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Abstract. For the Gylden-Meshcherskii-type problem with a periodically chang-

ing gravitational parameter, we prove the existence of radially periodic solu-

tions with high angular momentum, which are Lyapunov stable in the radial
direction.

1. Introduction. In Celestial Mechanics and Astrophysics, problems involving
gravitating bodies with variable mass arise with relative frequency. Perhaps the
best known of them is the two-body problem with variable masses, known as the
Gylden-Meshcherskii problem. If such variation is assumed to be periodic, the
mathematical model under consideration is

ẍ = −h(t)
x

|x|3
, (1)

where h is a continuous, T -periodic function. Originally, the Gylden-Meshcherskii
problem was proposed by Gylden to explain the secular acceleration observed in
the Moon’s longitude, but nowadays it is used to describe a variety of phenomena
including the evolution of binary stars, dynamics of particles around pulsating stars,
photogravitational effects and many others. See [1, 8, 21, 24, 25, 26, 27] and the
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references therein. The famous Newtonian equation for the motion of a particle
subjected to the gravitational attraction of a sun which lies at the origin

ẍ = − cx

|x|3
(2)

corresponds to (1) with the choice h(t) = c for some positive constant c > 0. In a
different line of research, the Newtonian motion of a particle under a central force
field which may depend periodically on time has been recently studied by Fonda
and his coworkers [9, 10, 11, 12, 13, 14].

In this paper, we continue this topic and study the radial stable periodic orbits
of (1). Generally, we will consider the following differential equation

ẍ = −h(t)
x

|x|α+1
, α > 0, (3)

which becomes the Gylden-Meshcherskii problem (1) when α = 2.
It is well known that for this kind of central force fields every orbit lies in a plane,

then passing to polar coordinates

x(t) = r(t)
(

cos θ(t), sin θ(t)
)

with amplitude r(t) > 0 and angle θ(t) ∈ R for every t, system (3) is equivalent to

r̈ =
µ2

r3
− h(t)

rα
. (4)

A simple computation shows that

d

dt

(
r2(t)θ̇(t)

)
= 0, for every t,

which implies that

µ = r2θ̇

is constant along any solution x. It is called angular momentum of x. We shall say
that a solution x : R→ R2 \{0} of (3) is radially T -periodic if the radial component

r(t) is T -periodic. In this case, the number ω = θ(T )−θ(0)
T can be interpreted as the

average angular speed of x and will be called the rotation number of x and denoted
by ω = rotx. Then, a radially T -periodic solution x is T - periodic if and only if rotx
is an integer multiple of 2π/T . If rotx = (m/n) (2π/T ) for some relatively prime
integers m 6= 0 6= n, then x will be subharmonic with minimal period nT . In other
case, x is quasiperiodic with two natural frequencies.

Note that (3) and (4) are singular differential equations. During the last few
decades, based on different methods in nonlinear analysis, the existence of periodic
solutions for singular differential equations has been studied by many researchers.
See [3, 7, 15, 16, 22, 29, 31, 32, 37, 39] and the references therein. Compared with
many existence results, only a few works [2, 4, 30, 33, 35] focus on the further
dynamics properties, such as ellipticity and stability. Our main objective is to find
conditions for the existence of solutions of (1) which are Lyapunov-stable in the
radial direction. The precise definition of radial stability is as follows. We say that
a solution x(t) = r(t)eiθ(t) is radially stable in the Lyapunov sense if for every ε > 0,

there exists δ > 0 such that, given any other solution x̃(t) = r̃(t)eiθ̃(t), the condition
|x(0)− x̃(0)|+ |x′(0)− x̃′(0)| < δ implies that |r(t)− r̃(t)| < ε for every t > 0.
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Throughout the paper, it is assumed that h is a continuous, T -periodic and
positive function and denote

m = min
[0,T ]

h(t), M = max
[0,T ]

h(t), ∆ =
M

m
.

This quantity ∆ can be regarded as a measure of the variation of the gravitational
parameter and will play a key role in our main results. The mean value of h is
denoted by

h =
1

T

∫ T

0

h(t)dt.

Furthermore, we always assume that 0 < α < 3. For simplicity, we introduce a new
parameter

γ =
1

3− α
.

Obviously, γ ∈ (1/3,+∞).
Our aim is to prove the following main result.

Theorem 1.1. There exists a constant µ0 > 0 such that for any µ > µ0, system (3)
has a radially T -periodic orbit with angular momentum µ which is radially stable
in the Lyapunov sense. Moreover, there exists a constant ∆0 such that if ∆ < ∆0,
then we have the following explicit bound

µ
2γ(α+1)
0 ≤

(
T

π

)2 (
3M4γ − αm4γ

)
.

Theorem 1.1 establishes the existence of stable radially T -periodic orbits for
large angular momentum, and under an assumption over ∆, an explicit bound is
given on how large must be the angular momentum. We apply Theorem 1.1 to the
Gylden-Meshcherskii problem (1) and we can easily get the following result.

Corollary 1. There exists µ0 > 0 such that for any µ > µ0, the Gylden-Meshcherskii
problem (1) has a radially T -periodic orbit with angular momentum µ which is ra-
dially stable in the Lyapunov sense. Moreover, if ∆ < ∆′0 ' 1.00828, then the
following explicit bound holds

µ6
0 ≤

(
T

π

)2 (
3M4 − 2m4

)
. (5)

As a practical example of Corollary 1, let us consider h(t) = δ(1+ε cosωt). Then
the condition ∆ < ∆′0 is equivalent to

ε <
∆′0 − 1

∆′0 + 1
' 0.00412293,

and orbitally stable radially T -periodic orbits exist with angular momentum

µ >
4δ4

ω2

(
3(1 + ε)4 − 2(1− ε)4

)
=

4δ4

ω2

(
1 + 20ε+ 6ε2 + 20ε3 + ε4

)
.

In particular, we can modulate the frequency in order to obtain orbitally stable
T -periodic orbits with arbitrary small angular momentum. The family of radial-
ly T -periodic orbits that we found will be in general quasiperiodic orbits of two
frequencies and include a sequence of nT -periodic orbits (subharmonics) with n
tending to +∞.

To prove Theorem 1.1, we will use a combination of ideas coming from different
papers. The existence of radially T -periodic orbits for large angular momentum
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was proved in [9]. In Section 2, we use a different method based on the theory
of upper and lower solutions, that has the advantage of giving explicit bounds on
the solutions. Also in [9], it is observed that such orbits approach to circular ones
when the angular momentum goes to +∞. We obtain a more precise information
on how this limit behaves by means of averaging theory, very much inspired by
the arguments exposed in [19]. As a second step, in Section 3 we analyze the
Lyapunov stability of the solutions of equation (4). Related scalar equations with
singularities like Lazer-Solimini or Brillouin equation have been profusely studied
(see for instance [2, 4, 30, 33, 34, 35]) in the recent years. Once Section 3 is
completed, Section 4 presents a brief proof of Theorem 1.1 and Corollary 1.

As a final remark, let us observe that the condition 0 < α < 3 is natural in
some sense. In fact, if α > 3 the upper and lower solutions constructed in Section
2 are in the right order, leading to an unstable solution (see [5]). In the limiting
case α = 3, equation (4) is a singular equation with indefinite weight, with rather
different properties. For instance, no periodic solutions exist for large values of the
angular momentum µ.

2. Existence and estimation of radially T -periodic solutions. The existence
of T -periodic solutions for large angular momentum µ was proved in [9, Corollary 1]
for a more general equation. The first result of this section provides a more precise
quantitative information by using a different method of proof based on the technique
of upper and lower solutions in the reversed order (see for instance [6, 34]).

Proposition 1. Assume that

µ2γ(α+1) >

(
T

π

)2 (
3M4γ − αm4γ

)
. (6)

Then equation (4) has at least one T -periodic solution such that(
µ2

M

)γ
< r(t) <

(
µ2

m

)γ
. (7)

Proof. We apply the method of upper and lower functions in the reversed order (see

for instance [6, 34]). Note that β1(t) = (µ
2

m )γ is a constant strict lower function

and β2(t) = (µ
2

M )γ is a constant strict upper function in the reserved order β1 > β2.
In general, if a second order differential equation r̈ = f(t, r) has a couple of upper
and lower functions β2 < β1 on the reversed order, a sufficient condition for the
existence of T -periodic solution is

fr(t, r) ≥ −
( π
T

)2
for all t, β2(t) < r < β1(t). (8)

On the case of equation (4) is

fr(t, r) = −3µ2

r4
+
αh(t)

rα+1
≥ −3µ2

β4
2

+
αh(t)

βα+1
1

≥ −
( π
T

)2
.

After some algebra, it is easy to verify that this latter inequality is equivalent to
(7).

In [9], it is also proved that the periodic solutions of (3) approach to a constant
as the angular momentum tends to infinity. In the original system (3), the corre-
sponding orbits approach to circular ones. Inspired by [19], we are going to obtain
a more precise information by using the averaging theory.
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In the following, we will write r(t;µ) to denote the periodic solution obtained in
Proposition 1.

Proposition 2. Let r(t;µ) be the solution found in Proposition 1. Then we obtain
the following result

lim
µ→+∞

r(t;µ)

µ2γ
=

1

(h̄)γ
, uniformly in t. (9)

Proof. The proof is a basic application of the averaging theory. For a general
introduction to averaging theory one can consult for instance the books [23, 36], or
the arguments exposed in [19].

The first step is to write equation (4) as a perturbative system. To this aim, we
rename the variables and fix a small parameter as

u(t) = µ−2γr(t), y = µγ(α−1)ṙ(t), ε = µ−γ(1+α).

In the new variables, equation (4) is equivalent to the system

u̇ = εy,

ẏ = ε
(

1
u3 − h(t)

uα

)
.

(10)

The averaged system corresponding to system (10) is just

ξ̇ = εν,

ν̇ = ε
(

1
ξ3 −

h
ξα

)
.

(11)

It is a matter of simple computations to verify that the averaged system (11) has a
unique constant solution

(ξ0, ν0) =
(
h̄−γ , 0

)
,

which is non-degenerate, that is, the determinant of the Jacobian matrix evaluated
on (ξ0, ν0) is different from zero. Then, the equilibrium (ξ0, ν0) is continuable for
small ε, that is, there exists ε0 such that system (10) has a T -periodic solution
(u(t, ε), y(t, ε)) for 0 < ε < ε0, tending uniformly to (ξ0, ν0) as ε→ 0+. Going back
to the original variables, one gets (9).

3. Stability. In this section, we use the information collected in the previous sec-
tion to find sufficient conditions for the twist character (and hence the stability in
the sense of Lyapunov) of the solutions given by Proposition 1.

We first summarize some basic facts about the method of the third approximation
and the twist coefficient. Consider the scalar equation

u′′ + f(t, u) = 0, (12)

where f : R × R → R is T -periodic in t and of class C0,4 in (t, u). Let ψ(t) be a
T -periodic solution of (12). By translating the periodic solution ψ(t) of (12) to the
origin, we obtain the third order approximation

u′′ + a(t)u+ b(t)u2 + c(t)u3 + o(u3) = 0, (13)

where

a(t) = fu(t, ψ(t)), b(t) =
1

2
fuu(t, ψ(t)), c(t) =

1

6
fuuu(t, ψ(t)).

The linearized equation of (13) is the Hill equation

u′′ + a(t)u = 0. (14)
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We say (14) is elliptic if its multipliers λ1, λ2 satisfy λ1 = λ2, |λ1| = 1, λ1 6= ±1.
The T -periodic solution ψ of (12) is called 4-elementary if the multipliers λ of (14)
satisfy λq 6= 1 for 1 ≤ q ≤ 4. The rotation number θ is defined by the relation
λ = exp(±iθ). The T -periodic solution ψ(t) is said to be of twist type if the first
twist coefficient

β =

∫∫
[0,T ]2

b(t)b(s)R3(t)R3(s)χθ(|ϕ(t)− ϕ(s)|)dtds− 3

8

∫ T

0

c(t)R4(t)dt (15)

is non-zero, where Ψ(t) = R(t)(exp)(iϕ(t)) is the complex solution of (14) with
initial conditions Ψ(0) = 1,Ψ′(0) = i and the kernel χ is given by

χθ(σ) =
3 cos(σ − θ/2)

16 sin(θ/2)
+

cos 3(σ − θ/2)

16 sin(3θ/2)
, σ ∈ [0, θ].

This formulation is a compact form, obtained in [38] (see also [17, 18]), of the original
Ortega’s formula [20]. As a consequence of Moser’s invariant curve theorem [28],
a solution of twist type is Lyapunov stable. Moreover, the Moser twist theorem
asserts also a complicated dynamics near the periodic solution such as the existence
of infinitely many subharmonics with minimal periods tending to infinity and the
existence of infinitely many quasi-periodic solutions.

Based on the above theory, the following result for (13) has been established in
[35]. Although [35, Theorem 3.1] deals with the equation with the period 2π, the
following condition (iii) remains unchanged for any period T if we check the details
of its proof.

Lemma 3.1. [35, Theorem 3.1] Assume that there exists a T -periodic solution ψ
of (12) such that

(i) 0 < a∗ ≤ a∗ < ( π
2T )2,

(ii) c∗ > 0,

(iii) 10b2∗a
3/2
∗ > 9c∗(a∗)5/2,

where the constants are given as

a∗ = inf
t∈[0,T ]

a(t), b∗ = inf
t∈[0,T ]

|b(t)| , c∗ = inf
t∈[0,T ]

c(t), a∗ = sup
t∈[0,T ]

a(t), c∗ = sup
t∈[0,T ]

c(t).

Then the solution ψ(t) of (12) is of twist type.

Now we use the above result to obtain our first stability result for equation (4).

Theorem 3.2. Assume that

µ2γ(α+1) >

(
2T

π

)2 (
3M4γ − αm4γ

)
. (16)

Then there exists a constant ∆0 > 0 such that the T -periodic solution r(t) of equa-
tion (4) obtained in Proposition 1 is of twist type if ∆ < ∆0.

Proof. We will apply Lemma 3.1. For simplicity, we use r(t) to denote the periodic
solution r(t;µ). Let us fix

f(t, r) =
h(t)

rα
− µ2

r3
.

Then the coefficients of the third-order approximation are

a(t) = a(t;µ) = −αh(t)

rα+1
+

3µ2

r4
, (17)
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b(t) = b(t;µ) =
α(α+ 1)h(t)

2rα+2
− 6µ2

r5
, (18)

and

c(t) = c(t;µ) = −α(α+ 1)(α+ 2)h(t)

6rα+3
+

10µ2

r6
. (19)

Using the estimates (7), we have

3m4γ − αM4γ

µ2γ(α+1)
< a(t) <

3M4γ − αm4γ

µ2γ(α+1)
, (20)

α(α+ 1)m5γ − 12M5γ

2µ2γ(α+2)
< b(t) <

α(α+ 1)M5γ − 12m5γ

2µ2γ(α+2)
,

and

−α(α+ 1)(α+ 2)M6γ + 60m6γ

6µ2γ(3+α)
< c(t) <

−α(α+ 1)(α+ 2)m6γ + 60M6γ

6µ2γ(3+α)
.

First, note that if

∆ <

(
3

α

)1/4γ

=: ∆1,

then

a∗ >
3m4γ − αM4γ

µ2γ(α+1)
=

3− α∆4γ

m4γµ2γ(α+1)
> 0.

Using this estimate together with (16) in (20), it is easy to verify that (i) of Theorem
3.1 holds. Moreover, (ii) of Theorem 3.1 is satisfied if(m

M

)6γ
>
α(α+ 1)(α+ 2)

60
,

which is equivalent to

∆6γ <
60

α(α+ 1)(α+ 2)
,

and it holds if

∆ <

(
60

α(α+ 1)(α+ 2)

)1/6γ

=: ∆2.

On the other hand, if

∆ <

(
12

α(α+ 1)

)1/5γ

=: ∆3,

we have

α(α+ 1)M5γ − 12m5γ

2µ2γ(α+2)
=
α(α+ 1)∆5γ − 12

2m5γµ2γ(α+2)
<
α(α+ 1)∆5γ

3 − 12

2m5γµ2γ(α+2)
< 0,

which means that b(t) < 0 for all t, and in consequence,

b∗ >
12m5γ − α(α+ 1)M5γ

2µ2γ(α+2)
> 0.

Therefore, (iii) of Theorem 3.1 holds if we have the following inequality

10

[
12m5γ − α(α+ 1)M5γ

2µ2γ(α+2)

]2 [
3m4γ − αM4γ

µ2γ(α+1)

]3/2
>

9

[
−α(α+ 1)(α+ 2)m6γ + 60M6γ

6µ2γ(3+α)

] [
3M4γ − αm4γ

µ2γ(α+1)

]5/2
,
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which is equivalent to the inequality

g1(∆) > g2(∆), (21)

where
g1(∆) = 5

[
12− α(α+ 1)∆5γ

]2
(3− α∆4γ)3/2,

and
g2(∆) = 3

[
60∆6γ − α(α+ 1)(α+ 2)

]
(3∆4γ − α)5/2.

Observe that g1(0) > g2(0), therefore by continuity there exists ∆4 such that (21)
holds whenever ∆ < ∆4. Let

∆0 = min{∆1,∆2,∆3,∆4}.
Note that ∆0 depends only on the exponent α. Therefore we have verified all the
conditions of Theorem 3.1 if ∆ < ∆0.

Remark 1. Consider the Gylden-Meshcherskii problem (1). Then α = 2 and γ = 1.

In this case, it is easy to see that ∆1 = 4
√

3/2 and

∆1 < ∆2, ∆1 < ∆3.

The constant ∆0 can be chosen as

∆0 = min{∆1,∆4},
where ∆4 is the unique positive solution of the equation

10(6− 3∆5)2(3− 2∆4)3/2 = 9(10∆6 − 4)(3∆4 − 2)5/2.

A numerical computation gives ∆4 = 1.00828, which is the value consigned in
Corollary 1.

Admittedly, this first stability result imposes a very conservative bound for ∆,
but the advantage of the result is that we get an explicit lower bound for the
angular momentum µ. In this sense, Theorem 3.2 is of global nature. On the other
hand, if we look for a perturbative scenario and let the angular momentum to be
“large enough”, we can find a different result by exploiting the asymptotic behavior
observed in Proposition 2.

Theorem 3.3. The T -periodic solution r(t) obtained in Proposition 2.1 is of twist
type if µ is large enough.

Proof. We will analyze the formula (15) and prove that β is positive. The coefficients
of the third-order approximation are given as (17)-(19). By inserting the limit (9)
into (17)-(19), we have

lim
µ→+∞

µ2γ(α+1)a(t) = h
γ(α+1) [

3h− αh(t)
]
, (22)

lim
µ→+∞

µ2γ(α+2)b(t) = h
γ(α+2)

[
α(α+ 1)

2
h(t)− 6h

]
, (23)

and

lim
µ→+∞

µ2γ(α+3)c(t) = h
γ(α+3)

[
10h− α(α+ 1)(α+ 2)

6
h(t)

]
. (24)

Moreover, by straighforward computations, we obtain

lim
µ→+∞

µ2γ(α+1)ā = (3− α)h
4γ
,

lim
µ→+∞

µγ(α+1)θ = T
√

3− αh̄2γ , (25)
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and

lim
µ→+∞

R(t)

µγ(α+1)/2
=

1
4
√

3− α(h̄)γ
. (26)

We refer to [4, Corollary 4.1] for the asymptotical behavior (25) and (26). Moreover,
it follows from [17, Lemma 3.6] that (14) is elliptic and 4-elementary if µ is large
enough.

Moreover, when µ is large enough, we have

χθ(|ϕ(t)− ϕ(s)|) ≥ min
u∈[0,θ]

χθ(u)

= χθ(0)

=
5

8 sin(3θ/2)

(1 + 4 cos θ) cos(θ/2)

5

=
5

12θ

(
1 +O(θ2)

)
=

5

12
(T
√
ā)−1 +O(ā),

here we have used the fact θ = Tρ and the rotation number

ρ =
√
ā+O(ā), when ā→ 0+.

Let

β1 =

∫∫
[0,T ]2

b(t)b(s)R3(t)R3(s)χθ(|ϕ(t)− ϕ(s)|)dtds,

and

β2 =

∫ T

0

c(t)R4(t)dt.

Using (22)-(24), (25), (26) and the above facts, we obtain

lim
µ→+∞

µ4γβ2 = lim
µ→+∞

∫ T

0

µ2γ(α+3)c(t) ·
(

R(t)

µγ(α+1)/2

)4

dt

=

∫ T

0

h
γ(α+3)

[
10h− α(α+ 1)(α+ 2)

6
h(t)

]
1

(3− α)h̄4γ
dt

=
T

3− α
h̄2γ

[
10− α(α+ 1)(α+ 2)

6

]
=
α2 + 6α+ 20

6
T h̄2γ .
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Using the similar way, we obtain

lim
µ→+∞

µ4γβ1 ≥ lim
µ→+∞

∫∫
[0,T ]2

µ4γb(t)b(s)R3(t)R3(s)χθ(0)dtds

=

∫∫
[0,T ]2

h̄2γ(α+2)

[
α(α+ 1)

2
h(t)− 6h̄

] [
α(α+ 1)

2
h(s)− 6h̄

]
·

1

(3− α)3/2h̄6γ
5

12T

1√
3− αh̄2γ

dtds

=
5h̄2γ(α−2)

12T (3− α)2

∫∫
[0,T ]2

[
α(α+ 1)

2
h(t)− 6h̄

] [
α(α+ 1)

2
h(s)− 6h̄

]
dtds

=
5h̄2γ(α−2)

12T (3− α)2
T 2h̄2

(
α(α+ 1)

2
− 6

)2

=
5T (α+ 4)2

48
h̄2γ .

Thus

lim
µ→+∞

µ4γβ = lim
µ→+∞

µ4γ [β1 −
3

8
β2]

≥ T h̄2γ
[

5(α+ 4)2

48
− α2 + 6α+ 20

16

]
=

(α+ 1)(α+ 10)T

24
h̄2γ > 0,

which means that the twist coefficient β is positive when µ is large enough. Now
the proof is finished.

4. Proof of Theorem 1.1. Let µ > µ0 and r(t) be the solution of equation (4).
It corresponds to a radially T -periodic orbit given by x(t) = r(t;µ)eiθ(t), where

θ(t) =

∫ t

0

µ

r2(s;µ)
ds.

Note that the choice of the initial time is not restrictive because the rotational
invariance of the system. Our objective is to prove that x(t) is radially stable in
the Lyapunov sense.

Let x̃(t) = r̃(t)eiθ̃(t) be a new solution with angular momentum µ̃. The unipara-
metric family r(t;µ) given by Proposition 1 is a continous brach of solutions, so
there exists δ1 > 0 such that

|µ− µ̃| < δ1 =⇒ |r(t, µ)− r(t, µ̃)| < ε

2
, for allt.

On the other hand, the twist character is robust under small variations of the
parameters. In other words, if µ̃ is close enough to µ, then r(t; µ̃) is of twist type,
hence Lyapunov stable. In consequence, there exists δ2 > 0 such that

|r̃(0)− r(0, µ̃)| < δ2 =⇒ |r̃(t)− r(t, µ̃)| < ε

2
, for all t > 0.

Now, by continuity of the angular momentum of the solutions with respect to initial
conditions, there exists δ > 0 such that |x(0)− x̃(0)| + |x′(0)− x̃′(0)| < δ implies
|µ− µ̃| < δ1 and |r̃1(0)− r(0, µ̃)| < δ2. In consequence,

|r(t, µ)− r̃(t)| < |r(t, µ))− r(t, µ̃)|+ |r̃(t)− r(t, µ̃)| < ε,
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and the proof is done.

REFERENCES

[1] A.A. Bekov, Periodic solutions of the Gylden-Meshcherskii problem, Astron. Rep., 37 (1993),
651-654.

[2] J. Chu and M. Li, Twist periodic solutions of second order singular differential equations, J.

Math. Anal. Appl., 355 (2009), 830-838.
[3] J. Chu, P. J. Torres and M. Zhang, Periodic solutions of second order non-autonomous

singular dynamical systems, J. Differential Equations, 239 (2007), 196-212.

[4] J. Chu and M. Zhang, Rotation numbers and Lyapunov stability of elliptic periodic solutions,
Discrete Contin. Dyn. Syst., 21 (2008), 1071-1094.

[5] E.N. Dancer, R. Ortega, The index of Lyapunov stable fixed points in two dimensions, J.

Dynam. Differential Equations, 6 (1994), 631-637.
[6] C. De Coster and P. Habets, Upper and lower solutions in the theory of ODE boundary value

problems: classical and recent results, in: Nonlinear Analysis and Boundary Value Problem-

s for Ordinary Differential Equations, edited by F. Zanolin, CISM-CICMS 371 (Springer-
Verlag, New York, 1996), pp. 1-78.
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[22] I. Rachunková, M. Tvrdý and I. Vrkoc̆, Existence of nonnegative and nonpositive solutions
for second order periodic boundary value problems, J. Differential Equations, 176 (2001),

445-469.

[23] J. A. Sanders and F. Verhulst, Averaging methods in nonlinear dynamical systems, Applied
Math. Sci. 59, Springer, New York, 1985.

[24] W. C. Saslaw, Motion around a source whose luminosity changes, The Astrophysical Journal,

226 (1978), 240-252.
[25] D. Selaru, C. Cucu-Dumitrescu and V. Mioc, On a two-body problem with periodically chang-

ing equivalent gravitational parameter, Astron. Nachr.313 (1993), 257-263.



12 JIFENG CHU, PEDRO J. TORRES AND FENG WANG

[26] D. Selaru and V. Mioc, Le probleme de Gyldén du point de vue de la théorie KAM,C. R.
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