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Abstract

Su�cient criteria are established for the existence of T -periodic solutions of a
family of Lazer-Solimini equations with state-dependent delay. The method of
proof relies on a combination of Leray-Schauder degree and a priori bounds.
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1. Introduction

Singular nonlinearities arise naturally in physical models when considering grav-
itational or electromagnetic forces. In 1987, Lazer and Solimini [4] proposed the
equations

x′′ ± 1

xα
= p(t) (1)

as a toy model for the study of scalar ODEs with singular nonlinearity and
periodic dependence on time. This work has become a hallmark in the area, and
since its publication a wide variety of topological and variational methods have
been systematically employed in the study of di�erent extensions and variants
of (1) (see the recent reviews [9, 10]).
When speaking about gravitational forces, the introduction of relativistic e�ects
make sense. One of the known consequences of Special Relativity is that state-
dependent delays come into play [3, 11]. Motivated by this re�ection, we propose
in this note the study of an analogous of Lazer-Solimini equations with state-
dependent delay

x′′ + g[x](t) = p(t), (2)

x′′ − g[x](t) = −p(t), (3)
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where p ∈ C(R \ TZ) and

g[x](t) ≡ g(x(t− τ(t, x(t)))),

being τ : R× R+ → R+ a nonnegative continuous function which is T -periodic
in the �rst variable. Finally, g : R+ → R+ is a continuous function which veri�es
the standing hypothesis

(H1) lim
x→+∞

g(x) = 0, lim
x→0+

g(x) = +∞.

In the classical terminology, it is said that (2) has an attractive singularity,
whereas (3) has a repulsive singularity. Often, we simply speak about the at-
tractive and the repulsive case. In this latter case, a minus sign in the forcing p
has been added for convenience.
Needless to say, delayed systems have been the focus of attention of many re-
searchers as a response of its many applications. In particular, state-dependent
delays plays a key role in a variety of biological and mechanical models (see the
review [7] and the bibliography therein). Although second order scalar ODEs
with delays have been considered in some relevant recent papers (see for instance
[1, 6, 8, 12] only to cite a few of them), up to our knowledge the inclusion of
singularities is not adequately covered by the existing references.

In order to explain our main results, let us �x p̄ :=
1

T

∫ T

0
p(t)dt the mean value

of p. After integration over a whole period, it becomes apparent that p̄ > 0 is a
necessary condition for existence of T -periodic solution of both (2) and (3). In
the case without delay, Lazer and Solimini proved that p̄ > 0 is also su�cient for
the attractive case, whereas in the repulsive case a counterexample can be found
proving that additional conditions are required (for instance the so-called strong
force condition) for existence of T -periodic solution. Our aim is to provide a
complementary su�cient condition which is valid also for the equations with
state-dependent delay.

Theorem 1. Assume that g satis�es (H1) and

(H2) g(x) > p̄ > 0 for every x ≤ T‖p+‖1.

Then (2) (resp. (3)) has at least one positive T−periodic solution.

For the attractive case, we can prove a di�erent result.

Theorem 2. Assume that g satis�es (H1) and p̄ > 0. If p(t) is bounded above
and

(H3) lim sup
x→0+

τ(t, x) <
min{v ∈ R+ : g(v) = ‖p+‖∞}

‖p+‖1
uniformly in t,

then (2) has at least one positive T−periodic solution.

Up to out knowledge, Theorem 1 is new even for the equation without delay.
On the other hand Theorem 2 is a generalization of the classical result by Lazer-
Solimini, which is recovered by taking τ(t, x) ≡ 0. Clearly, condition (H2) is
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related with the strength of the singularity and is valid for any delay. On the
other hand, (H3) is related with the behavior of the delay near the singularity.
However, it could have some interest from the point of view of Physics, since
in Special Relativity the expected delay should be proportional to the distance
of the particle to the singularity, that is of the type τ(t, x) = x, which trivially
satis�es (H3).
Other interesting remark concerns the regularity of the involved coe�cients.
By revising the proofs, one realizes that Theorem 1 remains true for the case
p ∈ L1(R\TZ), of course by considering the solutions in the Caratheodory sense.
On the other hand, an analogous of Theorem 2 for a purely L1-Caratheodory
ambient is an open problem even for the equation without delay, a fact yet
noticed in [5].
From now on, we consider the Banach spaces X = C1(R \ TZ) endowed with
the usual C1−norm and Z = L1(R \ TZ) with the L1−norm. Given f ∈ Z,
f+ = max{f, 0} denotes the positive part and f− = max{−f, 0} the negative
part of f . The rest of the paper is organized as follows. In Section 2, we present
some a priori bounds for the solutions of a convenient homotopic equation. Then
in Section 3 the main results are proved by using a well-known continuation
theorem of Capietto-Mawhin-Zanolin [2].

2. A priori bounds

In this section we prove some lemmas that will be used in the proof of our main
results. Let us consider the following homotopic equations

x′′ + gλ[x](t) = pλ(t). (4)

x′′ − gλ[x](t) = −pλ(t). (5)

where gλ[x](t) := g(x(t− λτ(t, x(t)))), pλ(t) = (1− λ)p̄+ λp(t) and λ ∈ [0, 1].

From now on, The following lemma, which is due to Lazer-Solinimi [4], will be
useful.

Lemma 1 ([4]). Let x ∈ X be a T -periodic function such that x′′ ∈ Z. Then

‖x′‖∞ ≤ ‖(x′′)±‖1.

By using this lemma, we can �nd a uniform bound for x′ when x is a T -periodic
solution of (4) or (5).

Lemma 2. If x is a T -periodic solution of (4) or (5) and g satis�es (H1) then

‖x′‖∞ ≤ ‖p+‖1.

Proof. Let x ∈ X be a solution of (4), then by Lemma 1 we have

‖x′‖∞ < ‖(x′′)+‖1 = ‖ (pλ(t)− gλ[x](t))
+ ‖1

≤ ‖p+λ ‖1 ≤ ‖p+‖1.

The proof for a solution x ∈ X of (5) is analogous, taking into account that
‖x′‖∞ ≤ ‖(x′′)−‖1 = ‖(−x′′)+‖1.
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The next step is to �nd an upper bound for T -periodic solutions of Eqs. (4)-(5).

Lemma 3. Assume that g satis�es (H1) and p̄ > 0. Then there exists a positive
constant M not depending on λ ∈ [0, 1] such that

x(t) < M for all t,

for every T -periodic solution x(t) of (4) or (5).

Proof. Let x by a T -periodic solution of (4) or (5). Integrating on both sides of
the equation we get∫ T

0

gλ[x](t)dt =

∫ T

0

((1− λ)p̄+ λp(t)) dt

= T p̄.

Because of the continuity of the involved functions, there is t1 ∈]0, T [ such that
gλ[x](t1) = g(x(t1 − λτ(t1, x(t1)))) = p̄. Let us de�ne t0,λ := t1 − λτ(t1, x(t1)).
By Lemma 2,

x(t)− x(t0,λ) =

∫ t

t0,λ

x′(s)ds ≤ T‖x′‖∞ ≤ T‖p+‖1.

for any t ∈]t0,λ, t0,λ + T [. On the other hand, (H1) and p̄ > 0 implies that the
set {v ∈ R+ : g(v) = p̄} is bounded, closed and non-empty, so in consequence it
has a maximum, call it C∗. Thus,

x(t) ≤ T‖p+‖1 + x(t0,λ) < T‖p+‖1 + C∗ + 1 =: M,

and it is obvious that this constant does not depend on λ.

Finally, we look for a lower bound of possible T -periodic solutions.

Lemma 4. Under the conditions of Theorem 1, there exists ε1 > 0 not depend-
ing on λ ∈ [0, 1] such that

x(t) > ε1 for all t,

for every T -periodic solution x(t) of (4) or (5).

Proof. Arguing as in the proof of Lemma 3,

x(t) =

∫ t

t0,λ

x′(s)ds+ x(t0,λ),

where g(x(t0,λ)) = p̄. By (H1)-(H2), C∗ = min{v ∈ R+ : g(v) = p̄} is well-
de�ned and C∗ > T‖p+‖1. Therefore, by applying Lemma 2 once more,

x(t) =

∫ t

t0,λ

x′(s)ds+ x(t0,λ) ≥ C∗ − T‖p+‖1 >
C∗ − T‖p+‖1

2
=: ε1 > 0.
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Lemma 5. Under the conditions of Theorem 2, there exists ε2 > 0 not depend-
ing on λ ∈ [0, 1] such that

x(t) ≥ ε2 for all t,

for every T -periodic solution x(t) of (4).

Proof. For a given T -periodic solution x(t) of (4), assume that x(t0) = min
t∈[0,T ]

x(t).

Then,

gλ[x](t0) ≤ x′′(t0) + gλ[x](t0) = pλ(t0) ≤ ‖p+‖∞.

Then, by using the hypothesis (H1),

x(t0 − λτ(t0, x(t0))) ≥ D∗ := min{v ∈ R+ : g(v) = ‖p+‖∞} > 0. (6)

On the other hand, if we call ε̃ := D∗−‖p+‖1 lim sup
x→0+

τ(t, x), by condition (H3),

there exists ε > 0 such that

D∗ − ‖p+‖1τ(t, x) ≥ ε̃ > 0 for all 0 < x ≤ ε. (7)

By the Mean Value Theorem and Lemma 2 we have

x(t0 − λτ(t0, x(t0)))− x(t0) ≤ x′(ζ)τ(t0, x(t0))

≤ ‖x′‖∞τ(t0, x(t0))

≤ ‖p+‖1τ(t0, x(t0)).

Then, by using (6)

x(t0) ≥ x(t0 − λτ(t0, x(t0)))− ‖p+‖1τ(t0, x(t0))
≥ D∗ − ‖p+‖1τ(t0, x(t0)) > 0.

Now, if x(t0) ≤ ε, combining (7) with the latter inequality, one gets x(t0) ≥ ε̃.
The proof is �nished by taking ε2 = 1

2 min{ε, ε̃}.

3. Proof of main results

Let us de�ne the linear operator

L : D(L) ⊂ X → Z L(x) := x′′ − x,

where D(L) := {x : x ∈ X, x′ is absolutely continuous on R}, and the Nemit-
skii operator N : X+ × [0, 1] → Z, X+ := {x ∈ X : x(t) > 0 for all t} ⊂ X
given by

N (x;λ) :=

{
pλ(t)− gλ[x](t)− x(t), in the case of Eq. (4)

−pλ(t) + gλ[x](t)− x(t), in the case of Eq. (5)
.
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Then, x is a T -periodic solution of Eq. (4) or (5), λ ∈ [0, 1] if and only if
x ∈ D(L) is a solution of

Lx = N (x;λ), λ ∈ [0, 1].

In particular, (2)-(3) are equivalent to Lx = N (x; 1). Since L is invertible, we
can write equivalently

x− L−1N (x;λ) = 0. (8)

Consequently, �nding T -periodic solutions of Eq. (4) or Eq. (5) is equivalent
to �nding the �xed points of the operator L−1N in Ω. With this in mind, we
present the proof of Theorem 1.
Proofs of Theorems 1 and 2. Let Ω ⊂ X be the open bounded set de�ned by

Ω = {x ∈ X : ε1 < x(t) < M and ‖x′(t)‖∞ < M1, ∀t ∈ R},

where ε1,M are the positive constants �xed in Lemmas 3, 4 and M1 := ‖p+‖1.
By the a priori bounds derived in Section 2, (8) has no solutions (x, λ) ∈ (D(L)∩
∂Ω)× [0, 1]. Since L−1N (·;λ) is a compact operator, by the global continuation
principle of Leray-Schauder [13, Theorem 14.C], Theorem 1 will be proved if we
show that the degree is nonzero for some λ ∈ [0, 1].
Let us �rst consider the case of equation (2). Taking λ = 0, Eq. (4) becomes

x′′ + g(x(t)) = p̄.

De�ne the function F : [ε1,M ]× [−M1,M1] → R2 given by

F (u, v) = (v, p̄− g(u)) .

By a classical result of Capietto, Mawhin and Zanolin [2, Theorem 1], we can
compute the Leray-Schauder degree of I −L−1N (·;λ) as the Brouwer degree of
F as follows

DLS

(
I − L−1N (·; 0),Ω

)
= DB (F, [ε1,M ]× [−M1,M1]) .

Such degree is easily computed by elementary techniques and shown to be 1.
Hence, by the existence property of the degree, there is x ∈ D(L) ∩ Ω such
that Lx = N (x; 1). Exactly the same proof is valid for Theorem 2. The proof
for equation (5) is analogous, only changing a sign on the second component of
function F , which gives a degree equal to −1.
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