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Abstract Given a closed orbitγ of a system of differential equations in the plane

ẋ = X(x), x∈ R2,

the index of the vector fieldX aroundγ is one. This classical result has a counterpart
in the theory of discrete systems in the plane. Consider the equation

xn+1 = h(xn), xn ∈ R2,

whereh is an orientation-preserving embedding and assume that there is a recur-
rent orbit that is not a fixed point. Then there exists a Jordan curveγ such that the
fixed point index ofh around this curve is one. The proof is based on the theory
of translation arcs, initiated by Brouwer. These notes are dedicated to discuss some
consequences of the above result, specially in stability theory. We will compute the
indexes associated to a stable invariant object and show that Lyapunov stability im-
plies persistence (in two dimensions). The invariant sets under consideration will be
fixed points, periodic orbits and Cantor sets.

1 Introduction

We are going to discuss the dynamics of a system of the type

xn+1 = h(xn), xn ∈ R2 (1)

whereh : R2 → R2 is a one-to-one continuous map. Notice thath is not necessarily
onto and so the imageh(R2) can be a proper subset ofR2. In general orbits are
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defined in the future,xn = hn(x0), n≥ 0, but not always in the past. We will also
assume that the maph is orientation preserving. This class of maps will be denoted
by E+, indicating thath is an orientation preserving topological embedding. We
refer to the appendix for more details on the topological aspects.

As a counterpoint to the discrete model (1) we can consider the system of differ-
ential equations

ẋ = X(x), x∈ R2 (2)

whereX : R2 → R2 is a continuous vector field such that there is uniqueness for
the initial value problem associated to (2). We all know that the behavior of the
continuous system is much simpler. In particular Poincaré-Bendixson theory implies
that the dynamics for (2) cannot be very intricate. In general this type of results
cannot be extended to the discrete situation. In these notes we will be concerned
with a result for continuous systems that is somehow exceptional because it can be
extended to discrete systems. This result, already obtained by Poincaré, deals with
the computation of the index around a closed orbit of (2). The discrete version is the
so-called arc translation lemma, originally due to Brouwer. We will discuss these
classical results and later derive some new consequences in stability theory.

2 The index around a closed orbit

Let Γ be a closed orbit of the system (2) and letRi(Γ ) denote the bounded compo-
nent ofR2\Γ . It is well known that the vector fieldX has an equilibrium onRi(Γ ).
Indeed a stronger conclusion can be obtained, namely

d(X,Ri(Γ ),0) = 1,

whered is the Brouwer degree on the plane. A proof of this result can be found in the
book [18] and an alternative proof will be presented later. The book [15] contains a
very complete presentation of degree theory. By now we just recall how to compute
geometrically the degreed(X,Ri(Γ ),0). The curveΓ can be parameterized by a
continuous functionβ : [0,1] → R2 with Γ = β ([0,1]), β is one-to-one in[0,1[,
β (0) = β (1). It is also assumed thatβ has positive orientation. The vector field
X does not vanish onΓ and so we can find a continuous argumentθ : [0,1] → R
satisfying

X(β (t)) = ||X(β (t))||(cosθ(t),sinθ(t)).

Then

d(X,Ri(Γ ),0) =
1

2π
(θ(1)−θ(0)).
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3 Translation arcs

We go back to discrete systems. Our first task will be to construct an object that
somehow plays the role of the orbits in continuous dynamics. An arc is a setα ⊂R2

that is homeomorphic to the compact interval[0,1]. The end points of the arc will
be denoted byp 6= q and sometimes we will use the notationα = p̂q for the oriented
arc. Givenh∈ E+ we say thatα = p̂q is a translation arc forh if h(p) = q and

h(α \{q})∩ (α \{q}) = /0.

We illustrate this definition with a typical situation.

Fig. 1 A typical translation
arc

Notice that the translation arcα cannot contain fixed points and the open arcs
α̇ = α \ {p,q} andh(α̇) cannot intersect. In some special cases the two arcs can
have the same end points. This case can only occur if{p,q} is a two cycle.

Fig. 2 A translation arc with
2-periodic end points

Next we discuss some simple examples:

1. Assume first thath is a translation, say
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h(x,y) = (x+1,y).

The horizontal segment joiningp = (0,0) andq = (1,0) is a translation arc. The
broken line passing byp= (0,0), (0,1), (1,1) andq= (1,0) is not a translation arc,
in this caseα ∩h(α) is the segment joining(1,1) andq.

Fig. 3 In the left sideα ∩h(α) = {q} but in the right side this intersection is a segment.

2. Assume thath is the rotation of 180 degrees in the counterclockwise sense. The
setα = {(cosθ ,sinθ) : θ ∈ [0,π]} is a translation arc. In this case the end points
p = (1,0) andq = (−1,0) become two cycles.

3. Assume that the continuous system (2) defines a global flow{φt}t∈R in the plane
and takeh = φτ for some fixedτ > 0. We notice thatφτ is a homeomorphism of the
plane that is isotopic to the identity. In particular,h∈ E+. Assume thatp is a point
in the plane that is not an equilibrium ofX and letα be the piece of orbit running
from p to q = φτ(p), that is

α = {φt(p) : t ∈ [0,τ]}.

This is an arc if the orbit is not closed or if it is closed andτ < T, whereT > 0 is
the minimal period. This segment of orbit is a translation arc whenever the orbit is
not closed orτ ≤ 1

2T.

After these examples we go back to the general setting and ask ourselves about
the existence of translation arcs. Next result shows that they exist for anyh 6= id. By
a topological disk we understand a subsetD of the plane that is homeomorphic to the
disk∆ = {x∈R2 : ||x|| ≤ 1}. Notice that∂D is a Jordan curve and int(D) = Ri(∂D).

Lemma 1. Assume that h∈ E+ and D is a topological disk with D∩h(D) = /0. In
addition assume that the points x1, ...,xk belong to the interior of D. Then there
exists a translation arcα with x1, ...,xk ∈ α̇. See the figure below.

This result is a variation of a lemma in [8]. A proof can be found in chapter 3 of
[23].

Given h ∈ E+ and a translation arcα, the successive iterations ofα can lead
to two different situations: eitherα ∩hn(α) = /0 for eachn≥ 2 or α ∩hn(α) 6= /0
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Fig. 4 The arcα passes through the pointsx1,...,xk, all lying in the diskD

for somen ≥ 2. The prototype for the first situation is example 1 (translations),
while the second appears in example 2 (rotations). The second situation is somehow
analogous to the closed orbit in a continuous system. To obtain a result on the index
for the discrete case we need to replace the vector fieldX by some map related to
h. The simplest one isf := id−h, whereid denotes the identity in the plane. The
zeros of f are precisely the fixed points ofh, in analogy with the equilibria of the
continuous system which are the zeros of the vector field.

4 Lemma on translation arcs (Brouwer)

Givenh∈ E+, assume that for somen≥ 2 there exists a translation arcα with

α ∩hn(α) 6= /0.

Then there exists a Jordan curveΓ , contained inα ∪h(α)∪ ·· · ∪hn(α), and such
that

d(id−h,Ri(Γ ),0) = 1.

Notice that this degree is well defined becauseh cannot have fixed points on⋃
k≥0hk(α). See the figure below. The proof of this lemma is delicate. Classical

proofs (see for instance [25]) employ some intuitive method for computing the de-
gree. This type of argument, very common in planar dynamics, is replaced by more
rigorous arguments in [7, 13, 14]. In particular the proof by M. Brown is very ele-
gant and, although it only covers the case of homeomorphismsh, with h(R2) = R2,
it can be adapted to embeddings. See [20] and [23].

We are always assuming thath is orientation-preserving and this condition is
essential for the previous lemma. This is shown by the following example. Consider
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Fig. 5 Brouwer’s lemma with
n = 3. The Jordan curveΓ is
composed byh(α), h2(α) and
sub-arcs taken fromα and
h3(α).

the map

h :

{
x1 = λ (y)x,
y1 =−y,

whereλ : R→ R is a continuous function satisfying

λ (y) > 1 if y∈]−2,2[, λ (y) = 1 if |y| ≥ 2.

This is an orientation-reversing homeomorphism and the dynamics is easy to de-
scribe. The origin is a fixed point and the orbits lying onx = 0 or |y| ≥ 2 are two
cycles, the remaining orbits are unbounded. The set

α = {(2cost,2sint) : t ∈ [−π

2
,

π

2
]}

is a translation arc withα ∩ h2(α) 6= /0. Notice that this intersection is composed
by the end points ofα. Since the origin is the only fixed point ofh and lies in the
unbounded component ofR2 \ (α ∪h(α)∪h2(α)), the degree ofid−h vanishes in
any topological disk whose boundary is contained inα ∪h(α)∪h2(α). This shows
that the conclusion of Brouwer’s lemma cannot be valid ifh is orientation-reversing.

It is interesting to recover the result stated in section 2 from Brouwer’s Lemma.
To this end we first recall two properties of degree. Given a bounded setΩ and a
continuous functionf : Ω → R2 with f (x) 6= 0 if x ∈ ∂Ω , thecontinuity property
of degreesays that there existsη > 0 such that ifg : Ω → R2 is any continuous
function with

|| f (x)−g(x)|| ≤ η for eachx∈ ∂Ω ,

thend( f ,Ω ,0) = d(g,Ω ,0). Notice thatη must be small enough to guarantee that
g does not vanish on∂Ω .
The second property refers to the composition with linear maps. Given a 2×2 matrix
L,

d(L f ,Ω ,0) = sign(detL)d( f ,Ω ,0).
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We are ready for the proof of the result in section 2. For simplicity we will assume
that the vector fieldX defines a global flow{φt}t∈R on the plane. First we prove that
the degree of this vector field coincides with the degree ofid−φt for t positive and
small. To prove this we integrate the differential equation and obtain the formula

1
t
(φt(ξ )−ξ ) =

1
t

∫ t

0
X(φs(ξ ))ds.

Then 1
t (φt − id) converges toX uniformly on compact sets. In consequence, ifΩ

is an open and bounded subset of the plane andX does not vanish on the boundary
∂Ω , for smallt the mapφt will not have fixed points on∂Ω and

d(X,Ω ,0) = d(
1
t
(φt − id),Ω ,0). (3)

This last degree is the same asd(id−φt ,Ω ,0). Assume now thatΓ is a closed orbit.
We fix ξ ∈ Γ and consider the arcα = {φs(ξ ) : 0≤ s≤ t}. We know thatα is a
translation arc forh = φt if t is small. Moreover, sinceΓ is closed, some iterate of
this arc will have a non-empty intersection with the initial arcα. We are now in the
conditions of Brouwer’s lemma and there exists a Jordan curveγ such that

d(id−h,Ri(γ),0) = 1. (4)

But the curveγ is contained inΓ and so they have to coincide,γ = Γ . Putting
together the two identities (3), (4) withΩ = Ri(Γ ), we conclude that the degree of
X is 1.

5 Stability and index of fixed points

Let us discuss some consequences of the previous result in stability theory. Assume
thath : U ⊂ R2 → R2 is a map defined on an open setU and letp∈U be a fixed
point ofh, p= h(p). We say thatp is stableif given any neighborhoodV of p, there
exists another neighborhoodW ⊂U such that

hn(W )⊂ V for eachn≥ 0.

We say that the fixed pointp is isolatedif there exists a neighborhoodN such that
p is the only fixed point ofh in N ; that is,

Fix (h)∩N = {p},

where Fix(h) := {x∈U : h(x) = x}.
To illustrate these notions we consider two simple examples. Assume first thath

is a rotation aroundp, the disks centered atp are invariant underh and this implies
that p is stable. Also,p is isolated because it is the only fixed point ofh. In the
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second exampleh is a symmetry andp is a point in the axis of symmetry. For the
same reasons the pointp is stable but now it is not isolated because all points lying
on the axis of symmetry are fixed.

In the next result we prove that stable and isolated fixed points have index one.

Theorem 1.Assume that h: U ⊂R2→R2 is a continuous and one-to-one map that
is orientation-preserving and let p be an isolated and stable fixed point of h, then

d(id−h,Ω ,0) = 1,

whereΩ is any open and bounded set with p∈ Ω , Ω ⊂U andFix (h)∩Ω = {p}.

It is interesting to notice that this result can also be seen as a discrete counterpart of
a classical result in the theory of continuous systems: given an isolated equilibrium
of a vector fieldX, if this equilibrium is stable then the index ofX around the
equilibrium is one. A proof of theorem 1 using Brouwer’s lemma was obtained by
Dancer and myself in [12], previously Krasnoselskii stated the result (without proof)
in [16]. We will present a simplified proof but first we discuss some consequences of
the theorem. We also notice that the above theorem was extended to the orientation-
reversing case by Ruiz del Portal [26]. In higher dimensions there are stable fixed
points with arbitrary index, see [4] and the references therein.

6 Instability criteria

Traditionally the instability of fixed points is obtained using linearization or Lya-
punov functions. In two dimensions the previous theorem allows to prove the insta-
bility of a fixed point via degree computations. As an example consider a smooth
map that can be expressed (in complex notation) as

h(z,z) = z+z3 +R(z,z),

whereR(z,z) = o(|z|3) asz→ 0. Thenz= 0 is an unstable fixed point of

zn+1 = zn +z3
n +R(zn,zn).

To prove this we first apply the inverse function theorem and notice thath is in the
conditions of theorem 1 when it is restricted to a small neighborhood of the origin.
The expansion

z−h(z,z) =−z3 +o(|z|3) as|z| → 0

implies thatz= 0 is an isolated fixed point. Let us consider the parameterized curve
γρ(t) = ρe2π it , t ∈ [0,1], with ρ > 0 very small. Then

(id−h)(γρ(t)) = ρ
3(e6π it+π i +o(1)) asρ → 0.

The continuous argument of(id−h)◦ γρ satisfies
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θρ(t) = 6πt +π +o(1) asρ → 0.

From here it is easy to deduce that the degree on the diskDρ = {z∈C : |z|< ρ} is

d(id−h,Dρ ,0) = 3

for smallρ. This implies the instability ofz= 0.
Many other results on unstable fixed points can be obtained using the known

algorithms to compute the degree of a planar map.

7 Persistence and stability

In this section we work with the class of homeomorphisms of the plane, denoted by
H . The sub-class of orientation-preserving homeomorphisms will be denoted by
H+. Notice thatH+ = H ∩E+. Givenh∈H and a non-empty compact invariant
setΛ ⊂ R2, Λ = h(Λ), we say thatΛ is persistentif given ε > 0 there existsδ > 0
such that for anỹh∈H with

||h− h̃||∞ < δ

there exists a compact setΛ̃ ⊂ R2 that is invariant under̃h, Λ̃ = h̃(Λ̃) and satisfies

DH(Λ ,Λ̃)≤ ε.

The notationDH refers to the Haussdorf distance in the space of non-empty compact
subsets of the plane and|| · ||∞ is the uniform norm, that is

||h− h̃||∞ = sup
x∈R2

||h(x)− h̃(x)||.

The theorem of the previous section implies the persistence of stable and isolated
fixed points.

Corollary 1. Given h∈H+ and p= h(p) a fixed point that is stable and isolated,
the invariant setΛ = {p} is persistent.

Proof. Sincep is an isolated fixed point, for smallε > 0 we know that

Fix (h)∩Ω ε = {p},

whereΩε = {x∈ R2 : ||x||< ε}. From theorem 1,

d( f ,Ωε ,0) = 1,

where f = id−h. Let us takeg= id− h̃ whereh̃∈H . Since|| f −g||∞ = ||h− h̃||∞,
we can apply the continuity property of the degree that was stated in section 4 and
selectδ = η in order to find a fixed point ˜p of h̃ with p̃∈Ωε . The proof is complete
with Λ̃ = {p̃}.
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In the previous result it is essential that the fixed point is isolated. An example of a
stable fixed point that is not persistent as invariant set is presented in [24].

8 Proof of the theorem

To prove theorem 1 we distinguish two cases:

(i) p is asymptotically stable.
In this case the theorem will be a consequence of degree theory and it is even valid
in arbitrary (finite) dimension.

(ii) p is not asymptotically stable.
From our perspective this will be the more interesting case. We will prove the theo-
rem using Brouwer’s lemma. The proof and the result cannot be extended to higher
dimensions.

8.1 Asymptotically stable fixed points

Although the contents of this subsection are valid in arbitrary dimension, we remain
in the plane for notational convenience. We will consider a continuous maph : U ⊂
R2 → R2 defined on an open set. Notice that we do not need to assume thath is
one-to-one.

A fixed point p = h(p) is asymptotically stableif it is stable and there exists a
neighborhoodR of p such that

hn(x)→ p asn→+∞

for eachx∈R.
From this definition we notice that Fix(h)∩R = {p}. This implies that asymp-

totically stable fixed points are isolated. Also, it is not hard to prove that the attrac-
tion is uniform on compact subsets ofR. Next result is taken from Krasnoselskii’s
book [16].

Proposition 1. In the previous assumptions for h, assume that p= h(p) is an asymp-
totically stable fixed point. Then

d(id−h,Ω ,0) = 1

for each open and bounded setΩ satisfying p∈ Ω , Ω ∩Fix (h) = {p}.

Proof. Browder’s asymptotic fixed point theorem (see [5]) implies that ifD and∆

are closed disks in the plane with∆ ⊂ D andh : D → R2 is a continuous map such
that all the iterateshn(∆) are well defined forn≥ 0 and, for someN > 0,
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hn(∆)⊂ ∆ if n≥ N, (5)

thenh has a fixed point in∆ . A refinement of this result says that if the condition
(5) is replaced by

hn(∆)⊂ int (∆) if n≥ N, (6)

then
d(id−h,D,0) = 1.

A complete proof of this result can be found in the book [17]. We are ready for the
proof of the proposition.

Let us fix a small closed diskD centered atp and such thatD ⊂ U . Sincep is
stable we can find a smaller disk∆ centered atp and such that all forward iterates
hn(∆) are well defined and contained in the interior ofD; that is,

hn(∆)⊂ int (D) if n≥ 0.

After restricting the size of∆ we can also assume that it is contained inR. Then the
compact disk∆ is uniformly attracted byp. This means that

hn(x)→ p asn→+∞,

uniformly in x∈ ∆ . In consequence the condition (6) will hold ifN is large enough.
We conclude thatd(id − h, int (∆),0) = 1. The identityd(id − h, int (∆),0)) =
d(id−h,Ω ,0) follows by excision. Notice that∆ ∩Fix (h)⊂R ∩Fix (h) = {p}.

8.2 Stability without attraction

We are now assuming thath is continuous, one-to-one and orientation-preserving.
However, since the map is not defined in the whole plane, we cannot say that it
belongs toE+. Our first task will be to replaceh by a mapH in E+. To do this we first
recall that a stable fixed point in the plane always possesses small neighborhoods
that are positively invariant, open and simply connected. We refer to the appendix
for more details. Sincep is an isolated fixed point we find a neighborhoodN with

N ∩Fix (h) = {p}.

Let W be an open neighborhood ofp satisfying

W ⊂U ∩N , W is simply connected,h(W )⊂W .

As a consequence of Riemann theorem on conformal maps we know thatW is
homeomorphic to the open disk or, equivalently, to the whole plane. It is possible
to assume that the homeomorphismσ : R2 ∼= W satisfiesσ(p) = p and we define
H = σ−1◦hW ◦σ wherehW : W →W is the restriction ofh,
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H : R2 ∼= W −→W ∼= R2.

By definition H is continuous and one-to-one. Moreover, it is conjugate to the re-
striction of h to W . This implies thatH is orientation-preserving and the stability
properties ofp as a fixed point are the same for the two maps. We summarize the
relevant properties ofH,

• H ∈ E+
• p is a stable fixed point ofH
• p is not asymptotically stable
• Fix (H) = {p}
• d(id−h,Ω ,0) = d(id−H,G,0), whereG is any open and bounded subset of the

plane withp∈G.

Notice that the last property is a consequence of the excision property and the in-
variance of the fixed point index under conjugation. More precisely, given a home-
omorphismψ : G1

∼= G2 between two bounded and open subsets ofR2,

d(id−ψ
−1◦ f ◦ψ,G1,0) = d(id− f ,G2,0)

for any continuous functionf : G2 →G2 with Fix( f )∩∂G2 = /0.
From now on we work with the mapH. Since p is stable but not asymptoti-

cally stable, we can find a pointq ∈ R2 \ {p} that is recurrent. This means that

Fig. 6 In this exampleN = 4 and the degree is one in the regionG

q∈ Lω(q,H), whereLω(q,H) is theω-limit set. We recall that this limit set is com-
posed by all accumulation points of the sequence{Hn(p)}n≥0. More details can be
found in the appendix. The pointq is not fixed underH and so we can find a small
diskD aroundq satisfying

D∩H(D) = /0.
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Sinceq is recurrent there exists an integerN ≥ 2 such thatHN(q) ∈ int (D). If we
apply lemma 1, we find a translation arcα with q,HN(q) ∈ α̇. After iteratingN
times the arcα underH, we observe that the pointHN(q) belongs simultaneously
to α̇ andHN(α̇) and we are in the conditions of Brouwer’s lemma.

9 Stability of invariant sets

From now on we assume that the maph is a homeomorphism of the plane and we
indicate it byh∈ H . In particular it is assumed thath is onto,h(R2) = R2. Let Λ

be a compact subset ofR2 that is invariant underh,

h(Λ) = Λ .

The notion of stability can be adapted to this general setting. We say thatΛ is stable
if given any neighborhoodU of Λ , there exists another neighborhoodV such that

hn(V )⊂U for eachn≥ 0.

If Λ is a singleton,Λ = {p}, p is a fixed point and the two notions of stability
coincide. WhenΛ is a finite set then it is composed by a finite number of periodic
orbits, say

Λ = Λ1∪·· ·∪Λr

where
Λi = {pi ,h(pi), ...,hmi−1(pi)}

andhmi (pi) = pi , i = 1, ..., r. Each pointpi is fixed under the iteratehmi andΛi is
stable if and only ifpi is a stable fixed point ofhmi . In particular, if pi is isolated
as a fixed point ofh2mi andΛ is stable we can apply theorem 1 to the orientation-
preserving homeomorphismh2mi to deduce that

d(id−h2mi ,G,0) = 1

if G is a bounded and open subset of the plane withpi ∈G and Fix(h2mi )∩G= {pi}.
This is a more or less trivial consequence of theorem 1 but we will obtain similar
results whenΛ is a Cantor set.

10 Stable Cantor sets

Assume thatΛ ⊂ R2 is a Cantor set that is invariant underh,

h(Λ) = Λ .
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We recall that a Cantor set is a compact, perfect and totally disconnected metric
space. We will also assume thatΛ is transitive. This means that, for somep∈Λ ,

Lω(p,h) = Λ .

There are many classical examples where transitive Cantor sets appear. In Smale’s
horseshoe there appear a Cantor set with the dynamics of the shift, see [1]. In the
theory of twist maps, Aubry-Mather sets are invariant Cantor sets with Denjoy dy-
namics, see [19]. However, in these examples the setΛ is not stable. To present an
example of stable Cantor set we consider the following construction, already de-
scribed by Cartwright in [10]. Assume thatD is a disk and insideD there are two
disjoint disksD0 andD1. We repeat this process recursively so thatD0 contains two
disksD00 andD01, D1 containsD10 andD11, and so on. The intersection of the sets

Fig. 7 Construction of a Can-
tor set as a limit of families
of 2n disks. The disks are la-
belled by the words of length
n with the symbols 0 and 1.
Forn = 2, we have 00, 01, 10,
11.

D, D0∪D1, D00∪D01∪D10∪D11... is a Cantor setΛ . We construct a homeomor-
phismh satisfying

h(D) = D

h(D0) = D1, h(D1) = D0

h(D00) = D10, h(D10) = D01, h(D01) = D11, h(D11) = D00, ...

Notice that, at each level of the construction, the iterates ofh map every disk in all
the others before returning. In particularh(D) = D, h2(D0) = D0, h4(D00) = D00,...
Since the setsD, D0∪D1, D00∪D01∪D10∪D11... are invariant underh, the same
will happen to the intersectionΛ . MoreoverΛ is stable because it has a basis of
invariant neighborhoods. Finally we notice thatΛ is minimal. This means that, for
eachp∈Λ ,

Lω(p,h) = Λ .
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This is clear because the iterates of a disk visit all the disks at the same level. There
can be some questioning as to whether this construction is feasible. This is easily
solved after interpretingD as a section of the flow on a solid torus described in the
next figure.

Fig. 8 The top and bottom of
the cylinder are identified as a
common disk. In this way we
obtain a solid torus that is in-
variant under the flow. Inside
this torus another invariant
torus is obtained by gluing the
two grey cylinders connecting
the smaller disks. This torus
winds twice before closing.
The process is repeated re-
cursively, in the next step
there appear an invariant torus
after gluing the four colored
thinner cylinders.

Buescu and Stewart proved that the dynamics on any stable and transitive Cantor
set is almost periodic, the so-called adding machine (see [9]). In particularΛ has to
be minimal. The Bernoulli shift on a Cantor set is transitive but not minimal and so
it is always unstable in the plane. Notice that this is the case in Smale’s horseshoe.
Cantor sets with Denjoy dynamics are minimal but not almost periodic (see [21]).
For this reason Aubry-Mather sets cannot be stable.

In [3] Bell and Meyer proved that any stable and transitive Cantor set in the
plane can be approximated by periodic points. In the same paper they constructed an
example showing that this is false in three dimensions. Next we state the interesting
result by Bell and Meyer.

Theorem 2.Assume that h∈H andΛ is a Cantor set in R2 that is invariant under
h. In addition it is assumed thatΛ is stable and transitive. Then, for each p∈ Λ

there exists a sequence{xn}, xn ∈ R2, converging to p and such that hσn(xn) = xn

for some integerσn ≥ 1.

We know thatΛ is minimal and so it cannot contain periodic points. For this reason
the pointsxn do not lie inΛ andσn → +∞. In particularΛ cannot be an isolated
invariant set ofh. The proof by Bell and Meyer combines the result by Buescu and
Stewart mentioned above with the following classical fixed point theorem. We recall
that a continuum is a non-empty compact and connected metric space.

Theorem 3.Assume that h∈H+ and K is a continuum of the plane with h(K) = K.
In addition assume that R2\K is connected. Then h has a fixed point in K.



16 Rafael Ortega

This result was proved by Cartwright and Littlewood in the beautiful paper [11].
Later Bell extended it to orientation-reversing homeomorphisms in [2]. In the re-
cent paper [24], written in collaboration with Ruiz-Herrera, it is shown that addi-
tional information on stable Cantor sets can be obtained if one replaces the use of
theorem 3 by Brouwer’s lemma. In retrospect this seems natural because Cartwright-
Littlewood theorem can be obtained as a consequence of Brouwer’s lemma (see [6]).
To state the next result we employ the notationB(p,δ ) for the open ball of centerp
and radiusδ .

Theorem 4.Assume that the same conditions of theorem 2 hold. Then, for each p∈
Λ and eachδ > 0, there exists a topological disk D and an integer N= N(p,δ )≥ 1
such that D⊂ B(p,δ ) and

d(id−hN, int(D),0) = 1.

As a consequence of this result we will deduce that stable and transitive Cantor
sets have some remarkable properties: they are always persistent and non-isolated
as invariant sets. We already mentioned that the non-isolated character follows from
the theorem by Bell and Meyer. We can now see Bell-Meyer’s result as a corollary
of theorem 4, becausehN has a fixed point inD. Next we present a second corollary
that seems to be new.

Corollary 2. In the conditions of theorem 4, the setΛ is persistent as an invariant
set.

This is again a consequence of the continuity property of the degree that was dis-
cussed in section 4. Givenε1 > 0 we find a finite set of points inΛ , p1, ..., pr , such
that for everyp∈Λ ,

min
i=1,...,r

||p− pi ||< ε1.

Then we apply theorem 4 at eachpi ∈Λ and find topological disksDi and integers
Ni ≥ 1 with pi ∈ int(Di), Di ⊂ B(pi ,ε1) and

d(id−hNi , int(Di),0) = 1.

Givenh̃∈H with ||h− h̃||∞ small, it is possible to prove that

max
x∈∂Di

||hNi (x)− h̃Ni (x)||

is also small for eachi = 1, ..., r. This implies that

d(id− h̃Ni , int(Di),0) = d(id−hNi , int(Di),0) = 1.

In consequencẽh has a periodic point ˜pi lying in Di and the set

Λ̃ = {h̃k(p̃i) : 0≤ k < Ni , i = 1, ..., r}
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is invariant under̃h. By some continuity arguments the numberε1 can be adjusted
so that the Haussdorf distance betweenΛ andΛ̃ satisfiesDH(Λ ,Λ̃)≤ ε. The details
can be found in [24]. It is convenient to remark that the persistence ofΛ is under-
stood in the class of invariant sets, the perturbed setΛ̃ is not necessarily a Cantor
set. Notice that in the above proof the perturbed set was finite.

We finish with a sketch of the proof of theorem 4. The complete details can be
found in [24].

Proof. (Theorem 4). First step: Given p ∈ Λ andδ > 0 there exist an open and
simply connected setω ⊂ R2 and an integerN≥ 1 such that

p∈ ω ⊂ ω ⊂ B(p,δ ), hN(ω)⊂ ω.

The proof of this step combines the ideas of the proof of lemma 2 in the appendix
with the minimality ofΛ , that follows from Buescu-Stewart result.

Second step:There exists a pointq ∈ ω ∩Λ that is recurrent underh2N; that is,
q∈ Lω(q,h2N).
To prove this step we consider the set

R2N = {q∈Λ : q∈ Lω(q,h2N)}

and prove that it is non-empty. SinceΛ is invariant underh2N, it must contain a
minimal setM (with respect toh2N). Then /06= M ⊂ R2N ⊂ Λ . Once we know that
R2N is non-empty we observe that it is invariant underh. Fromh(R2N) = R2N we
deduce that also the closure is invariant,h(R2N) = R2N. SinceΛ is minimal with
respect toh, R2N = Λ and so the recurrent points (with respect toh2N) are dense in
Λ .

Third step: Conclusion via Brouwer’s lemma.
Let σ : R2 ∼= ω be a homeomorphism withσ(Q) = q. DefineH = σ−1 ◦h2N

ω ◦σ ,
whereh2N

ω : ω → ω is the restriction ofh2N. ThenH ∈ E+ andQ is recurrent under
H, Q ∈ Lω(Q,H). Sinceq belongs toΛ , it is not a fixed point ofh2N. ThenQ is
not a fixed point ofH and a diskD aroundQ can be found such thatD∩H(D) = /0.
Let M ≥ 2 be an integer such thatHM(Q) ∈ D. We draw a translation arcα passing
throughQ andHM(Q). Thenα ∩HM(α) is non-empty and there exists a Jordan
curveΓ ⊂ α ∪·· ·∪HM(α) with

d(id−H,Ri(Γ ),0) = 1.

We transport this curve toω, γ = σ(Γ ) and notice thatRi(γ) ⊂ ω becauseω is
simply connected. The invariance of the fixed point index under conjugation implies
that

d(id−h2N,Ri(γ),0) = d(id−H,Ri(Γ ),0) = 1

and the proof is complete withD = Ri(γ).
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Appendix

10.1 Remarks on embeddings

Given a continuous and one-to-one maph : R2 → R2, the theorem of invariance of
the domain implies thath is open. In particularh(R2) is an open subset ofR2.

The maph is orientation-preserving (h∈ E+) if

d(h,G,h(p)) = 1,

where the degree is computed on any open and bounded setG⊂ R2 with p∈ G. It
can be proved that the value of this degree is independent of the choice ofG andp.
Moreover it can only take the values+1 or−1. In the second caseh is orientation-
reversing. Embeddings that are isotopic to the identity lie inE+. Those isotopic
to the symmetryS(x1,x2) = (x1,−x2) are orientation-reversing. We recall that two
embeddingsh0 andh1 are isotopic if there exists a continuous map

H : R2× [0,1]→ R2, (x,λ ) 7→ Hλ (x)

such thatHλ is one-to-one for eachλ ∈ [0,1], H0 = h0 andH1 = h1.

10.2 Lemmas for the proof of theorem 1

Lemma 2. Assume thatU is an open subset of the plane and h: U ⊂R2 →R2 is a
continuous and one-to-one map with a stable fixed point p= h(p). Then, given any
neighborhoodW of p, there exists an open and simply connected setω ⊂ U ∩W
such that p∈ ω and h(ω)⊂ ω.

Proof. It is extracted from [27], page 185. Let us fix a closed disk∆ centered at
p and contained inU ∩W . The stability of the fixed point allows us to find an
open and connected setG with p∈G andhn(G)⊂ ∆ for eachn≥ 0. The open and
connected set

Ω :=
⋃
n≥0

hn(G)

is positively invariant underh and contained in∆ . At first sight Ω could be the
searched set, because it is contained inU ∩W andh(Ω) ⊂ Ω . However this set
can have holes. Let̂Ω be the smallest simply connected domain containingΩ . In-
tuitively this set is constructed by filling the holes inΩ , a more formal construction
can be found in lemma 2.6 of [22]. Sinceh is an embedding,h(Ω̂) = ĥ(Ω) and so
we can takeω = Ω̂ .
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Lemma 3. Assume that h: R2 → R2 is a continuous and one-to-one map with a
fixed point p= h(p) that is stable but not asymptotically stable. Then, for each
neighborhoodW of p there exists a point q∈W \{p} that is recurrent.

Proof. By a contradiction argument assume that there exists a neighborhoodW of
p such thatW \{p} does not contain recurrent points. Sincep is stable we can find
two closed ballsβ andB centered atp and such thatβ ⊂ B⊂W and

hn(β )⊂ B for eachn≥ 0.

We claim thatp∈ Lω(x,h) for eachx∈ β . Indeed, the positive orbit{hn(x)}n≥0 is
contained inB and so it is bounded. In consequence the limit setLω(x,h) is non-
empty, compact and invariant underh. This limit set has to contain a minimal setM.
All points y in M must satisfyLω(y,h) = M and so they are recurrent. Summing up,
we can say thatLω(x,h) is contained inB and has at least one recurrent point. Since
p is the only recurrent point in this ball, the claimp ∈ Lω(x,h) has been proved.
Now we observe that, due to the stability ofp,

Lω(x,h) = {p}.

Then all points inβ are attracted byp and this point should be asymptotically stable.
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