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ABSTRACT. This work presents the construction of the existence theory of ra-
dial solutions to the elliptic equation

∆2u = (−1)kSk[u] + λf(x), x ∈ B1(0) ⊂ RN ,

provided either with Dirichlet boundary conditions

u = ∂nu = 0, x ∈ ∂B1(0),

or Navier boundary conditions

u = ∆u = 0, x ∈ ∂B1(0),

where the k−Hessian Sk[u] is the kth elementary symmetric polynomial of
eigenvalues of the Hessian matrix and the datum f ∈ L1(B1(0)) while λ ∈ R.
We prove the existence of a Carathéodory solution to these boundary value prob-
lems that is unique in a certain neighborhood of the origin provided |λ| is small
enough. Moreover, we prove that the solvability set of λ is finite, giving an
explicity bound of the extreme value.

1. INTRODUCTION

This work is devoted to the study of the existence of radial solutions to elliptic
equations of the form

(1) ∆2u = (−1)kSk[u] + λf(x), x ∈ B1(0) ⊂ RN ,

where N, k ∈ N, λ ∈ R and f : B1(0) ⊂ RN −→ R is an absolutely integrable
function. The first term in the right hand side of (1) is the k−Hessian Sk[u] =
σk(Λ), where

σk(Λ) =
∑

i1<···<ik

Λi1 · · ·Λik ,

is the kth elementary symmetric polynomial and Λ = (Λ1, · · · ,Λn) is the set of
eigenvalues of the Hessian matrix (D2u). In other words, Sk[u] is the sum of the
kth principal minors of the Hessian matrix. We will always focus on the range
2 ≤ k ≤ N , since equation (1) is linear for k = 1, and we are interested in
nonlinear boundary value problems.
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The motivation to study equation (1) comes from different sources. In the first
place we can cite the impressive development of analytical results concerning the
fully nonlinear boundary value problems

Sk[u] = f,

as well as related problems, that has appeared in the last decades [6, 8, 23, 24, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. Particular cases of the k−Hessian
equation include the Poisson equation

−∆u = f,

for k = 1, and the Monge-Ampère equation [4, 5]

det(D2u) = f,

for k = N .
This work is also motivated by the theory of biharmonic boundary value prob-

lems. Although they have been studied much less frequently than their harmonic
equivalents, they are present in many different applications and possess an inherent
theoretical interest. The current knowledge of fourth order elliptic equations has
considerably grown in recent times [22], but still it is not comparable to the stage of
development of the theory concerning harmonic boundary value problems. Bihar-
monic boundary value problems studied so far include different nonlinearities, see
for instance [1, 2, 9, 10, 11, 20, 21, 25]. Nevertheless, to our knowledge, Hessian
nonlinearities were considered for the first time in [19]. On one hand, it is natural to
consider fourth order equations with nonlinearities that involve the second deriva-
tives of the solution. And in turn it is natural to consider for these nonlinearities
the k−Hessians, since the Hessian matrix has exactlyN tensorial invariants, which
are the N different k−Hessians. Consequently one of our objectives is to push for-
ward the existence theory that concerns this type of problems [14, 15, 16, 17, 19],
which, as discussed, arises rather naturally within the theory of fourth order bound-
ary value problems.

We can still mention one source of inspiration more. It is the presence of these
equations in the fields of condensed matter and statistical physics [13, 18]. Al-
though the present work is devoted to the construction of mathematical theory
rather than modeling or the exploration of new applications, we will briefly men-
tion some potential implications of our results in physics in our last section.

To be concrete, we will concentrate on the biharmonic boundary value problem

∆2u = (−1)kSk[u] + λf(x), x ∈ B1(0) ⊂ RN ,(2)
u = ∂nu = 0, x ∈ ∂B1(0),

which we denote as the Dirichlet problem for partial differential equation (1), and
also

∆2u = (−1)kSk[u] + λf(x), x ∈ B1(0) ⊂ RN ,(3)
u = ∆u = 0, x ∈ ∂B1(0),

which we denote as the Navier problem for partial differential equation (1).
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The paper is organized as follows. In Section 2, we write these problems in
radial coordinates, then a change of variables leads to a Duffing equation with
boundary conditions on the semi-infinite interval [0,+∞) that is more amenable
to mathematical analysis. We moreover present our main results there. In Section 3
we develop the existence and local uniqueness theory of weak solutions for small
|λ|, by applying the contraction principle. In Section 4, we prove higher regularity
for these solutions. In Section 5, we use the upper and lower solution method to
derive an explicit lower bound of the supremum of the solvability set of parameters
λ for which the problem is solvable. In Section 6 we show that no solutions exist
for large λ. Finally, in Section 7, we will draw some conclusions that are implied
by our results.

2. RADIAL PROBLEMS

The radial problem corresponding to equation (1) reads

(4)
1

rN−1
[rN−1(∆ru)′]′ =

(−1)k

k

(
N − 1

k − 1

)
1

rN−1
[rN−k(u′)k]′ + λf(r),

where the radial Laplacian is given by ∆r(·) = 1
rN−1 [rN−1(·)′]′ and the radial

coordinate r ∈ [0, 1]. Now integrating with respect to r, applying the boundary
condition u′(0) = 0 (the other boundary conditions for the Dirichlet problem are
u(1) = u′(1) = 0), and substituting v = u′ we arrive to

v′′ +
N − 1

r
v′ − N − 1

r2
v =

(−1)k

k

(
N − 1

k − 1

)
vk

rk−1
+

λ

rN−1

∫ r

0
f(s)sN−1ds,

subject to the boundary conditions v(0) = v(1) = 0. The change of variables
w(t) = −v(e−t) leads to the boundary value problem

−w′′ + (N − 2)w′ + (N − 1)w = 1
k

(
N−1
k−1

)
e(k−3)twk

+ λe(N−3)t
∫ e−t

0 f(s)sN−1ds,
w(0) = w(+∞) = 0,

where k,N ∈ N, 2 ≤ k ≤ N , and t ∈ [0,+∞[. Finally we restate this problem as

(5)


−w′′ + (N − 2)w′ + (N − 1)w = 1

k

(
N−1
k−1

)
e(k−3)twk

+ λe(N−3)t
∫ e−t

0 g(s) ds,
w(0) = w(+∞) = 0,

where g(·) ∈ L1([0, 1]), which is the form we are going to analyze.
The problem corresponding to Navier boundary conditions in the radial setting

reads

(6)


−w′′ + (N − 2)w′ + (N − 1)w = 1

k

(
N−1
k−1

)
e(k−3)twk

+ λe(N−3)t
∫ e−t

0 g(s) ds,
w′(0)− (N − 1)w(0) = w(+∞) = 0,

after the same changes of variables have been carried out.



4 C. ESCUDERO, P. J. TORRES

All along this work we will focus on low dimensions N = 2, 3 and on quadratic
nonlinearities k = 2. We do so because N = 4 is a critical dimension and k = 3
is a critical nonlinearity for this model, in a sense that we will not make precise
herein. We will leave the investigation of these cases for the future. Note also
that we will consider the higher order symmetry condition u′′′(0) = 0, which will
constitute the fourth boundary condition, at all times. This condition is necessary in
order to build an existence theory that is compatible with the Carathéodory notion
of solution.

These are the main results proven in this paper:

Theorem 2.1. The radial equation (4) with k = 2, N = 2, 3 and subject to ei-
ther homogeneous Dirichlet or Navier boundary conditions possesses at least one
solution in C3([0, 1])∩W 4,1

(
[0, 1], rN−1dr

)
provided |λ| is small enough. More-

over, there exists an open ball in this functional space that contains the origin and
strictly one solution.

Proof. The same result with the solutions in C3([0, 1]) ∩ AC3([ε, 1])∀ ε > 0 is a
direct consequence of the changes of variables above (note that the change of vari-
ables that involves the independent variable is smooth and monotonic wherever it is
defined) and the auxiliary results in the text that lead to Theorem 4.1, Remark 4.2,
Theorem 4.3 and Remark 4.4.

To finish the proof we need to consider the higher order symmetry condition
u′′′(0) = 0. Note that it is clear that∫ 1

ε
|u(ıv)| rN−1 dr <∞ ∀ ε > 0.

Therefore we just need to estimate∫ ε

0
|u(ıv)| rN−1 dr ≤

∫ ε

0

(
|u′′′|
r

+ C

)
rN−1 dr <∞,

for ε small enough, where C is a positive constant and we have used the higher
order symmetry condition in the first inequality and the fact that u ∈ C3([0, 1]) in
the second. �

Remark 2.2. We cannot conclude that these two solutions belong to the functional
space AC3([0, 1]) as the singularity in the origin prevents us to get this higher reg-
ularity (note indeed that AC3([0, 1]) ⊂ C3([0, 1])∩W 4,1

(
[0, 1], rN−1dr

)
). How-

ever, if we looked for radial solutions in a ring rather than a ball, then Theorem 2.1
would still be valid but this time the two solutions would indeed belonged to
AC3([a, b]), where a and b are the inner and outer radiuses of the ring respectively.
The proofs would follow analogously to the corresponding ones in this work. Note
that in both cases the notion of solution corresponds to the Carathéodory one.

Theorem 2.3. The radial equation (4) with k = 2, N = 2, 3 and subject to ei-
ther homogeneous Dirichlet or Navier boundary conditions possesses at least one
solution in C3([0, 1]) ∩W 4,1

(
[0, 1], rN−1dr

)
provided λ is small enough.
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Proof. This result is a consequence of Theorems 5.3 and 5.5, as well as the proof
of Theorem 2.1. �

Remark 2.4. Note this result improves the previous one in the sense that λ can
be of arbitrarily large magnitude provided it is negative, at the price of loosing the
non-degeneracy property near the origin.

Theorem 2.5. The radial equation (4) with k = 2, N = 2, 3 and subject to either
homogeneous Dirichlet or Navier boundary conditions possesses no weak solu-
tions provided λ is large enough.

Proof. The statement follows from Theorems 6.3 and 6.5 in the text. �

Remark 2.6. By weak solution we mean a function w that is square integrable
together with its first derivative and obeys the equation in a suitable weak sense.
For the precise definitions see the next section. Of course, non-existence of weak
solutions implies non-existence of strong solutions in the sense of Theorems 2.1
and 2.3.

3. EXISTENCE RESULTS FOR k = 2 AND N ∈ {2, 3}

From now on we will employ the notation R+ := [0,∞[, ‖ · ‖p := ‖ · ‖Lp(R+)

and ‖ · ‖∞ := ‖ · ‖L∞(R+).
We begin with some preliminary results.

3.1. Dirichlet problem. In this subsection we focus on the problem

(7)


−w′′ + (N − 2)w′ + (N − 1)w = N−1

2 e−tw2

+ λe(N−3)t
∫ e−t

0 g(s) ds,
w(0) = w(∞) = 0.

Lemma 3.1. The function

h1(t) = e(N−3)t

∫ e−t

0
g(s) ds,

where g ∈ L1(0, 1), belongs to BC(R+) ∩ L1(R+) if N = 2 and to BC(R+) if
N = 3. Moreover

lim
t→∞

h1(t) = 0

in either case.

Proof. Since g is Lebesgue integrable, then it is obvious that h1(t) is continuous,
as it is the product of a continuous function and the composition of two continuous
functions. For N = 2, 3 we have∣∣∣∣∣e(N−3)t

∫ e−t

0
g(s) ds

∣∣∣∣∣ ≤ ‖g‖L1(0,1).

Since this bound is uniform in t we can take the sup0≤t<∞ on its left hand side to
conclude h1(t) ∈ BC(R+).
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If N = 2 then

h1(t) = e−t
∫ e−t

0
g(s) ds.

Therefore

‖h1(t)‖L1(R+) =

∫ ∞
0

∣∣∣∣∣e−t
∫ e−t

0
g(s) ds

∣∣∣∣∣ dt ≤ ‖g‖L1(0,1)

∫ ∞
0

e−t dt

= ‖g‖L1(0,1).

Finally, since N = 2, 3 and g ∈ L1(0, 1) we have

|h1(t)| ≤
∫ e−t

0
|g(s)| ds −→ 0, as t→∞.

�

Remark 3.2. Actually h1(t) is slightly more regular, as h1 ∈ AC(R+) for N = 3
and h1 ∈ AC(R+) ∩ L1(R+) for N = 2. This follows from the fact that h1(t)
can be regarded as the convolution of an absolutely continuous function with a
function (e−t) that is both absolutely continuous and monotonic. We actually need
this improved regularity in the proof of Theorem 2.1.

From now onwards we will denote hλ = λh1. As we will see in the following it
is natural to work with µ−integrable functions, where µ is the absolutely continu-
ous measure uniquely defined by its Radon-Nikodym derivative dµ = e(2−N)t dt.

Definition 3.3. Let v : R+ −→ R. We define the norm

‖v‖µ :=

{∫ ∞
0

[(v′)2 + v2]e(2−N)t dt

}1/2

.

We define the space H1
µ as the completion of C∞0 (R+) with respect to the norm

‖ · ‖µ.

Lemma 3.4. The singular boundary value problem

−w′′ + (N − 2)w′ + (N − 1)w = hλ(t) + h∗(t),

w(0) = w(∞) = 0,

h∗(t) ∈ L1(R+),

has a unique solution w ∈ H1
µ.

Proof. The unique solution is explicit and can be calculated by means of variation
of parameters,

w(t) = −e
−t

N

∫ ∞
0

e(1−N)s h(s) ds+
e−t

N

∫ t

0
es h(s) ds

+
e(N−1)t

N

∫ ∞
t

e(1−N)s h(s) ds,
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where h(t) := h∗(t)+hλ(t). One can check that the formula above is well defined
and fulfils the correct boundary conditions given the regularity of hλ proven in
Lemma 3.1. It remains to prove that w ∈ H1

µ. This is done separately for the cases
N = 2 and N = 3.

STEP 1: N = 2. In this case h ∈ L1(R+). We can multiply our equation

−w′′ + w = h(t)

by w and integrate over [0,∞[ to get∫ ∞
0

(w′)2 dt+

∫ ∞
0

w2 dt =

∫ ∞
0

hw dt,

after integrating by parts and applying the boundary conditions. Now, by means of
a Hölder inequality and a Sobolev embedding we find∣∣∣∣∫ ∞

0
hw dt

∣∣∣∣ ≤ ‖h‖1‖w‖∞ ≤ C‖h‖1‖w‖H1(R+).

The fact that

‖w‖2µ =

∫ ∞
0

[(v′)2 + v2] dt = ‖w‖2H1(R+)

in N = 2 allows us to conclude

‖w‖µ ≤ C‖h‖1.

STEP 2: N = 3. Now the equation reads

−w′′ + w′ + 2w = hλ(t) + h∗(t).

Multiplying it by e−tw and integrating over [0,∞[ we find∫ ∞
0

e−t(w′)2 dt+ 2

∫ ∞
0

e−tw2 dt =

∫ ∞
0

hλ e
−tw dt+

∫ ∞
0

h∗ e−tw dt,

after integrating by parts and applying the boundary conditions. Now we can esti-
mate∣∣∣∣∫ ∞

0
hλ e

−tw dt

∣∣∣∣ ≤ ‖hλ‖∞
(∫ ∞

0
|w|2e−t dt

)1/2(∫ ∞
0

e−t dt

)1/2

= ‖hλ‖∞
(∫ ∞

0
|w|2e−t dt

)1/2

,

which result from the application of Hölder inequality. And for the term containing
h∗ we have∣∣∣∣∫ ∞

0
h∗ e−tw dt

∣∣∣∣ ≤ ‖h∗‖1‖e−tw‖∞ ≤ C‖h∗‖1‖e−tw‖H1(R+)

= C‖h∗‖1
[∫ ∞

0
|w′|2e−2t dt

]1/2

≤ C‖h∗‖1‖w‖µ,
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where we have employed, in this order, Hölder inequality, a Sobolev embedding,
the equality ∫ ∞

0
[|(e−tw)′|2 + (e−tw)2] dt =

∫ ∞
0
|w′|2e−2t dt,

which results from integration by parts and the application of the boundary condi-
tions, and again Hölder inequality∫ ∞

0
|w′|2e−2t dt ≤

∫ ∞
0
|w′|2e−t dt.

Rearranging both estimates we can conclude

‖w‖µ ≤ C(‖h∗‖1 + ‖hλ‖∞).

�

Now, we are able to prove the main result of this subsection.

Theorem 3.5. The singular boundary value problem (5) possesses at least one
solution w ∈ H1

µ for k = 2 and N ∈ {2, 3} provided |λ| is small enough.

Proof. Fix φ1, φ2 ∈ H1
µ. Then it is clear, by Lemma 3.4, that the linear boundary

value problem
−w′′i + (N − 2)w′i + (N − 1)wi = N−1

2 e−tφ2
i

+ λe(N−3)t
∫ e−t

0 g(s) ds,
wi(0) = wi(∞) = 0.

has a unique solution wi ∈ H1
µ for i = 1, 2. Subtracting both problems, for

w3 := w1 − w2, one finds{
−w′′3 + (N − 2)w′3 + (N − 1)w3 = N−1

2 e−t(φ2
1 − φ2

2)
w3(0) = w3(∞) = 0.

STEP 1: N = 2. In this case φ1, φ2, w3 ∈ H1(R+) and

−w′′3 + w3 =
1

2
e−t(φ2

1 − φ2
2).

Multiplying this equation by w3 and integrating over [0,∞[, and then integrating
by parts and applying the boundary conditions yields

‖w3‖2µ =

∫ ∞
0

(w′3)2 dt+

∫ ∞
0

w2
3 dt =

1

2

∫ ∞
0

e−t(φ2
1 − φ2

2)w3 dt

≤
∫ ∞

0
|φ1 − φ2| |φ1 + φ2| |w3| dt

≤ (‖φ1‖∞ + ‖φ2‖∞)

(∫ ∞
0

w2
3 dt

)1/2(∫ ∞
0
|φ1 − φ2|2 dt

)1/2

≤ C (‖φ1‖µ + ‖φ2‖µ) ‖w3‖µ‖φ1 − φ2‖µ,
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where the inequalities come from two different Hölder inequalities in the first and
second cases (combined with a triangle inequality in the second), and a Sobolev
embedding in the third. So we conclude

‖w3‖µ ≤ C (‖φ1‖µ + ‖φ2‖µ) ‖φ1 − φ2‖µ.
STEP 2: N = 3. In this case the equation for w3 reads

−w′′3 + w′3 + 2w3 = e−t(φ2
1 − φ2

2).

Now we multiply this equation by e−tw3 and integrate over [0,∞[; after integrating
by parts and applying the boundary conditions we get

‖w3‖2µ ≤
∫ ∞

0
(w′3)2 e−t dt+ 2

∫ ∞
0

w2
3 e
−t dt =

∫ ∞
0

e−2t(φ2
1 − φ2

2)w3 dt

≤
∫ ∞

0
|φ1 − φ2| e−t/2 |φ1 + φ2| e−t |w3| e−t/2 dt

≤
(
‖φ1 e

−t‖∞ + ‖φ2 e
−t‖∞

)(∫ ∞
0

w2
3 e
−t dt

)1/2

×
(∫ ∞

0
|φ1 − φ2|2 e−t dt

)1/2

≤ C (‖φ1‖µ + ‖φ2‖µ) ‖w3‖µ‖φ1 − φ2‖µ,
where the inequalities come from introducing the absolute value inside the inte-
grand in the first case, a Hölder inequality combined with a triangle inequality in
the second one, and finally, in the third, the Sobolev embedding

‖φi e−t‖∞ ≤ C‖φi e−t‖H1(R+), for i = 1, 2,

combined with

‖φi e−t‖H1(R+) =

(∫ ∞
0

(φ′i)
2 e−2t dt

)1/2

≤
(∫ ∞

0
(φ′i)

2 e−t dt

)1/2

,

for i = 1, 2, where the equality comes from integration by parts and the application
of the boundary conditions, and the inequality is Hölder inequality. So we conclude
again

‖w3‖µ ≤ C (‖φ1‖µ + ‖φ2‖µ) ‖φ1 − φ2‖µ.
STEP 3: BANACH FIXED POINT THEOREM. Following Step 1 and 2 we know

that

(8) ‖w1 − w2‖µ ≤ C (‖φ1‖µ + ‖φ2‖µ) ‖φ1 − φ2‖µ,
for both N = 2 and N = 3. Now consider{

−w′′0 + (N − 2)w′0 + (N − 1)w0 = λe(N−3)t
∫ e−t

0 g(s) ds,
w0(0) = w0(∞) = 0.

It is clear that the unique solution to this problem fulfils

‖w0‖µ ≤ C |λ| ‖hλ‖1 for N = 2,

‖w0‖µ ≤ C |λ| ‖hλ‖∞ for N = 3,
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which is a direct consequence of Lemma 3.4. Now we choose φ1, φ2 ∈ B, where

B := {ϕ ∈ H1
µ | ‖ϕ− w0‖ ≤ ρ},

is the ball of centerw0 and radius ρ in the Banach spaceH1
µ. The triangle inequality

allows us to translate (8) into

‖w1 − w2‖µ ≤ C (ρ+ ‖w0‖µ) ‖φ1 − φ2‖µ

≤
{

C (ρ+ |λ| ‖hλ‖1) ‖φ1 − φ2‖µ for N = 2
C (ρ+ |λ| ‖hλ‖∞) ‖φ1 − φ2‖µ for N = 3

.(9)

Note also
‖wi − w0‖µ ≤ C‖φi‖2µ for i = 1, 2.

The triangle inequality leads again to

‖wi − w0‖µ ≤ C‖φi‖2µ ≤ C(ρ+ ‖w0‖µ)2

≤
{

C
(
ρ2 + λ2‖hλ‖21

)
for N = 2

C
(
ρ2 + λ2‖hλ‖2∞

)
for N = 3

.(10)

For any ϕ ∈ B, we define the nonlinear operator

T : B −→ B
ϕ 7−→ T (ϕ) = w,

where w is the unique solution to
−w′′ + (N − 2)w′ + (N − 1)w = N−1

2 e−tϕ2

+ λe(N−3)t
∫ e−t

0 g(s) ds,
w(0) = w(∞) = 0.

The operator T so defined is well-defined (in the sense that it is bounded in the
ball B) by (10) and contractive by (9) provided ρ and |λ| are small enough. Con-
sequently, by the Banach fixed point theorem, there is a unique fixed point of T ,
which in turn solves (5). �

Remark 3.6. The ball B contains the origin of H1
µ provided |λ| is small enough.

3.2. Navier problem. In this subsection we concentrate on the problem

(11)


−w′′ + (N − 2)w′ + (N − 1)w = N−1

2 e−tw2

+ λe(N−3)t
∫ e−t

0 g(s) ds,
w′(0)− (N − 1)w(0) = w(+∞) = 0.

We will adapt the arguments in the previous section to the present setting. First
we need to slightly modify our functional framework.

Definition 3.7. We define the space H̃1
µ as the set of all measurable functions

v : R+ −→ R with a finite norm ‖ · ‖µ.

Remark 3.8. In principle it is not evident how it is possible to look for weak so-
lutions of problem (11) in the functional space H̃1

µ. Unlike problem (7), which
solutions are continuous on bounded intervals as can be deduced by Sobolev em-
bedding, in the present case we should look for a different interpretation of the
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boundary condition involving one derivative evaluated at the origin. Note that for
w ∈ H̃1

µ the nonlinearity in problem (11) is summable and therefore we can turn
this differential equation into an integral one via the use of the variation of cons-
tants formula below in (12). We can give in this way a rigourous meaning to the
quantity w′(0).

Lemma 3.9. The singular boundary value problem

−w′′ + (N − 2)w′ + (N − 1)w = hλ(t) + h∗(t),

w′(0)− (N − 1)w(0) = w(∞) = 0,

h∗(t) ∈ L1(R+),

has a unique solution w ∈ H̃1
µ.

Proof. The unique solution is explicitly given by the variation of constants formula

(12) w(t) =
e−t

N

∫ t

0
es h(s) ds+

e(N−1)t

N

∫ ∞
t

e(1−N)s h(s) ds,

where h(t) := h∗(t) + hλ(t). It is easy to check that this solution is well defined
and fulfils the correct boundary conditions.

STEP 1: N = 2. We have h ∈ L1(R+). Testing the equation against w we find

w(0)2 +

∫ ∞
0

(w′)2 dt+

∫ ∞
0

w2 dt =

∫ ∞
0

hw dt,

as a result of integration by parts and the application of the boundary conditions.
The Hölder inequality and Sobolev embedding∣∣∣∣∫ ∞

0
hw dt

∣∣∣∣ ≤ ‖h‖1‖w‖∞ ≤ C‖h‖1‖w‖H1(R+).

lead us to
‖w‖µ ≤ C‖h‖1.

STEP 2: N = 3. In this case we test the equation against e−tw to get

2w(0)2 +

∫ ∞
0

e−t(w′)2 dt+ 2

∫ ∞
0

e−tw2 dt

=

∫ ∞
0

hλ e
−tw dt+

∫ ∞
0

h∗ e−tw dt,

after integrating by parts and applying the boundary conditions. For the first sum-
mand on the right hand side, one has∣∣∣∣∫ ∞

0
hλ e

−tw dt

∣∣∣∣ ≤ ‖hλ‖∞
(∫ ∞

0
|w|2e−t dt

)1/2(∫ ∞
0

e−t dt

)1/2

= ‖hλ‖∞
(∫ ∞

0
|w|2e−t dt

)1/2

,
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as a consequence of Hölder inequality. For the second summand, we can establish
the estimate∣∣∣∣∫ ∞

0
h∗ e−tw dt

∣∣∣∣ ≤ ‖h∗‖1‖e−tw‖∞ ≤ C‖h∗‖1‖e−tw‖H1(R+)

= C‖h∗‖1
[∫ ∞

0
|w′|2e−2t dt

]1/2

+ C‖h∗‖1 |w(0)|

≤ C‖h∗‖1‖w‖µ + C‖h∗‖1 |w(0)| ,
which follows from the application of Hölder inequality, a Sobolev embedding, the
equality ∫ ∞

0
[|(e−tw)′|2 + (e−tw)2] dt = w(0)2 +

∫ ∞
0
|w′|2e−2t dt,

which is a consequence of integration by parts and the application of the boundary
conditions, together with the sublinearity of the square root, and a new Hölder
inequality ∫ ∞

0
|w′|2e−2t dt ≤

∫ ∞
0
|w′|2e−t dt.

We just need to estimate

w(0) = −
∫ ∞

0

[
w(t)e−t

]′
dt =

∫ ∞
0

[
w(t)e−t − w′(t)e−t

]
dt,

and thus

|w(0)| ≤
∫ ∞

0

[
|w(t)|+ |w′(t)|

]
e−tdt

≤
{∫ ∞

0

[
|w(t)|+ |w′(t)|

]2
e−tdt

}1/2

≤
√

2

{∫ ∞
0

[
|w(t)|2 + |w′(t)|2

]
e−tdt

}1/2

,

where we have used, in this order, the triangle, Hölder and Young inequalities.
Rearranging all estimates allows us to conclude

‖w‖µ ≤ C(‖h∗‖1 + ‖hλ‖∞).

�

Now we proceed to the main result of this subsection.

Theorem 3.10. The singular boundary value problem (11) possesses at least one
solution w ∈ H̃1

µ for k = 2 and N ∈ {2, 3} provided |λ| is small enough.

Proof. Fix φ1, φ2 ∈ H̃1
µ. Then e−tφ2

i ∈ L1(R+) and by Lemma 3.9 there is a
unique solution to

−w′′i + (N − 2)w′i + (N − 1)wi = N−1
2 e−tφ2

i

+ λe(N−3)t
∫ e−t

0 g(s) ds,
wi(0) = wi(∞) = 0.
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such that wi ∈ H̃1
µ for i = 1, 2. Subtracting both problems and denoting w3 :=

w1 − w2 we find{
−w′′3 + (N − 2)w′3 + (N − 1)w3 = N−1

2 e−t(φ2
1 − φ2

2)
w3(0) = w3(∞) = 0.

STEP 1: N = 2. Arguing as in the proof of Lemma 3.9 we get

‖w3‖2µ ≤ w3(0)2 +

∫ ∞
0

(w′3)2 dt+

∫ ∞
0

w2
3 dt

=
1

2

∫ ∞
0

e−t(φ2
1 − φ2

2)w3 dt

≤
∫ ∞

0
|φ1 − φ2| |φ1 + φ2| |w3| dt

≤ (‖φ1‖∞ + ‖φ2‖∞)

(∫ ∞
0

w2
3 dt

)1/2(∫ ∞
0
|φ1 − φ2|2 dt

)1/2

≤ C (‖φ1‖µ + ‖φ2‖µ) ‖w3‖µ‖φ1 − φ2‖µ,

where the last three inequalities are, respectively, Hölder inequality, another Hölder
inequality acting together with the triangle inequality, and a final Sobolev embed-
ding. Summing up

‖w3‖µ ≤ C (‖φ1‖µ + ‖φ2‖µ) ‖φ1 − φ2‖µ.

STEP 2: N = 3. Following again the proof of Lemma 3.9 we find

‖w3‖2µ ≤ 2w(0)2 +

∫ ∞
0

(w′3)2 e−t dt+ 2

∫ ∞
0

w2
3 e
−t dt

=

∫ ∞
0

e−2t(φ2
1 − φ2

2)w3 dt

≤
∫ ∞

0
|φ1 − φ2| e−t/2 |φ1 + φ2| e−t |w3| e−t/2 dt

≤
(
‖φ1 e

−t‖∞ + ‖φ2 e
−t‖∞

)(∫ ∞
0

w2
3 e
−t dt

)1/2

×
(∫ ∞

0
|φ1 − φ2|2 e−t dt

)1/2

≤ C (‖φ1‖µ + ‖φ2‖µ) ‖w3‖µ‖φ1 − φ2‖µ,

where the last two inequalities are a Hölder inequality applied simultaneously with
a triangle inequality, and then the Sobolev embedding

‖φi e−t‖∞ ≤ C‖φi e−t‖H1(R+), for i = 1, 2,
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combined with

‖φi e−t‖H1(R+) ≤ |φi(0)|+
(∫ ∞

0
(φ′i)

2 e−2t dt

)1/2

≤ |φi(0)|+
(∫ ∞

0
(φ′i)

2 e−t dt

)1/2

≤
(

1 +
√

2
)
‖φ‖µ,

for i = 1, 2, which is a calculation analogous to that in the proof of Lemma 3.9.
These estimates lead us again to

‖w3‖µ ≤ C (‖φ1‖µ + ‖φ2‖µ) ‖φ1 − φ2‖µ.
STEP 3: BANACH FIXED POINT THEOREM. We have already obtained

(13) ‖w1 − w2‖µ ≤ C (‖φ1‖µ + ‖φ2‖µ) ‖φ1 − φ2‖µ,
for N = 2, 3. The linear problem{

−w′′0 + (N − 2)w′0 + (N − 1)w0 = λe(N−3)t
∫ e−t

0 g(s) ds,
w′0(0)− (N − 1)w0(0) = w0(∞) = 0.

has a unique solution in H̃1
µ such that

‖w0‖µ ≤ C |λ| ‖hλ‖1 in N = 2,

‖w0‖µ ≤ C |λ| ‖hλ‖∞ in N = 3,

as can be deduced from Lemma 3.9. We select φ1, φ2 ∈ B for

B := {ϕ ∈ H̃1
µ | ‖ϕ− w0‖ ≤ ρ},

being the ball of center w0 and radius ρ in the Banach space H̃1
µ. By the triangle

inequality we may transform (13) into

‖w1 − w2‖µ ≤ C (ρ+ ‖w0‖µ) ‖φ1 − φ2‖µ

≤
{

C (ρ+ |λ| ‖hλ‖1) ‖φ1 − φ2‖µ in N = 2
C (ρ+ |λ| ‖hλ‖∞) ‖φ1 − φ2‖µ in N = 3

,(14)

and this particular version of (13)

‖wi − w0‖µ ≤ C‖φi‖2µ for i = 1, 2,

into

‖wi − w0‖µ ≤ C‖φi‖2µ ≤ C(ρ+ ‖w0‖µ)2

≤
{

C
(
ρ2 + λ2‖hλ‖21

)
in N = 2

C
(
ρ2 + λ2‖hλ‖2∞

)
in N = 3

,(15)

where we have employed Young inequality in the last step. Lets define now, for
any ϕ ∈ B, the nonlinear operator

T : B −→ B
ϕ 7−→ T (ϕ) = w,
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where w is the unique solution to the singular boundary value problem
−w′′ + (N − 2)w′ + (N − 1)w = N−1

2 e−tϕ2

+ λe(N−3)t
∫ e−t

0 g(s) ds,
w(0)′ − (N − 1)w(0) = w(∞) = 0.

For sufficiently small ρ and |λ| the operator T is both well defined, i. e. bounded in
the ball B, as a consequence of (15), and contractive as a consequence of (14). The
existence of a unique fixed point of T , which in turn is a solution to problem (11)
with N = 2, 3, follows from the Banach fixed point theorem. �

Remark 3.11. The origin of H̃1
µ is contained in the ball B given that |λ| is suffi-

ciently small.

4. REGULARITY RESULTS FOR k = 2 AND N ∈ {2, 3}

4.1. Dirichlet problem. We have already proven the existence of at least one
weak solution to the singular boundary value problem

(16)


−w′′ + (N − 2)w′ + (N − 1)w = N−1

2 e−tw2

+ λe(N−3)t
∫ e−t

0 g(s) ds,
w(0) = w(∞) = 0,

in the previous section. In the present subsection we prove higher regularity for
this type of solution.

Theorem 4.1. Weak solutions to this singular boundary value problem actually
belong to the space C2(R+) ∩W 2,p(R+) ∀ 2 ≤ p ≤ ∞ if N = 2 and C2(R+) ∩
W 2,p(R+, e

−tdt) ∀ 2 ≤ p ≤ ∞ if N = 3.

Proof. First note that

‖u‖2 ≡ sup
‖ψ‖2=1

〈ψ, u〉 ∀ u ∈ L2(R+),

where 〈·, ·〉 denotes the scalar product in L2(R+), and

‖u‖′2 ≡ sup
‖ψ‖′2=1

〈ψ, u〉′ ∀ u ∈ L2(R+, e
−t dt),

where ‖ · ‖′2 and 〈·, ·〉′ denote the norm and scalar product in L2(R+, e
−t dt) re-

spectively.
STEP 1: N = 2. Take the sup‖ψ‖2=1〈ψ, ·〉 on both sides of the equation to find

‖w′′‖2 = sup
‖ψ‖2=1

〈ψ,−w′′〉 ≤ sup
‖ψ‖2=1

〈ψ,−w〉+
1

2
sup
‖ψ‖2=1

〈ψ, e−tw2〉

+|λ| sup
‖ψ‖2=1

〈
ψ, e−t

∫ e−t

0
g(s) ds

〉

≤ ‖w‖2 +
1

2
‖w‖24 + |λ|

∥∥∥∥∥e−t
∫ e−t

0
g(s) ds

∥∥∥∥∥
2

,
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where we have employed the triangle inequality in the first step and Hölder in-
equality in the second. Note the right hand side is finite since w ∈ L4(R+) and
e−t
∫ e−t

0 g(s) ds ∈ L2(R+) by interpolation. So w ∈ H2(R+). On the other hand
we have

−w′′ = −w +
1

2
e−tw2 + λe−t

∫ e−t

0
g(s) ds,

with all terms on the right hand side belonging to BC(R+). The result follows by
interpolation.

STEP 2: N = 3. Now take the sup‖ψ‖′2=1〈ψ, ·〉′ on both sides of our equation
to get

‖w′′‖′2 = sup
‖ψ‖′2=1

〈ψ,−w′′〉′ ≤ sup
‖ψ‖′2=1

〈ψ,−w′〉′ + sup
‖ψ‖′2=1

〈ψ,−2w〉′

+ sup
‖ψ‖′2=1

〈ψ, e−tw2〉′ + |λ| sup
‖ψ‖′2=1

〈
ψ,

∫ e−t

0
g(s) ds

〉′
= ‖w′‖′2 + 2‖w‖′2 + sup

‖ψ‖′2=1

∫ ∞
0

e−2tw(t)2 ψ(t) dt

+|λ| sup
‖ψ‖′2=1

∫ ∞
0

e−tψ(t)

[∫ e−t

0
g(s) ds

]
dt,

where we have used the triangle inequality. From the proof of Lemma 3.4 it is clear
that we−t ∈ L∞(R+). Therefore∣∣∣∣∫ ∞

0
e−2tw2 ψ dt

∣∣∣∣ ≤ (∫ ∞
0

e−3tw4 dt

)1/2

≤ ‖e−tw‖∞‖w‖′2,

where we have used Hölder inequality in both steps, so it is a bounded quantity.
Finally ∣∣∣∣∣

∫ ∞
0

e−tψ(t)

[∫ e−t

0
g(s) ds

]
dt

∣∣∣∣∣ ≤∫ ∞
0

e−t

∣∣∣∣∣
∫ e−t

0
g(s) ds

∣∣∣∣∣
2

dt

1/2

≤

∥∥∥∥∥
∫ e−t

0
g(s) ds

∥∥∥∥∥
∞

,

after the iterative application of Hölder inequality. Therefore w ∈ H2(R+, e
−t dt)

and, noting that this norm is equivalent to the standard H2(R+) norm on compact
intervals of R+ and invoking the corresponding Sobolev embedding, we find w ∈
C1(R+). Going back to the equation

−w′′ = −w′ − 2w + e−tw2 + λ

∫ e−t

0
g(s) ds,

we can check that all terms in the right hand side are continuous and thus w ∈
C2(R+). The statement follows again by interpolation. �
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Remark 4.2. Taking into account that the solutions fulfill the boundary conditions
it follows that w ∈ BC2(R+) for both N = 2, 3. Also, invoking Remark 3.2 and
arguing like the proof of the previous theorem it is clear that w ∈ AC2

loc(R+) for
both N = 2, 3.

4.2. Navier problem. The higher regularity of the solutions to problem

(17)


−w′′ + (N − 2)w′ + (N − 1)w = N−1

2 e−tw2

+ λe(N−3)t
∫ e−t

0 g(s) ds,
w′(0)− (N − 1)w(0) = w(+∞) = 0,

follows analogously to the result in the previous section.

Theorem 4.3. Weak solutions to this singular boundary value problem actually
belong to the space C2(R+) ∩W 2,p(R+) ∀ 2 ≤ p ≤ ∞ if N = 2 and C2(R+) ∩
W 2,p(R+, e

−tdt) ∀ 2 ≤ p ≤ ∞ if N = 3.

Proof. STEP 1: N = 2. Following the previous section we take the sup‖ψ‖2=1〈ψ, ·〉
on both sides of the equation to find

‖w′′‖2 = sup
‖ψ‖2=1

〈ψ,−w′′〉 ≤ sup
‖ψ‖2=1

〈ψ,−w〉+
1

2
sup
‖ψ‖2=1

〈ψ, e−tw2〉

+|λ| sup
‖ψ‖2=1

〈
ψ, e−t

∫ e−t

0
g(s) ds

〉

≤ ‖w‖2 +
1

2
‖w‖24 + |λ|

∥∥∥∥∥e−t
∫ e−t

0
g(s) ds

∥∥∥∥∥
2

,

after the use of the triangle and Hölder inequalities respectively. The right hand
side is finite because w ∈ L4(R+) and e−t

∫ e−t

0 g(s) ds ∈ L2(R+) as can be
deduced by interpolation. Then w ∈ H2(R+) and

−w′′ = −w +
1

2
e−tw2 + λe−t

∫ e−t

0
g(s) ds,

where all the summands on the right hand side are uniformly continuous, so the
statement follows by interpolation.

STEP 2: N = 3. Again we take the sup‖ψ‖′2=1〈ψ, ·〉′ on both sides of our
differential equation to find

‖w′′‖′2 = sup
‖ψ‖′2=1

〈ψ,−w′′〉′ ≤ sup
‖ψ‖′2=1

〈ψ,−w′〉′ + sup
‖ψ‖′2=1

〈ψ,−2w〉′

+ sup
‖ψ‖′2=1

〈ψ, e−tw2〉′ + |λ| sup
‖ψ‖′2=1

〈
ψ,

∫ e−t

0
g(s) ds

〉′
= ‖w′‖′2 + 2‖w‖′2 + sup

‖ψ‖′2=1

∫ ∞
0

e−2tw(t)2 ψ(t) dt

+|λ| sup
‖ψ‖′2=1

∫ ∞
0

e−tψ(t)

[∫ e−t

0
g(s) ds

]
dt,
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after invoking the triangle inequality. The proof of Lemma 3.9 implies that we−t ∈
L∞(R+), and thus∣∣∣∣∫ ∞

0
e−2tw2 ψ dt

∣∣∣∣ ≤ (∫ ∞
0

e−3tw4 dt

)1/2

≤ ‖e−tw‖∞‖w‖′2,

after invoking twice Hölder inequality. Again a double application of Hölder in-
equality leads to∣∣∣∣∣

∫ ∞
0

e−tψ(t)

[∫ e−t

0
g(s) ds

]
dt

∣∣∣∣∣ ≤∫ ∞
0

e−t

∣∣∣∣∣
∫ e−t

0
g(s) ds

∣∣∣∣∣
2

dt

1/2

≤

∥∥∥∥∥
∫ e−t

0
g(s) ds

∥∥∥∥∥
∞

.

So far we have proven w ∈ H2(R+, e
−t dt), a norm that is equivalent to the

H2(R+) norm on compact intervals of R+, and thus a suitable Sobolev embed-
ding shows w ∈ C1(R+). If we consider again our equation

−w′′ = −w′ − 2w + e−tw2 + λ

∫ e−t

0
g(s) ds,

it is clear that all the summands in the right hand side are continuous and conse-
quently w ∈ C2(R+). We conclude by interpolation . �

Remark 4.4. Appreciating the obvious fact that the solutions to our singular bound-
ary value problem obey the boundary conditions then we necessarily have w ∈
BC2(R+) for both N = 2, 3. Moreover, an argument akin to that in the proof
of Theorem 4.3, together with Remark 3.2 shows that w ∈ AC2

loc(R+) for both
N = 2, 3.

5. EXISTENCE VIA UPPER AND LOWER SOLUTIONS

5.1. Dirichlet problem. In this subsection, we are going to present an alternative
approach for the existence of solutions of the Dirichlet problem (7) with N = 2, 3
based on the method of upper and lower solutions. For basic definitions, we refer
to [26]. For convenience, we define the operators

Lw := −w′′ + (N − 2)w′ + (N − 1)w,

Nw :=
N − 1

2
e−tw2,

and recall the definition

h1(t) = e(N−3)t

∫ e−t

0
g(s) ds.
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Lemma 3.4 provides a well-defined inverse operator L−1, which will be used
below. The concrete expression of such operator is

L−1h(t) = −e
−t

N

∫ ∞
0

e(1−N)s h(s) ds+
e−t

N

∫ t

0
es h(s) ds

+
e(N−1)t

N

∫ ∞
t

e(1−N)s h(s) ds.

Lemma 5.1. The function α = λL−1h1(t) is a lower solution of (7).

Proof. By the positivity of operator N , we have

Lα = λh1(t) ≤ Nα+ λh1(t).

�

Note that, as defined above, α(0) = 0 = α(+∞).

Lemma 5.2. Take a constant β > 0 such that

(18) (N − 1)β ≥ N − 1

2
β2 + λh1(t), for all t > 0.

Then, β is an upper solution of (7) and α(t) < β for all t > 0.

Proof. Trivially, Lβ = (N − 1)β, then condition (18) reads

Lβ ≥ N − 1

2
β2 + λh1(t) ≥ N − 1

2
e−tβ2 + λh1(t),

that is, β is an upper solution. Besides, the operator L−1 is linear and positive,
hence

β ≥ N − 1

2
L−1β2 + λL−1h1(t) > α(t).

�

Note that condition (18) holds for any 0 < β < 2 if λ is small enough, depend-
ing on β. The optimal choice is β = 1, for which condition (18) reads

(19) λh1(t) ≤ N − 1

2
, for all t > 0.

Theorem 5.3. Under the hypothesis (19), problem (7) has at least one solution.

Proof. Lemmas 5.1 and 5.2 provide a couple of well-ordered lower and upper so-
lutions. The upper solution is β = 1. Then, Theorem 4.1 of [26] assures the
existence of a solution w ∈ BC2(R+) of the equation such that

α(t) ≤ w(t) ≤ β ≡ 1 for all t > 0

and w(0) = 0. It remains to check the condition at +∞. To this aim, let us observe
that

w(t) =
N − 1

2
L−1e−tw2 + λL−1h1(t) ≤ N − 1

2
L−1e−t + λL−1h1(t).

From the properties of L−1, it is trivial that w(+∞) = 0. �
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Remark 5.4. Note that Theorem 5.3 is of a different nature that the results pre-
sented on Section 3, that are based on the contraction principle. We lose the in-
formation about uniqueness near zero, but on the contrary condition (19) provides
a global bound for the interval of λ where the problem is solvable. In particular,
observe that such condition is void if h1(t) ≤ 0 for t > 0. In section 6 we present
a complementary result.

5.2. Navier problem. In this case we cannot directly use reference [26]. Instead
we will build the iterative procedure typical of the method of upper and lower
solutions directly [12]. We will borrow the notation from the previous subsection
and the explicit formula for L−1 from subsection 3.2, where this integral operator
is shown to be well-defined.

Theorem 5.5. Under the hypothesis (19), problem (11) has at least one solution.

Proof. STEP 1: EXISTENCE OF LOWER SOLUTION. We claim the function α(t) =
λL−1h1(t) is a lower solution of (11). Define

(20)


−w′′k + (N − 2)w′k + (N − 1)wk = N−1

2 e−tw2
k−1

+ λe(N−3)t
∫ e−t

0 g(s) ds,
w′k(0)− (N − 1)wk(0) = wk(+∞) = 0,

for k ∈ N where w0 ≡ α. It is clear that

w1 = L−1Nα+ λL−1h1 ≥ λL−1h1 = α,

due to the positivity of L and N . Now assume wk ≥ wk−1 and compute

wk+1(t)− wk(t) = L−1Nwk − L−1Nwk−1

=
e−t(N − 1)

2N

∫ t

0

[
wk(s)

2 − wk−1(s)2
]
ds+

e(N−1)t(N − 1)

2N

∫ ∞
t
e−Ns

[
wk(s)

2 − wk−1(s)2
]
ds ≥ 0.

Therefore by induction we conclude

α ≤ w1 ≤ · · · ≤ wk−1 ≤ wk ≤ · · · .

STEP 2: EXISTENCE OF UPPER SOLUTION. For any constant β > 0 such that

(N − 1)β ≥ N − 1

2
β2 + λh1(t), for all t > 0,

we have α(t) < β for all t > 0 (note that the set of all constants β fulfilling this
inequality is nonempty for λ small enough). Indeed

β ≥ N − 1

2
L−1β2 + λL−1h1(t) > α(t),
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since Lβ = (N − 1)β. Now assume wk ≤ β and compute

β − wk+1 ≥ L−1Nβ − L−1Nwk−1

=
e−t(N − 1)

2N

∫ t

0

[
β2 − wk(s)2

]
ds+

e(N−1)t(N − 1)

2N

∫ ∞
t
e−Ns

[
β2 − wk(s)2

]
ds ≥ 0.

Therefore by induction we find

(21) α ≤ w1 ≤ · · · ≤ wk−1 ≤ wk ≤ · · · ≤ β.
Note again that the optimal choice is β = 1, for which condition (18) translates
into (19).

STEP 3: CONVERGENCE. We define

w(t) := lim
k→∞

wk(t),

which is well defined by monotonicity and boundedness of the sequence, see (21).
Moreover, we may invoke the dominated convergence theorem to see wk → w
in L2(R+, e

−tdt). By the proof of Lemma 3.9 we know the set wk is uniformly
bounded in H̃1

µ and therefore it possesses a weakly convergent subsequence in this
space. Therefore we can safely take the limit k → ∞ in equation (20). One can
see that the boundary condition at +∞ is obeyed by w exactly as in the proof of
Theorem 5.3, while the boundary condition at the origin follows from the formulas

wk(0), w′k(0) ∝
∫ ∞

0
e−Nswk−1(s)2 ds+ C,

where the proportionality constant as well as the constant C are k−independent.
Finally, the higher regularity is obtained as in subsection 4.2. �

6. NON-EXISTENCE RESULTS FOR k = 2 AND N ∈ {2, 3}

This section is devoted to prove the non-existence of weak solutions in the same
sense as in section 3, i. e. in H1

µ and H̃1
µ respectively, to the singular boundary

value problems under consideration. The key assumption is a large enough λ > 0.

6.1. Dirichlet problem.

Lemma 6.1. The initial value problem
−w′′ + (N − 2)w′ + (N − 1)w = N−1

2 e−tw2

+ λe(N−3)t
∫ e−t

0 g(s) ds,
w(0) = 0, w′(0) = w0.

has a solution that fulfills limt→∞w(t) = 0 only if w0 ≤
∫∞

0 e(1−N)shλ(s)ds.

Proof. Note that the solution to{
−v′′ + (N − 2)v′ + (N − 1)v = hλ(t)

v(0) = 0, v′(0) = w0,
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reads

v(t) =
e−t

N
(eNt − 1)w0 +

e−t

N

∫ t

0
eshλ(s)ds− e(N−1)t

N

∫ t

0
e(1−N)shλ(s)ds,

where

hλ(t) = λe(N−3)t

∫ e−t

0
g(s) ds.

Then w(t) ≥ v(t) and limt→∞ v(t) = +∞ provided

w0 >

∫ ∞
0

e(1−N)shλ(s)ds.

�

Remark 6.2. The initial condition w′(0) is interpreted in the same sense as in
subsection 3.2.

Theorem 6.3. The singular boundary value problem
−w′′ + (N − 2)w′ + (N − 1)w = N−1

2 e−tw2

+ λe(N−3)t
∫ e−t

0 g(s) ds,
w(0) = w(∞) = 0.

has no solutions provided g ≥ 0, ess sup g > 0 and λ > 0 is large enough.

Proof. We can rewrite this boundary value problem as

w(t) =
e−t

N

∫ t

0
es(1− e−Ns)h(s) ds+

e−t

N
(eNt − 1)

∫ ∞
t

e(1−N)s h(s) ds,

by Lemma 3.4, where h(t) = h∗(t) + hλ(t) and

h∗ =
N − 1

2
e−tw2,

hλ = λe(N−3)t

∫ e−t

0
g(s) ds,

see subsection 3.1. From this formula it is clear that w(t) > 0 ∀ t > 0 under the
hypotheses of the statement. Moreover we have

w(t) ≥ e−t

N

∫ t

0
es(1− e−Ns)hλ(s) ds

+
e−t

N
(eNt − 1)

∫ ∞
t

e(1−N)s hλ(s) ds

=: λ h̃(t),
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and therefore w(t) ≥ λ h̃(t) for a function h̃(t) > 0∀ t > 0, limt→∞ h̃(t) = 0 and
h̃(0) = 0. This implies

w(t) ≥ e−t

N

∫ t

0
es(1− e−Ns)h∗(s) ds

+
e−t

N
(eNt − 1)

∫ ∞
t

e(1−N)s h∗(s) ds

≥ λ2 (N − 1)e−t

2N

∫ t

0
(1− e−Ns) h̃2(s) ds

+λ2 (N − 1)e−t

2N
(eNt − 1)

∫ ∞
t

e−Ns h̃2(s) ds.

A straightforward calculation yields w′(0) ≥ λ2C for

C =
N − 1

2

∫ ∞
0

e−Ns h̃2(s) ds > 0.

Note that, under the hypothesis of the statement, Lemma 6.1 implies that a neces-
sary condition for the existence of solution is w′(0) ≤ C ′λ for some C ′ > 0. The
desired conclusion follows as a consequence of these two facts. �

6.2. Navier problem.

Lemma 6.4. The initial value problem
−w′′ + (N − 2)w′ + (N − 1)w = N−1

2 e−tw2

+ λe(N−3)t
∫ e−t

0 g(s) ds,
w(0) = w0, w′(0)− (N − 1)w(0) = 0.

has a solution that fulfills limt→∞w(t) = 0 only ifw0 ≤ N−1
∫∞

0 e(1−N)shλ(s)ds.

Proof. Notice that the solution to{
−v′′ + (N − 2)v′ + (N − 1)v = hλ(t)

v(0) = w0, v′(0)− (N − 1)v(0) = 0,

is given by the formula

v(t) = e(N−1)tw0 +
e−t

N

∫ t

0
eshλ(s)ds− e(N−1)t

N

∫ t

0
e(1−N)shλ(s)ds,

where

hλ(t) = λe(N−3)t

∫ e−t

0
g(s) ds.

Therefore w(t) ≥ v(t) and limt→∞ v(t) = +∞ if

w0 >
1

N

∫ ∞
0

e(1−N)shλ(s)ds.

�
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Theorem 6.5. The singular boundary value problem
−w′′ + (N − 2)w′ + (N − 1)w = N−1

2 e−tw2

+ λe(N−3)t
∫ e−t

0 g(s) ds,
w′(0)− (N − 1)w(0) = w(∞) = 0.

has no solutions provided g ≥ 0, ess sup g > 0 and λ > 0 is large enough.

Proof. Again invoking the Green function we find

w(t) =
e−t

N

∫ t

0
es h(s) ds+

e(N−1)t

N

∫ ∞
t

e(1−N)s h(s) ds,

by Lemma 3.9, where h(t) = h∗(t) + hλ(t) and

h∗ =
N − 1

2
e−tw2,

hλ = λe(N−3)t

∫ e−t

0
g(s) ds,

see subsection 3.2. From here it is obvious that w(t) > 0 ∀ t > 0 under the
hypotheses of the statement. Furthermore we know

w(t) ≥ e−t

N

∫ t

0
es hλ(s) ds+

e(N−1)t

N

∫ ∞
t

e(1−N)s hλ(s) ds =: λ h̃(t),

and consequently w(t) ≥ λ h̃(t), where h̃(t) > 0 ∀ t > 0 and limt→∞ h̃(t) = 0.
In turn this implies

w(t) ≥ e−t

N

∫ t

0
es h∗(s) ds+

e(N−1)t

N

∫ ∞
t

e(1−N)s h∗(s) ds

≥ λ2N − 1

2N
e−t
∫ t

0
h̃2(s) ds+ λ2N − 1

2N
e(N−1)t

∫ ∞
t

e−Ns h̃2(s) ds.

Evaluating this inequality at t = 0 yields w(0) ≥ λ2C for

C =
N − 1

2N

∫ ∞
0

e−Ns h̃2(s) ds > 0.

Notice that, under the hypothesis of the statement, Lemma 6.4 says that a solution
only exists if w(0) ≤ C ′λ for a positive C ′. The statement is a consequence of
these two inequalities. �

7. CONCLUSIONS

The elliptic problem we have considered in this work, equation (1), describes
the stationary solutions of a model in the theory of non-equilibrium phase tran-
sitions [13, 18]. One of the most important models in the theory of equilibrium
phase transitions is the Ginzburg-Landau equation [3, 7]. The number of station-
ary solutions to this equation changes from one to three as some parameter varies,
a fact that is related to the presence of a phase transition. The existence theory for
equations like (1) is far less obvious than for equations like the Ginzburg-Landau
one, and it could be related to the presence of non-equilibrium phase transitions.
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Still, we have found that there exists at least one solution to the boundary value
problem under consideration provided the parameter λ is negative, zero or a small
positive real number. On the other hand, if this parameter is positive and large
enough, no solutions exist. Whether this signals the presence of a phase transition
for a critical value of λ, is a subject still to be investigated. Although our present
results are promising in this direction, more work has to be done in order to certify
this possibility.

REFERENCES

[1] G. Arioli, F. Gazzola, H.-C. Grunau and E. Mitidieri, A semilinear fourth order elliptic problem
with exponential nonlinearity, SIAM J. Math. Anal. 36 (2005) 1226–1258.

[2] E. Berchio and F. Gazzola, Some remarks on biharmonic elliptic problems with positive, in-
creasing and convex nonlinearities, Electronic J. Differ. Equ. 34 (2005) 1–20.

[3] J. J. Binney, N. J. Dowrick, A. J. Fisher and M. E. J. Newman, The theory of critical phenomena.
Clarendon Press, Oxford, United Kingdom (1992).

[4] L. A. Caffarelli, InteriorW 2,p estimates for solutions of Monge-Ampère equations, Ann. Math.
131 (1990) 135–150.

[5] L. A. Caffarelli, L. Nirenberg and J. Spruck, Dirichlet problem for nonlinear second order
elliptic equations I, Monge-Ampère equations, Comm. Pure Appl. Math. 37 (1984) 369–402.

[6] L. A. Caffarelli, L. Nirenberg and J. Spruck, Dirichlet problem for nonlinear second order
elliptic equations III, Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985) 261–
301.

[7] P. M. Chaikin and T. C. Lubensky, Principles of condensed matter physics. Cambridge Univer-
sity Press, Cambridge, United Kingdom (1995).

[8] K. S. Chou and X.-J. Wang, Variational theory for Hessian equations, Comm. Pure Appl. Math.
54 (2001) 1029–1064.

[9] C. Cowan, P. Esposito, N. Ghoussoub and A. Moradifam, The critical dimension for a fourth
order elliptic problem with singular nonlinearity, Archive for Rational Mechanics and Analysis
198 (2010) 763–787.

[10] J. Dávila, L. Dupaigne, I. Guerra and M. Montenegro, Stable solutions for the bilaplacian with
exponential nonlinearity, SIAM J. Math. Anal. 39 (2007) 565–592.

[11] J. Dávila, I. Flores and I. Guerra, Multiplicity of solutions for a fourth order equation with
power-type nonlinearity, Math. Ann. 348 (2009) 143–193.

[12] C. De Coster and P. Habets, Two-point boundary value problems: Lower and upper solutions,
Mathematics in Science and Engineering 205. Elsevier, Amsterdam, The Netherlands (2006).

[13] C. Escudero, Geometric principles of surface growth, Phys. Rev. Lett. 101 (2008) 196102.
[14] C. Escudero, F. Gazzola, R. Hakl, I. Peral and P. J. Torres, Existence results for a fourth order

partial differential equation arising in condensed matter physics, Mathematica Bohemica, in
press.

[15] C. Escudero, F. Gazzola and I. Peral, Global existence versus blow-up results for a fourth order
parabolic PDE involving the Hessian, Journal de Mathématiques Pures et Appliquées, in press.
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