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Abstract

In this paper, by using Leray-Schauder degree arguments and critical point
theory for convex, lower semicontinuous perturbations of C1-functionals,
we obtain existence of classical positive radial solutions for Dirichlet pro-
blems of type

div

(
∇v√

1− |∇v|2

)
+ f(|x|, v) = 0 in B(R), v = 0 on ∂B(R).

Here, B(R) = {x ∈ RN : |x| < R} and f : [0, R] × [0, α) → R is a
continuous function, which is positive on (0, R]× (0, α).
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1 Introduction

The aim of this paper is to present some existence results for positive radial
solutions of the Dirichlet problem with mean curvature operator in the flat
Minkowski space

LN+1 := {(x, t) : x ∈ RN , t ∈ R}

endowed with the metric
N∑
j=1

(dxj)
2 − (dt)2.

It is known (see [3, 26]) that the study of spacelike submanifolds of codimen-
sion one in LN+1 with prescribed mean extrinsic curvature leads to Dirichlet
problems of the type

Mv = H(x, v) in Ω, v = 0 on ∂Ω, (1)

where

Mv = div

(
∇v√

1− |∇v|2

)
,

Ω is a bounded domain in RN and the nonlinearity H : Ω×R → R is continuous.

The starting point of this type of problems is the seminal paper [12] which
deals with entire solutions of Mv = 0 (see also [1] for N = 2). The equation
Mv = constant is then analyzed in [31], while Mv = f(v) with a general
nonlinearity f is considered in [8]. On the other hand, motivated by the study of
stationary surfaces in Minkowski space, in [25] the author consider the Neumann
problem

Mv = κv + λ in B(R), ∂νv = µ, on ∂B(R),

where B(R) = {x ∈ RN : |x| < R}, λ ̸= 0, κ > 0, µ ∈ [0, 1) and N = 2. More
general sign-changing nonlinearities are studied in [5].

If H is bounded, then it has been shown by Bartnik and Simon [3] that (1)
has at least one solution u ∈ C1(Ω) ∩ W 2,2(Ω). Also, when Ω is a ball or an
annulus in RN and the nonlinearity H has a radial structure (no boundedness
assumptions), then it has been proved in [4] that (1) has at least one classical
radial solution. This can be seen as an “universal” existence result for the above
problem in the radial case. On the other hand, in this context the existence
of positive solutions has been scarcely explored in the related literature. The
importance of this type of study becomes apparent in many practical situations,
for instance when the trivial solution is present.

In Section 2 we consider the Dirichlet problem

Mv + f(|x|, v) = 0 in B(R), v = 0 on ∂B(R), (2)
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where B(R) = {x ∈ RN : |x| < R} and f : [0, R] × [0, α) → R is a continuous
function, which is positive on (0, R]× (0, α). We prove that (2) has at least one
classical positive radial solution provided that f is superlinear at 0 with respect
to ϕ(s) = s/

√
1− s2, that is

lim
s→0

f(r, s)

s
= ∞ uniformly for r ∈ [0, R] (3)

and R < α (Corollary 1). In particular, we can consider nonlinearities of convex-
concave type like those introduced in [2] (Example 2).

When α = R = 1, (3) is satisfied and f is sublinear at 1 with respect to
ϕ(s) = s/

√
1− s2, that is

lim
s→1−

√
1− s2f(r, s) = 0 uniformly for r ∈ [0, 1], (4)

we prove that the same conclusion holds true (Corollary 1). Condition (3) has
been considered by many authors, in connection with the existence of positive
radial solutions for semilinear elliptic equations (see e.g. [21, 32]). Also, in the
classical p-Laplacian case, for which ϕp(s) = |s|p−2s, usually, in order to prove
the existence of positive solutions, condition (3) is considered together with the
sublinear condition of f at infinity with respect to ϕp:

lim
s→∞

f(r, s)

sp−1
= 0 uniformly for r ∈ [0, R]. (5)

In our situation, ϕ(s) = s/
√
1− s2 and (5) is naturally replaced by (4). Note

that, when R < α (f can be singular at α but α must be sufficiently large),
condition (3) is sufficient to ensure the existence of a positive radial solution of
(2).

In Section 3 we consider Dirichlet problems of the type

Mv + µ(|x|)p(v) = 0 in B(R), v = 0 on ∂B(R), (6)

where µ : [0, R] → R is continuous, positive on (0, R] and p : [0,∞) → R
is continuous with p(0) = 0 and p(s) > 0 for all s > 0. The form of the
equation will allow us to consider, among others, nonlinearities of Hénon type
[22] (Example 4), as well as of Brezis-Niremberg type [10] (Example 6). We
prove (Corollary 3) that if

RN < N

∫ R

0

rN−1µ(r)P (R− r)dr, (7)

where P is the primitive of p with P (0) = 0, then problem (6) has at least one
classical positive radial solution. This enables us to derive effective sufficient
conditions for the existence of positive solutions for some problems of type
(6), which appear as being in contrast with known results for similar Dirichlet
problems involving the classical Laplacian.
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Setting, as usual, r = |x| and v(x) = u(r), the Dirichlet problem (2) reduces
to the mixed boundary value problem(

rN−1 u′
√
1− u′2

)′

+ rN−1f(r, u) = 0, u′(0) = 0 = u(R). (8)

In Section 2, a fixed point operator is associated to problem (8) and the
Leray-Schauder degree is applied to obtain the existence results. We adapt
to our situation some ideas from the proof of the Krasnoselskii’s fixed point
theorem on compression-expansion of conical shells on a Banach space and from
the papers [16, 18, 19, 20].

In Section 3, we first deal with a mixed boundary value problem, involving
a more general nonlinearity than that in (6). To this aim, we attach an energy
functional I defined on C[0, R], which is the sum of a convex, lower semicontinu-
ous function and of a C1-function. So, I has the structure required by Szulkin’s
critical point theory [30]. We prove that I has always a minimizer on C[0, R]
for any continuous nonlinearity not necessarily positive, and, in our particular
case, we provide a sufficient condition ensuring the non-triviality of the mini-
mizers. We note that a variational approach has been also employed in [28] to
prove various existence and multiplicity results concerning positive solutions of
Dirichlet problems with mean curvature operators in the Euclidean space.

If Ω is an open bounded subset in a Banach space X and T : Ω → X is
compact, with 0 /∈ (I − T )(∂Ω), then dLS [I − T,Ω, 0] will denote the Leray-
Schauder degree of T with respect to Ω and 0. For the definition and properties
of the Leray-Schauder degree we refer the reader to e.g., [17].

2 A topological degree approach

Motivated by the model example from Introduction, in this Section we consider
mixed boundary value problems of the type

(rN−1ϕ(u′))′ + rN−1f(r, u) = 0, u′(0) = 0 = u(R), (9)

where N ≥ 1 is an integer, R > 0 and the following main hypotheses hold true:

(Hϕ) ϕ : (−a, a) → R (0 < a < ∞) is an odd, increasing homeomorphism
with ϕ(0) = 0;

(Hf ) f : [0, R]× [0, α) → [0,∞) is a continuous function with 0 < α ≤ ∞
and such that f(r, s) > 0 for all (r, s) ∈ (0, R]× (0, α).

Below, the space C := C[0, R] will be endowed with the usual supremum
norm || · || and the corresponding open ball of center 0 and radius ρ > 0 will be
denoted by Bρ. Recall that by a solution of (9) we mean a function u ∈ C1[0, R]
with ∥u′∥ < a, such that ϕ(u′) is differentiable and (9) is satisfied.

We need the following elementary result.
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Lemma 1 Assume (Hϕ), (Hf ) and let u be a nontrivial solution of

(rN−1ϕ(u′))′ + rN−1f(r, |u|) = 0, u′(0) = 0 = u(R). (10)

Then u > 0 on [0, R) and u is strictly decreasing.

Proof. From

rN−1ϕ(u′) = −
∫ r

0

τN−1f(τ, |u(τ)|)dτ (11)

it follows u′ ≤ 0 because f(r, s) ≥ 0 for all r ∈ [0, R] and s ∈ [0, α), so u is
decreasing. Since u(R) = 0, we have u ≥ 0 on [0, R]. As u is not identically
zero, one has u(0) > 0 and, from (11) we deduce that u′ < 0 on (0, R], which
ensures that actually u is strictly decreasing and u > 0 on [0, R).

By virtue of Lemma 1, any nontrivial solution u of the mixed boundary value
problem (10) is a strictly decreasing solution of (9).

Now, a fixed point operator is associated to problem (10) (see [4, 13] for
slightly different operators). In this view, we shall use the compact linear ope-
rators

S : C → C, Su(r) =
1

rN−1

∫ r

0

tN−1u(t)dt (r ∈ (0, R]), Su(0) = 0;

K : C → C, Ku(r) =

∫ R

r

u(t)dt, (r ∈ [0, R]).

An easy computation shows that, for any h ∈ C, the mixed problem

(rN−1ϕ(u′))′ + rN−1h(r) = 0, u′(0) = 0 = u(R),

has an unique solution u given by

u = K ◦ ϕ−1 ◦ S ◦ h.

Moreover, from the compactness of S and K it follows that K ◦ϕ−1 ◦S : C → C
is compact. Consider now the Nemytskii type operator

Nf : Bα → C, Nf (u) = f(·, |u(·)|).

Clearly, Nf is continuous and Nf (Bρ) is a bounded subset of C for any ρ < α.
So, we have the following fixed point reformulation of the problem (10).

Lemma 2 A function u ∈ C is a solution of (10) if and only if it is a fixed
point of the continuous nonlinear operator

N : Bα → C, N = K ◦ ϕ−1 ◦ S ◦Nf .

Moreover, N is compact on Bρ for all ρ ∈ (0, α).
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In the next Proposition we assume that f is superlinear with respect to ϕ
at 0 and we prove that the Leray-Schauder degree dLS [I −N , Bρ, 0] is zero for
all sufficiently small ρ.

Proposition 1 Assume that

lim
s→0+

f(r, s)

ϕ(s)
= +∞ uniformly with r ∈ [0, R] (12)

and

lim sup
s→0

ϕ(τs)

ϕ(s)
< +∞ for all τ > 0. (13)

Then there exists 0 < ρ0 < α such that

dLS [I −N , Bρ, 0] = 0 for all 0 < ρ ≤ ρ0.

Proof. First, we show that there exists ρ0 ∈ (0, α) such that the perturbed
problem

(rN−1ϕ(u′))′ + rN−1[f(r, |u|) +M ] = 0, u′(0) = 0 = u(R). (14)

has at most the trivial solution in Bρ0 , for any M ≥ 0. By contradiction, assume
that there exist sequences {Mk} ⊂ [0,∞) and {uk} ⊂ C \ {0} with ||uk|| → 0,
such that uk is a solution of (14) with M = Mk, for all k ∈ N. By virtue of
Lemma 1 one has that uk > 0 on [0, R) and uk is strictly decreasing.

From (13) with τ = 3/R, there is some m > 0 so that

m(R/3)N

N(2R/3)N−1
> lim sup

s→0

ϕ(3s/R)

ϕ(s)
(15)

and using (12), we can find k0 ∈ N such that

f(r, uk(r)) ≥ mϕ(uk(r)) for all r ∈ [0, R] and k ≥ k0. (16)

Then, integrating (14) with M = Mk and u = uk over [0, r] and taking into
account (16), we get

−ϕ(u′
k) ≥ mS[ϕ(uk)].

Hence, by the oddness of ϕ, we infer

−u′
k ≥ ϕ−1(mS[ϕ(uk)]).

Integrating the above inequality on [R/3, 2R/3] one obtains

uk(R/3)− uk(2R/3) ≥
∫ 2R/3

R/3

ϕ−1

(
m

tN−1

∫ t

0

τN−1ϕ(uk(τ))dτ

)
dt.
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Then, using that uk is strictly decreasing on [0, R] and uk > 0 on [0, R), it
follows

uk(R/3) ≥
∫ 2R/3

R/3

ϕ−1

(
m

(2R/3)N−1

∫ R/3

0

τN−1ϕ(uk(τ))dτ

)
dt

≥ R

3
ϕ−1

(
m(R/3)Nϕ(uk(R/3))

N(2R/3)N−1

)
,

for all k ≥ k0. This implies

ϕ(uk(R/3)3/R)

ϕ(uk(R/3))
≥ m(R/3)N

N(2R/3)N−1
,

which together with uk(R/3) → 0 contradict (15).

Note that (14) has no solution in Bρ0 , for any M > 0.

Now, let 0 < ρ ≤ ρ0 and consider the family of problems

(rN−1ϕ(u′))′ + rN−1[f(r, |u|) + λ] = 0, u′(0) = 0 = u(R), (17)

where λ ∈ [0, 1]. Let H(λ, ·) : Bα → C be the fixed point operator associated
to (17) (see Lemma 2). Note that H(0, ·) = N and H : [0, 1] × Bρ → C is a
compact homotopy. Also the Leray-Schauder condition on the boundary

u ̸= H(λ, u) for all (λ, u) ∈ [0, 1]× ∂Bρ

is fulfilled. This implies that

dLS [I −H(0, ·), Bρ, 0] = dLS [I −H(1, ·), Bρ, 0].

But, from the previous arguments one has that

u ̸= H(1, u) for all u ∈ Bρ,

implying that
dLS [I −H(1, ·), Bρ, 0] = 0.

Consequently,

dLS [I −N , Bρ, 0] = dLS [I −H(0, ·), Bρ, 0]

= dLS [I −H(1, ·), Bρ, 0]

= 0

which ends the proof.

In the following result we use that, in contrast with the classical case, the
domain of ϕ is bounded.
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Proposition 2 If aR < α, then one has

dLS [I −N , BaR, 0] = 1.

Proof. Consider the compact homotopy

H : [0, 1]×BaR → C, H(λ, u) = λN (u).

Note that H(0, ·) = 0 and H(1, ·) = N . Let (λ, u) ∈ [0, 1] × BaR be such that
H(λ, u) = u. It follows immediately that ||u′|| < a, implying that ||u|| < aR.
So,

u ̸= H(λ, u) for all (λ, u) ∈ [0, 1]× ∂BaR,

which implies that

dLS [I −H(0, ·), BaR, 0] = dLS [I −H(1, ·), BaR, 0].

Consequently,
dLS [I −N , BaR, 0] = dLS [I,BaR, 0] = 1

and the proof is complete.

If α = a, then in Proposition 2 one has that R < 1. We consider now the
case R = 1, assuming that f is sublinear with respect to ϕ at a.

Proposition 3 Assume that a = α and R = 1. If

lim
s→a−

f(r, s)

ϕ(s)
= 0 uniformly with r ∈ [0, 1], (18)

then there exists 0 < δ1 < a such that

dLS [I −N , Bδ, 0] = 1 for all δ1 ≤ δ < a.

Proof. Consider the family of problems

(rN−1ϕ(u′))′ + rN−1λf(r, |u|) = 0, u′(0) = 0 = u(R),

where λ ∈ [0, 1]. Let H(λ, ·) : Ba → C be the fixed point operator associated
to (17) (see Lemma 2). Note that H(1, ·) = N and H : [0, 1] × Bρ → C is a
compact homotopy for all 0 < ρ < a. We show that there exists 0 < δ1 < a
such that

u ̸= H(λ, u) for all (λ, u) ∈ [0, 1]× (Ba \Bδ1). (19)

By contradiction, assume that there exist sequences {λk} ⊂ [0, 1] and {uk} ⊂
C \ {0} such that a > ||uk|| → a and uk = H(λk, uk). Clearly, λk > 0 for all
k ∈ N and, from Lemma 1 one has that uk > 0 on [0, 1) and uk is strictly
decreasing on [0, 1]. Let {εk} ⊂ (0,∞) be such that εk → 0. From (18) there
exists {ck} ⊂ (0,∞) such that

f(r, s) ≤ εkϕ(s) + ck for all (r, s) ∈ [0, 1]× [0, a). (20)
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As ||uk|| → a, we can find a subsequence {ukj
} of {uk} satisfying

εjϕ(||ukj ||) ≥ cj for all j ∈ N. (21)

Using the monotonicity of ϕ−1 and uk = H(λk, uk) we obtain

||uk|| ≤
∫ 1

0

ϕ−1

(
1

rN−1

∫ r

0

tN−1f(t, uk(t))dt

)
dr.

This together with (20) and (21) imply

||ukj
|| ≤ ϕ−1(2εkj

ϕ(||ukj
||)/N),

and then

1 ≤ 2εkj/N for all j ∈ N.

This contradicts εkj → 0, as j → ∞. So, (19) holds true. It follows that, for
any δ1 ≤ δ < a, one has

dLS [I −H(0, ·), Bδ, 0] = dLS [I −H(1, ·), Bδ, 0].

Consequently,
dLS [I −N , Bδ, 0] = dLS [I,Bδ, 0] = 1

and the proof is complete.

Theorem 1 Assume that (Hϕ), (Hf ), (12) and (13) are fulfilled. Then problem
(9) has at least one positive solution if either aR < α or α = a, R = 1 and (18)
holds true.

Proof. Assume that aR < α and let ρ0 be given in Proposition 1. We pick
ρ ∈ (0,min{ρ0, aR}). From Propositions 1, 2 it follows that

dLS [I −N , BaR \Bρ, 0] = dLS [I −N , BaR, 0]− dLS [I −N , Bρ, 0] = 1,

which ensures the existence of some u ∈ BaR\Bρ, with u = N (u). Consequently,
u is a solution of (9) and u > 0 on [0, R).

If α = a, R = 1 and (18) is satisfied, then the proof follows exactly as above
but with Proposition 3 instead of Proposition 2.

Remark 1 In Theorem 1, if α < ∞ and the function f is continuous on [0, R]×
[0, α], then condition aR < α can be replaced by aR ≤ α. This follows from the
fact that, in this case,

dLS [I −N , Bα, 0] = 1

(see Proposition 2).
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Corollary 1 Assume that (Hf ) and condition (3) are fulfilled. Then problem
(2) has at least one classical positive radial solution if either R < α or α = 1 = R
and (4) holds true.

Proof. It suffices to take in Theorem 1 the homeomorphism ϕ(s) = s/
√
1− s2

(−1 < s < 1). Note that in this case a = 1. Then, conditions (Hϕ) and (13) are
satisfied. Actually, in this case one has that

lim
s→0

ϕ(τs)

ϕ(s)
= τ for all τ > 0.

Example 1 Let the constants 0 ≤ q < 1, α > 0, γ > 0 and µ : [0, R] → (0,∞),
h : [0, R]× [0,∞) → [0,∞) be continuous functions.

(i) The Dirichlet problem

Mv + µ(|x|)vq + h(|x|, v) = 0 in B(R), v = 0 on ∂B(R),

has at least one positive classical radial solution for any R > 0. It is interesting
to note that, according to Theorem 3.2 and Remark 3.1 in [11], the problem

Mv + µ(|x|)|v|q−1v = 0 in B(R), v = 0 on ∂B(R),

has infinitely many radial solutions with prescribed number of nodes (the posi-
tive case is not covered), provided that µ is continuously differentiable.

(ii) The Dirichlet problems

Mv +
µ(|x|)vq√
α2 − v2

= 0 in B(R), v = 0 on ∂B(R),

and

Mv +
µ(|x|)vq

(α− v)γ
= 0 in B(R), v = 0 on ∂B(R),

have at least one positive classical radial solution for any R < α.
(iii) From Remark 1, the Dirichlet problem

Mv + µ(|x|)vq(α− v)γ = 0 in B(R), v = 0 on ∂B(R),

has at least one positive classical radial solution for any R ≤ α.
(iv) If, in addition, γ < 1

2 , then the Dirichlet problem

Mv +
µ(|x|)vq

(1− v2)γ
= 0 in B(R), v = 0 on ∂B(R),

has at least one positive classical radial solution for any R ≤ 1.
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Example 2 If 0 ≤ q < 1 ≤ p and λ > 0, then problem

Mv + λvq + vp = 0 in B(R), v = 0 on ∂B(R),

has at least one positive classical radial solution for any R > 0. In the classi-
cal case, using the upper and lower solutions method, it has been proved by
Ambrosetti, Brezis and Cerami [2] that problem

∆v + λvq + vp = 0 in B(R), v = 0 on ∂B(R),

has a positive solution iff 0 < λ ≤ Λ for some Λ > 0 (0 < q < 1 < p).

Example 3 Assume that (Hf ) and condition (3) are satisfied. Then the mixed
boundary value problem

[rN−1 tan(u′)]′ + rN−1f(r, u) = 0, u′(0) = 0 = u(R). (22)

has at least one positive solution if either πR < 2α or 2α = π, R = 1 and it
holds

lim
s→π

2 −
f(r, s) cos s = 0 uniformly with r ∈ [0, 1],

3 Variational solutions

First, we deal with the general mixed boundary value problem

(rN−1ϕ(u′))′ = rN−1g(r, u), u′(0) = 0 = u(R), (23)

where g : [0, R]×R → R is continuous and ϕ satisfies the following potentiality
hypothesis:

(HΦ) Φ : [−a, a] → R is continuous, of class C1 on (−a, a), Φ(0) = 0 and
ϕ := Φ′ : (−a, a) → R is an increasing homeomorphism such that ϕ(0) = 0.

Using the ideas from [6] (also see [7, 9, 26]) a variational approach is in-
troduced for problem (23). With this aim let us denote W 1,∞ := W 1,∞(0, R).
According to [7] we know that the convex set

K := {v ∈ W 1,∞ : ∥v′∥ ≤ a}

is closed in C. This implies that

K0 := {v ∈ K : v(R) = 0}

is also a convex, closed subset of C. On the other hand, as

||v|| ≤ aR for all v ∈ K, (24)

K0 is bounded inW 1,∞. Then, by the compactness of the embeddingW 1,∞ ⊂ C,
we infer that K0 is compact in C.
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Next, as in [7] we deduce that the functional Ψ : C → (−∞,+∞], defined
by

Ψ(v) =


∫ R

0

rN−1Φ(v′) dr, if v ∈ K0,

+∞, if v ∈ C \K0

is proper, convex and lower semicontinuous. Note that Ψ is bounded on K0.

Setting

G(r, s) =

∫ s

0

g(r, ξ)dξ, (r, s) ∈ [0, R]× R,

we define G : C → R by

G(v) =
∫ R

0

rN−1G(r, v)dr, v ∈ C,

which is of class C1 on C. Then, the energy functional I := Ψ + G has the
structure required by Szulkin’s critical point theory [30]. Accordingly, a function
u ∈ C is a critical point of I if u ∈ K0 and

Ψ(v)−Ψ(u) + ⟨G′(u), v − u⟩ ≥ 0 for all v ∈ C,

or, equivalently∫ R

0

rN−1 [Φ(v′)− Φ(u′) + g(r, u)(v − u)] dr ≥ 0 for all v ∈ K0. (25)

Lemma 3 Assume (HΦ). Then, for every h ∈ C, the problem

(rN−1ϕ(u′))′ = rN−1h(r), u′(0) = 0 = u(R), (26)

has an unique solution uh, which is also the unique solution in K0 of the varia-
tional inequality∫ R

0

rN−1 [Φ(v′)− Φ(u′) + h(v − u)] dr ≥ 0 for all v ∈ K0, (27)

and the unique minimum over K0 of the strictly convex functional J : K0 → R
defined by

J(v) =

∫ R

0

rN−1 [Φ(v′) + hv] dr, v ∈ K0.

Proof. A straightforward computation shows that problem (26) has as unique
solution the function

uh = −K ◦ ϕ−1 ◦ S ◦ h.
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Now, if u := uh is the solution of (26), then, taking v ∈ K0, multiplying each
member of the differential equation by v − u, integrating over [0, R], using the
integration by parts formula and the boundary conditions, we get∫ R

0

rN−1[ϕ(u′)(v′ − u′) + h(v − u)]dr = 0,

which, on account of the convexity inequality

Φ(v′)− Φ(u′) ≥ ϕ(u′)(v′ − u′),

gives (27). Next, it is clear that u ∈ K0 is a solution of the variational inequality
(27) if and only if it is a minimum of J on K0. Moreover, using that Φ is
strictly convex, it follows that J is strictly convex, implying the uniqueness of
the minimum of J on K0.

The proof is now completed.

Proposition 4 Assume (HΦ) and that g : [0, R]×R → R is continuous. Then,
each critical point of I is a solution of (23). Moreover, (23) has a solution which
is a minimum point of I on C.

Proof. Let u ∈ K0 be a critical point of I. This means that u solves the
variational inequality (27) with h = g(·, u) (see (25)). But, then Lemma 3
ensures that u is a solution of (23).

Next, from the definition of I one has that I(v) ≡ +∞ on C \ K0. This
implies that

inf
C

I = inf
K0

I =: c.

Using (24) we infer that I is bounded on K0. Consider {uk} ⊂ K0 such that
I(uk) → c. By the compactness of K0 we may assume, passing to a subsequence
if necessary, that there exists u ∈ K0 such that uk → u in C. It follows that
G(uk) → G(u) and Ψ(u) ≤ lim infk→∞ Ψ(uk). Consequently, one has that I(u) ≤
c and u is a minimum of I on C. By virtue of Proposition 1.1 in [30], u is a
critical point of I, hence a solution of (23).

Remark 2 The above Proposition 4 reduces the search of solutions of problem
(23) to finding critical points of the energy functional I. It is worth to point
out that the potentiality hypothesis (HΦ) plays here a crucial role. In this view,
for instance, problems of type (22) can not be treated in this way, because the
homeomorphism ϕ(s) = tan(s) (−π/2 < s < π/2) does not satisfy (HΦ). On
the other hand, this is a suitable way for problems of type (8), because in this
case, as

ϕ(s) =
s√

1− s2
(s ∈ (−1, 1)),

one takes

Φ(s) = 1−
√
1− s2 (s ∈ [−1, 1]) (28)

and it is easily seen that (HΦ) is fulfilled.
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Now, we come to study the problem(
rN−1 u′

√
1− u′2

)′

+ rN−1µ(r)p(u) = 0, u′(0) = 0 = u(R), (29)

under the hypotheses:

(Hµ) µ : [0, R] → R is continuous and µ(r) > 0 for all r > 0;

(Hp) p : [0,∞) → R is a continuous function such that p(0) = 0 and
p(s) > 0 for all s > 0.

Note that (29) is of type (8) with

f(r, s) = µ(r)p(s), for (r, s) ∈ [0, R]× [0,∞)

and from (Hp) it is clear that u ≡ 0 is a solution of (29). We are interested on
positive solutions.

It is a simple matter to see that any solution of problem (29) is nonnegative.
So, we may assume that p is also defined on (−∞, 0) by setting p(s) = 0 for
s < 0. Then, this fits with the variational setting from above by taking g(r, s) =
−µ(r)p(s) for all (r, s) ∈ [0, R]× R. With Φ given in (28) and

G(r, s) = −µ(r)P (s), P (s) =

∫ s

0

p(t)dt ((r, s) ∈ [0, R]× R),

the energy functional I : C → (−∞,+∞] associated to (29) will be

I(v) =
RN

N
−
∫ R

0

rN−1
√

1− v′2dr −
∫ R

0

rN−1µ(r)P (v)dr (v ∈ K0)

and I ≡ +∞ on C \K0.

The main result of this section is the following one.

Theorem 2 Assume (Hµ) and (Hp), together with

inf
K0

I < 0. (30)

Then problem (29) has at least one solution u such that u > 0 on [0, R) and u
is strictly decreasing.

Proof. By Proposition 4 and I(0) = 0, it follows that (29) has a nontrivial
(nonnegative) solution u. Clearly, this satisfies(

rN−1 u′
√
1− u′2

)′

+ rN−1µ(r)p(|u|) = 0, u′(0) = 0 = u(R).

The conclusion follows now from Lemma 1.
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Corollary 2 If (Hµ), (Hp) and (7) are satisfied then problem (29) has at least
one solution u such that u > 0 on [0, R) and u is strictly decreasing.

Proof. We show that condition (30) is fulfilled. Consider the function vR ∈
K0 given by

vR(r) = R− r for all r ∈ [0, R].

Using (7), one gets

I(vR) =
RN

N
−
∫ R

0

rN−1µ(r)P (R− r)dr < 0,

and (30) holds true.

Remark 3 Under the assumptions of Corollary 2, condition (7) can be replaced
by µm := min[0,R] µ > 0 and

RN < µm

∫ R

0

(R− r)Np(r)dr. (31)

Indeed, we have

RN

N
−
∫ R

0

rN−1µ(r)P (R− r)dr ≤ RN

N
− µm

∫ R

0

rN−1P (R− r)dr

=
RN

N
− µm

∫ R

0

(R− r)N

N
p(r)dr

< 0,

and (7) holds true.

Corollary 3 Assume that (Hµ), (Hp) and (7) are fulfilled. Then problem (6)
has at least one classical positive radial solution. The same is true if instead of
(7) is µm > 0 together with (31).

Example 4 Given m ≥ 0 and q > 0, let us consider the Hénon type problem

Mv + |x|mvq = 0 in B(R), v = 0 on ∂B(R). (32)

It is easy to see that in this case inequality (7) becomes

1 <
NRm+q+1Γ(q + 2)Γ(N +m)

(q + 1)Γ(N +m+ q + 2)
. (33)

Consequently, if (33) holds then problem (32) has at least one classical positive
radial solution.

Recall, the classical problem

∆v + |x|mvq = 0 in B(1), v = 0 on ∂B(1), (34)
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was introduced by Hénon [22] as a model to study spherically symmetric clusters
of stars. Problems of this type have been widely studied (see for instance [23,
24, 27, 29] and the references therein). It is worth to point out that, as shown
in [27], problem (34) has a positive radial solution provided that

q ∈
(
1,

N + 2m+ 2

N − 2

)
(N ≥ 3,m > 0).

Example 5 Let q ≥ 1 (for q ∈ (0, 1) see Example 1 (i)) and λ > 0. Using (31),
the Dirichlet problem

Mv + λvq = 0 in B(R), v = 0 on ∂B(R), (35)

has at least one classical positive radial solution for any R > 0, such that

1 < λRq+1Γ(N + 1)Γ(q + 1)

Γ(N + q + 2)
.

Therefore, (35) has a positive solution provided that λ or R are large enough.
The corresponding result in the Euclidean context is given in [14, 15]. On the
other hand, this is in contrast with the classical case. Indeed, from the Pohozaev
identity, the Dirichlet problem

∆v + λvq = 0 in B(R), v = 0 on ∂B(R),

has no positive solutions if q > (N + 2)/(N − 2), for any λ,R > 0 (N ≥ 3).

Also, if q = 1, setting Λ := (N + 1)(N + 2)/R2, the problem

Mv + λv = 0 in B(R), v = 0 on ∂B(R),

has a classical positive radial solution for any λ > Λ. Such an Λ does not exist
for the classical Laplacian case. To see this it suffices to take any λ outside of
the spectrum of −∆ with homogeneous Dirichlet boundary condition and, v ≡ 0
will be the unique solution of problem

∆v + λv = 0 in B(R), v = 0 on ∂B(R).

Example 6 Let q ≥ 1 and λ > 0 be a parameter. From (31), the Brezis-
Nirenberg type problem

Mv + vq + λu = 0 in B(R), v = 0 on ∂B(R),

has a classical positive radial solution for any λ > 0 such that

1 < λ
R2

(N + 1)(N + 2)
+Rq+1 Γ(q + 1)N !

Γ(N + q + 2)
.

Again, this appears as being in contrast with the classical case. In this view,
we only note that, as shown in the seminal paper [10], the problem

∆v + v
N+2
N−2 + λv = 0 in B(R), v = 0 on ∂B(R), (N ≥ 4)

has positive solution provided that λ > 0 is sufficiently small.
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tion, Commun. Contemp. Math. 4 (2002), 467-480.

[30] A. Szulkin, Minimax principles for lower semicontinuous functions and ap-
plications to nonlinear boundary value problems, Ann. Inst. H. Poincaré
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