Translation arcs and stability in two dimensions

Rafael Ortega

Abstract Given a closed orbiy of a system of differential equations in the plane
x=X(x), xe R,

the index of the vector field aroundy is one. This classical result has a counterpart
in the theory of discrete systems in the plane. Consider the equation

Xn+1 = h(Xn)7 Xn € Rza

whereh is an orientation-preserving embedding and assume that there is a recur-
rent orbit that is not a fixed point. Then there exists a Jordan custeh that the

fixed point index ofh around this curve is one. The proof is based on the theory
of translation arcs, initiated by Brouwer. These notes are dedicated to discuss some
consequences of the above result, specially in stability theory. We will compute the
indexes associated to a stable invariant object and show that Lyapunov stability im-
plies persistence (in two dimensions). The invariant sets under consideration will be
fixed points, periodic orbits and Cantor sets.

1 Introduction

We are going to discuss the dynamics of a system of the type
Xnt1=h(Xn), Xn € R 1)

whereh : R> — R? is a one-to-one continuous map. Notice thas not necessarily
onto and so the imaglk(R?) can be a proper subset Bf. In general orbits are
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defined in the futurex, = h"(xp), n > 0, but not always in the past. We will also
assume that the mdpis orientation preserving. This class of maps will be denoted
by &, indicating thath is an orientation preserving topological embedding. We
refer to the appendix for more details on the topological aspects.
As a counterpoint to the discrete model (1) we can consider the system of differ-
ential equations
x=X(x), xe R 2)

whereX : RZ — R? is a continuous vector field such that there is uniqueness for
the initial value problem associated to (2). We all know that the behavior of the
continuous system is much simpler. In particular Poiagdendixson theory implies

that the dynamics for (2) cannot be very intricate. In general this type of results
cannot be extended to the discrete situation. In these notes we will be concerned
with a result for continuous systems that is somehow exceptional because it can be
extended to discrete systems. This result, already obtained by Raideals with

the computation of the index around a closed orbit of (2). The discrete version is the
so-called arc translation lemma, originally due to Brouwer. We will discuss these
classical results and later derive some new consequences in stability theory.

2 The index around a closed orbit

LetI" be a closed orbit of the system (2) andfetl") denote the bounded compo-
nent ofR?\ I'. It is well known that the vector field has an equilibrium of (I").
Indeed a stronger conclusion can be obtained, namely

d(X,R(I"),0) =1,

whered is the Brouwer degree on the plane. A proof of this result can be found in the
book [18] and an alternative proof will be presented later. The book [15] contains a
very complete presentation of degree theory. By now we just recall how to compute
geometrically the degreé(X,Ri(I"),0). The curvel" can be parameterized by a
continuous functiorB : [0,1] — R? with I = B([0,1]), B is one-to-one N0, 1],
B(0) = B(1). It is also assumed thgt has positive orientation. The vector field
X does not vanish of and so we can find a continuous argumént[0,1] — R
satisfying

X(B(1)) = [X(B(t)|[(cosb(t),sinb(t)).
Then

d(X,R(I"),0) = 5_(6(1) - 6(0)).
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3 Translation arcs

We go back to discrete systems. Our first task will be to construct an object that
somehow plays the role of the orbits in continuous dynamics. An arc iscacd®?

that is homeomorphic to the compact interi@&ll]. The end points of the arc will

be denoted by # g and sometimes we will use the notatiar= pgfor the oriented

arc. Giverh € &, we say thatx = pgis a translation arc fan if h(p) = gand

h(e\ {a}) N (e\ {q}) = 0.

We illustrate this definition with a typical situation.

q=h(p)

h(a)

Fig. 1 A typical translation h(a)
arc

Notice that the translation am cannot contain fixed points and the open arcs
o = o\ {p,q} andh(a) cannot intersect. In some special cases the two arcs can
have the same end points. This case can only ocdyp, if} is a two cycle.

p=h(q) h(o)

) ) ) a=h(p)
Fig. 2 A translation arc with o

2-periodic end points

Next we discuss some simple examples:

1. Assume first that is a translation, say
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h(x,y) = (x+1,y).
The horizontal segment joining = (0,0) andq = (1,0) is a translation arc. The

broken line passing bg = (0,0), (0,1), (1,1) andg= (1,0) is not a translation arc,
in this casex Nh(a) is the segment joiningl, 1) andq.

o h(a)

o h(o)

P q=h(p) h(a) P q=h(p) h(a)

Fig. 3 In the left sidex Nh(er) = {q} but in the right side this intersection is a segment.

2. Assume thah is the rotation of 180 degrees in the counterclockwise sense. The
seta = {(cosO,sinf) : 6 € [0, x|} is a translation arc. In this case the end points
p=(1,0) andg = (—1,0) become two cycles.

3. Assume that the continuous system (2) defines a globaKfe}vcr in the plane
and taken = ¢, for some fixedr > 0. We notice thap. is a homeomorphism of the
plane that is isotopic to the identity. In particulare &,.. Assume thap is a point
in the plane that is not an equilibrium &f and leto be the piece of orbit running
from ptoq= ¢-(p), thatis

o={g(p): te0r]}

This is an arc if the orbit is not closed or if it is closed ane: T, whereT > 0 is
the minimal period. This segment of orbit is a translation arc whenever the orbit is
not closed orr < 3T.

After these examples we go back to the general setting and ask ourselves about
the existence of translation arcs. Next result shows that they exist fdr#ng. By
a topological disk we understand a suli3eif the plane that is homeomorphic to the
diskA = {xc R?: ||x|| < 1}. Notice tha®)D is a Jordan curve and i) = R (dD).

Lemma 1. Assume that k &, and D is a topological disk with Dih(D) = 0. In
addition assume that the pointg,x.,xx belong to the interior of D. Then there
exists a translation arex with xq, ..., X € a. See the figure below.

This result is a variation of a lemma in [8]. A proof can be found in chapter 3 of
[23].

Givenh € &, and a translation arc, the successive iterations of can lead
to two different situations: eithex Nh"(e) = 0 for eachn > 2 or aNh™(a) # 0
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h(D)

h(a)
Fig. 4 The arca passes through the points... Xk, all lying in the diskD

for somen > 2. The prototype for the first situation is example 1 (translations),
while the second appears in example 2 (rotations). The second situation is somehow
analogous to the closed orbit in a continuous system. To obtain a result on the index
for the discrete case we need to replace the vector Xdb¢ some map related to

h. The simplest one i$ := id — h, whereid denotes the identity in the plane. The
zeros off are precisely the fixed points bf in analogy with the equilibria of the
continuous system which are the zeros of the vector field.

4 Lemma on translation arcs (Brouwer)

Givenh € &, , assume that for somme> 2 there exists a translation ascwith
anh™(a) # 0.

Then there exists a Jordan cuVe contained inc Uh(e) U---Uh"(ex), and such
that
d(id —h,R(I"),0) = 1.

Notice that this degree is well defined becaliseannot have fixed points on
Uisoh¥(). See the figure below. The proof of this lemma is delicate. Classical
proofs (see for instance [25]) employ some intuitive method for computing the de-
gree. This type of argument, very common in planar dynamics, is replaced by more
rigorous arguments in [7, 13, 14]. In particular the proof by M. Brown is very ele-
gant and, although it only covers the case of homeomorphisavith h(R?) = R?,
it can be adapted to embeddings. See [20] and [23].

We are always assuming thiatis orientation-preserving and this condition is
essential for the previous lemma. This is shown by the following example. Consider
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Fig. 5 Brouwer’s lemma with
n= 3. The Jordan curvf is
composed by(«), h?(a) and
sub-arcs taken fromx and
h3(a).

the map
w{mxw&
' yl = _y7

wherel : R— Ris a continuous function satisfying
Aly)>1ifye]-2.2 Ay)=1ify|>2

This is an orientation-reversing homeomorphism and the dynamics is easy to de-
scribe. The origin is a fixed point and the orbits lyings: 0 or |y| > 2 are two
cycles, the remaining orbits are unbounded. The set

a={(2cog,2sint): te |-~ I

2’2
is a translation arc witlx N h?(a) # 0. Notice that this intersection is composed
by the end points oé. Since the origin is the only fixed point dfand lies in the
unbounded component 8\ (o Uh(a) Uh?(a)), the degree oid — h vanishes in
any topological disk whose boundary is containedin h(a) Uh?( o). This shows
that the conclusion of Brouwer’s lemma cannot be valluig orientation-reversing.

It is interesting to recover the result stated in section 2 from Brouwer’s Lemma.
To this end we first recall two properties of degree. Given a bounde@ setd a
continuous functiorf : @ — R2 with f(x) # 0 if x € 9Q, the continuity property
of degreesays that there existg > 0 such that ifg: Q — R? is any continuous
function with

[|f(X) —g(X)|| <n foreachxe dQ,

thend(f,2,0) = d(g,2,0). Notice thatn must be small enough to guarantee that
g does not vanish od Q.
The second property refers to the composition with linear maps. Giver2aatrix
L,
d(Lf,Q,0) = sign(detL)d(f,Q,0).
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We are ready for the proof of the result in section 2. For simplicity we will assume
that the vector fielX defines a global flow ¢ }+cr On the plane. First we prove that
the degree of this vector field coincides with the degreie of ¢; for t positive and
small. To prove this we integrate the differential equation and obtain the formula

1

1 rt
La(© -8 =7 [ X0s(e)ds

Then %(qbt —id) converges tX uniformly on compact sets. In consequenceQif
is an open and bounded subset of the planeXaddes not vanish on the boundary
20, for smallt the mapg: will not have fixed points o@Q and

d(X,2,0) :d(t}(d)t—id),Q,O). (3)

This last degree is the samed{&d — ¢, Q2,0). Assume now thal is a closed orbit.
We fix £ € I" and consider the are = {¢s(§) : 0 <s<t}. We know thatx is a
translation arc foh = ¢ if t is small. Moreover, sinc€’ is closed, some iterate of
this arc will have a non-empty intersection with the initial arcWe are now in the
conditions of Brouwer’s lemma and there exists a Jordan cyseeh that

d(id —h,Ri(y),0) = 1. 4)

But the curvey is contained inl" and so they have to coincide,= I". Putting
together the two identities (3), (4) wit? = R (I"), we conclude that the degree of
Xis 1.

5 Stability and index of fixed points

Let us discuss some consequences of the previous result in stability theory. Assume
thath: % ¢ R? — R? is a map defined on an open sgtand letp € % be a fixed

point ofh, p=h(p). We say thap is stableif given any neighborhood" of p, there

exists another neighborhodd C % such that

h"(#) c v foreachn > 0.

We say that the fixed poing is isolatedif there exists a neighborhood” such that
p is the only fixed point ohin .4"; that is,

Fix (h) N4 = {p},

where Fix(h) := {x € % : h(x) = x}.

To illustrate these notions we consider two simple examples. Assume first that
is a rotation aroungb, the disks centered g@tare invariant unden and this implies
that p is stable. Also,p is isolated because it is the only fixed pointtofin the
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second examplhl is a symmetry ang is a point in the axis of symmetry. For the
same reasons the poiptis stable but now it is not isolated because all points lying
on the axis of symmetry are fixed.

In the next result we prove that stable and isolated fixed points have index one.

Theorem 1.Assume that h% ¢ R> — R?is a continuous and one-to-one map that
is orientation-preserving and let p be an isolated and stable fixed point of h, then

d(id —h,Q,0) =1,
whereQ is any open and bounded set witke2, Q € % andFix (h)NQ = {p}.

It is interesting to notice that this result can also be seen as a discrete counterpart of
a classical result in the theory of continuous systems: given an isolated equilibrium
of a vector fieldX, if this equilibrium is stable then the index of around the
equilibrium is one. A proof of theorem 1 using Brouwer’s lemma was obtained by
Dancer and myself in [12], previously Krasnoselskii stated the result (without proof)

in [16]. We will present a simplified proof but first we discuss some consequences of
the theorem. We also notice that the above theorem was extended to the orientation-
reversing case by Ruiz del Portal [26]. In higher dimensions there are stable fixed
points with arbitrary index, see [4] and the references therein.

6 Instability criteria

Traditionally the instability of fixed points is obtained using linearization or Lya-
punov functions. In two dimensions the previous theorem allows to prove the insta-
bility of a fixed point via degree computations. As an example consider a smooth
map that can be expressed (in complex notation) as

h(z,2) = z+ 2 +R(z,2),
whereR(z,2) = 0o(|Z/®) asz— 0. Thenz = 0 is an unstable fixed point of
Zoi1 = Zn+ 22+ R(Z0, Z0).

To prove this we first apply the inverse function theorem and noticehtisain the
conditions of theorem 1 when it is restricted to a small neighborhood of the origin.
The expansion

z-h(z2)= -2 +0(]7° as|z -0

implies thaz= 0 is an isolated fixed point. Let us consider the parameterized curve
Y% (t) = pe™, t € [0,1], with p > 0 very small. Then

(id — ) (3 (1) = p3(€¥ ™ 1 0(1)) asp — 0.

The continuous argument @l — h) o y, satisfies
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0p(t) =6nt+m+0(1) asp — 0.
From here it is easy to deduce that the degree on thelijisk {zc C: |z < p}is
d(id —h,D,,0) =3

for smallp. This implies the instability oz = 0.
Many other results on unstable fixed points can be obtained using the known
algorithms to compute the degree of a planar map.

7 Persistence and stability

In this section we work with the class of homeomorphisms of the plane, denoted by
2. The sub-class of orientation-preserving homeomorphisms will be denoted by
.. Notice thatzs. = 27 N &.. Givenh € 2 and a hon-empty compact invariant
setA C R?, A = h(A), we say that\ is persistenif given & > 0 there exists > 0
such that for anr € .7 with )

Ih—fll <8

there exists a compact sétc R? that is invariant unde, A = h(A) and satisfies
Du(A,A) <e.

The notatiorDy refers to the Haussdorf distance in the space of non-empty compact
subsets of the plane afid || is the uniform norm, that is

[Ih—=hlle = supl|h(x) - A(X)]].

xeR2

The theorem of the previous section implies the persistence of stable and isolated
fixed points.

Corollary 1. Given he s, and p= h(p) a fixed point that is stable and isolated,
the invariant set\ = {p} is persistent.

Proof. Sincep is an isolated fixed point, for smadl> 0 we know that
Fix (h) N Qe = {p},
whereQ, = {x€ R?: ||x|| < &}. From theorem 1,
d(f,Q,0)=1,

wheref = id —h. Let us takeg = id — h whereh € 7. Since||f —g|| = ||n— ||,

we can apply the continuity property of the degree that was stated in section 4 and
selectd = n in order to find a fixed poinp of hwith p € Q. The proof is complete

with A = {f}.
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In the previous result it is essential that the fixed point is isolated. An example of a
stable fixed point that is not persistent as invariant set is presented in [24].

8 Proof of the theorem

To prove theorem 1 we distinguish two cases:

(i) pis asymptotically stable.
In this case the theorem will be a consequence of degree theory and it is even valid
in arbitrary (finite) dimension.

(ii) pis not asymptotically stable.

From our perspective this will be the more interesting case. We will prove the theo-
rem using Brouwer’s lemma. The proof and the result cannot be extended to higher
dimensions.

8.1 Asymptotically stable fixed points

Although the contents of this subsection are valid in arbitrary dimension, we remain
in the plane for notational convenience. We will consider a continuousmép C
R? — R? defined on an open set. Notice that we do not need to assumh ihat
one-to-one.

A fixed point p = h(p) is asymptotically stabléf it is stable and there exists a
neighborhood? of p such that

h"(x) — p asn — +o

for eachx € #.

From this definition we notice that Fih) "% = {p}. This implies that asymp-
totically stable fixed points are isolated. Also, it is not hard to prove that the attrac-
tion is uniform on compact subsets &f. Next result is taken from Krasnoselskii's
book [16].

Proposition 1. In the previous assumptions for h, assume thathg p) is an asymp-
totically stable fixed point. Then

d(id—h,Q,0)=1
for each open and bounded setsatisfying pc 2, 2 NFix (h) = {p}.

Proof. Browder’s asymptotic fixed point theorem (see [5]) implies th& &indA
are closed disks in the plane withc D andh: D — R? is a continuous map such
that all the iterate"(A) are well defined fon > 0 and, for somé\ > 0,
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h"(A)c A if n>N, (5)

thenh has a fixed point im. A refinement of this result says that if the condition
(5) is replaced by
h"(A) Cint(A) if n>N, (6)

then
d(id —h,D,0) = 1.

A complete proof of this result can be found in the book [17]. We are ready for the
proof of the proposition.

Let us fix a small closed disk centered ap and such thab C % . Sincep is
stable we can find a smaller digkcentered ap and such that all forward iterates
h"(A) are well defined and contained in the interiomnfthat is,

h"(A) Cint (D) if n> 0.

After restricting the size ol we can also assume that it is containeddnThen the
compact diska is uniformly attracted by. This means that

h"(x) — p asn — +,

uniformly inx € A. In consequence the condition (6) will holdNfis large enough.
We conclude thad(id — h,int (A4),0) = 1. The identityd(id — h,int (4),0)) =
d(id — h, ©,0) follows by excision. Notice thad NFix (h) ¢ ZnNFix (h) = {p}.

8.2 Stability without attraction

We are now assuming thatis continuous, one-to-one and orientation-preserving.
However, since the map is not defined in the whole plane, we cannot say that it
belongs ta#’; . Our first task will be to repladeby a mapH in &,.. To do this we first

recall that a stable fixed point in the plane always possesses small neighborhoods
that are positively invariant, open and simply connected. We refer to the appendix
for more details. Since is an isolated fixed point we find a neighborhodd with

A NFix (h) = {p}.
Let” be an open neighborhood pfsatisfying
W CUNN, W issimply connectech(#) C # .

As a consequence of Riemann theorem on conformal maps we know/that
homeomorphic to the open disk or, equivalently, to the whole plane. It is possible
to assume that the homeomorphism R? = # satisfieso(p) = p and we define

H =o0"1ohy oo wherehy, : # — # is the restriction oh,
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H: Re¥ — W =R

By definitionH is continuous and one-to-one. Moreover, it is conjugate to the re-
striction ofh to 7. This implies thatH is orientation-preserving and the stability
properties ofp as a fixed point are the same for the two maps. We summarize the
relevant properties dfl,

He &,

p is a stable fixed point df

p is not asymptotically stable

Fix (H) = {p}

d(id —h,©Q,0) =d(id —H, G,0), whereG is any open and bounded subset of the
plane withp € G.

Notice that the last property is a consequence of the excision property and the in-
variance of the fixed point index under conjugation. More precisely, given a home-
omorphismy : G; = G, between two bounded and open subse®%f

d(id — y o foy,Gy,0) = d(id — f,Gy,0)

for any continuous functiofi : G, — G, with Fix(f)NdG, = 0.
From now on we work with the mapl. Sincep is stable but not asymptoti-
cally stable, we can find a poirfc R?\ {p} that is recurrent. This means that

HT'\cL_]

Fig. 6 In this exampleN = 4 and the degree is one in the regi@n

g€ Ly(g,H), whereL,(g,H) is thew-limit set. We recall that this limit set is com-
posed by all accumulation points of the sequefidé(p) }n>0. More details can be
found in the appendix. The poigtis not fixed undeH and so we can find a small
disk D aroundq satisfying

DNH(D)=0.
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Sinceq is recurrent there exists an integér> 2 such thaHN(q) < int (D). If we
apply lemma 1, we find a translation ascwith g,HN(q) € @. After iteratingN
times the arax underH, we observe that the poiktN(q) belongs simultaneously
to &« andHN (&) and we are in the conditions of Brouwer’s lemma.

9 Stability of invariant sets

From now on we assume that the mta a homeomorphism of the plane and we
indicate it byh € 7. In particular it is assumed thatis onto,h(R?) = R?. Let A
be a compact subset Bf that is invariant unde,

h(A) = A.

The notion of stability can be adapted to this general setting. We sa tisattable
if given any neighborhoo@ of A, there exists another neighborhogdsuch that

h"(v) c % foreachn > 0.

If A is a singletonA = {p}, p is a fixed point and the two notions of stability
coincide. Whem is a finite set then it is composed by a finite number of periodic
orbits, say

A=A1U---UA,

where
Ai = {pi7h(pi)7"'7hmil(pi)}

andh™(p;) = p;, i = 1,...,r. Each pointp; is fixed under the iterate™ andA; is
stable if and only ifp; is a stable fixed point ofi™. In particular, if p; is isolated

as a fixed point oh®™ andA is stable we can apply theorem 1 to the orientation-
preserving homeomorphishi™ to deduce that

d(id —h*™ G,0)=1

if Gis a bounded and open subset of the plane withG and Fix(h*™)NG = {p;}.
This is a more or less trivial consequence of theorem 1 but we will obtain similar
results whem is a Cantor set.

10 Stable Cantor sets

Assume that\ C R? is a Cantor set that is invariant under

h(A)=A.
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We recall that a Cantor set is a compact, perfect and totally disconnected metric
space. We will also assume thatis transitive This means that, for somee A,

Lw(pah) =A.

There are many classical examples where transitive Cantor sets appear. In Smale’s
horseshoe there appear a Cantor set with the dynamics of the shift, see [1]. In the
theory of twist maps, Aubry-Mather sets are invariant Cantor sets with Denjoy dy-
namics, see [19]. However, in these examples theAsstnot stable. To present an
example of stable Cantor set we consider the following construction, already de-
scribed by Cartwright in [10]. Assume thBtis a disk and insid® there are two
disjoint disksDy andD1. We repeat this process recursively so thgatontains two
disksDgg andDg1, D; containsD1p andD11, and so on. The intersection of the sets

Fig. 7 Construction of a Can-
tor set as a limit of families
of 2" disks. The disks are la-
belled by the words of length
n with the symbols 0 and 1.
Forn= 2, we have 00, 01, 10,
11.

D, DouUD1, DggUDg1UD10UD13... is a Cantor sed. We construct a homeomor-
phismh satisfying
h(D) =D

h(Do) = D1, h(D1) = Do
h(Doo) = D10, h(D10) = Doz1, h(Do1) = D11, h(D11) = Doo, ...

Notice that, at each level of the construction, the iteratdsrofp every disk in all
the others before returning. In particutg§iD) = D, h?(Dg) = Do, h*(Dgo) = Doo,...
Since the set®, DgUD1, DggU Dg1UD19U D11... are invariant unden, the same
will happen to the intersectioA. MoreoverA is stable because it has a basis of
invariant neighborhoods. Finally we notice thiis minimal This means that, for
eachpe A,

Lo(p,h) =A.
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This is clear because the iterates of a disk visit all the disks at the same level. There
can be some questioning as to whether this construction is feasible. This is easily
solved after interpretin® as a section of the flow on a solid torus described in the
next figure.

Fig. 8 The top and bottom of
the cylinder are identified as a
common disk. In this way we
obtain a solid torus that is in-
variant under the flow. Inside
this torus another invariant
torus is obtained by gluing the
two grey cylinders connecting
the smaller disks. This torus
winds twice before closing.
The process is repeated re-
cursively, in the next step
there appear an invariant torus
after gluing the four colored ea o1 18 11
thinner cylinders.

Buescu and Stewart proved that the dynamics on any stable and transitive Cantor
set is almost periodic, the so-called adding machine (see [9]). In partitiias to
be minimal. The Bernoulli shift on a Cantor set is transitive but not minimal and so
it is always unstable in the plane. Notice that this is the case in Smale’s horseshoe.
Cantor sets with Denjoy dynamics are minimal but not almost periodic (see [21]).
For this reason Aubry-Mather sets cannot be stable.

In [3] Bell and Meyer proved that any stable and transitive Cantor set in the
plane can be approximated by periodic points. In the same paper they constructed an
example showing that this is false in three dimensions. Next we state the interesting
result by Bell and Meyer.

Theorem 2.Assume that k& % and A is a Cantor set in Rthat is invariant under
h. In addition it is assumed that is stable and transitive. Then, for eachepA
there exists a sequenéen}, x, € R?, converging to p and such thaft{x,) = X,
for some integeo;, > 1.

We know thatA is minimal and so it cannot contain periodic points. For this reason
the pointsx, do not lie inA and o, — +. In particularA cannot be an isolated
invariant set oh. The proof by Bell and Meyer combines the result by Buescu and
Stewart mentioned above with the following classical fixed point theorem. We recall
that a continuum is a non-empty compact and connected metric space.

Theorem 3. Assume that i 7%, and K is a continuum of the plane witlik) = K.
In addition assume that®R K is connected. Then h has a fixed point in K.
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This result was proved by Cartwright and Littlewood in the beautiful paper [11].
Later Bell extended it to orientation-reversing homeomorphisms in [2]. In the re-
cent paper [24], written in collaboration with Ruiz-Herrera, it is shown that addi-
tional information on stable Cantor sets can be obtained if one replaces the use of
theorem 3 by Brouwer’s lemma. In retrospect this seems natural because Cartwright-
Littlewood theorem can be obtained as a consequence of Brouwer’s lemma (see [6]).
To state the next result we employ the notat{ip, &) for the open ball of centep

and radiusd.

Theorem 4. Assume that the same conditions of theorem 2 hold. Then, for each p
A and eachd > 0, there exists a topological disk D and an integeeNN(p,6) > 1
such that Dc B(p,d) and

d(id —hV,int(D),0) = 1.

As a consequence of this result we will deduce that stable and transitive Cantor
sets have some remarkable properties: they are always persistent and non-isolated
as invariant sets. We already mentioned that the non-isolated character follows from
the theorem by Bell and Meyer. We can now see Bell-Meyer's result as a corollary
of theorem 4, becaus®' has a fixed point ifD. Next we present a second corollary

that seems to be new.

Corollary 2. In the conditions of theorem 4, the setis persistent as an invariant
set.

This is again a consequence of the continuity property of the degree that was dis-
cussed in section 4. Givens > 0 we find a finite set of points i, pa, ..., pr, such

that for everyp € A,

min {[p—pil| <ev.

Then we apply theorem 4 at eaphc A and find topological diskB; and integers
N; > 1 with p; € int(D;), D; C B(pi,&1) and

d(id — h™ int(Dj),0) = 1.
Givenh e 7 with ||h— hl|. small, it is possible to prove that

A () — F
max|[1M (9 — % ()

is also small for each=1,....r. This implies that
d(id — Y, int(D;), 0) = d(id — h" int(D;),0) = 1.
In consequencB has a periodic poinp; Tying in D; and the set

A={Rf): 0<k<N,i=1,..,r}
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is invariant undeh. By some continuity arguments the numlsgrcan be adjusted
so that the Haussdorf distance betwaeand A satisfiedDy (A,K) < &. The details
can be found in [24]. It is convenient to remark that the persisteneeisfunder-
stood in the class of invariant sets, the perturbedAses not necessarily a Cantor
set. Notice that in the above proof the perturbed set was finite.

We finish with a sketch of the proof of theorem 4. The complete details can be
found in [24].

Proof. (Theorem 4)First step: Givenp € A andé > 0 there exist an open and
simply connected s&b C R? and an integeN > 1 such that

pewcC®cCB(pd), No)co.

The proof of this step combines the ideas of the proof of lemma 2 in the appendix
with the minimality ofA, that follows from Buescu-Stewart result.

Second step:There exists a poinj € @ N A that is recurrent under®; that is,

g€ Lo(g,h™).
To prove this step we consider the set

Ron={geA: gely(gh®™)}

and prove that it is non-empty. Singeis invariant undeh?V, it must contain a
minimal setM (with respect tch®N). Then 0# M C Ray € A. Once we know that
Ron is non-empty we observe that it is invariant undeFromh(Ray) = Roy we
deduce that also the closure is invariamiRon) = Ron. SinceA is minimal with
respect td, Roy = A and so the recurrent points (with respechtt)) are dense in
A.

Third step: Conclusion via Brouwer’s lemma.

Let o : R? = w be a homeomorphism wittr(Q) = g. DefineH = 6 1ohNo g,
wherenZN : ® — @ is the restriction oh?N. ThenH € &, andQ is recurrent under
H, Q € Lo(Q,H). Sinceq belongs toA, it is not a fixed point oh®. ThenQ is
not a fixed point oH and a diskD aroundQ can be found such th&tNH (D) = 0.
LetM > 2 be an integer such theit (Q) € D. We draw a translation axe passing
throughQ andHM(Q). Thena NHM(«) is non-empty and there exists a Jordan
curvel’ C aU---UHM () with

d(id —H,R(I"),0) = 1.
We transport this curve t@, y = o(I") and notice thaR(y) C @ becausean is
simply connected. The invariance of the fixed point index under conjugation implies
that
d(id — b, R(¥),0) = d(id — H,R(I"),0) = 1

and the proof is complete with = Ri(7).

Acknowledgements Supported by the research project MTM2011-23652, Spain
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Appendix
10.1 Remarks on embeddings

Given a continuous and one-to-one nfapR? — R?, the theorem of invariance of
the domain implies thdt is open. In particulah(R?) is an open subset 6€.
The maph is orientation-preservindh(e &) if

d(h7G7 h(p)) =1,

where the degree is computed on any open and bound&isd®? with p € G. It
can be proved that the value of this degree is independent of the chdiarafp.
Moreover it can only take the valuesl or —1. In the second cadeis orientation-
reversing. Embeddings that are isotopic to the identity li&’in Those isotopic
to the symmetnS(x;,x2) = (X1, —X2) are orientation-reversing. We recall that two
embedding$y andh; are isotopic if there exists a continuous map

H:R2x[0,1] - R%, (Xx,A)+— Hy(x)

such tha#, is one-to-one for each € [0, 1], Hyo = hp andH; = h;.

10.2 Lemmas for the proof of theorem 1

Lemma 2. Assume tha# is an open subset of the plane and% c R? — R?is a
continuous and one-to-one map with a stable fixed poiathgp). Then, given any
neighborhood?” of p, there exists an open and simply connectedosetZ N#
such that pe w and o) C o.

Proof. It is extracted from [27], page 185. Let us fix a closed diskentered at
p and contained iZ N# . The stability of the fixed point allows us to find an
open and connected Btwith p € G andh"(G) C A for eachn > 0. The open and

connected set
Q:=Jh"(G)
n>0
is positively invariant undeh and contained im. At first sight Q could be the
searched set, because it is containedZdm 7 andh(Q) C Q. However this set

can have holes. Le® be the smallest simply connected domain contaighdn-
tuitively this set is constructed by filling the holesdh a more formal construction

can be found in lemma 2.6 of [22]. Sinbds an embedding",l(ﬁ) = (5) and so
we can taken = Q.
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Lemma 3. Assume that hR> — R? is a continuous and one-to-one map with a
fixed point p= h(p) that is stable but not asymptotically stable. Then, for each
neighborhood?” of p there exists a pointg # \ {p} that is recurrent.

Proof. By a contradiction argument assume that there exists a neighbowioafd
p such that#” \ {p} does not contain recurrent points. Sinees stable we can find
two closed ballgg andB centered ap and such thg8 ¢ B c # and

h"(B) c B for eachn > 0.

We claim thatp € L (X, h) for eachx € 8. Indeed, the positive orbfth"(x) }n>o is
contained inB and so it is bounded. In consequence the limitlsgx, h) is non-
empty, compact and invariant underThis limit set has to contain a minimal 9dt

All pointsy in M must satisfyL,(y,h) = M and so they are recurrent. Summing up,
we can say thdt, (x, h) is contained irB and has at least one recurrent point. Since
p is the only recurrent point in this ball, the claime Ly (X, h) has been proved.
Now we observe that, due to the stabilitymf

Lo(x,h) = {p}.

Then all points inf are attracted by and this point should be asymptotically stable.
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