Theorem 1.2: We take J = [τ0,∞[ and choose the constants ε∗, a1, A1, A2, A3 > 0 and
Γ̂ > 1 according to Theorem 4.7. Given ρ > 0 and an unbounded solution (φ, I), as described in
Theorem 1.2, we fix ε∗ = ε∗(ρ) > 0 such that ε∗ < ε∗ and 1

4
(ε∗)−1/α > max{ρ, I∗∗}. Then (φ, I)

satisfies the assumptions of Theorem 4.7 for any ε ∈]0, ε∗[. 2

5 The generating function of a sublinear Hamiltonian

In this section we complete the proof of Theorem 1.2 by showing that assumption (EXC) is verified
for the Poincaré map Φ of (1.9), as was asserted in Lemma 4.6. To prove the existence of the
desired complete and bounded orbits we will employ the formalism of generating functions and [7,
Thm. 2.3].

Let us first recall the notion of a generating function for a C1-map

θ1 = F (θ, r), r1 = G(θ, r),

defined on a region {(θ, r) ∈ R2 : r ≥ r∗}; see [1, 18]. It must be assumed that the map is
area-preserving and has twist, i.e., dθ1 ∧ dr1 = dθ ∧ dr and

∂F

∂r
(θ, r) < 0 for r ≥ r∗.
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The set
Ω = {(θ, θ1) ∈ R2 : F (θ, r∗) > θ1 > F (θ,+∞)} (5.1)

is open and connected, and we can solve globally the implicit function problem

θ1 = F (θ, r), (θ, θ1) ∈ Ω.

In other words, we can find a unique C1-function R : Ω → R, r = R(θ, θ1), with the property that
θ1 = F (θ, R(θ, θ1)) for all (θ, θ1) ∈ Ω. Differentiating this relation yields

∂θF + (∂rF )(∂θR) = 0 and (∂rF )(∂θ1R) = 1. (5.2)

Furthermore, we have r∗ < R(θ, θ1) < +∞ by definition for (θ, θ1) ∈ Ω. The differential form
r1dθ1− rdθ is closed, and so we can find a function S̃ = S̃(θ, r) of class C1 and defined in {r ≥ r∗}
such that dS̃ = r1dθ1 − rdθ; here it is essential that we are working on a simply connected set.
Also notice that this differential form r1dθ1− rdθ is only of class C0 and the notion of closed form
has to be understood in a generalized sense. The generating function is defined as

S : Ω → R, S(θ, θ1) = −S̃(θ,R(θ, θ1)),

and a straightforward computation using (5.2) then shows that

∂S

∂θ
(θ, θ1) = R(θ, θ1) and

∂S

∂θ1

(θ, θ1) = −G(θ, R(θ, θ1)).

Let us assume now that (θn)n∈Z ⊂ R is such that (θn, θn+1) ∈ Ω and

∂S

∂θ
(θn, θn+1) +

∂S

∂θ1

(θn−1, θn) = 0 for n ∈ Z.

Defining rn = R(θn, θn+1), we have rn > r∗ as well as θn+1 = F (θn, R(θn, θn+1)) = F (θn, rn). In
addition,

rn+1 = R(θn+1, θn+2) =
∂S

∂θ
(θn+1, θn+2) = − ∂S

∂θ1

(θn, θn+1) = G(θn, R(θn, θn+1)) = G(θn, rn)

for n ∈ Z. Therefore (θn, rn)n∈Z is a complete orbit of the original map lying in {r > r∗}.

This method will be applied to the map Φ from the previous section. We continue to use the
variables (φ0, I0) and notice that Φ : (φ0, I0) 7→ (φ1, I1) defined on {I0 ≥ I∗∗} is area-preserving.
This is due to the Liouville’s Theorem for Hamiltonian flows. The next result ensures that Φ has
a twist. We continue to apply the convention on constants as introduced in the previous section.

Lemma 5.1 There exists Î∗∗ ≥ I∗∗ such that

∂φ

∂I0
(τ ;φ0, I0) ≤ −1

2
a(1− a)ω0τI

a−2
0 (5.3)

for τ ∈ [0, 2π], φ0 ∈ R, and I0 ≥ Î∗∗.
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Proof : Let us start by observing that

lim
I0→∞

I(τ ;φ0, I0)

I0
= 1 (5.4)

uniformly in τ ∈ [0, 2π] and φ0 ∈ R. This is a direct consequence of the inequalities in (4.2).
Defining

ξ1(τ) =
∂φ

∂I0
(τ ;φ0, I0) and ξ2(τ) =

∂I

∂I0
(τ ;φ0, I0),

we have ξ1(0) = 0, ξ2(0) = 1, and the variational system

ξ′1 = (∂2
φIR) ξ1 +

(
− a(1− a)ω0I

a−2 + ∂2
IIR
)
ξ2,

ξ′2 = −(∂2
φφR) ξ1 − (∂2

φIR) ξ2,

is satisfied. In the new variables x1 = I2−a
0 ξ1 and x2 = ξ2, this reads as x1(0) = 0, x2(0) = 1, and

x′1 = (∂2
φIR)x1 +

(
− a(1− a)ω0

( I
I0

)a−2

+ (∂2
IIR) I2−a

0

)
x2, (5.5)

x′2 = −(∂2
φφR) Ia−2

0 x1 − (∂2
φIR)x2. (5.6)

This means that the vector x = (x1, x2) is the solution to the initial-value problem

x′ = A(τ ;φ0, I0)x, x(0) = (0, 1)t, (5.7)

where A(τ ;φ0, I0) ∈ R2×2 is the coefficient matrix associated to (5.5), (5.6). To study the behavior
of A as I0 → ∞, notice first that for this we may suppose that I0 ≥ I∗∗. Then the bounds from
Lemma 4.1 apply, which in conjunction with (1.8) yield

|∂2
φIR(φ(τ), I(τ); τ)|+ |∂2

φφR(φ(τ), I(τ); τ)| Ia−2
0 + |∂2

IIR(φ(τ), I(τ); τ)| I2−a
0

≤ C0I(τ)
b−1 + C0I(τ)

b Ia−2
0 + C0I(τ)

b−2 I2−a
0

≤ C
(
Ib−1
0 + Ia+b−2

0 + Ib−a
0

)
→ 0

as I0 →∞ uniformly in τ ∈ [0, 2π] and φ0 ∈ R. Hence (5.4) implies that

lim
I0→∞

A(τ ;φ0, I0) = A∞(τ) :=

(
0 −a(1− a)ω0

0 0

)

uniformly in τ ∈ [0, 2π] and φ0 ∈ R. Thus the uniform limiting problem of (5.7) as I0 →∞ is

x′ = A∞(τ)x, x(0) = (0, 1)t, (5.8)

whose solution x∞ is given by x∞, 1(τ) = −a(1−a)ω0τ and x∞, 2(τ) = 1. To verify the convergence
of the solutions we use (5.7) and (5.8) to write

x(τ)− x∞(τ) =

∫ τ

0

A(σ;φ0, I0) (x(σ)− x∞(σ)) dσ

+

∫ τ

0

(A(σ;φ0, I0)− A∞(σ))x∞(σ) dσ
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for τ ∈ [0, 2π]. Taking norms and applying Gronwall’s lemma, we get

|x(τ)− x∞(τ)| ≤ 2πγ eCτ‖A(·;φ0, I0)− A∞‖∞

for τ ∈ [0, 2π], where γ = ‖x∞‖∞ and C > 0 is a bound on ‖A(·;φ0, I0)‖∞. Therefore the preceding
observation on the convergence of the matrices yields

lim
I0→∞

sup
τ∈[0,2π]

sup
φ0∈R

|x(τ)− x∞(τ)| = 0,

which reads as

lim
I0→∞

sup
τ∈[0,2π]

sup
φ0∈R

(∣∣∣I2−a
0

∂φ

∂I0
(τ ;φ0, I0) + a(1− a)ω0τ

∣∣∣+ ∣∣∣ ∂I
∂I0

(τ ;φ0, I0)− 1
∣∣∣) = 0

when transformed back to the variables ξ1, ξ2. Thus if Î∗∗ ≥ I∗∗ is large enough, then the conclusion
of the lemma holds. 2

Taking τ = 2π in (5.3), we have shown that

∂φ1

∂I0
(φ0, I0) =

∂φ

∂I0
(2π;φ0, I0) ≤ −π a(1− a)ω0I

a−2
0 < 0

for φ0 ∈ R and I0 ≥ Î∗∗, so that I0 7→ φ1(φ0, I0) is invertible on [Î∗∗,∞[ for every fixed φ0 ∈ R. Since
a < 1, (4.5) implies that limI0→∞ φ1(φ0, I0) = φ0, and hence the inverse function φ1 7→ I0(φ0, φ1) is
defined on ]φ0, φ1(φ0, Î∗∗)]. As a consequence, the generating function S = S(φ0, φ1) is defined on

Ω = {(φ0, φ1) ∈ R2 : φ1(φ0, Î∗∗) > φ1 > φ0};

see (5.1). To compute S, notice first that

S̃(φ0, I0) =

∫ 2π

0

L(τ) dτ

satisfies dS̃ = I1 dφ1 − I0 dφ0, where

L(τ) = φ′(τ)I(τ)−H(φ(τ), I(τ); τ)

and (φ(τ), I(τ)) = (φ(τ ;φ0, I0), I(τ ;φ0, I0)). To establish this claim, observe that S̃ is well-defined
and of class C1 on {I0 ≥ I∗∗} ⊂ D; recall Lemma 4.1. Moreover, using (1.9),

∂S̃

∂φ0

=

∫ 2π

0

[ ∂φ′
∂φ0

I + φ′
∂I

∂φ0

−Hφ
∂φ

∂φ0

−HI
∂I

∂φ0

]
dτ

=

∫ 2π

0

d

dτ

( ∂φ
∂φ0

I
)
dτ = I1

∂φ1

∂φ0

− I0,

∂S̃

∂I0
=

∫ 2π

0

d

dτ

( ∂φ
∂I0

I
)
dτ = I1

∂φ1

∂I0
,

which is precisely the meaning of dS̃ = I1 dφ1 − I0 dφ0 due to dφ1 = (∂φ1

∂φ0
)dφ0 + (∂φ1

∂I0
)dI0. The

generating function
S(φ0, φ1) = −S̃(φ0, I0(φ0, φ1))
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belongs to C1(Ω). According to the discussion at the beginning of this section, we will produce
sequences (φn)n∈Z ⊂ R such that (φn, φn+1) ∈ Ω and

∂S

∂φ0

(φn, φn+1) +
∂S

∂φ1

(φn−1, φn) = 0 for n ∈ Z. (5.9)

This will be achieved by an application of [7, Thm. 2.3], or more precisely by a slight improvement
of the result, as contained in [8, Exercise 19]. For this, we need to check that Ω contains a strip
of the type {0 < φ1 − φ0 < δ∗}, and for each δ ∈]0, δ∗[ sufficiently small the generating function
satisfies

α(δ)(φ1 − φ0)
−κ ≤ S(φ0, φ1) ≤ α(δ)(φ1 − φ0)

−κ (5.10)

on {0 < φ1 − φ0 < δ}, where κ = a
1−a

> 0 and α > α > 0 are such that

lim
δ→0+

α(δ)

α(δ)
= 1.

Notice that if at this point we were to use [7, Thm. 2.3] rather than [8, Exercise 19], we would
have to include the further hypothesis that κ ≥ 1, which means that a ≥ 1/2.

To begin with, we define δ∗ = 2πγ1 4a−1 (Î∗∗)
a−1, where γ1 > 0 is from (4.5). If 0 < φ1−φ0 < δ∗

are fixed, then
φ1(φ0, Î∗∗) ≥ φ0 + 2πγ1 4a−1 (Î∗∗)

a−1 = φ0 + δ∗ > φ1 > φ0

by (4.5), and therefore {0 < φ1 − φ0 < δ∗} ⊂ Ω. To verify (5.10) on {0 < φ1 − φ0 < δ}, we first
rewrite the Lagrange function L, using (1.9) and (1.7), as

L = φ′I −H = (a− 1)ω0I
a + I(∂IR)−R.

Then |I(∂IR)−R| ≤ CIb ≤ CIb
0 by (1.8) and Lemma 4.1, and furthermore

Ia = Ia
0 + a

∫ τ

0

Ia−1(s)I ′(s) ds

leads to Ia = Ia
0 +O(Ia+b−1

0 ) in a similar fashion. Therefore we get

L = (a− 1)ω0I
a
0 +O(Ib

0)

for τ ∈ [0, 2π], φ0 ∈ R, and I0 ≥ I∗∗. From (5.4) and b < a we thus deduce that

lim
I0→∞

L(τ)

Ia
0

= (a− 1)ω0

uniformly in τ ∈ [0, 2π] and φ0 ∈ R, from where it follows that also

lim
I0→∞

S̃(φ0, I0)

Ia
0

= 2π(a− 1)ω0

uniformly in τ ∈ [0, 2π] and φ0 ∈ R. On the other hand, if I0 = I0(φ0, φ1), then due to (1.9), (5.4),
and (1.8),

φ1 − φ0

Ia−1
0

=
1

Ia−1
0

∫ 2π

0

φ′ dτ =
1

Ia−1
0

∫ 2π

0

(aω0I
a−1 + ∂IR) dτ → 2πaω0
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as φ1 − φ0 → 0; notice that φ1 − φ0 → 0 enforces I0 →∞, for instance by (4.5). Therefore

(φ1 − φ0)
κS(φ0, φ1) = −

(φ1 − φ0

Ia−1
0

)κ

I−a
0 S̃(φ0, I0) → −(2πaω0)

κ 2π(a− 1)ω0

as φ1 − φ0 → 0. Then the estimate (5.10) is a direct consequence, for suitable functions α(δ) >
α(δ) > 0 of δ ∈]0, δ∗[ sufficiently small. Now let us fix δ∗∗ ∈]0, δ∗] such that (5.10) holds for
δ ∈]0, δ∗∗], and furthermore

α(δ) < 2κ α(δ)

is verified for δ ∈]0, δ∗∗]. Then, according to [8, Exercise 19], there is a constant σ∗∗ ≥ 1 such that
(5.9) has a solution (φδ

n)n∈Z ⊂ R such that

σ−2
∗∗ δ ≤ φδ

n+1 − φδ
n ≤ δ for n ∈ Z, (5.11)

provided that δ ∈]0, δ∗∗]. Defining Iδ
n = I0(φ

δ
n, φ

δ
n+1), this generates a family (φδ

n, I
δ
n)n∈Z of complete

orbits of Φ for δ ∈]0, δ∗∗]. Here (4.5) reads as

2πγ1 4a−1 (Iδ
n)a−1 ≤ φδ

n+1 − φδ
n ≤ 2πγ2 41−a (Iδ

n)a−1,

so that µ ≤ Iδ
n ≤ Γµ for n ∈ Z and δ ∈]0, δ∗∗] by (5.11), where

µ =
(2πγ1 4a−1

δ

) 1
1−a

and Γ =
(2γ2

γ1

42(1−a) σ2
∗∗

) 1
1−a

;

notice that Γ is independent of δ, whereas µ = µ(δ) →∞ for δ → 0, as it is needed. This completes
the verification of assumption (EXC) for Φ. Now that we have checked that the condition (EXC)
holds, it is important to notice that r∗ does only depend upon ω0, a, b, C0, and I∗; actually we
can take

r∗ =
2πγ14

a−1

δ∗∗
.

Going back to the proof of convergence of (φ1 − φ0)
κS(φ0, φ1), one observes that also δ∗∗ can be

obtained in terms of the admissible parameters.

6 Transformation of the Hamiltonian

After introducing suitable action-angle variables and thereafter exchanging angle and time, the
Hamiltonian associated to the Littlewood boundedness problem has not only the form H = ω0I

a +
R, but a special structure that can be exploited further: here

H(φ, I; τ) = ω0I
a + f(φ)g(τ)Ib +R(φ, I; τ)

where ω0 > 0, a < 1, b < 1, ‖f‖C4
b (R) <∞, and g : R → R is 2π-periodic, continuous, even or odd,

and has zero mean-value.
We shall prove the transformation theorem in Section 6.2, whereas Section 6.1 introduces a

convenient function class framework (inspired by [3]) and some auxiliary results needed for its
proof.

18



6.1 The function classes Fp, µ

Fix µ > 0 and consider functions in C2,0(R× [µ,∞[×T), denoted by F , F1, F2, etc.; here we write
T = R/2πZ. For p ∈ R define

|F |p, µ = sup
(φ,I;τ)∈R×[µ,∞[×T

I−p
[
|F (φ, I; τ)|+ |∂φF (φ, I; τ)|+ I|∂IF (φ, I; τ)|

+ |∂2
φφF (φ, I; τ)|+ I|∂2

φIF (φ, I; τ)|+ I2|∂2
IIF (φ, I; τ)|

]
,

which will become a norm on the vector space

Fp, µ = {F : |F |p, µ <∞}.

Then
|F1F2|p+q, µ ≤ 30 |F1|p, µ |F2|q, µ (6.1)

is a straightforward consequence of the definitions and the product rule, which yields 15 terms,
among them two with a factor of 2. Applying (6.1) to F2 = Iq, we deduce that the map Fp, µ 3
F 7→ IqF ∈ Fp+q, µ is a bounded linear isomorphism.

Next we are going to discuss some properties of Fp, µ related to the composition of maps.

Lemma 6.1 Assume that g ∈ C2
b (R) and F ∈ Fp, µ for some p ≤ 0. Define

N1(φ, I; τ) = g(φ+ F (φ, I; τ)) and N2(φ, I; τ) = g(F (φ, I; τ)).

Then Ni ∈ F0, µ and
|Ni|0, µ ≤ Cp, µ ‖g‖C2

b (R)(1 + |F |2p, µ)

for i = 1, 2 and constants Cp, µ > 0 independent of g and F .

Proof : Since |F |0, µ ≤ µp|F |p, µ for p ≤ 0, it suffices to verify the result for p = 0 only. In this
case, however, it is a direct consequence of the chain rule. 2

Remark 6.2 To deal with N2 it is not necessary that g is defined on the whole real line. Instead
it suffices to assume that g ∈ C2

b (I), where I ⊂ R is an interval such that F (R× [µ,∞[×T) ⊂ I.

For the next result notice first that in general Λ 7→ |N |b, Λ is decreasing. Hence if b < 1 and µ

are given, then Λ ≥ µ+ Λb|N |b, Λ will be satisfied for Λ large enough.

Lemma 6.3 Assume that R ∈ Fp, µ, M ∈ F0, µ, and N ∈ Fb, µ for some p ∈ R and b < 1. Select
Λ so large that Λ ≥ µ+ Λb|N |b, Λ and define

R1(θ, λ; τ) = R(φ, I; τ), λ ≥ Λ,

where
φ = θ +M(θ, λ; τ) and I = λ+N(θ, λ; τ).

Then R1 ∈ Fp, Λ and |R1|p, Λ ≤ C|R|p, µ, where C only depends upon |M |0, Λ, |N |b, Λ, and Λ.
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Proof : Since |N(θ, λ; τ)| ≤ |N |b, Λλb for λ ≥ Λ, it follows that

µ ≤ c1λ ≤ I ≤ c2λ, λ ≥ Λ, (6.2)

for c1 = 1− Λ−(1−b)|N |b, Λ > 0 and c2 = 1 + Λ−(1−b)|N |b, Λ > c1. To establish the actual claim, let

us for instance consider ∂2
λλR1 for λ ≥ Λ. Here pointwise

∂2
λλR1 = (∂2

φφR)(∂λM)2 + (∂φR)(∂2
λλM) + 2(∂2

φIR)(1 + ∂λN)(∂λM)

+ (∂2
IIR)(1 + ∂λN)2 + (∂IR)(∂2

λλN),

so that by (6.2),

λ2|∂2
λλR1| ≤ |M |20, Λ |∂

2
φφR|+ |M |0, Λ |∂φR|+ 2c−1

1 |M |0, Λ I |∂
2
φIR| (1 + ‖∂λN‖∞)

+ c−2
1 I2|∂2

IIR| (1 + ‖∂λN‖∞)2 + c−1
1 I|∂IR| ‖λ(∂2

λλN)‖∞.

Then ‖∂λN‖∞ + ‖λ(∂2
λλN)‖∞ ≤ Λb−1|N |b, Λ due to λ ≥ Λ in conjunction with I ≥ µ yields

sup
(θ,λ;τ)∈R×[Λ,∞[×T

λ−pλ2|∂2
λλR1| ≤ C|R|p, µ,

where C depends upon |M |0, Λ, |N |b, Λ, and Λ. Since the other terms can be handled similarly, it
follows that |R1|p, Λ ≤ C|R|p, µ. 2

Lemma 6.4 Assume that N ∈ Fp, Λ for some p ≤ 1 and

|N(θ, λ; τ)| ≤ 1

2
λ, λ ≥ Λ. (6.3)

Define I = λ+N . If σ ≤ 1, then

Iσ = λσ + σλσ−1N(θ, λ; τ) + P (θ, λ; τ)

for P ∈ F2(p−1)+σ, Λ such that

|P |2(p−1)+σ, Λ ≤ C(1 + |N |4p, Λ). (6.4)

Proof : We start with the general Taylor expansion

(1 + ε)σ = 1 + σε+ σ(σ − 1)ε2Z(ε) (6.5)

for ε ∈ R, where

Z(ε) =

∫ 1

0

(1− s)(1 + εs)σ−2 ds.

Taking ε = λ−1N , we obtain

Iσ = λσ(1 + λ−1N)σ = λσ
[
1 + σ

N

λ
+ σ(σ − 1)

N2

λ2
Z
(N
λ

)]
.

Thus we need to verify (6.4) for

P (θ, λ; τ) = σ(σ − 1)
N2(θ, λ; τ)

λ2−σ
Z
(N(θ, λ; τ)

λ

)
.
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First we consider M(θ, λ; τ) = Z(N(θ,λ;τ)
λ

) and apply the case i = 2 from Lemma 6.1 in conjunction
with Remark 6.2 for g = Z and F = N

λ
. Then F (R× [Λ,∞[×T) ⊂ [−1

2
, 1

2
] ⊂]− 1, 1[ by (6.3) and

Z ∈ C2
b (]− 1, 1[). Therefore Lemma 6.1 for p− 1 ≤ 0 yields

|M |0, Λ ≤ C ‖Z‖C2
b (]−1,1[)

(
1 +

∣∣∣N
λ

∣∣∣2
p−1, Λ

)
≤ C(1 + |N |2p, Λ),

where (6.1) was used for the last estimate. Furthermore,

|λ−(2−σ)N2|2(p−1)+σ, Λ ≤ C|N2|2p, Λ ≤ C|N |2p, Λ,

and hence

|P |2(p−1)+σ, Λ ≤ C |λ−(2−σ)N2|2(p−1)+σ, Λ |M |0, Λ ≤ C|N |2p, Λ(1 + |N |2p, Λ),

all by (6.1). 2

In the previous lemmas we examined the properties of the classes Fp, Λ under composition of
functions. To introduce suitable coordinate transforms we shall also need a result on solving an
implicit equation in Fp, Λ.

Lemma 6.5 Assume that f ∈ C2
b (R), G ∈ C(T), and b < 1. Consider the implicit function

problem
θ = φ− bλb−1f(φ)G(τ), (6.6)

to be solved for φ = φ(θ, λ; τ). If Λ > 0 is such that

bΛb−1‖f‖C2
b (R)‖G‖∞ <

1

2
,

then φ is well-defined for λ ≥ Λ and can be expressed as

φ = θ +M(θ, λ; τ),

where M ∈ Fb−1, Λ satisfies
|M |b−1, Λ ≤ C (6.7)

for a constant C > 0 depending upon b and Λ.

Proof : For fixed λ ≥ Λ and τ ∈ R the function u(φ) = φ− bλb−1f(φ)G(τ) is such that u′(φ) ≥ 1
2
.

Thus u : R → R is one-to-one and onto, i.e., given θ ∈ R, λ ≥ Λ, and τ ∈ R there is a unique
solution φ = φ(θ, λ; τ) of class C2,0 to the equation (6.6). In addition,

0 < ∂θφ ≤ 2.

To establish (6.7), we notice that

M(θ, λ; τ) = bλb−1f(φ(θ, λ; τ))G(τ).

First differentiate (6.6) twice w.r. to θ to obtain

∂2
θθφ =

bλb−1f ′′(φ)G(τ)

1− bλb−1f ′(φ)G(τ)
(∂θφ)2.
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Therefore if λ ≥ Λ, then
|∂2

θθφ| ≤ 8b‖f ′′‖∞‖G‖∞λ
b−1,

and similarly
∂λφ = O(λb−2), ∂2

θλφ = O(λb−2), ∂2
λλφ = O(λb−3).

Since
|M |b−1, Λ ≤ C‖G‖∞|f ◦ φ|0, Λ ≤ C‖f‖C2

b (R)‖G‖∞(1 + |φ|2b−1, Λ)

by (6.1) and the case i = 2 from Lemma 6.1, we get (6.7), as φ = O(λb−1) is a consequence of
∂λφ = O(λb−2). 2

6.2 The transformation theorem

Given µ > 0 we define
Σµ = (R× [µ,∞[)× R.

Definition 6.6 An admissible change of variables is a map

T : Σµ → (R×]0,∞[)× R, (φ, I; τ) 7→ (θ, λ; τ),

such that

(a) T is a C1-diffeomorphism from Σµ onto T (Σµ),

(b) T (·, ·; τ) is symplectic for all τ ∈ R, i.e., dθ ∧ dλ = dφ ∧ dI,

(c) T (φ, I; τ + 2π) = T (φ, I; τ) + (0, 0; 2π),

(d) there are µ2 > µ1 > 0 so that Σµ2 ⊂ T (Σµ) ⊂ Σµ1, and

(e) I/2 ≤ λ(φ, I; τ) ≤ 2I for all (φ, I; τ).

Let us emphasize that the independent variable τ is preserved by the transformation T .

We are now in a position to state the main result of this section.

Theorem 6.7 Consider a Hamiltonian of the form

H(φ, I; τ) = ω0I
a + f(φ)g(τ)Ib +R(φ, I; τ), (6.8)

where ω0 > 0, a < 1, b < 1, f ∈ C4
b (R), and g ∈ C(T) satisfies

∫ 2π

0
g(τ) dτ = 0. Furthermore

assume that R ∈ Fc, I0 for some c ∈ R and I0 > 0. Then there exist I1 > I0, Λ > 0, and an
admissible change of variables T defined on ΣI1 such that T (ΣI1) ⊂ ΣΛ and the system φ′ = ∂IH,
I ′ = −∂φH is transformed into θ′ = ∂λH1, λ

′ = −∂θH1, where

H1(θ, λ; τ) = ω0λ
a + f1(θ)g1(τ)λ

b−(1−a) +R1(θ, λ; τ). (6.9)

The new functions appearing in H1 satisfy

(a) f1(θ) = −aω0f
′(θ),

22



(b) g1 ∈ C1(T), g′1(τ) = g(τ),
∫ 2π

0
g1(τ) dτ = 0, and

(c) R1 ∈ Fc1, Λ for c1 = max{2b− 1, c}.

The quantities I1, Λ, and |R1|c1, Λ can be estimated in terms of ω0, a, b, ‖f‖C4
b (R), ‖g‖Cb(R), and

|R|c, I0. Furthermore, the following holds.

(i) If b ≤ 0, then the transformation T is bi-Lipschitzian, i.e., there is L > 0 such that

L−1
(
|φ̂− φ|+ |Î − I|

)
≤ ‖T (φ̂, Î; τ)− T (φ, I; τ)‖ ≤ L

(
|φ̂− φ|+ |Î − I|

)
for (φ, I; τ), (φ̂, Î; τ) ∈ ΣI1; here ‖ · ‖ denotes any norm on R3.

(ii) If g is even, then the map T (·, ·; 2π) is the identity.

Proof : The notation C1, C2, . . . , I2, I3, . . . ,Λ1,Λ2, . . . will indicate quantities depending only upon
ω0, a, b, ‖f‖C4

b (R), ‖g‖Cb(R), and |R|c, I0 . The change of variables T is introduced by means of a

generating function Ψ given by

Ψ(φ, λ; τ) = −λbf(φ) g1(τ), (6.10)

where g1 is uniquely defined by the conditions in (b). Explicitly,

g1(τ) =
1

2π

∫ 2π

0

sg(s) ds+

∫ τ

0

g(s) ds,

so that in particular ‖g1‖∞ ≤ (π/2)‖g‖∞. Then

I = λ+ ∂φΨ, θ = φ+ ∂λΨ, (6.11)

is the implicit definition of T : (φ, I; τ) 7→ (θ, λ; τ). The rest of the proof is divided up into several
steps. Step 1: T is well-defined. The first equation in (6.11) is

I = λ− λbf ′(φ) g1(τ).

The ideas from the proof of Lemma 6.5 then allow us to find a constant I2 > I0 such that the
solution λ = λ(φ, I; τ) is uniquely defined on ΣI2 . In addition, λ is of class C1 and 2π-periodic in
τ . After increasing the size of I2 we can also assume that

1

2
I ≤ λ(φ, I; τ) ≤ 2I for I ≥ I2. (6.12)

The second equation in (6.11) then says how to define the first coordinate of T :

θ(φ, I; τ) = φ− bλ(φ, I; τ)b−1f(φ) g1(τ).

Summing up, we obtain a well-defined transformation T on ΣI2 which is of class C1 and 2π-periodic
in τ . Step 2: T is admissible. The definition of T via a generating function implies that T (·, ·; τ)
is symplectic for all τ ∈ R; this is a standard fact in Hamiltonian mechanics. In particular,
dθ ∧ dλ = dφ∧ dI yields that T is a local diffeomorphism. We shall prove that T is one-to-one by
constructing the inverse S = T −1. By Lemma 6.5 we can find a constant Λ1 > 0 and a solution
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map φ = φ(θ, λ; τ) of (6.6) with G = g1, i.e., the equation θ = φ − bλb−1f(φ)g1(τ), on ΣΛ1 . This
function φ is the first coordinate of S on ΣΛ1 , the second being

I(θ, λ; τ) = λ− λbf ′(φ(θ, λ; τ)) g1(τ). (6.13)

From the existence of S on ΣΛ1 and (6.12) we deduce that T is one-to-one on some region ΣI3 , where
I3 > I2 is chosen appropriately. To establish this claim, notice that if we take I3 > max{2Λ, I2},
then T (ΣI3) ⊂ ΣΛ1 and S ◦ T = id on ΣI3 . This completes the proof that T is admissible. Finally
observe that T is admissible also in any region ΣI1 for I1 > I3. For this, the only part that remains
to be checked is (d). We already know that T (ΣI1) ⊂ ΣΛ1 . In view of (6.12) we can find Λ2 > Λ1

such that I ≥ I1, if λ ≥ Λ2; notice that Λ2 depends on I1. As a consequence, S(ΣΛ2) ⊂ ΣI1 and
T ◦ S = id on ΣΛ2 . Therefore ΣΛ2 = (T ◦ S)(ΣΛ2) ⊂ T (ΣI1), and thus (d) holds. Henceforth
we will keep I1 as a free parameter that will be fixed only at the end of the proof. Step 3: An
expansion for S. We assert that we can write

S :

{
φ = θ +M(θ, λ; τ)

I = λ+N(θ, λ; τ)

with |M |b−1, Λ3
+ |N |b, Λ3

≤ C1 for Λ3 ≥ Λ1 so large that

bΛb−1
3 ‖f‖C2

b (R)‖g1‖∞ ≤ πΛb−1
3 ‖f‖C2

b (R)‖g‖∞ <
1

2
.

For this, the estimate on M is a consequence of (6.7) in Lemma 6.5. The function N can be
expressed as

N(θ, λ; τ) = −λbf ′(θ +M(θ, λ; τ)) g1(τ) (6.14)

by (6.13). Then we may apply Lemma 6.1 for g = f ′, F = M ∈ Fb−1, Λ3 , and i = 1 to deduce
that N1(θ, λ; τ) = f ′(θ + M(θ, λ; τ)) satisfies |N1|0, Λ3

≤ C2. Thus |λbN1|b, Λ3
≤ C3 due to the

multiplicative property (6.1), and hence the boundedness of g1 yields |N |b, Λ3
≤ C4. Step 4: We

have
f ′(φ) = f ′(θ) +Q(θ, λ; τ)

with |Q|b−1, Λ3
≤ C5; in this relation the independent variables are (θ, λ; τ), and thus φ = θ +

M(θ, λ; τ) by the previous step. To establish the claim write

f ′(φ)− f ′(θ) =

∫ 1

0

d

ds
f ′(sφ+ (1− s)θ) ds = D(θ, λ; τ)M(θ, λ; τ)

for

D(θ, λ; τ) =

∫ 1

0

f ′′(θ + sM(θ, λ; τ)) ds.

Since f ′′ ∈ C2
b (R) we can proceed as in the proof of Lemma 6.1 to deduce that |D|0, Λ3

≤ C6. Thus
the bound on Q is a consequence of the multiplicative property (6.1) and the bound on M from
the previous step. Step 5: We have

Ia = λa − aλa+b−1f ′(θ) g1(τ) + P1(θ, λ; τ), (6.15)

where |P1|2(b−1)+a, Λ3
≤ C7. To show this we are going to apply Lemma 6.4 for σ = a. The definition

of Λ3 and (6.14) imply that (6.3) holds. Therefore

Ia = λa + aλa−1N(θ, λ; τ) + P2(θ, λ; τ),
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where |P2|2(b−1)+a, Λ3
≤ C8. Combining (6.14) with Step 4, we obtain the relation

P1 = −aλa+b−1Qg1(τ) + P2.

Thus using the multiplicative property (6.1) we arrive at (6.15). Step 6: We have

Ib = λb + P3(θ, λ; τ),

where |P3|2b−1, Λ3
≤ C9. To establish this claim, we apply Lemma 6.4 for σ = b and obtain

Ib = λb + bλb−1N(θ, λ; τ) + P4(θ, λ; τ),

where |P4|2(b−1)+b, Λ3
≤ C10. Since 2(b− 1) + b < 2b− 1, we see that |P4|2b−1, Λ3

≤ C11. The bound

on bλb−1N follows from Step 3. Step 7: Proof of (a)–(c). In view of the definition of g1, it follows
that (b) is satisfied. From the general theory of Hamiltonian systems we know that

H1(θ, λ; τ) = H(φ, I; τ) + ∂τΨ(φ, λ; τ);

the presence of the term ∂τΨ is due to the fact that the change of variables is time-dependent.
Since

∂τΨ(φ, λ; τ) = −λbf(φ)g(τ),

the previous steps allow us to write

H1 = ω0λ
a − aω0λ

a+b−1f ′(θ) g1(τ) + ω0P1 + f(φ)g(τ)P3 +R ◦ S,

which has the asserted form (6.9) for f1 as in (a) and

R1 = ω0P1 + f(φ)g(τ)P3 +R ◦ S.

Observing that 2(b− 1) + a < 2b− 1 ≤ c1, we can derive a bound on |P1|c1, Λ3
from Step 5. From

Lemma 6.1 it follows that |f ◦ φ|0, Λ3
is bounded, and using Step 6 we see that |f(φ)g(τ)P3|c1, Λ3

is bounded as well. It remains to obtain an estimate for R ◦ S, and this will be a consequence of
Lemma 6.3. To use it we must decrease the size of the domain again. Let Λ4 ≥ Λ3 be such that

Λ4 ≥ µ+ Λb
4 |N |b, Λ4

for µ = max{I0,Λ3}; here we are taking into account the remark prior to Lemma 6.3. Then Lemma
6.3 applies to yield |R ◦ S|c1, Λ4

≤ C12|R|c1, µ ≤ C13|R|c, I0 . To complete the argument it is therefore
sufficient to adjust Λ and I1; for this we can take Λ = Λ4 and I1 large enough so that T (ΣI1) ⊂ ΣΛ.
Step 8: Proof of (i)–(ii). First suppose that in addition b ≤ 0. Then the functions M and N from
Step 3 have bounded first order derivatives. This is due to the fact that

|∂θM |+ |∂θN | ≤ |M |b−1, Λλ
b−1 + |N |b, Λλ

b ≤ C14

and
|∂λM |+ |∂λN | ≤ |M |b−1, Λλ

b−2 + |N |b, Λλ
b−1 ≤ C15

pointwise. This implies that ‖DS‖L∞(ΣΛ) is finite, where DS denotes the Jacobian matrix of S.

Since S is symplectic, detDS = 1 everywhere, so that DT = (DS)−1 ◦ T is also bounded; notice

that the inverse of the unity determinant matrix
(

a b
c d

)
is just

(
d −b
−c a

)
. Concerning (ii), if

g is even, then g1 is odd and hence g1(2π) = g1(0) = 0. From the definition of T it follows that
T (·, ·; 2π) is the identity. This completes the proof of the theorem. 2
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7 Transformation of the Littlewood boundedness problem

In this section we consider the superlinear oscillator

ẍ+ |x|α−1x = p(t) (7.1)

where α > 1 and in general p will not be periodic. We are going to transform the equation by two
changes of variables in order to rewrite it in a form which is appropriate for the application of the
results derived previously. Each change of variables will be introduced in a separate subsection.

7.1 Action-angle variables

This is well-known and repeated for completeness only and to fix the notation. For every λ > 0
denote by xλ the solution to ẍ + |x|α−1x = 0 such that xλ(0) = λ and ẋλ(0) = 0. Notice that the
orbits of ẍ + |x|α−1x = 0 are the closed curves 1

2
y2 + 1

α+1
|x|α+1 = const. By the homogeneity of

the nonlinearity, xλ(t) = λx1(λ
α−1

2 t). Each xλ is periodic with minimal period T (λ) = λ
1−α

2 T (1).
Let Λ > 0 be the unique λ such that T (Λ) = 2π and write

c(t) = xΛ(t), s(t) = ċ(t).

These functions have many similarities with the trigonometric functions. For instance, c is even,
s is odd, and both are 2π-periodic. Also they are anti-periodic:

c(t+ π) = −c(t), s(t+ π) = −s(t),

as follows from the uniqueness for the initial value problem. From this anti-periodicity furthermore∫ 2π

0

c(t) dt =

∫ 2π

0

s(t) dt = 0 (7.2)

is obtained. Finally, by the conservation of energy,

1

2
s(t)2 +

1

α+ 1
|c(t)|α+1 =

1

α+ 1
Λα+1, t ∈ R. (7.3)

Using the functions c and s, we change variables (x, ẋ) 7→ (θ, %) in (7.1) by

x = γ %
2

α+3 c(θ), ẋ = γ
α+1

2 %
α+1
α+3 s(θ), (7.4)

where γ > 0 satisfies

γ
α+3

2

( 2

α+ 3

)
Λα+1 = 1.

It is straightforward to check that this transformation is a symplectic diffeomorphism from R2\{0}
onto T×]0,∞[. Furthermore, for every (x, ẋ) ∈ R2 \ {0},

1

2
ẋ2 +

1

α+ 1
|x|α+1 = ω1%

2(α+1)
α+3 , where ω1 =

1

α+ 1
(γΛ)α+1. (7.5)

This is a consequence of (7.3). The Hamiltonian

H(x, ẋ; t) =
1

2
ẋ2 +

1

α+ 1
|x|α+1 − p(t)x

26



is transformed into
H(θ, %; t) = ω1%

2(α+1)
α+3 − γ %

2
α+3 p(t) c(θ), (7.6)

and the corresponding equations of motion are

θ̇ = ∂%H =
2(α+ 1)

α+ 3
ω1%

α−1
α+3 − 2γ

α+ 3
%−

α+1
α+3 p(t) c(θ), (7.7)

%̇ = −∂θH = γ %
2

α+3 p(t) s(θ). (7.8)

The solutions to (7.1) are unique and do exist globally, the latter since

E(t;x) =
1

2
ẋ(t)2 +

1

α+ 1
|x(t)|α+1 = ω1%(t)

2(α+1)
α+3 (7.9)

from (1.3) satisfies |Ė| = |p(t)ẋ| ≤ |p(t)|
√

2E. However, the change to action-angle variables has
introduced a singularity at the origin x = ẋ = 0 corresponding to % = 0. Therefore we have to
make sure that in the proofs below we do only consider solutions of (7.7) and (7.8) being defined
on intervals J ⊂ R such that %(t) > 0 for t ∈ J . In this case we can undo the change of variables
and obtain a solution of the original problem (7.1) defined on J .

7.2 Changing time and angle

The results from the previous sections concern systems that are periodic in the independent vari-
able. Since we do not assume p to be periodic, the Hamiltonian H from (7.6) does not fit into this
framework. To remedy this defect, we change the rôles of time and angle. We first describe the
method in a general context. Consider a Hamiltonian system

θ̇ = ∂%H, %̇ = −∂θH, (7.10)

where H = H(θ, %; t) is a function of class Ck for some k ≥ 2 which is defined on T×]0,∞[×R. In
addition, we assume that for some %0 > 0 and µ > 0,

∂%H(θ, %; t) ≥ µ for % ≥ %0. (7.11)

Let (θ(t), %(t)) be a solution to (7.10) defined for t ∈ J and such that %(t) > %0 for all t ∈ J . Then
the first equation in (7.10) implies that

θ̇(t) = ∂%H(θ(t), %(t); t) ≥ µ for t ∈ J,

and hence the inverse of t 7→ θ(t) is well-defined. Traditionally, this inverse function would be
written as θ 7→ t(θ), but we will introduce new variables φ and τ to denote it by φ = φ(τ); so
τ = θ(t) and t = φ(τ). This function φ is a Ck-diffeomorphism from J̃ = θ(J) onto J . Next we
consider the Ck-function

I(τ) = H(τ, %(φ(τ));φ(τ)) for τ ∈ J̃ .

We intend to construct a Hamiltonian function H = H(φ, I; τ) so that (φ(τ), I(τ)) becomes a
solution of

φ′ = ∂IH, I ′ = −∂φH, (7.12)
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where the prime ′ indicates differentiation w.r. to τ . Less formally, the angle θ, now denoted by
τ , has become the new independent variable, whereas the old time variable t = φ plays the rôle of
the new angle.

In order to determine H we differentiate w.r. to τ and obtain

φ′ = θ̇−1 = (∂%H)−1, (7.13)

I ′ = ∂θH + (∂%H) %̇ φ′ + (∂tH)φ′,

where all partial derivatives are to be evaluated at (τ, %(φ(τ));φ(τ)). From (7.13) and the second
relation in (7.10) it follows that φ = φ(τ) and I = I(τ) satisfy

φ′ = (∂%H)−1, I ′ = (∂%H)−1(∂tH). (7.14)

Now notice that the equation
H(θ, %; t) = I

defines implicitly a solution function % = H(t, I; θ) of class Ck. This function is well-defined on
the open set

G = {(t, I; θ) ∈ R2 × T : I > H(θ, %0; t)}

with %0 from (7.11). Then differentiating the relation H(θ,H(t, I; θ); t) = I we see that indeed
(7.12) is verified for this Hamiltonian H.

To discuss more quantitative aspects we return to the particular Hamiltonian defined by (7.6).

For %→∞ the first term %
2(α+1)

α+3 is dominant, and hence:

(7.11) holds for appropriate %0 > 0 and µ > 0, (7.15)

depending only upon ω1, α, γ, ‖p‖L∞(R), and ‖c‖L∞(R). Thus following the general recipe outline
above to change time and angle variables we can define a new HamiltonianH = H(φ, I; τ) implicitly
by solving

I = ω1H
2(α+1)

α+3 − γ H
2

α+3 p(φ) c(θ). (7.16)

We will be assuming that p is of class C6, and since c is of class C3 at least, it follows that H is
of class C3 at least on G. For H from (7.6) the set G contains the region

{(φ, I; θ) ∈ R2 × T : I ≥ I∗},

provided that I∗ is fixed sufficiently large (depending upon the same parameters as %0, µ). At the
same time (and with the same dependencies) we can suppose that I∗ is so large that the solution
% = H to (7.16) satisfies

α0 I
α+3

2(α+1) ≤ % ≤ β0 I
α+3

2(α+1) , I ≥ I∗, (7.17)

for suitable constants α0, β0 > 0. Let

ω0 = ω
− α+3

2(α+1)

1 =
(2(α+ 1)

α+ 3
γ

1−α
2

) α+3
2(α+1)

(7.18)

and introduce R through the relation

H(φ, I; τ) = ω0 I
α+3

2(α+1) +
(α+ 3)

2(α+ 1)
γ ω

α+5
α+3

0 I
3−α

2(α+1) p(φ)c(τ) +R(φ, I; τ). (7.19)
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The associated equations of motion are

φ′ = ∂IH = ω0
α+ 3

2(α+ 1)
I

1−α
2(α+1) +

9− α2

4(α+ 1)2
γ ω

α+5
α+3

0 I
1−3α

2(α+1) p(φ)c(τ) + ∂IR, (7.20)

I ′ = −∂φH = − (α+ 3)

2(α+ 1)
γ ω

α+5
α+3

0 I
3−α

2(α+1) ṗ(φ)c(τ)− ∂φR. (7.21)

The following lemma contains bounds on the remainder term R and on ∂τH; its proof is deferred
to an appendix, see Section 9.

Lemma 7.1 There are constants C0 > 0 and I0 ≥ I∗ > 0 (depending upon ‖p‖C2
b (R)) such that

|R|+ |∂φR|+ I|∂IR|+ |∂2
φφR|+ I|∂2

φIR|+ I2|∂2
IIR| ≤ C0I

3(1−α)
2(α+1) (7.22)

and
|∂τH| ≤ C0I

3−α
2(α+1) (7.23)

is verified for I ≥ I0.

Our strategy will be to obtain results for the system (7.20), (7.21) and then pass back the
conclusions to the original system. Next we shall present two auxiliary results needed for this.
The first one says, roughly, that bounded solutions to (7.20), (7.21) produce bounded solutions to
(7.10) or (7.1). The second result tells us that if two solutions to (7.20), (7.21) are close and have
large action, then they remain close when transported back to (7.10).

Lemma 7.2 There exists I∗∗ > I∗ (depending upon the same parameters) such that if (φ(τ), I(τ))
is a solution of (7.20), (7.21) defined on R so that if

I∗∗ ≤ I ≤ I(2πn) ≤ I for n ∈ Z, (7.24)

then τ 7→ φ(τ) has a global inverse φ−1 : R → R and

θ(t) = φ−1(t), %(t) = H(t, I(φ−1(t));φ−1(t)), (7.25)

is a solution of (7.10) defined on R satisfying

α1 I
α+3

2(α+1) ≤ %(t) ≤ β1 I
α+3

2(α+1) for t ∈ R, (7.26)

where α1, β1 > 0 depend upon the usual parameters.

Remark 7.3 Since % is positive everywhere by (7.26), the relation x(t) = γ%(t)
2

α+3 c(θ(t)) from
(7.4) will define a global solution to (7.1) of bounded energy; recall (7.9) and (7.5). In the ap-
plication of Lemma 7.2 below we will have additional information on the solution (φ(τ), I(τ)),
namely

0 < δ ≤ φ(2π(n+ 1))− φ(2πn) ≤ ∆ for n ∈ Z,

for certain ∆ > δ > 0. This translates into information concerning the oscillatory behavior of x.
If we define Tn = φ(2πn), then δ ≤ Tn+1 − Tn ≤ ∆ for n ∈ Z, and the Tn are exactly the instants
(in increasing order) where

x(Tn) > 0 and ẋ(Tn) = 0.
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To justify the last assertion, notice that s(θ) vanishes if and only if θ = nπ for some n ∈ Z.
Moreover, c(nπ) = (−1)n. Then the relations

x(t) = γ%(t)
2

α+3 c(θ(t)), ẋ(t) = γ
α+1

2 %(t)
α+1
α+3 s(θ(t)),

establish the claim. Later we will be interested in the zeros of x(t). It is not hard to prove that
the function c(θ) vanishes if and only if θ = π/2 + nπ for some n ∈ Z. Hence the zeros of x(t) can
be labelled in an increasing order as tn = φ(π/2 + nπ), n ∈ Z. They satisfy

x(tn) = 0, (−1)nẋ(tn) < 0, and Tn < t2n < t2n+1 < Tn+1.

Proof of Lemma 7.2: If we rewrite H from (7.19) as H(φ, I; τ) = ω0I
a + R1(φ, I; τ) for a =

α+3
2(α+1)

∈]1
2
, 1[, then, due to Lemma 7.1, H satisfies (1.8) for b = 3−α

2(α+1)
. We notice that a > b > a−1,

and hence Theorem 1.2 cannot be applied directly. However, we may invoke Lemma 4.1 to find
I∗∗ > 4I∗ such that (7.24) implies that

1

4
I ≤ I(τ) ≤ 4 I, τ ∈ [2πn, 2π(n+ 1)]. (7.27)

Once we know that I(τ) lies between 1
4
I and 4 I, it follows that I(τ) ≥ I∗. Thus in view of the

discussion preceding the lemma we can globally undo the change of variables to obtain a solution
of (7.10) from (7.25). Finally by (7.17) and (7.27) we may take α1 = 4−aα0 and β1 = 4aβ0. 2

Lemma 7.4 Suppose that α ≥ 3. Then there exists Î∗∗ > I∗ (depending upon the same parameters)
such that if (φi(τ), Ii(τ)) for i = 1, 2 are solutions of (7.20), (7.21) defined on a common interval
J̃ of length |J̃ | > 2π which satisfy

Î∗∗ ≤ Im ≤ I1(2πn) ≤ IM , (7.28)

|φ1(2πn)− φ2(2πn)|+ |I1(2πn)− I2(2πn)| ≤ η < 1, (7.29)

for all n ∈ J̃ ∩ 2πZ, then the associated solutions of (7.10) are defined on a common interval J so
that

|J | ≥ c1I
1−α

2(α+1)

M |J̃ | − c2η (7.30)

and

|%1(t)− %2(t)| ≤ c3(I
1−α

2(α+1)
m + I

3−α
2(α+1)

m I
α−1

2(α+1)

M ) η (7.31)

for t ∈ J , where c1, c2, c3 > 0 depend upon the usual parameters.

Proof : If we take Î∗∗ > 2, then η < 1 ≤ Im/2, so that (7.28), (7.29) leads to

1

2
Im ≤ I1(2πn)− η ≤ I2(2πn) ≤ I1(2πn) + η ≤ 3

2
IM

for n ∈ J̃ ∩ 2πZ. Then the same argument as in the proof of the previous lemma yields

1

4
Im ≤ I1(τ) ≤ 4IM and

1

8
Im ≤ I2(τ) ≤ 6IM (7.32)
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for τ ∈ J̃ , where it may be necessary to increase Î∗∗ further. If we take a = α+3
2(α+1)

∈]1
2
, 1[ and

b = 3−α
2(α+1)

as in the proof of Lemma 7.2, then b ≤ 0 by assumption, and hence Lemma 4.3 applies.

Thus replacing Î∗∗ by a larger quantity if needed, it follows from (4.4) and (7.29) that

|φ1(τ)− φ2(τ)|+ |I1(τ)− I2(τ)| ≤ Cstab η (7.33)

for τ ∈ J̃ . From (7.20) and (7.32) we obtain for certain constants c4, c5 > 0 the estimate

c4I
a−1
M ≤ φ′i(τ) ≤ c5I

a−1
m , i = 1, 2, (7.34)

for τ ∈ J̃ ; recall that a < 1.
To estimate the length of the transformed interval J we write J̃ = [τ∗, τ

∗], assuming without
loss of generality that this interval is compact. The solutions (θi(t), %i(t)) of (7.10) are defined for

t ∈ Ji = φi(J̃) = [φi(τ∗), φi(τ
∗)].

From (7.34) we deduce that

|Ji| = φi(τ
∗)− φi(τ∗) ≥ (min

J̃
φ′i)(τ

∗ − τ∗) ≥ c4I
a−1
M |J̃ |, i = 1, 2.

Also, by (7.33), the symmetric difference of J1 and J2 satisfies

|J1∆J2| ≤ |φ1(τ∗)− φ2(τ∗)|+ |φ1(τ
∗)− φ2(τ

∗)| ≤ 2Cstab η.

As a consequence, the length of J = J1 ∩ J2 can be bounded below by

|J | = |J1 ∪ J2| − |J1∆J2| ≥ c4I
a−1
M |J̃ | − 2Cstab η,

which completes the proof of (7.30). Concerning (7.31), fix t ∈ J and τ1, τ2 ∈ J̃ such that
t = φ1(τ1) = φ2(τ2). Then, by (7.33) and (7.34),

Cstab η ≥ |φ1(τ1)− φ2(τ1)| = |φ2(τ2)− φ2(τ1)| ≥ c4I
a−1
M |τ2 − τ1|,

so that
|τ2 − τ1| ≤ c5I

1−a
M η (7.35)

for c5 = c−1
4 Cstab. From (7.19), (7.22), and (7.23),

|∂IH| ≤ c6I
a−1, |∂φH|+ |∂τH| ≤ c6I

b. (7.36)

Therefore by (7.21), (7.32), due to b ≤ 0, and (7.35),

|I1(τ1)− I1(τ2)| ≤ c64
−bIb

m |τ1 − τ2| ≤ c7 I
b
m I

1−a
M η

for c7 = 4−b c5 c6. Hence (7.33) yields

|I1(τ1)− I2(τ2)| ≤ |I1(τ1)− I1(τ2)|+ |I1(τ2)− I2(τ2)| ≤ (c7 I
b
m I

1−a
M + Cstab) η ≤ c8(I

b
m I

1−a
M + 1) η

for c8 = max{c7, Cstab}. Finally, using (7.25), (7.36), (7.32), and (7.35), this results in

|%1(t)− %2(t)| = |H(t, I1(τ1); τ1)−H(t, I2(τ2); τ2)|
≤ c6 81−aIa−1

m |I1(τ1)− I2(τ2)|+ c6 8−bIb
m|τ2 − τ1|

≤ c6 81−ac8(I
a+b−1
m I1−a

M + Ia−1
m ) η + c6 8−bc5 I

b
mI

1−a
M η

≤ c9(I
a+b−1
m I1−a

M + Ia−1
m + Ib

mI
1−a
M ) η.

Since a+ b− 1 < b, we obtain (7.31). 2
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8 More transformations and proof of Theorem 1.1

Our starting point will be the Hamiltonian

H(φ, I; τ) = ω0I
a + ω2 p(φ)c(τ)Ib +R(φ, I; τ) (8.1)

from (7.19), where

a =
α+ 3

2(α+ 1)
, b =

3− α

2(α+ 1)
, and ω2 =

(α+ 3)

2(α+ 1)
γ ω

α+5
α+3

0 . (8.2)

According to (7.22) we have R ∈ Fc, I0 , where its growth rate is determined by the exponent

c =
3(1− α)

2(α+ 1)
.

The function c(τ) in (8.1) is 2π-periodic and has zero average; recall (7.2). This implies that it
has a unique primitive c1(τ) which is 2π-periodic and has zero average. More generally, let cn(τ)
be the unique solution to

dncn
dτn

(τ) = c(τ), cn is 2π − periodic,

∫ 2π

0

cn(τ) dτ = 0.

Now we apply Theorem 6.7 three times to obtain a chain of symplectic changes of variables

(φ, I; τ) = (θ0, λ0; τ) 7→ (θ1, λ1; τ) 7→ (θ2, λ2; τ) 7→ (θ3, λ3; τ) (8.3)

such that at each stage and for large enough λk the Hamiltonian can be expressed as

Hk(θk, λk; τ) = ω0λ
a
k + ωk+2 p

(k)(θ)ck(τ)λ
bk
k +Rk(θk, λk; τ)

for certain constants ωk+2 and

b0 = b, bk = bk−1 − (1− a).

Furthermore,
Rk ∈ Fck, λ̃k

(8.4)

for suitable (large enough) constants Ck > 0, λ̃k > 0, and with ck = max{2bk−1 − 1, ck−1}. Notice
that the successive applications of Theorem 6.7 are admissible, since p, ṗ, p̈ ∈ C4

b (R) and the
functions c0(τ) = c(τ), c1(τ), and c2(τ) are 2π-periodic and have zero average. Moreover, bk ≤ b <
1, with b < 1 being equivalent to α > 1. The changes of variables Tk : (θk, λk; τ) 7→ (θk+1, λk+1; τ)
for k = 0, 1, 2 are admissible. Hence we have for the individual stages

λ1

2
≤ I ≤ 2λ1,

λ2

2
≤ λ1 ≤ 2λ2,

λ3

2
≤ λ2 ≤ 2λ3, (8.5)

if λ1 ≥ λ̃1, λ2 ≥ λ̃2, λ3 ≥ λ̃3, where λ̃1, λ̃2, λ̃3 > 0 may have to be increased further, if necessary.
In particular,

1

8
I ≤ λ3 ≤ 8I for I ≥ Ĩ or λ3 ≥ λ̃3, (8.6)
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provided that Ĩ > 0 and λ̃3 > 0 are fixed sufficiently large. From Theorem 6.7(i) we also deduce
that the Tk are bi-Lipschitzian, i.e., there are Lk ≥ 1 and λ∗k > 0 large such that

L−1
k

(
|θ̂k − θk|+ |λ̂k − λk|

)
≤ ‖Tk(θ̂k, λ̂k; τ)− Tk(θk, λk; τ)‖ ≤ Lk

(
|θ̂k − θk|+ |λ̂k − λk|

)
(8.7)

for λ̂k, λk ≥ λ∗k; this is a consequence of b2 < 0, b1 < 0, and b0 ≤ 0 (notice that b0 = 0 iff α = 3).

If we continue to denote E = ω1%
2(α+1)

α+3 , see (7.9), then also

α2E ≤ I ≤ β2E for E ≥ Ẽ (8.8)

and with α2 = ω−1
1 β

− 2(α+1)
α+3

0 and β2 = ω−1
1 α

− 2(α+1)
α+3

0 , if Ẽ is sufficiently large; this is a consequence of
(7.17).

Let us now point out why we have imposed the condition p ∈ C6
b (R). Theorem 6.7 could be

applied for any b and c less than 1, but it is only of interest in the case where b > c, since otherwise
the remainder R will dominate f(φ)g(τ)Ib and an additional transformation step will yield no
improvement. Thus if we were to assume p ∈ C7

b (R) for instance, then we can realize a further
change of variables

(θ3, λ3; τ) 7→ (θ4, λ4; τ),

but it would be of no use: we have

b1 =
2− α

α+ 1
, b2 =

5− 3α

2(α+ 1)
, b3 =

3− 2α

α+ 1
, c1 = c2 = c3 =

3(1− α)

2(α+ 1)
, (8.9)

and consequently b1 > c1 and b2 > c2, whereas b3 ≤ c3 (and b3 = c3 iff α = 3).

Proof of Theorem 1.1: Due to b3 ≤ c3 ≤ a − 1 it is possible to apply Theorem 4.7 for the
system in the variables (θ3, λ3) and with the Hamiltonian H3 written as H3 = ω0λ

a
3 + R̃3 defined

on G = {λ3 ≥ λ̃3}. Notice that R̃3 satisfies the condition (1.8) with b = c3; this is a consequence
of (8.4) and b3 ≤ c3 ≤ a − 1. Let ε∗, a1, A1, A2, A3, and Γ̂ be the constants given by Theorem
4.7 for this Hamiltonian. The rôle of I∗∗ in Theorem 4.7 is played by a constant obtained from the
application of Lemma 4.1 and denoted by λ3∗∗. Next we are going to define the function ε∗ = ε∗(ρ),
whose existence is asserted in Theorem 1.1. First let

ρ̄ = max
{

2ρ, ω1%
2(α+1)

α+3

0 , α−1
2 Ĩ , Ẽ, 8α−1

2 max{λ3∗∗, λ̃3, λ
∗
3, 2λ̃2, 2λ

∗
2, 4λ

∗
1}
}

with %0 from (7.15), Ĩ from (8.6), α2, β2, Ẽ from (8.8), λ̃2, λ̃3 from (8.6), (8.5), and λ∗1, λ
∗
2, λ

∗
3 from

(8.7). Let ε∗(ρ) be a positive number satisfying

ε∗(ρ) < ε∗, 8β2ρ̄ <
1

4
ε∗(ρ)−

1
1−a ,

and furthermore

ε∗(ρ) ≤ min
{
λ̃−1

3 a1, (λ∗3)
−1a1, (2λ̃2)

−1a1, (2λ∗2)
−1a1, (4λ∗1)

−1a1, (8I∗∗)
−1a1, (8Î∗∗)

−1a1

} α−1
2(α+1)

(8.10)
and

ε∗(ρ) ≤ 1

2L0L1L2

,
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with a1 from Theorem 4.7, I∗∗ from Lemma 7.2, Î∗∗ from Lemma 7.4, and L0, L1, L2 from (8.7).
Let x = x(t) be a solution of (1.2) such that

lim sup
t→∞

E(t;x) = ∞ and inf
t≥t0

E(t;x) < ρ

holds for some t0 ∈ R. Fix ε ∈]0, ε∗(ρ)]. Next select t1 ≥ t0 such that E(t1;x) < ρ and take
r = r(ε) satisfying

1

4
α2r > 4Γ̂ε−

1
1−a .

Then, by assumption, we find tr > t1 so that E(tr;x) > 2r. Since ρ < ρ̄ < 2r there is t∗r ∈ [t1, tr[
with the property that

E(t∗r;x) = ρ̄ and E(t;x) > ρ̄ for t ∈]t∗r, tr]. (8.11)

We start the transformations by changing to action-angle variables (x, ẋ) 7→ (θ, %) as described in
Section 7.1, writing the Hamiltonian in the form H(θ, %; t) given in (7.6). Since E(t;x) ≥ ρ̄ > 0 for
t ∈ [t∗r, tr], (7.9) implies that % stays away from zero during this time interval, i.e., the change of

variables does not introduce a singularity at the origin. Now notice that (8.11) and E = ω1%
2(α+1)

α+3

yields %(t) > %0 for t ∈ [t∗r, tr]. Therefore (7.11) is verified along the solution and we can change
time and angle as described in Section 7.2. This leads to the Hamiltonian H(φ, I; τ) from (7.19)
and a solution (φ(τ), I(τ)) of (7.20), (7.21) defined on the τ -interval J̃ = φ([t∗r, tr]) =: [τ ∗r , τr].
Thereafter we introduce the three further changes of variables Tk from (8.3), as outlined above.
Then by (8.8),

I(τ) ≥ α2E(φ−1(τ);x) ≥ α2ρ̄ > Ĩ for τ ∈ J̃ , (8.12)

and hence
1

8
I(τ) ≤ λ3(τ) ≤ 8I(τ) for τ ∈ J̃ (8.13)

by (8.6). Similarly,

I(τ ∗r ) ≤ β2E(t∗r;x) = β2ρ̄ and I(τr) ≥ α2E(tr;x) ≥ 2α2r,

which due to (8.13) yields

λ3∗∗ ≤ inf
τ∈J̃

λ3(τ) ≤ λ3(τ
∗
r ) ≤ 8β2ρ̄ <

1

4
ε−

1
1−a

and

sup
τ∈J̃

λ3(τ) ≥ λ3(τr) ≥
1

4
α2r > 4Γ̂ ε−

1
1−a .

Hence it follows from Theorem 4.7 that there are a (globally in τ defined) solution (θε
3(τ), λ

ε
3(τ))

of the system associated to H3 and a time τε ∈ J̃ so that {0 ≤ τ − τε ≤ A3 ε
−3} ⊂ J̃ ,

a1 ε
− 2(α+1)

α−1 ≤ λε
3(τ) ≤ A1 ε

− 2(α+1)
α−1 for τ ∈ R, (8.14)

and
|θε

3(τ)− θ3(τ)|+ |λε
3(τ)− λ3(τ)| ≤ A2 ε for 0 ≤ τ − τε ≤ A3 ε

−3; (8.15)

notice that − 1
1−a

= 2(α+1)
1−α

, σ = min{2 − a,−c3} = −c3 = 3(α−1)
2(α+1)

, and − σ
1−a

= −3 by (8.2) and

(8.9). In order to transfer (8.14) and (8.15) back to obtain the desired solution xε of (1.2), we first
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undo the three transformations involved in (8.3) to get a solution (φε(τ), Iε(τ)) of (7.20), (7.21)
which is defined for all τ ∈ R. Then (8.14) in conjunction with ε ≤ ε∗(ρ) and (8.10) implies that
λε

3(τ) ≥ max{λ̃3, λ
∗
3, 2λ̃2, 2λ

∗
2, 4λ

∗
1} ≥ λ̃3 for τ ∈ R. This together with (8.6) and (8.14) yields the

bound
a1

8
ε−

2(α+1)
α−1 ≤ Iε(τ) ≤ 8A1 ε

− 2(α+1)
α−1 for τ ∈ R. (8.16)

As observed before, all three changes of variables Tk are bi-Lipschitzian; see (8.7). Then, since
λε

3(τ) ≥ λ∗3 for τ ∈ R and

λ3(τ) ≥ I(τ)/8 ≥ (α2/8)ρ̄ ≥ max{λ̃3, λ
∗
3, 2λ̃2, 2λ

∗
2, 4λ

∗
1} ≥ λ∗3

for τ ∈ J̃ by (8.13) and (8.12), we see that (8.7) applies for k = 2 and on {0 ≤ τ − τε ≤ A3 ε
−3}.

Next, we already derived that λε
3(τ) ≥ λ̃3 for τ ∈ R and λ3(τ) ≥ λ̃3 for τ ∈ J̃ . Thus (8.5) yields

λε
2(τ) ≥ λε

3(τ)/2 ≥ λ∗2 for τ ∈ R as well as λ2(τ) ≥ λ3(τ)/2 ≥ λ∗2 for τ ∈ J̃ . Therefore (8.7) can
also be used for k = 1 on {0 ≤ τ − τε ≤ A3 ε

−3}. Last and final, λε
2(τ) ≥ λε

3(τ)/2 ≥ max{λ̃2, 2λ
∗
1}

for τ ∈ R and λ2(τ) ≥ λ3(τ)/2 ≥ max{λ̃2, 2λ
∗
1} for τ ∈ J̃ implies that λε

1(τ) ≥ λε
2(τ)/2 ≥ λ∗1 for

τ ∈ R and λ1(τ) ≥ λ2(τ)/2 ≥ λ∗1 for τ ∈ J̃ , by (8.5). Hence (8.7) can be applied for k = 0 as well,
on {0 ≤ τ − τε ≤ A3 ε

−3}. In summary, we obtain

|φε(τ)− φ(τ)|+ |Iε(τ)− I(τ)| ≤ L0L1L2A2 ε for 0 ≤ τ − τε ≤ A3 ε
−3

from (8.15) and (8.7). In particular, we arrive at

|φε(2πn)− φ(2πn)|+ |Iε(2πn)− I(2πn)| ≤ Ã2 ε (8.17)

for those n ∈ Z such that 0 ≤ 2πn − τε ≤ A3 ε
−3, with the constant Ã2 = L0L1L2. Next

we are going to apply Lemmas 7.2 and 7.4 for (φε(τ), Iε(τ)), I = Im = (a1/8)ε−
2(α+1)

α−1 , and

I = IM = 8A1ε
− 2(α+1)

α−1 . In view of (8.10) we have I ≥ I∗∗ and Im ≥ Î∗∗, i.e., from (8.16) we see
that (7.24) and (7.28) are verified. Due to Lemma 7.2 we find a solution (θε(t), %ε(t)) of (7.10)
defined on R and satisfying

α̃1 ε
−α+3

α−1 ≤ %ε(t) ≤ β̃1 ε
−α+3

α−1 for t ∈ R, (8.18)

where α̃1 = α1(a1/8)
α+3

2(α+1) and β̃1 = β1(8A1)
α+3

2(α+1) . Since %ε(t) stays away from zero, we can

now define xε(t) = γ%ε(t)
2

α+3 c(θε(t)) according to (7.4) to obtain a solution of (1.2). Recalling

E(t;xε) = ω1%
ε(t)

2(α+1)
α+3 , it follows from (8.18) that (1.4) holds. Concerning (1.5), we take η =

Ã2ε < 1 in (7.29). Then, by (7.30) and (7.31), on a time interval J of length

|J | ≥ c1I
1−α

2(α+1)

M · 2A3ε
−3 − c2η = c1(8A1ε

− 2(α+1)
α−1 )

1−α
2(α+1) · 2A3ε

−3 − c2Ã2ε ≥ c̃1ε
−2

we get

|%ε(t)− %(t)| ≤ c3(I
1−α

2(α+1)
m + I

3−α
2(α+1)

m I
α−1

2(α+1)

M ) η

= c3

(
((a1/8)ε−

2(α+1)
α−1 )

1−α
2(α+1)

+ ((a1/8)ε−
2(α+1)

α−1 )
3−α

2(α+1)
(8A1ε

− 2(α+1)
α−1 )

α−1
2(α+1)

)
Ã2ε

≤ c̃3(ε+ ε−
2

α−1 ) ε ≤ ĉ3 ε
α−3
α−1
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for t ∈ J . Thus if we let tε denote the midpoint of J , then we obtain (1.5). Concerning the
last assertion, we notice that the sequence of increasing zeros of x(t) and xε(t) lying in J are the
tn = φ(π/2 + nπ) and tεn = φε(π/2 + nπ) such that π/2 + nπ ∈ J ; see Remark 7.3. Then write

tεn − tn = φε(π/2 + nπ)− φ(π/2 + nπ)

= φε(π/2 + nπ)− φε(2Nπ) + φε(2Nπ)− φ(2Nπ) + φ(2Nπ)− φ(π/2 + nπ)

for N chosen such that TN is closest. Using (8.17), φε(π/2 + nπ) − φε(2Nπ) ∼ (φε)′ ∼ ε, and
φ(2Nπ) − φ(π/2 + nπ) ∼ φ′ ∼ ε, we finally arrive at |tεn − tn| ≤ A4 ε for π/2 + nπ ∈ J , provided
that A4 > 0 is fixed large enough. 2

9 Appendix I: Proof of Lemma 7.1

To verify (7.22) it will be understood that henceforth all assertions and constants C = C(K) are
uniform in p such that ‖p‖C2

b (R) ≤ K. First the defining relation (7.16) is rewritten as

I = ω
− 2(α+1)

α+3

0 %
2(α+1)

α+3

(
1− ω

2(α+1)
α+3

0 γ %−
2α

α+3 p(φ) c(τ)
)

(9.1)

for % = %(φ, I; τ) = H. Our first task will be to prove that the function % belongs to Fp, I0 for
p = α+3

2(α+1)
and I0 large enough. From (7.17) we deduce that, for large I,

α0I
p ≤ % ≤ β0I

p, (9.2)

and so I−p|%(φ, I; τ)| is bounded by β0. Concerning the bound on ∂I%, note first that differentiation
of (9.1) w.r. to I yields

∂I% =
(2(α+ 1)

α+ 3
ω
− 2(α+1)

α+3

0 − γ
2

α+ 3
%−

2α
α+3 p(φ) c(τ)

)−1

%
1−α
α+3 , (9.3)

so that I|∂I%| ≤ CIp. Here we are using (9.2), and also that I, and hence %, is very large. For the
bound on ∂φ% the argument is similar. Taking the derivative of (9.1) w.r. to φ leads to

∂φ% = γ
[2(α+ 1)

α+ 3
ω
− 2(α+1)

α+3

0 − γ
2

α+ 3
%−

2α
α+3 p(φ) c(τ)

]−1

p′(φ) c(τ) %
3−α
α+3 ,

and hence |∂φ%| ≤ CI
3−α

2(α+1) ≤ CIp. Next we turn to the second derivatives of %. By (9.3),

∂2
II% =

(1− α

α+ 3

)(2(α+ 1)

α+ 3
ω
− 2(α+1)

α+3

0 − γ
2

α+ 3
%−

2α
α+3 p(φ) c(τ)

)−1

%−
2(α+1)

α+3 (∂I%)

− γ 4α

(α+ 3)2

(2(α+ 1)

α+ 3
ω
− 2(α+1)

α+3

0 − γ
2

α+ 3
%−

2α
α+3 p(φ) c(τ)

)−2

p(φ) c(τ) %−
2(1+2α)

α+3 (∂I%).

Therefore % = O(I
α+3

2(α+1) ) and |∂I%| ≤ CI
1−α

2(α+1) leads to

|∂2
II%| ≤ C%−

2(α+1)
α+3 |∂I%|+ C%−

2(1+2α)
α+3 |∂I%| ≤ CI −

(1+3α)
2(α+1) ,

so that I2|∂2
II%| ≤ CIp. The bounds on ∂2

φI% and ∂2
φφ% can be derived in a similar manner. This

establishes the claim that % ∈ Fp, I0 for I0 sufficiently large.
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Next, using (7.19), (9.1), and the general Taylor expansion (6.5) for

σ1 =
α+ 3

2(α+ 1)
, σ2 =

3− α

2(α+ 1)
, ε = −ω

2(α+1)
α+3

0 γ %−
2α

α+3 p(φ) c(τ),

it follows that

R(φ, I; τ) = %− ω0 I
α+3

2(α+1) − (α+ 3)

2(α+ 1)
γ ω

α+5
α+3

0 I
3−α

2(α+1) p(φ)c(τ)

= %− %
(
1− ω

2(α+1)
α+3

0 γ %−
2α

α+3 p(φ) c(τ)
) α+3

2(α+1)

− γ
3−α

2 %
3−α

(α+3)

(
1− ω

2(α+1)
(α+3)

0 γ %−
2α

(α+3) p(φ) c(τ)
) 3−α

2(α+1)
p(φ)c(τ)

= %− %
(
1 + σ1ε+ σ1(σ1 − 1)ε2Z1(ε)

)
− γ

3−α
2 %

3−α
(α+3)

(
1 + σ2ε+ σ2(σ2 − 1)ε2Z2(ε)

)
p(φ)c(τ)

for

Zj(ε) =

∫ 1

0

(1− s)(1 + εs)σj−2 ds, j = 1, 2.

Here, recalling the identity (7.18), some cancellations occur, and we obtain

R(φ, I; τ) = −σ1(σ1 − 1)% ε2Z1(ε)

− γ
3−α

2 %
3−α

(α+3)

(
σ2ε+ σ2(σ2 − 1)ε2Z2(ε)

)
p(φ)c(τ). (9.4)

Next observe that ε = ε(φ, I; τ) ∈ Fq, I0 for q = − α
α+1

; this is a consequence of (9.2) and % ∈ Fp, I0 .
From Lemma 6.1 we thus deduce that Z1 ◦ ε ∈ F0, I0 , and similarly we get Z2 ◦ ε ∈ F0, I0 . Now it
is easy to prove (7.22): From % ∈ Fp, I0 , ε

2 ∈ F2q, I0 , and Z1 ◦ ε ∈ F0, I0 it follows that

−σ1(σ1 − 1)% ε2Z1(ε) ∈ Fp+2q, I0 ,

and furthermore p+2q = 3(1−α)
2(α+1)

is precisely the exponent which shows up on the right-hand side of

(7.22). The remaining terms in (9.4) can be treated in an analogous way, so that we have verified
(7.22).

To establish (7.23), we differentiate (7.16), i.e.,

I = ω1H
2(α+1)

α+3 − γ H
2

α+3 p(φ) c(τ),

w.r. to τ and obtain[
ω1

2(α+ 1)

α+ 3
H

α−1
α+3 − γ

2

α+ 3
H−α+1

α+3 p(φ) c(τ)
]
(∂τH) = γ H

2
α+3 p(φ) ċ(τ).

Therefore (7.23) follows from H = % = O(I
α+3

2(α+1) ), and the proof to Lemma 7.1 is complete. 2
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10 Appendix II: Some more comments on the proof

1. Theorem 4 in [12] can be applied to equation (1.2) with α = 3. This result implies in particular
the existence of a forcing p ∈ C6

b (R) such that

ẍ+ x3 = p(t) (10.5)

has an unbounded solution x(t) satisfying

E(t;x) ∼ t4/15 as t→∞.

As far as we know it is an open problem to decide whether the exponent 4/15 is sharp. Our results
seem unrelated to this question, since the numbers tε could go to infinity very slowly.

2. The estimate (1.5) says that the solutions xε(t) and x(t) are close; here ‘closeness’ is measured
in terms of the action, defined by the autonomous equation. Perhaps more refined estimates could
be obtained assuming more regularity for p(t) and using successive corrections of the adiabatic
invariant. This kind of approach can be found in [4].

3. The averaging principle as well as the theory of adiabatic invariants can be applied in several
ways to systems (1.2) and (1.9). In any case, these methods alone do not seem to be sufficient to
yield a complete proof of our results. In essence, there are two steps in the proof:

(i) unbounded solutions are close to bounded solutions at some instant of time, and

(ii) solutions with close initial data remain close for long periods of time.

Certainly step (ii) is in the scope of perturbation theory, but step (i) seems to be of more topological
nature; notice the crucial rôle played by Lemma 3.5 in our proof. To elaborate somewhat further
on this point, consider α = 3 and hence (10.5). Defining y(t) = εx(εt) for a small parameter ε > 0,
equation (10.5) is transformed into

ÿ + y3 = ε3p(εt).

Adopting the framework developed in [1], we introduce the change of variables

s = εt, y = γR1/3c(θ), ẏ = γ2R2/3s(θ).

Then the equations becomes

dθ

ds
= β1R

−1/3 − β2 ε
3R−2/3p(λ)c(θ),

dR

ds
= β3 ε

3R1/3p(λ)s(θ),

dλ

ds
= ε,

where β1, β2, and β3 can be specified in terms of (7.7), (7.8). Assuming that R(0) = 1, the second
equation leads to the estimate

|R(s)−R(s0)| ≤ Cε3|s− s0|,

valid on any s-interval where for instance 1
2
≤ R(s) ≤ 2. Undoing the change of variables and

using R = ε3%, we obtain
|%(t)− %(t0)| ≤ Cεt, (10.6)
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where %(t) denotes the action associated to x(t). Let us assume that step (i) was already accom-
plished and that we know in addition that there is a bounded solution xε(t) with %ε(t) ∼ ε−3 and
such that %ε(tε) and %(tε) are close. Then the estimate (10.6) can be applied to both solutions,
which leads to

%(t)− %ε(t) = %(t)− %(tε) + %(tε)− %ε(tε) + %ε(tε)− %ε(t) = O(1)

on an interval of the type |t− tε| ≤ Cε−1. Most likely the previous argument can be refined using
the averaging principle, since s(θ) has zero average. This could lead to the improved bound

%(t)− %ε(t) = O(1) for |t− tε| ≤ Cε−2,

given by our result. We have proved the existence of xε(t) such that %ε(t) ∼ ε−3 and %ε(tε) ∼ %(tε)
by a combination of variational and topological techniques.
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